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Abstract. Consistent answers to a query from an inconsistent database are an-
swers that can be simultaneously retrieved from every possible repair; and repairs
are consistent instances that minimally differ from the original instance. Database
repairs can be specified as the stable models of a disjunctive logic program. In this
paper we show how to use the repair programs to transform the problem of con-
sistent query answering into a problem of reasoning wrt a concrete theory written
in second-order predicate logic. It also investigated how a first-order theory can
be obtained instead, by applying second-order quantifier elimination techniques.

1 Introduction
Integrity constraints (ICs) are conditions that come with a relational schema S , and
should be satisfied by the instances of S . In this way, database instances stay in corre-
spondence with the outside reality they intend to model. If an instance D of S does not
satisfy the ICs, it is said to be inconsistent. For several reasons a database instance may
become inconsistent, and in consequence, it is only partially semantically correct.

Consistent query answering (CQA) in databases is about characterizing and com-
puting answers to a query that are consistent wrt to a given set of integrity constraints.
The database instance being queried may be inconsistent as a whole. However, via CQA
only locally consistent information is extracted from the database. These problems have
been investigated by the database community at least since the notion of consistent
query answer was explicitly introduced in [4]. (Cf. [10, 17] for recent surveys of CQA.)

Informally, a tuple of constants t̄ is a consistent answer to a query Q(x̄) from D
wrt a set of ICs IC if t̄ can be obtained as a usual answer to Q from every repair of D
wrt IC, where a repair is a consistent instance of the schema S that differs from D by a
minimal set of database atoms under set inclusion [4].

In [6] it was shown how repairs of a database D wrt a set of ICs can be specified
as the stable models of a disjunctive Datalog program Π [27, 38, 21], a so-called re-
pair program, whose set of facts corresponds to the original instance D. In this way,
obtaining consistent answers becomes reasoning over the class of stable models of Π .

Example 1. Schema S contains a predicate P (X, Y ) and the functional dependency
(FD), X → Y , of attribute Y upon attribute X . It can be expressed in the first-order
(FO) language L(S) associated to S, as the sentence ∀x∀y∀z(P (x, y) ∧ P (x, z) →
y = z). D = {P (a, b), P (a, c), P (d, e)} is inconsistent, and has two repairs: D1 =
{P (a, b), P (d, e)} and D2 = {P (a, c), P (d, e)}. The only consistent answer to the
query Q1(y) : ∃xP (x, y) is (e), whereas those to Q2(x) : ∃yP (x, y) are (a), (d).

The repairs can be specified by a logic program that contains, among other rules, a
main rule that takes care of restoring consistency: P (x, y, f) ∨ P (x, z, f) ← P (x, y),
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P (x, z), y 6= z. It specifies that whenever the FD is violated by two tuples, which is
captured by the body, then, as captured by the head, one (and only one if possible) of
the tuples has to be deleted (made false, as indicated by the annotation constant f ).

Repair programs can always be used for CQA. However, as shown in [4], it is some-
times possible to obtain CQA by posing a new query to the inconsistent database. For
example, the consistent answers to the queryQ3 : P (x, y) can be obtained by rewriting
Q3 into Q′3 : P (x, y) ∧ ¬∃z(P (x, z) ∧ z 6= y), and posing it to D, obtaining (d, e). ¥
Ideally, consistent answers to Q(x̄) ∈ L(S) from D should be obtained by posing a
new query Q′(x̄) ∈ L(S) to D, as an ordinary query: D |= Q′(x̄)?. This can be done
in polynomial time in |D|. Classes of queries and ICs with this property have been
identified [4, 16, 26, 40]. Unfortunately, FO query rewriting has limited applicability:
Even for conjunctive queries and FDs, CQA can be coNP -complete (in data) [16, 26].

Repair programs provide a general mechanism for CQA. Actually, the data com-
plexity of CQA can be as high as the data complexity of cautious query evaluation from
disjunctive logic programs under the stable model semantics, namely ΠP

2 -complete
[18, 16]. However, repair programs may be expensive for queries that can be answered
more efficiently. It turns out that the complexity landscape between FO rewritable cases
and ΠP

2 -completeness for CQA is still not quite clear.
Those cases with FO rewritable CQA transform the problem into reasoning in clas-

sical predicate logic, because the original database can be “logically reconstructed”
as a FO theory [39]. In this work we investigate how repair programs can be used to
generate a theory written in classical logic from which CQA can be captured as logical
entailment. We provide concrete specifications of database repairs in second-order (SO)
classical logic. They are obtained by applying recent results on the specification in SO
logic of the stable models of a logic program [23], and on their characterization as the
models of a circumscription theory [36] in the stratified cases [37, 38]. Circumscription
can be specified in SO classical logic [30].

