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Abstract. Consistent query answering is the problem of computing the
answers from a database that are consistent with respect to certain
integrity constraints that the database as a whole may fail to satisfy.
Those answers are characterized as those that are invariant under min-
imal forms of restoring the consistency of the database. In this context,
we study the problem of repairing databases by fixing integer numeri-
cal values at the attribute level with respect to denial and aggregation
constraints. We introduce a quantitative definition of database fix, and
investigate the complexity of several decision and optimization prob-
lems, including DFP, i.e. the existence of fixes within a given distance
from the original instance, and CQA, i.e. deciding consistency of answers
to aggregate conjunctive queries under different semantics. We provide
sharp complexity bounds, identify relevant tractable cases; and introduce
approximation algorithms for some of those that are intractable. More
specifically, we obtain results like undecidability of existence of fixes for
aggregation constraints; MAXSNP-hardness of DFP, but a good approx-
imation algorithm for a relevant special case; and intractability but good
approximation for CQA for aggregate queries for one database atom de-
nials (plus built-ins).

1 Introduction

Integrity constraints (ICs) are used to impose semantics on a database with the
purpose ofmaking the database an accuratemodel of an applicationdomain.Data-
base management systems or application programs enforce the satisfaction of the
ICs by rejecting undesirable updates or executing additional compensating ac-
tions. However, there aremany situationswhere we need to interactwith databases
that are inconsistent in the sense that they do not satisfy certain desirable ICs. In
this context, an important problem in database research consists in characterizing
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and retrieving consistent data from inconsistent databases [4], in particular con-
sistent answers to queries. From the logical point of view, consistently answering a
query posed to an inconsistent database amounts to evaluating the truth of a for-
mula against a particular class of first-order structures [2], as opposed to the usual
process of truth evaluation in a single structure (the relational database).

Certain database applications, like census, demographic, financial, and ex-
perimental data, contain quantitative data, usually associated to nominal or
qualitative data, e.g. number of children associated to a household identification
code (or address); or measurements associated to a sample identification code.
Usually this kind of data contains errors or mistakes with respect to certain se-
mantic constraints. For example, a census form for a particular household may
be considered incorrect if the number of children exceeds 20; or if the age of a
parent is less than 10. These restrictions can be expressed with denial integrity
constraints, that prevent some attributes from taking certain values [11]. Other
restrictions may be expressed with aggregation ICs, e.g. the maximum concen-
tration of certain toxin in a sample may not exceed a certain specified amount; or
the number of married men and married women must be the same. Inconsisten-
cies in numerical data can be resolved by changing individual attribute values,
while keeping values in the keys, e.g. without changing the household code, the
number of children is decreased considering the admissible values.

We consider the problem of fixing integer numerical data wrt certain con-
straints while (a) keeping the values for the attributes in the keys of the rela-
tions, and (b) minimizing the quantitative global distance between the original
and modified instances. Since the problem may admit several global solutions,
each of them involving possibly many individual changes, we are interested in
characterizing and computing data and properties that remain invariant under
any of these fixing processes. We concentrate on denial and aggregation con-
straints; and conjunctive queries, with or without aggregation.

Database repairs have been studied in the context of consistent query an-
swering (CQA), i.e. the process of obtaining the answers to a query that are
consistent wrt a given set of ICs [2] (c.f. [4] for a survey). There, consistent data
is characterized as invariant under all minimal forms of restoring consistency, i.e.
as data that is present in all minimally repaired versions of the original instance
(the repairs). Thus, an answer to a query is consistent if it can be obtained as
a standard answer to the query from every possible repair. In most of the re-
search on CQA, a repair is a new instance that satisfies the given ICs, but differs
from the original instance by a minimal set, under set inclusion, of (completely)
deleted or inserted tuples. Changing the value of a particular attribute can be
modelled as a deletion followed by an insertion, but this may not correspond
to a minimal repair. However, in certain applications it may make more sense
to correct (update) numerical values only in certain attributes. This requires a
new definition of repair that considers: (a) the quantitative nature of individual
changes, (b) the association of the numerical values to other key values; and (c)
a quantitative distance between database instances.
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Example 1. Consider a network traffic
database D that stores flow measure-
ments of links in a network. This net-
work has two types of links, labelled 0
and 1, with maximum capacities 1000

Traffic Time Link Type Flow
1.1 a 0 1100
1.1 b 1 900
1.3 b 1 850

and 1500, resp. Database D is inconsistent wrt this IC. Under the tuple and
set oriented semantics of repairs [2], there is a unique repair, namely deleting
tuple Traffic(1.1, a, 0, 1100). However, we have two options that may make more
sense than deleting the flow measurement, namely updating the violating tu-
ple to Traffic(1.1, a, 0, 1000) or to Traffic(1.1, a, 1, 1100); satisfying an implicit
requirement that the numbers should not change too much. �
Update-based repairs for restoring consistency are studied in [25]; where chang-
ing values in attributes in a tuple is made a primitive repair action; and semantic
and computational problems around CQA are analyzed from this perspective.
However, peculiarities of changing numerical attributes are not considered, and
more importantly, the distance between databases instances used in [25, 26] is
based on set-theoretic homomorphisms, but not quantitative, as in this paper.
In [25] the repaired instances are called fixes, a term that we keep here (instead
of repairs), because our basic repair actions are also changes of (numerical) at-
tribute values. In this paper we consider fixable attributes that take integer
values and the quadratic, Euclidean distance L2 between database instances.
Specific fixes and approximations may be different under other distance func-
tions, e.g. the “city distance” L1 (the sum of absolute differences), but the general
(in)tractability and approximation results remain. However, moving to the case
of real numbers will certainly bring new issues that require different approaches;
they are left for ongoing and future research. Actually it would be natural to
investigate them in the richer context of constraint databases [18].

The problem of attribute-based correction of census data forms is addressed
in [11] using disjunctive logic programs with stable model semantics. Several
underlying and implicit assumptions that are necessary for that approach to
work are made explicit and used here, extending the semantic framework of [11].

We provide semantic foundations for fixes that are based on changes on numer-
ical attributes in the presence of key dependencies and wrt denial and aggregate
ICs, while keeping the numerical distance to the original database to a minimum.
This framework introduces new challenging decision and optimization problems,
and many algorithmic and complexity theoretic issues. We concentrate in par-
ticular on the “Database Fix Problem” (DFP), of determining the existence of
a fix at a distance not bigger than a given bound, in particular considering the
problems of construction and verification of such a fix. These problems are highly
relevant for large inconsistent databases. For example, solving DFP can help us
find the minimum distance from a fix to the original instance; information that
can be used to prune impossible branches in the process of materialization of a
fix. The CQA problem of deciding the consistency of query answers is studied wrt
decidability, complexity, and approximation under several alternative semantics.

We prove that DFP and CQA become undecidable in the presence of aggre-
gation constraints. However, DFP is NP-complete for linear denials, which are



Complexity and Approximation of Fixing Numerical Attributes 265

enough to capture census like applications. CQA belongs to ΠP
2 and becomes

∆P
2 -hard, but for a relevant class of denials we get tractability of CQA to non ag-

gregate queries, which is again lost with aggregate queries. Wrt approximation,
we prove that DFP is MAXSNP-hard in general, and for a relevant subclass of
denials we provide an approximation within a constant factor that depends on
the number of atoms in them. All the algorithmic and complexity results, unless
otherwise stated, refer to data complexity [1], i.e. to the size of the database
that here includes a binary representation for numbers. For complexity theoretic
definitions and classical results we refer to [21].

This paper is structured as follows. Section 2 introduces basic definitions.
Sections 3 presents the notion of database fix, several notions of consistent answer
to a query; and some relevant decision problems. Section 4 investigates their
complexity. In Section 5 approximations for the problem of finding the minimum
distance to a fix are studied, obtaining negative results for the general case, but
good approximation for the class of local denial constraints. Section 6 investigates
tractability of CQA for conjunctive queries and denial constraints containing one
database atom plus built-ins. Section 7 presents some conclusions and refers to
related work. Proofs and other auxiliary, technical results can be found in [5].

2 Preliminaries

Consider a relational schema Σ = (U , R, B, A), with domain U that includes Z
1,

R a set of database predicates, B a set of built-in predicates, and A a set of
attributes. A database instance is a finite collection D of database tuples, i.e. of
ground atoms P (c̄), with P ∈ R and c̄ a tuple of constants in U . There is a set
F ⊆ A of all the fixable attributes, those that take values in Z and are allowed
to be fixed. Attributes outside F are called rigid. F need not contain all the
numerical attributes, that is we may also have rigid numerical attributes.

We also have a set K of key constraints expressing that relations R ∈ R have
a primary key KR, KR ⊆ (A � F). Later on (c.f. Definition 2), we will assume
that K is satisfied both by the initial instance D, denoted D |= K, and its fixes.
Since F ∩KR = ∅, values in key attributes cannot be changed in a fixing process;
so the constraints in K are hard. In addition, there may be a separate set IC of
flexible ICs that may be violated, and it is the job of a fix to restore consistency
wrt them (while still satisfying K).

A linear denial constraint [18] has the form ∀x̄¬(A1 ∧ . . . ∧ Am), where the
Ai are database atoms (i.e. with predicate in R), or built-in atoms of the form
xθc, where x is a variable, c is a constant and θ ∈ {=, �=, <, >, ≤, ≥}, or x = y.
If x �= y is allowed, we call them extended linear denials.

Example 2. The following are linear denials (we replace ∧ by a comma): (a)
No customer is younger than 21: ∀Id , Age, Income,Status¬(Customer(Id ,Age,
Income, Status),Age < 21). (b) No customer with income less than 60000 has
“silver” status: ∀Id ,Age, Income,Status¬(Customer(Id ,Age, Income,Status),

1 With simple denial constraints, numbers can be restricted to, e.g. N or {0, 1}.
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Income < 60000,Status = silver ). (c) The constraints in Example 1, e.g. ∀T ,L,
Type,Flow¬(Traffic(T, L, Type,Flow), Type = 0, Flow > 1000). �

We consider aggregation constraints (ACs) [23] and aggregate queries with sum,
count, average. Filtering ACs impose conditions on the tuples over which ag-
gregation is applied, e.g. sum(A1 : A2 = 3) > 5 is a sum over A1 of tuples
with A2 = 3. Multi-attribute ACs allow arithmetical combinations of attributes
as arguments for sum, e.g. sum(A1 + A2) > 5 and sum(A1 × A2) > 100. If
an AC has attributes from more than one relation, it is multi-relation, e.g.
sumR1(A1) = sumR2(A1), otherwise it is single-relation.