In the case of FDs, we apply techniques for SO quantifier elimination introduced
in [19], obtaining a FO specification of the database repairs. This transforms the prob-
lem of CQA into a problem of logical reasoning in FO logic. We illustrate by means
of an example how to obtain a FO rewriting for CQA from this specification. In this
work we concentrate mostly on FDs. Most of the complexity results in CQA have been
obtained for FDs, but their complexity is not fully understood yet. We expect that the
kind of results obtained in this work will help shed more light on this picture, in partic-
ular with respect to rewritability for CQA. These applications and others, like a better
understanding of “the logic of CQA”, are still to be developed.

In the Appendix we provide some basic notions related to disjunctive logic pro-
grams, stable model semantics, stratified disjunctive programs, and circumscription.
We refer to [11] for the extended presentation of this work.

2 The Framework
The relational schema S contains a possible infinite domain U without nulls. S deter-
mines a language L(S) of FO predicate logic, and ICs will be universal sentences in
L(S). (Cf. [12] for extensions to existential ICs and instances with nulls.) An instance
D for S is a finite set of ground atoms of the form R(ā), with R ∈ S and ā is a tuple
of constants in U .1 D can be seen as a Herbrand structure [32] for interpreting L(S),

1 When we write something like R ∈ S , we understand that R is a database predicate, not a
built-in. For a tuple of constants ā = (a1, . . . , ak), ā ∈ U denotes ai ∈ U for i = 1, . . . , k.
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namely 〈U , (RD)R∈S , (u)u∈U 〉, with RD = {R(ā) | R(ā) ∈ D}. The database D can
also be logically reconstructed as a first-order sentenceR(D), as done by Reiter in [39].

Example 2. If S has domain U = {a, b, c, d, e, f, g} and predicate P (·, ·), then D =
{P (a, b), P (a, c), P (d, e)} is an instance for S . In this case,R(D) is the conjunction of
the following sentences: (a) Domain Closure Axiom (DCA): ∀x(x = a ∨ x = b ∨ x =
c ∨ x = d ∨ x = e ∨ x = f ∨ x = g). (b) Unique Names Axiom (UNA): (a 6=
b ∧ · · · ∧ f 6= g). (c) Predicate Completion Axiom (PCA): ∀x∀y(P (x, y) ≡ (x =
a∧ y = b)∨ (x = a∧ y = c)∨ (x = d∧ y = e)). The theory R(D) is categorical, i.e.
D is essentially its only model. ¥
In the previous example, the domain is finite, which makes it possible to use a domain
closure axiom. If the domain U is infinite, the domain closure axiom (DC) is applied to
the active domain, Ac(D), of the database, i.e. to the set of constants appearing in the
relations of the database instance. Since the extensions of the predicates are always fi-
nite, we can always build a DCA and PCAs. For static databases and CQA wrt universal
ICs, the active domain suffices to restore consistency and define repairs. If we restrict
ourselves to Herbrand structures, we do not need the DCA or the UNA.
2.1 Database repairs
A repair of D wrt a set IC of ICs is an instance D′ over S that satisfies IC , i.e.
D′ |= IC , and makes the symmetric set-difference ∆(D, D′) minimal wrt set inclusion
[4]. Rep(D, IC ) denotes the set of repairs of D wrt IC.

Given D and IC, a disjunctive logic repair program Π(D , IC ) with stable model
semantics [27] can be used to specify Rep(D, IC ). More precisely, (all and only) the
repairs of D can be read-off from the stable models of Π(D , IC ). Because of their
simplicity and scope, we will use the repair programs introduced in [6] in their slightly
modified version in [13]. Earlier forms of repair programs can also be found in [5, 28].
Repair programs use annotation constants in an extra argument of each of the database
pre-
dicates. More precisely, for each n-ary
P ∈ S , we make a copy P , which is
(n+1)-ary. The intended semantics of the
annotations is indicated in the following
table.

Annotation Atom The tuple P (ā) is:
t P (ā, t) made true/inserted
f P (ā, f) made false/deleted
t? P (ā, t?) true or made true
t?? P (ā, t??) true in the repair

Example 3. Consider IC : ∀xy(P (x, y) → Q(x, y)); and the inconsistent database
instance D = {P (c, l), P (d,m), Q(d,m), Q(e, k)}. The repair program Π(D, IC )
has the following rules (and facts):
1. Original database facts: P (c, l), etc.
2. Whatever was true or becomes true, is annotated with t?:

P (x̄, t?) ← P (x̄). P (x̄, t?) ← P (x̄, t). (the same for Q)
3. There may be interacting ICs (not here), and the repair process may take several

steps, changes could trigger other changes:
P (x̄, f) ∨ Q(x̄, t) ← P (x̄, t?), Q(x̄, f).
P (x̄, f) ∨ Q(x̄, t) ← P (x̄, t?), not Q(x̄).
Two rules per IC that say how to repair the satisfaction of the IC (cf. the head) in
case of a violation (cf. the body). Passing to annotation t? allows to keep repairing
the database wrt to all the ICs until the process stabilizes.