An aggregate conjunctive query has the form q(x1, . . . xm; agg(z)) ← B(x1,
. . . , xm, z, y1, . . . , yn), where agg is an aggregation function and its non-aggregate
matrix (NAM) given by q′(x1, . . . xm) ← B(x1, . . . , xm, z, y1, . . . , yn) is a usual
first-order (FO) conjunctive query with built-in atoms, such that the aggregation
attribute z does not appear among the xi. Here we use the set semantics. An
aggregate conjunctive query is cyclic (acyclic) if its NAM is cyclic (acyclic) [1].

Example 3. q(x, y, sum(z)) ← R(x, y), Q(y, z, w), w �= 3 is an aggregate con-
junctive query, with aggregation attribute z. Each answer (x, y) to its NAM,
i.e. to q(x, y) ← R(x, y), Q(y, z, w), w �= 3, is expanded to (x, y, sum(z)) as an
answer to the aggregate query. sum(z) is the sum of all the values for z having
a w, such that (x, y, z, w) makes R(x, y), Q(y, z, w), w �= 3 true. In the data-
base instance D = {R(1, 2), R(2, 3), Q(2, 5, 9), Q(2, 6, 7), Q(3, 1, 1), Q(3, 1, 5),
Q(3, 8, 3)} the answer set for the aggregate query is {(1, 2, 5 + 6), (2, 3, 1 + 1)}.�
An aggregate comparison query is a sentence of the form q(agg(z)), agg(z)θk,
where q(agg(z )) is the head of a scalar aggregate conjunctive query (with no free
variables), θ is a comparison operator, and k is an integer number. For example,
the following is an aggregate comparison query asking whether the aggregated
value obtained via q(sum(z)) is bigger than 5: Q : q(sum(z)), sum(z) > 5, with
q(sum(z)) ← R(x, y), Q(y, z, w), w �= 3.

3 Least Squares Fixes

When we update numerical values to restore consistency, it is desirable to make
the smallest overall variation of the original values, while considering the relative
relevance or specific scale of each of the fixable attributes. Since the original
instance and a fix will share the same key values (c.f. Definition 2), we can use
them to compute variations in the numerical values. For a tuple k̄ of values for
the key KR of relation R in an instance D, t̄(k̄, R, D) denotes the unique tuple
t̄ in relation R in instance D whose key value is k̄. To each attribute A ∈ F a
fixed numerical weight αA is assigned.
Definition 1. For instances D and D ′ over schema Σ with the same set val (KR)
of tuples of key values for each relation R ∈ R, their square distance is

∆ᾱ(D ,D ′) =
∑

R∈R,A∈F
k̄∈val(KR)

α
A
(π

A
(t̄(k̄, R, D)) − π

A
(t̄(k̄, R, D′)))2,

where π
A

is the projection on attribute A and ᾱ = (α
A
)A∈F . �
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Definition 2. For an instance D, a set of fixable attributes F , a set of key
dependencies K, such that D |= K, and a set of flexible ICs IC: A fix for D wrt
IC is an instance D′ such that: (a) D′ has the same schema and domain as D;
(b) D′ has the same values as D in the attributes in A � F ; (c) D′ |= K; and
(d) D′ |= IC. A least squares fix (LS-fix) for D is a fix D′ that minimizes the
square distance ∆ᾱ(D, D′) over all the instances that satisfy (a) - (d). �

In general we are interested in LS-fixes, but (non-necessarily minimal) fixes will
be useful auxiliary instances.
Example 4. (example 1 cont.) R = {Traffic}, A = {T ime, Link, T ype, F low},
KTraffic = {T ime, Link}, F = {Type, F low}, with weights ᾱ = (10−5, 1),
resp. For original instance D, val (KTraffic) = {(1.1, a), (1.1, b), (1.3, b)}, t̄((1.1, a),
Traffic, D) = (1.1, a, 0, 1100), etc. Fixes are D1 = {(1.1, a, 0, 1000), (1.1, b, 1, 900),
(1.3, b, 1, 850)} and D2 = {(1.1, a, 1, 1100), (1.1, b, 1, 900), (1.3, b, 1, 850)}, with
distances ∆ᾱ(D, D1) = 1002 × 10−5 = 10−1 and ∆ᾱ(D, D2) = 12 × 1, resp.
Therefore, D1 is the only LS-fix. �
The coefficients α

A
can be chosen in many different ways depending on factors

like relative relevance of attributes, actual distribution of data, measurement
scales, etc. In the rest of this paper we will assume, for simplification, that
αA = 1 for all A ∈ F and ∆ᾱ(D ,D ′) will be simply denoted by ∆(D ,D ′).

Example 5. The database D has relations Client(ID , A,M ), with key ID , at-
tributes A for age and M for amount of money; and Buy(ID , I ,P), with key
{ID , I}, I for items, and P for prices. We have denials IC1 : ∀ID , P, A, M¬
(Buy(ID , I, P ),Client(ID , A, M), A < 18, P > 25) and IC2 : ∀ID , A, M¬(
Client( ID , A, M), A < 18, M > 50), requiring that people younger than 18 can-
D: Client ID A M

1 15 52 t1
2 16 51 t2
3 60 900 t3

Buy ID I P
1 CD 27 t4
1 DVD 26 t5
3 DVD 40 t6

not spend more than 25 on one item
nor spend more than 50 in the store.
We added an extra column in the ta-
bles with a label for each tuple. IC1 is
violated by {t1,t4} and {t1,t5}; and IC2
by {t1} and {t2}. We have two LS-fixes
(the modified version of tuple t1 is t′1,

D′: D′′:Client’ ID A M
1 15 50 t′

1

2 16 50 t2
′

3 60 900 t3
Buy’ ID I P

1 CD 25 t4
′

1 DVD 25 t5
′

3 DVD 40 t6

Client” ID A M
1 18 52 t1

′′

2 16 50 t2
′′

3 60 900 t3
Buy” ID I P

1 CD 27 t4
1 DVD 26 t5
3 DVD 40 t6

etc.), with distances ∆(D, D′) = 22 + 12 + 22 + 12 = 10, and ∆(D, D′′) =
32 + 12 = 10. We can see that a global fix may not be the result of applying
“local” minimal fixes to tuples. �
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The built-in atoms in linear denials determine a solution space for fixes as an
intersection of semi-spaces, and LS-fixes can be found at its “borders” (c.f. pre-
vious example and Proposition A.1 in [5]). It is easy to construct examples with
an exponential number of fixes. For the kind of fixes and ICs we are considering,
it is possible that no fix exists, in contrast to [2, 3], where, if the set of ICs is
consistent as a set of logical sentences, a fix for a database always exist.

Example 6. R(X, Y ) has key X and fixable Y . IC1 = {∀X1X2Y ¬(R(X1, Y ),
R(X2, Y ), X1 = 1, X2 = 2), ∀X1X2Y ¬(R(X1, Y ), R(X2, Y ), X1 = 1, X2 = 3),
∀X1X2Y ¬( R(X1, Y ), R(X2, Y ),X1 =2,X2 =3), ∀XY ¬(R(X, Y ), Y >3), ∀XY ¬(
R(X, Y ), Y < 2)} is consistent. The first three ICs force Y to be different in
every tuple. The last two ICs require 2 ≤ Y ≤ 3. The inconsistent database
R = {(1, −1), (2, 1), (3, 5)} has no fix. Now, for IC2 with ∀X, Y ¬(R(X, Y ),
Y > 1) and sum(Y ) = 10, any database with less than 10 tuples has no fixes. �
Proposition 1. If D has a fix wrt IC, then it also has an LS-fix wrt IC. �

4 Decidability and Complexity

In applications where fixes are based on changes of numerical values, computing
concrete fixes is a relevant problem. In databases containing census forms, cor-
recting the latter before doing statistical processing is a common problem [11].
In databases with experimental samples, we can fix certain erroneous quantities
as specified by linear ICs. In these cases, the fixes are relevant objects to com-
pute explicitly, which contrasts with CQA [2], where the main motivation for
introducing repairs is to formally characterize the notion of a consistent answer
to a query as an answer that remains under all possible repairs. In consequence,
we now consider some decision problems related to existence and verification of
LS-fixes, and to CQA under different semantics.

Definition 3. For an instance D and a set IC of ICs:
(a) Fix (D, IC) := {D′ | D′ is an LS-fix of D wrt IC}, the fix checking problem.
(b) Fix (IC) := {(D, D′) | D′ ∈ Fix (D, IC)}.
(c) NE (IC) := {D | Fix (D, IC) �= ∅}, for non-empty set of fixes, i.e. the problem
of checking existence of LS-fixes.
(d) NE := {(D, IC) | Fix (D, IC) �= ∅}.
(e) DFP(IC) :={(D, k)| there is D′ ∈ Fix(D, IC) with ∆(D, D′) ≤ k}, the data-
base fix problem, i.e. the problem of checking existence of LS-fixes within a given
positive distance k.
(f) DFOP(IC) is the optimization problem of finding the minimum distance from
an LS-fix wrt IC to a given input instance. �

Definition 4. Let D be a database, IC a set ICs, and Q a conjunctive query2.
(a) A ground tuple t̄ is a consistent answer to Q(x̄) under the: (a1) skeptical
semantics if for every D′ ∈ Fix (D, IC), D′ |= Q(t̄). (a2) brave semantics if there
2 Whenever we say just “conjunctive query” we understand it is a non aggregate

query.
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exists D′ ∈ Fix (D, IC) with D′ |= Q(t̄). (a3) majority semantics if |{D′ | D′ ∈
Fix (D, IC) and D′ |= Q(t̄)}| > |{D′ | D′ ∈ Fix (D, IC) and D′ �|= Q(t̄)}|.
(b) That t̄ is a consistent answer to Q in D under semantics S is denoted by D |=S
Q[t̄]. If Q is ground and D |=S Q, we say that yes is a consistent answer, meaning
that Q is true in the fixes of D according to semantics S. CA(Q, D, IC, S) is the
set of consistent answers to Q in D wrt IC under semantics S. For ground Q, if
CA(Q, D, IC, S) �= {yes}, CA(Q, D, IC, S) := {no}.
(c) CQA(Q, IC, S) := {(D, t̄) | t̄ ∈ CA(Q, D, IC, S)} is the decision problem of
consistent query answering, of checking consistent answers. �
Proposition 2. NE (IC) can be reduced in polynomial time to the complements
of CQA(False, IC, Skeptical) and CQA(True, IC,Majority), where False,True
are ground queries that are always false, resp. true. �
In Proposition 2, it suffices for queries False,True to be false, resp. true, in all
instances that share the key values with the input database. Then, they can
be represented by ∃Y R(c̄, Y ), where c̄ are not (for False), or are (for True) key
values in the original instance.