4. Program constraints: ← P (x̄, t), P (x̄, f). (similarly for Q)
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5. Annotations constants t?? are used to read off the atoms in a repair:
P (x̄, t??) ← P (x̄, t). P (x̄, t??) ← P (x̄,d), not P (x̄, f). (similarly for Q)

The program constraints in 4. are used to filter out incoherent models, with some both
inserted and deleted tuple. In this example, we do not need them, because this never
happens. However, they may be necessary when there are interacting ICs [14]. ¥

General repair programs can be found in [11]. From now on, we use, for simplicity,
Pf ( , ) for P ( , , f), P??( , ) for P ( , , t??), etc. That is, annotations are “predicated”
using new predicates. Repairs are in one-to-one correspondence with the restriction of
the stable models to their atoms that use predicates of the form P?? [12].

2.2 Queries and consistent answers
A tuple ā ∈ U is a consistent answer to a query Q(x̄) from D wrt IC , denoted D |=c

Q(ā), iff D′ |= Q(ā) for every D′ ∈ Rep(D, IC ) [4]. In this paper, Q will usually be
a safe query [1] in L(S), e.g. a conjunctive query with built-ins. In order to pose this
query to the (models of the) repair program, i.e. to the repairs, it has to be reformulated
as a query Q?? that is obtained from Q by replacing each database predicate P by P??.
For example, for Q(y) : ∃x(P (x, y) ∧ ¬Q(x, y) ∧ x 6= y), Q??(y) is ∃x(P??(x, y) ∧
¬Q??(x, y) ∧ x 6= y). The query Q could also be given as a (safe) Datalog query (or
in any of its extensions) [1]. In this case, Q?? is obtained from Q by replacing every
extensional predicate P by P??.

Repair programs can be used to obtain consistent answers to Q as cautions (or
skeptical) answers from the combined program consisting of the repair program and a
query program ΠQ. Given a FO query Q(x̄), Q??(x̄) is rewritten as a Datalog query
ΠQ, possibly containing weak negation, not . ΠQ contains a predicate, AnsQ(x̄),
appearing only in heads, to collect the query answers. IfQ is given directly as a Datalog
program with negation, then ΠQ is simplyQ??. According to the usual conventions, we
will assume that such Datalog queries Q are stratified normal programs, most usually,
a non-recursive Datalognot query [1], that is obtained as a translation of a FO query. It
holds:

D |=c Q(ā) ⇐⇒ D′ |= Q(ā), for every D′ ∈ Rep(D, IC ) (1)

⇐⇒ Π(D, IC ) ∪ΠQ |=cs AnsQ(ā), (2)
where |=cs stands for cautious, i.e. being true in all stable models. If on the LHS of (1)
Q is already a Datalog program, D′ |= Q(ā) means that ā is an answer to the Datalog
query when using D′ as the underlying extensional database of program facts.

2.3 Functional dependencies
For some classes of FDs and conjunctive queries there are efficient algorithms for CQA
based on FO query rewriting [4, 16, 26, 40]. In [25, 40] there are examples of conjunc-
tive queries for which CQA wrt certain FDs is in PTIME , but there is no consistent
FO rewriting of the query. FDs are particular cases of denial constraints, i.e. sentences
of the form ∀̄¬(A1 ∧ · · · ∧ Am), where the Ai are database or built-in atoms, and ∀̄
denotes the universal closure of the formula.

In [7], it is proved that for certain classes of ICs, that include all denial constraints,
the repair programs become head-cycle free (HCF). For this class of programs cautious
query evaluation becomes coNP -complete [8, 18]. It follows that CQA of conjunctive
queries wrt functional dependencies belongs coNP [7]. For conjunctive queries and
certain functional dependencies (actually, a single key dependency suffices), CQA turns
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out to be coNP -complete [16, 26, 40], matching the upper bound provided by the repair
program.