Theorem 1. Under extended linear denials and complex, filtering, multi-attri-
bute, single-relation, aggregation constraints, the problems NE of existence of
LS-fixes, and CQA under skeptical or majority semantics are undecidable. �
The result about NE can be proved by reduction from the undecidable Hilbert’s
problem on solvability of diophantine equations. For CQA, apply Proposition
2. Here we have the original database and the set of ICs as input parameters.
In the following we will be interested in data complexity, when only the input
database varies and the set of ICs is fixed [1].

Theorem 2. For a fixed set IC of linear denials: (a) Deciding if for an instance
D there is an instance D′ (with the same key values as D) that satisfies IC with
∆(D, D′) ≤ k, with positive integer k that is part of the input, is in NP . (b)
DFP(IC) is NP-complete. (c.f. Definition 3(e)) �
By Proposition 1, there is a fix for D wrt IC at a distance ≤ k iff there is an LS-fix
at a distance ≤ k. Part (b) of Theorem 2 follows from part (a) and a reduction
of Vertex Cover to DFP(IC0), for a fixed set of denials IC0. By Theorem 2(a),
if there is a fix at a distance ≤ k, the minimum distance to D for a fix can be
found by binary search in log(k) steps. Actually, if an LS-fix exists, its square
distance to D is polynomially bounded by the size of D (c.f. proof of Theorem 3
in [5]). Since D and a fix have the same number of tuples, only the size of their
values in a fix matter, and they are constrained by a fixed set of linear denials
and the condition of minimality.
Theorem 3. For a fixed set IC of extended linear denials: (a) The problem
NE (IC) of deciding if an instance has an LS-fix wrt IC is NP -complete, and (b)
CQA under the skeptical and the majority semantics is coNP -hard. �
For hardness in (a), (b) in Theorem 3, linear denials are good enough. Member-
ship in (a) can be obtained for any fixed finite set of extended denials. Part (b)
follows from part (a). The latter uses a reduction from 3-Colorability.
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Theorem 4. For a fixed set IC of extended linear denials: (a) The problem
Fix (IC) of checking if an instance is an LS-fix is coNP -complete, and (b) CQA
under skeptical semantics is in ΠP

2 , and, for ground atomic queries, ∆P
2 -hard. �

Part (a) uses 3SAT. Hardness in (b) is obtained by reduction from a ∆P
2 -complete

decision version of the problem of searching for the lexicographically Maximum
3-Satisfying Assignment (M3SA): Decide if the last variable takes value 1 in it
[17–Theo. 3.4]. Linear denials suffice. Now, by reduction from the Vertex Cover
Problem, we obtain.

Theorem 5. For aggregate comparison queries using sum, CQA under linear
denials and brave semantics is coNP -hard. �

5 Approximation for the Database Fix Problem

We consider the problem of finding a good approximation for the general opti-
mization problem DFOP(IC).

Proposition 3. For a fixed set of linear denials IC, DFOP(IC) is MAXSNP-
hard. �
This result is obtained by establishing an L-reduction to DFOP(IC) from the
MAXSNP-complete [22, 21] B-Minimum Vertex Cover Problem, i.e. the vertex
cover minimization problem for graphs of bounded degree [16–Chapter 10]. As
an immediate consequence, we obtain that DFOP(IC) cannot be uniformly ap-
proximated within arbitrarily small constant factors [21].

Corollary 1. Unless P = NP , there is no Polynomial Time Approximation
Schema for DFOP . �
This negative result does not preclude the possibility of finding an efficient al-
gorithm for approximation within a constant factor for DFOP . Actually, in the
following we do this for a restricted but still useful class of denial constraints.

5.1 Local Denials

Definition 5. A set of linear denials IC is local if: (a) Attributes participating
in equality atoms between attributes or in joins are all rigid; (b) There is a
built-in atom with a fixable attribute in each element of IC; (c) No attribute A
appears in IC both in comparisons of the form A < c1 and A > c2.3 �

In Example 5, IC is local. In Example 6, IC1 is not local. Local constraints have
the property that by doing local fixes, no new inconsistencies are generated,
and there is always an LS-fix wrt to them (c.f. Proposition A.2 in [5]). Locality
is a sufficient, but not necessary condition for existence of LS-fixes as can be
seen from the database {P (a, 2)}, with the first attribute as a key and non-local
denials ¬(P (x, y), y < 3), ¬(P (x, y), y > 5), that has the LS-fix {P (a, 3)}.

3 To check condition (c), x ≤ c, x ≥ c, x �= c have to be expressed using <, >, e.g.
x ≤ c by x < c + 1.
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Proposition 4. For the class of local denials, DFP is NP-complete, and DFOP
is MAXSNP-hard. �

This proposition tells us that the problem of finding good approximations in the
case of local denials is still relevant.

Definition 6. A set I of database tuples from D is a violation set for ic ∈ IC
if I �|= ic, and for every I ′ � I, I ′ |= ic. I(D, ic, t) denotes the set of violation
sets for ic that contain tuple t. �

A violation set I for ic is a minimal set of tuples that simultaneously participate
in the violation of ic.

Definition 7. Given an instance D and ICs IC, a local fix for t ∈ D, is a
tuple t′ with: (a) the same values for the rigid attributes as t; (b) S(t, t′) :=
{I | there is ic ∈ IC, I ∈ I(D, ic, t) and ((I � {t}) ∪ {t′}) |= ic} �= ∅; and
(c) there is no tuple t′′ that simultaneously satisfies (a), S(t, t′′) = S(t, t′), and
∆({t}, {t′′}) ≤ ∆({t}, {t′}), where ∆ denotes quadratic distance. �

S(t, t′) contains the violation sets that include t and are solved by replacing t′ for
t. A local fix t′ solves some of the violations due to t and minimizes the distance
to t.

5.2 Database Fix Problem as a Set Cover Problem

For a fixed set IC of local denials, we can solve an instance of DFOP by trans-
forming it into an instance of the Minimum Weighted Set Cover Optimization
Problem (MWSCP). This problem is MAXSNP-hard [20, 21], and its general ap-
proximation algorithms are within a logarithmic factor [20, 9]. By concentrating
on local denials, we will be able to generate a version of the MWSCP that can
be approximated within a constant factor (c.f. Section 5.3).

Definition 8. For a database D and a set IC of local denials, G(D, IC) = (T, H)
denotes the conflict hypergraph for D wrt IC [8], which has in the set T of
vertices the database tuples, and in the set H of hyperedges, the violation sets
for elements ic ∈ IC. �
Hyperedges in H can be labelled with the corresponding ic, so that different
hyperedges may contain the same tuples. Now we build an instance ofMWSCP.

Definition 9. For a database D and a set IC of local denials, the instance
(U, S, w) for theMWSCP, where U is the underlying set, S is the set collection,
and w is the weight function, is given by: (a) U := H , the set of hyperedges of
G(D, IC). (b) S contains the S(t, t′), where t′ is a local fix for a tuple t ∈ D. (c)
w(S(t, t′)) := ∆({t}, {t′}). �
It can be proved that the S(t, t′) in this construction are non empty, and that
S covers U (c.f. Proposition A.2 in [5]).

If for the instance (U, S, w) of MWSCP we find a minimum weight cover C, we
could think of constructing a fix by replacing each inconsistent tuple t ∈ D by a
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local fix t′ with S(t, t′) ∈ C. The problem is that there might be more than one
t′ and the key dependencies would not be respected. Fortunately, this problem
can be circumvented.

Definition 10. Let C be a cover for instance (U, S, w) of the MWSCP associ-
ated to D, IC. (a) C� is obtained from C as follows: For each tuple t with local
fixes t1, . . . , tn, n > 1, such that S(t, ti) ∈ C, replace in C all the S(t, ti) by a
single S(t, t�), where t� is such that S(t, t�) =

⋃n
i=1 S(t, ti). (b) D(C) is the

database instance obtained from D by replacing t by t′ if S(t, t′) ∈ C�. �
It holds (c.f. Proposition A.3 in [5]) that such an S(t, t�) ∈ S exists in part (a)
of Definition 10. Notice that there, tuple t could have other S(t, t′) outside C.
Now we can show that the reduction to MWSCP keeps the value of the objective
function.
Proposition 5. If C is an optimal cover for instance (U, S, w) of the MWSCP
associated to D, IC, then D(C) is an LS-fix of D wrt IC, and ∆(D, D(C)) =
w(C) = w(C∗). �

Proposition 6. For every LS-fix D′ of D wrt a set of local denials IC, there
exists an optimal cover C for the associated instance (U, S, w) of the MWSCP ,
such that D′ = D(C). �
Proposition 7. The transformation of DFOP into MWSCP , and the construc-
tion of database instance D(C) from a cover C for (U, S, w) can be done in
polynomial time in the size of D. �
We have established that the transformation of DFOP into MWSCP is an L-
reduction [21]. Proposition 7 proves, in particular, that the number of violation
sets S(t, t′) is polynomially bounded by the size of the original database D.

Example 7. (example 5 continued) We illustrate the reduction from DFOP to
MWSCP . The violation sets are {t1,t4} and {t1,t5} for IC 1 and {t1} and {t2} for
IC 2. The figure shows the hypergraph. For the MWSCP instance, we need the
local fixes. Tuple t1 has two local fixes t′1 = (1, 15, 50), that solves the violation
set {t1} of IC2 (hyperedge B), and t′′1 = (1, 18, 52), that solves the violation sets
{t1, t4} and {t1, t5} of IC 1, and {t1} of IC 2 (hyperedges A,B, C), with weights
4 and 9, resp. t2, t4 and t5 have one local fix each corresponding to: (2, 16, 50),
(1,CD , 25) and (1,DVD, 25), resp. The consistent tuple t3 has no local fix.