Example 4. (example 1 continued) The repair program Π(D, IC ) is:

Pf (x, y) ∨ Pf (x, z) ← P (x, y), P (x, z), y 6= z. (3)
P??(x, y) ← P (x, y), not Pf (x, y). (4)
P (a, b). P (a, c). P (d, e). (5)

The first rule solves conflicts between two tuples by deleting one of them from the
database. The second rule collects the tuples that remain after all conflicts have been
solved. For FDs we do not need the annotation t or program constraints, because in-
consistencies are resolved by deletions. The repairs are obtained as restrictions of the
two stable models to predicate P??: D1 = {P??(a, b), P??(d, e)} and D2 = {P??(a, c),
P??(d, e)}. In the former, the tuple P (a, c) is deleted from the database; in the latter,
the tuple P (a, b).

The query Q(x, y) :P (x, y) can be represented as the program ΠQ: Ans(x, y) ←
P??(x, y). If Π is the program consisting of this query plus (3)-(5), the consistent
answers to query Q are those tuples ā, such that Π |=cs Ans(ā). ¥
We can see that repair programs for FDs are stratified disjunctive programs [37]. They
are also HCF programs, which makes it possible to translate them into equivalent nor-
mal (non-disjunctive) programs [8, 18]. However, they are not stratified as normal pro-
grams.

3 SO Specification of Repairs
In [23], the stable model semantics of logic programs introduced in [27] is reobtained
via a concrete and explicit form of specification in classical SO predicate logic: First,
the program Π is transformed into (or seen as) a FO sentence ψ(Π). Next, the latter is
transformed into a SO sentence Φ(Π), the stable sentence of the program.

ψ(Π) is obtained from Π as follows: (a) Replace every comma by ∧, and every not
by ¬. (b) Turn every rule Head ← Body into the formula Body → Head . (c) Form the
conjunction of the universal closures of those formulas.

Now, given a FO sentence ψ (e.g. the ψ(Π) above), a SO sentence Φ is defined as
ψ∧¬∃X̄((X̄ < P̄ )∧ψ◦(X̄)), where P̄ is the list of all non-logical predicates P1, ..., Pn

in ψ, and X̄ is a list of distinct predicate variables XP1 , ..., XPn , with Pi and XPi of
the same arity. Here, (X̄ < P̄ ) means (X̄ ≤ P̄ ) ∧ (X̄ 6= P̄ ), i.e.

∧n
i ∀x̄(XPi(x̄) →

Pi(x̄)) ∧∨n
i (XPi 6= Pi). XPi 6= Pi stands for ∃x̄i(Pi(x̄i) ∧ ¬XPi(x̄i)).

ψ◦(X̄) is defined recursively as follows: (a) Pi(t1, ..., tm)◦ := XPi(t1, ..., tm). (b)
(t1 = t2)◦ := (t1 = t2). (c) ⊥◦:=⊥. (d) (F ¯G)◦ := (F ◦ ¯G◦) for ¯ ∈ {∧,∨}. (e)
(F → G)◦ := (F ◦ → G◦) ∧ (F → G). (f) (QxF )◦ := QxF ◦ for Q ∈ {∀, ∃}.

The Herbrand models of the SO sentence Φ(Π) associated to ψ(Π) correspond to
the stable models of the original program Π [23]. We can see that Φ(Π) is similar to
a parallel circumscription of the predicates in program Π wrt the FO sentence ψ(Π)
associated to Π [36, 31]. In principle, the transformation rule (e) above could make
formula Φ(Π) differ from a circumscription.

Now, let Πr be the repair program without the database facts, and Q(x̄) a query
represented by a non-recursive normal Datalognot query ΠQ with answer predicate
AnsQ(x̄). From now on,

Π = D ∪Πr ∪ΠQ (6)
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denotes the program for consistently answering Q. That is, Π = Π(D, IC ) ∪ ΠQ.
Notice that Πr depends only on the ICs, and it includes definitions for the annotation
predicates. The only predicates shared by Πr and ΠQ are those of the form P??, with
P ∈ S , and they appear only in bodies in ΠQ. These predicates produce a splitting of
the combined program, whose stable models are obtained as extensions of the stable
models for Π(D, IC ) [34]. In Example 4, Πr is formed by rules (3) and (4); D is the
set of facts in (5); and ΠQ is Ans(x, y) ← P??(x, y).

The just mentioned splitting of Π allows us to analyze separately Πr and ΠQ.
Since the latter is a non-recursive normal program, it is stratified, and its only stable
model (over a give extension for its extensional predicates) can be obtained by predicate
completion, or a prioritized circumscription [37]. Actually, if the query is given directly
as FO query, we can use instead of the completion (or circumscription) of its associated
program, the FO query itself. In consequence, in the rest of this section we concentrate
mostly on the facts-free repair program Πr.

In the following, we will omit the program constraints from the repair programs,
because their transformation via the SO sentence of the program is straightforward: We
obtain as a conjunct of the SO sentence, the sentence ∀x̄¬(Pt(x̄)∧Pf (x̄)) [24, Prop. 2]
for a program constraint of the form ← Pt(x̄), Pf (x̄).

Example 5. (example 4 continued) We first obtain the FO sentence ψ(Π):

P (a, b) ∧ P (a, c) ∧ P (d, e) ∧
∀xyz(((P (x, y) ∧ P (x, z) ∧ y 6= z) → (Pf (x, y) ∨ Pf (x, z))) ∧

∀xy((P (x, y) ∧ ¬Pf (x, y)) → P??(x, y)) ∧ ∀xy(P??(x, y) → Ans(x, y)). (7)

The second-order formula Φ(Π) that captures the stable models of the original program
is the conjunction of (7) and (with < below being the “parallel” pre-order [30])

¬∃XP XP
f XP

??X
Ans [ (XP , XP

f , XP
??, X

Ans) < (P, Pf , P??,Ans) ∧
XP (a, b) ∧XP (a, c) ∧XP (d, e) ∧
∀xyz(XP(x, y) ∧XP(x, z) ∧ y 6= z → XP

f (x, y) ∨XP
f (x, z)) ∧

∀xyz(P (x, y) ∧ P (x, z) ∧ y 6= z → Pf (x, y) ∨ Pf (x, z)) ∧ (8)

∀xy(XP (x, y) ∧ (¬Pf (x, y))◦ → XP
??(x, y)) ∧ (9)

∀xy(P (x, y) ∧ ¬Pf (x, y)) → P??(x, y)) ∧ (10)

∀xy(XP
??(x, y) → XAns(x, y)) ∧

∀xy(P??(x, y) → Ans(x, y))]. (11)

From this sentence, the conjuncts (8), (10) and (11), that already appear in (7), can be
eliminated. The formula (¬Pf (x, y))◦ in (9) has to be expressed as (Pf (x, y) → ⊥)◦.
It turns out that, being the ◦-transformation of a negative formula, it can be replaced
by its original version without predicate variables, i.e. by ¬Pf (x, y) [23, Prop. 2]. We
obtain that Φ(Π) is logically equivalent to the conjunction of the UNA and DCA2 and

2 From now on, unless stated otherwise, the UNA and DCA will be always implicitly considered.
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(modulo some standard simplification techniques for SO quantifiers [30, 31]):

∀xy(P (x, y) ≡ (x = a ∧ y = b) ∨ (x = a ∧ y = c) ∨ (x = d ∧ y = e)) ∧ (12)
∀xy(P??(x, y) ≡ Ans(x, y)) ∧ (13)
∀xy((P (x, y) ∧ ¬Pf (x, y)) ≡ P??(x, y)) ∧ (14)
∀xyz(P (x, y) ∧ P (x, z) ∧ y 6= z → (Pf (x, y) ∨ Pf (x, z))) ∧ (15)

¬∃Uf ((Uf < Pf ) ∧ ∀xyz(P (x, y) ∧ P (x, z) ∧ y 6= z → (Uf (x, y) ∨ Uf (x, z))). (16)

Here, Uf < Pf stands for the formula ∀xy(Uf (x, y) → Pf (x, y)) ∧ ∃xy(Pf (x, y) ∧
¬Uf (x, y)). In this sentence, the minimization of predicates P, P?? and Ans are ex-
pressed by their predicate completions. Predicate Pf is minimized via (16). ¥
In this example we have obtained the SO sentence for program Π as a parallel circum-
scription of the predicates in the repair program seen as a FO sentence. Actually, the
circumscription becomes a prioritized circumscription [30] given the stratified nature of
the repair program: first the database predicate is minimized, next Pf , next P??, and fi-
nally Ans . As we state in Proposition 1, repair programs in their predicated-annotation
version and without their program constraints become stratified disjunctive Datalog
programs [21, 37].3

Proposition 1. [15] For universal integrity constraints, repairs programs without their
program constraints are stratified, and the upwards stratification is as follows: 0. Ex-
tensional database predicates P ∈ S; 1. Predicates of the form Pf , Pt, P?; and 2.
Predicates of the form P??. ¥
If a stratified query program is run on top of the repair program, the combined program
becomes stratified, with the stratification of the query on top of the one of the repair pro-
gram. It is worth noticing that the data complexity of cautious query evaluation from
disjunctive logic programs with stratified negation is the same as for disjunctive logic
programs with unstratified negation and stable model semantics, namely ΠP

2 -complete
[21] The stable models of the combined (stratified and disjunctive) program Π coin-
cide with the perfect models of the program [38], and the latter can be obtained as the
(Herbrand) models of a prioritized circumscription that follows the stratification of the
program [37]. Program constraints can be added at the end, after producing a circum-
scription (or the SO stable sentence of Π). In consequence, we obtain the following