The MWSCP instance is shown in the table, where the elements are rows and
the sets (e.g. S1 = S(t1, t′1)), columns. An entry 1 means that the set contains

Set S1 S2 S3 S4 S5

Local Fix t1’ t1” t2’ t4’ t5’
Weight 4 9 1 4 1
Hyperedge A 0 1 0 1 0
Hyperedge B 1 1 0 0 0
Hyperedge C 0 1 0 0 1
Hyperedge D 0 0 1 0 0
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the corresponding element; and a 0, otherwise. There are two minimal covers,
both with weight 10: C1 = {S2, S3} and C2 = {S1, S3, S4, S5}. D(C1) and D(C2)
are the two fixes for this problem. �

If we apply the transformation to Example 6, that had non-local set of ICs and
no repairs, we will find that instance D(C), for C a set cover, can be constructed
as above, but it does not satisfy the flexible ICs, because changing inconsis-
tent tuples by their local fixes solves only the initial inconsistencies, but new
inconsistencies are introduced.

5.3 Approximation Via Set Cover Optimization

Now that we have transformed the database fix problem into a weighted set cover
problem, we can apply approximation algorithms for the latter. We know, for
example, that using a greedy algorithm, MWSCP can be approximated within a
factor log(N), where N is the size of the underlying set U [9]. The approximation
algorithm returns not only an approximation ŵ to the optimal weight wo, but
also a -non necessarily optimal- cover Ĉ for problem (U, S, w). As in Definition
10, Ĉ can be used to generate via (Ĉ)�, a fix D(Ĉ) for D that may not be LS-
minimal.

Example 8. (examples 5 and 7 continued) We show how to to compute a solution
to this particular instance of DFOP using the greedy approximation algorithm
for MWSCP presented in [9]. We start with Ĉ := ∅, S0

i := Si; and we add to C the
Si such that S0

i has the maximum contribution ratio |S0
i |/w(S0

i ). The alternatives
are |S1|/w(S1) = 1/4, |S2|/w(S2) = 3/9, |S3|/w(S3) = 1, |S4|/w(S4) = 1/4 and
|S5|/w(S5) = 1. The ratio is maximum for S3 and S5, so we can add any of them
to Ĉ. If we choose the first, we get Ĉ = {S3}. Now we compute the S1

i := S0
i �S0

3 ,
and choose again an Si for Ĉ such that S1

i maximizes the contribution ratio. Now
S5 is added to Ĉ, because S1

5 gives the maximum. By repeating this process until
we get all the elements of U covered, i.e. all the Sk

i become empty at some
iteration point k, we finally obtain Ĉ = {S3, S5, S1, S4}. In this case Ĉ is an
optimal cover and therefore, D(Ĉ) is exactly an LS-fix, namely D′ in Example 5.
Since this is an approximation algorithm, in other examples the cover obtained
might not be optimal. �

Proposition 8. Given database instance D with local ICs IC, the database
instance D(Ĉ) obtained from the approximate cover Ĉ is a fix and it holds
∆(D, D(Ĉ)) ≤ log(N) × ∆(D, D′), where D′ is any LS-fix of D wrt IC and
N is the number of of violation sets for D wrt IC. �

In consequence, for any set IC of local denials, we have a polynomial time ap-
proximation algorithm that solves DFOP(IC) within an O(log(N)) factor, where
N is the number of violation sets for D wrt IC. As mentioned before, this number
N , the number of hyperedges in G, is polynomially bounded by |D| (c.f. Propo-
sition 7). N may be small if the number of inconsistencies or the number of
database atoms in the ICs are small, which is likely the case in real applications.
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However, in our case we can get even better approximations via a cover Ĉ
obtained with an approximation algorithms for the special case of the MWSCP
where the number of occurrences of an element of U in elements of S is bounded
by a constant. For this case of the MWSCP there are approximations within a
constant factor based on “linear relaxation” [16–Chapter 3]. This is clearly the
case in our application, being m × |F| × |IC | a constant bound (independent
from |D|) on the frequency of the elements, where m is the maximum number
of database atoms in an IC.

Theorem 6. There is an approximation algorithm that, for a given database
instance D with local ICs IC, returns a fix D(Ĉ) such that ∆(D, D(Ĉ)) ≤ c ×
∆(D, D′), where c is a constant and D′ is any LS-fix of D. �

6 One Atoms Denials and Conjunctive Queries

In this section we concentrate on the common case of one database atom denials
(1AD), i.e. of the form ∀¬(A, B), where atom A has a predicate in R, and B
is a conjunction of built-in atoms. They capture range constraints; and census
data is usually stored in single relation schemas [11].

For 1ADs, we can identify tractable cases for CQA under LS-fixes by reduction
to CQA for (tuple and set-theoretic) repairs of the form introduced in [2] for key
constraints. This is because each violation set (c.f. Definition 6) contains one
tuple, maybe with several local fixes, but all sharing the same key values; and
then the problem consists in choosing one from different tuples with the same key
values (c.f. proof in [5] of Theorem 7). The transformation preserves consistent
answers to both ground and open queries.

The “classical” -tuple and set oriented- repair problem as introduced in [2]
has been studied in detail for functional dependencies in [8, 12]. In particular, for
tractability of CQA in our setting, we can use results and algorithms obtained
in [12] for the classical framework.