Proposition 2. For a set of universal ICs, the SO sentence Φ associated to a repair
program Π(IC , D) is logically equivalent to

R(D) ∧
∧

P∈S
∀x̄((P (x̄) ∨ Pt(x̄)) ≡ P?(x̄)) ∧

∧

P∈S
∀x̄(P?(x̄) ∧ ¬Pf (x̄) ≡ P??(x̄))

∧
∧

P∈S
∀x̄¬(Pt(x̄) ∧ Pf (x̄)) ∧ Circ(Θ; {Pt, Pf | P ∈ S}; {P? | P ∈ S}). (17)

Here, the last conjunct is the parallel circumscription [30] of the predicates in the sec-
ond argument (with variable P? predicates) wrt the theory Θ obtained from the con-
junction rules in the repair program that are relevant to compute the Pt, Pf ’s, seen as
FO sentences.4 ¥

3 Program constraints spoil the stratification, because they have to be replaced by rules of the
form p ← Pt(x̄), Pf (x̄), not p.

4 They are rules 1.- 3. in Example 3.
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This result has been obtained from the stratification of the repair programs. However, it
is possible to obtain the same result by simplifying the SO sentence associated to it, as
done in Example 5. Notice that the more involved repair program in Example 3 already
contains the relevant features of a general repair program for universal ICs, namely the
negations in the rule bodies affect only base predicates and the predicates P? in the
definitions of the P?? [35]. In any case, we obtain a SO specification of the program for
CQA Π in (6). Combining with (1), we obtain

D |=c Q(ā) ⇐⇒ Φ(Π) |= AnsQ(ā), (18)

where Φ(Π) is the SO sentence which captures the stable models of Π .5 Actually,
Φ(Π) can be decomposed as the conjunction of three formulas:

Proposition 3. Let Φ be the SO sentence for the program Π in (6) for CQA. It holds:

D |=c Q(ā) ⇐⇒ {R(D), Φ(Πr), Φ(ΠQ)} |= Ans(ā).
Here, Φ(Πr) is a SO sentence that specifies the repairs for fixed extensional predicates,
and Φ(ΠQ)} a SO sentence that specifies the models of the query, in particular predicate
AnsQ, for fixed predicates P??. ¥

Example 6. (example 5 continued) R(D) is captured by the DCA, UNA plus (12);
Φ(Πr) by (14)-(16); and Φ(ΠQ) by (13). Actually, what we have obtained is that for
consistent answers (t1, t2), it holds

Ψ ∧ ∀x∀y(Ans(x, y) ≡ P??(x, y)) |= Ans(t1, t2), (19)

where Ψ is the SO sentence that is the conjunction of (12), (14)-(16). ¥
We have transformed CQA into a problem of reasoning in classical SO predicate logic.
Most commonly the queryQ will be given as a FO query or as a safe and non-recursive
Datalognot program. In these cases, Φ(ΠQ) is obtained by predicate completion and
will contain as a conjunct an explicit definition of predicate AnsQ. The definition of
AnsQ will be of the form ∀x̄(AnsQ(x̄) ≡ Ψ(x̄)), where Ψ(x̄) is a FO formula con-
taining only predicates of the form P??, with P ∈ S, plus possibly some built-ins and
auxiliary predicates. For example, in (19) we have an explicit definition of Ans .

4 Scaling-Down Repair Programs for CQA under FDs
We discuss in this section the possibility of using a program for CQA Π of the form
(6) to obtain a FO theory from which to do CQA as classical entailment. In particular,
exploring the possibility of obtaining a FO rewriting of the original query. The idea is
to do it through the analysis of the SO sentence associated to the program. In order
to explore the potentials of this approach, we restrict ourselves to the case of FDs, the
most studied case in the literature wrt complexity of CQA [16, 26, 40].

We start with a schema with a predicate P (X, Y ), with the FD : X → Y , as in Ex-
ample 1. In this case, the repair program Π(D,FD) is associated to the circumscription
of Pf given by the conjunction of (12), (14)-(16). We concentrate on the last conjunct,
(16), which can be expressed as

¬∃Uf ((Uf < Pf ) ∧ ∀xyz(κ(x, y, z) → (Uf (x, y) ∨ Uf (x, z))), (20)

5 If we omit the DCA and UNA axioms, on the RHS the logical consequence is relative to
Herbrand models.
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where κ(x, y, z) is the formula P (x, y) ∧ P (x, z) ∧ y 6= z, that captures the inconsis-
tencies wrt FD.

We will apply to (20) the techniques for elimination of SO quantifiers developed
in [19] on the basis of Ackerman’s Lemma [2, 3]. First of all, we express (20) as an
equivalent universally quantified formula (for simplicity, we use U instead of Uf ):

∀U(∀xyz(κ(x, y, z) → U(x, y) ∨ U(x, z)) ∧ U ≤ Pf → Pf ≤ U). (21)

Its negation produces the existentially quantified formula

∃U(∀xyz(κ(x, y, z) → U(x, y) ∨ U(x, z)) ∧ U ≤ Pf ∧ ¬Pf ≤ U). (22)

We obtain the following logically equivalent formulas

∃U( ∀xyz(¬κ(x, y, z) ∨ U(x, y) ∨ U(x, z)) ∧ ∀uv(¬U(u, v) ∨ Pf (u, v))
∧ ∃st(Pf (s, t) ∧ ¬U(s, t))).

∃st∃U( ∀xyz(¬κ(x, y, z) ∨ U(x, y) ∨ U(x, z)) ∧ (23)
∀uv(¬U(u, v) ∨ Pf (u, v)) ∧ (Pf (s, t) ∧ ¬U(s, t))).

The first conjunct in (23), with w = ∨(y, z) standing for (w = y∨w = z), can be writ-
ten as (cf. [11] for all the details): ∀xyz(¬κ(x, y, z) ∨ ∃w(w = ∨(y, z) ∧ U(x,w))).
Equivalently, ∃f∀r(∀x1y1z1(¬κ(x1, y1, z1) ∨ f(x1, y1, z1) = ∨(y1, z1))∧

∀xyz(¬κ(x, y, z)∨r 6= f(x, y, z)∨U(x, r))).
Here, ∃f is a quantification over functions. Thus, formula (23) becomes
∃st∃f∃U∀x∀r((∀x1y1z1(¬κ(x1, y1, z1) ∨ f(x1, y1, z1) = ∨(y1, z1))∧

∀yz(¬κ(x, y, z) ∨ r 6= f(x, y, z) ∨ U(x, r)))∧
∀uv(¬U(u, v) ∨ Pf (u, v)) ∧ (Pf (s, t) ∧ ¬U(s, t))).

Now we are ready to apply Ackermann’s lemma. The last formula can be written as

∃st∃f∃U∀x∀r((A(x, r) ∨ U(x, r)) ∧B(¬U 7→ U)). (24)

B(¬U 7→ U) denotes the formula B where predicate U has been replaced by ¬U . Here,
formulas A, B are as follows
A(x, r) : ∀yz(∀yz(¬κ(x, y, z) ∨ r 6= f(x, y, z)).
B(U) : ∀x1y1z1(¬κ(x1, y1, z1) ∨ f(x1, y1, z1) = ∨(y1, z1)) ∧

∀uv(U(u, v) ∨ Pf (u, v)) ∧ (Pf (s, t) ∧ U(s, t))).
Formula B is positive in U . In consequence, the whole subformula in (24) starting with
∃U can be equivalently replaced by B(A(x, r) 7→ U) [19, lemma 1], getting rid of the
SO variable U , and thus obtaining (modulo simple syntactic steps)

∃st∃f∀xyz((¬κ(x, y, z)∨f(x, y, z) = ∨(y, z))∧(¬κ(x, y, z)∨Pf (u, f(x, y, z)))∧
(Pf (s, t) ∧ (x 6= s ∨ ¬κ(x, y, z) ∨ t 6= f(x, y, z)))).

Now we unskolemize, getting rid of the function variable f , obtaining
∃st∀xyz∃w((¬κ(x, y, z) ∨ w = ∨(y, z)) ∧ (¬κ(x, y, z) ∨ Pf (u, w))∧

(Pf (s, t) ∧ (x 6= s ∨ ¬κ(x, y, z) ∨ t 6= w))).
This formula is logically equivalent to the negation of (21). Negating again, we obtain
a formula that is logically equivalent to (21), namely

∀st(Pf (s, t) → ∃xyz(κ(x, y, z) ∧ ∀w[(w 6= y ∧ w 6= z)∨
¬Pf (x,w) ∨ (x = s ∧ t = w)]).

The subformula inside the square brackets can be equivalently replaced by
((w = y ∨ w = z) ∧ Pf (x,w)) → (s = x ∧ t = w).
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So, we obtain ∀st(Pf (s, t) → ∃xyz(κ(x, y, z) ∧ (Pf (x, y) → s = x ∧ t = y) ∧
(Pf (x, z) → s = x ∧ t = z))).

Due to the definition of κ(x, y, z), it must hold y 6= z. In consequence, we obtain
∀st(Pf (s, t) → ∃z(κ(s, t, z) ∧ ¬Pf (s, z))).