The join graph G(Q) [12] of a conjunctive query Q is a directed graph, whose
vertices are the database atoms in Q. There is an arc from L to L′ if L �= L′

and there is a variable w that occurs at the position of a non-key attribute in L
and also occurs in L′. Furthermore, there is a self-loop at L if there is a variable
that occurs at the position of a non-key attribute in L, and at least twice in L.

When Q does not have repeated relations symbols, we write Q ∈ CTree if G(Q)
is a forest and every non-key to key join of Q is full i.e. involves the whole key.
Classical CQA is tractable for queries in CTree [12].

Theorem 7. For a fixed set of 1ADs and queries in CTree , consistent query
answering under LS-fixes is in PTIME . �

We may define that a aggregate conjunctive query belongs to CTree if its un-
derlying non-aggregate conjunctive query, i.e. its NAM (c.f. Section 2) belongs
to CTree . Even for 1ADs, with simple comparison aggregate queries with sum,
tractability is lost under the brave semantics.
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Proposition 9. For a fixed set of 1ADs, and for aggregate queries that are in
CTree or acyclic, CQA is NP-hard under the brave semantics. �
For queries Q returning numerical values, which is common in our framework,
it is natural to use the range semantics for CQA, introduced in [3] for scalar
aggregate queries and functional dependencies under classical repairs. Under this
semantics, a consistent answer is the pair consisting of the min-max and max-
min answers, i.e. the supremum and the infimum, resp., of the set of answers to
Q obtained from LS-fixes. The CQA decision problems under range semantics
consist in determining if a numerical query Q, e.g. an aggregate query, has its
answer ≤ k1 in every fix (min-max case), or ≥ k2 in every fix (max-min case).

Theorem 8. For each of the aggregate functions sum, count distinct, and aver-
age, there is a fixed set of 1ADs and a fixed aggregate acyclic conjunctive query,
such that CQA under the range semantics is NP -hard. �
For the three aggregate functions one 1AD suffices. The results for count distinct
and average are obtained by reduction from MAXSAT [21] and 3SAT , resp. For
sum, we use a reduction from the Independent Set Problem with bounded degree
3 [14]. The general Independent Set Problem has bad approximation properties
[16–Chapter 10]. The Bounded Degree Independent Set has efficient approxima-
tions within a constant factor that depends on the degree [15].

Theorem 9. For any set of 1ADs and conjunctive query with sum over a non-
negative attribute, there is a polynomial time approximation algorithm with a
constant factor for CQA under min-max range semantics. �

The factor in this theorem depends upon the ICs and the query, but not on the
size of the database. The acyclicity of the query is not required. The algorithm
is based on a reduction of our problem to satisfying a subsystem with maximum
weight of a system of weighted algebraic equations over the Galois field with two
elements GF [2] (a generalization of problems in [13, 24]), for which a polynomial
time approximation similar to the one for MAXSAT can be given [24].

7 Conclusions

We have shown that fixing numerical values in databases poses many new com-
putational challenges that had not been addressed before in the context of
consistent query answering. These problems are particularly relevant in census
like applications, where the problem of data editing is a common and difficult
task (c.f. http://www.unece.org/stats/documents/2005.05.sde.htm). Also
our concentration on aggregate queries is particularly relevant for this kind of
statistical applications. In this paper we have just started to investigate some
of the many problems that appear in this context, and several extensions are
in development. We concentrated on integer numerical values, which provide a
useful and challenging domain. Considering real numbers in fixable attributes
opens many new issues, requires different approaches; and is a subject of ongoing
research.
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The framework established in this paper could be applied to qualitative at-
tributes with an implicit linear order given by the application. The result we
have presented for fixable attributes that are all equally relevant (α

A
= 1 in

Definitions 1 and 2) should carry over without much difficulty to the general
case of arbitrary weighted fixes. We have developed (but not reported here) ex-
tensions to our approach that consider minimum distribution variation LS-fixes
that keep the overall statistical properties of the database. We have also devel-
oped optimizations of the approximation algorithm presented in Section 5; and
its implementation and experiments are ongoing efforts. More research on the
impact of aggregation constraints on LS-fixes is needed.

Of course, if instead of the L2 distance, the L1 distance is used, we may
get for the same database a different set of (now L1) fixes. The actual approx-
imations obtained in this paper change too. However, the general complexity
and approximability results should remain. They basically depend on the fact
that distance functions are non-negative, additive wrt attributes and tuples,
computable in polynomial time, and monotonically increasing. Another possible
semantics could consider an epsilon of error in the distance in such a way that
if, for example, the distance of a fix is 5 and the distance to another fix is 5.001,
we could take both of them as (minimal) LS-fixes.

Other open problems refer to cases of polynomial complexity for linear de-
nials with more that one database atom; approximation algorithms for the
DFOP for non-local cases; and approximations to CQA for other aggregate
queries.

For related work, we refer to the literature on consistent query answering (c.f.
[4] for a survey and references). Papers [25] and [11] are the closest to our work,
because changes in attribute values are basic repair actions, but the peculiar-
ities of numerical values and quantitative distances between databases are not
investigated. Under the set-theoretic, tuple-based semantics, [8, 7, 12] report on
complexity issues for conjunctive queries, functional dependencies and foreign
key constraints. A majority semantics was studied in [19] for database merging.
Quite recent papers, but under semantics different than ours, report research
on fixing numerical values under aggregation constraints [10]; and heuristic con-
struction of repairs based on attribute values changes [6].
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