Proposition 4. Let FD be ∀xyz(P (x, y) ∧ P (x, z) → y = z). The SO sentence for
the repair program Π(D,FD) is logically equivalent to a FO sentence, namely to the
conjunction of (12), (14) (i.e. the completions of the predicates P, P??, resp.), (15), and

∀st(Pf (s, t) → ∃z(κ(s, t, z) ∧ ¬Pf (s, z))), (25)
where κ(x, y, z) is the formula that captures a violation of the FD, i.e. (P (x, y) ∧
P (x, z) ∧ y 6= z). ¥
This is saying, in particular, that whenever there is a conflict between two tuples, one
of them must be deleted, and for every deleted tuple due to a violation, there must
be a tuple with the same key value that has not been deleted. Thus, not all mutually
conflicting tuples can be deleted.

Now, reconsidering CQA, if we have a query Q, we can obtain the consistent an-
swers ā as entailments in classical predicate logic:

ψ ∧ ∀x̄(AnsQ(x̄)) ≡ χ(x̄)) |= AnsQ(ā), (26)

where ψ is the FO sentence that is the conjunction of (12), (14), (15) and (25); and χ is
the FO definition of AnsQ in terms of P??.

For example, for Q : P (x, y), we have, instead of (19):

ψ ∧ ∀x∀y(Ans(x, y) ≡ P??(x, y)) |= Ans(t1, t2).

From here we obtain, using (14), that (t1, t2) is a consistent answer iff ψ |= P??(t1, t2)
iff ψ |= (P (t1, t2) ∧ ¬Pf (t1, t2)). That is,

{R(D),∀xyz(κ(x, y, z) → (Pf (x, y) ∨ Pf (x, z))),
∀xy(Pf (x, y) → ∃z(κ(x, y, z) ∧ ¬Pf (x, z)))} |= P (t1, t2) ∧ ¬Pf (t1, t2). (27)

This requires P (t1, t2) to hold in R(D), and the negation of ¬Pf (t1, t2) to be incon-
sistent with the theory on the LHS of (27). This happens iff ∀z¬κ(t1, t2, z) follows
from R(D). In consequence, (t1, t2) is a consistent answer iff R(D) |= P (t1, t2) ∧
∀z¬κ(t1, t2, z), which is equivalent to

D |= P (t1, t2) ∧ ¬∃z(P (t1, z) ∧ z 6= t2). (28)

The rewriting in (28), already presented in Example 1, is one of those obtained in [4]
using a more general rewriting methodology for queries that are quantifier-free conjunc-
tions of database literals and classes of ICs that include FDs. The technique in [4] is not
based on explicit specification of repairs. Actually, it relies on an iteration of resolution
steps between ICs and intermediate queries, and is not defined for queries or ICs with
existential quantifiers. Rewriting (28) is also a particular case of a result in [16, theo.
3.2] on FO rewritability of CQA for conjunctive queries without free variables.6

Notice that (26), in spite of being expressed as entailment in FO logic, does not
necessarily allow us to obtain a FO rewriting to consistently answering query Q(x̄).

6 That result can be applied with our query Q(x, y) : P (x, y), by transforming it first into
∃x∃y(P (x, y) ∧ x = t1 ∧ y = t2), with generic, symbolic constants t1, t2, as above.
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A FO rewriting, and the subsequent polynomial-time data complexity, are guaranteed
when we obtain a condition of the form D |= ϕ(t̄) for consistent answers t̄, and ϕ is a
FO formula expressed in terms of the database predicates in D. This is different from
we could naively obtain from (26), namely a sentence containing possibly complex and
implicit view definitions, like the derived definition of Pf above. A finer analysis from
(26) is required in order to obtain a FO rewriting, whenever possible.

The particular case considered in Proposition 4 has all the features of the case of FDs
most studied in the literature, namely where there is one FD per database predicate [16,
26, 40]. Under this assumption, if we have a class of FDs involving different predicates,
we can treat each of the FDs separately, because there is no interaction between them.
So, each predicate Pf can be circumscribed independently from the others, obtaining
results similar to those for the particular case.

5 Conclusions
Repair programs for CQA have been well studied in the literature. They specify the
database repairs as their stable models. On their basis, and using available implementa-
tions for the disjunctive stable model semantics for logic programs, we have the most
general mechanism for CQA [14]. As expected, given the nature of CQA, its semantics
is non-monotonic, and its logic is non-classical. In this work we have presented the first
steps of an ongoing research program that aims to take advantage of specifications of
database repairs in classical logic, from which CQA can be done as logical entailment.

That stable models, and in particular database repairs, can be specified in SO logic
can be obtained from complexity-theoretic results. The decision problem of stable model
checking (SMC) consists in deciding if, for a fixed program, a certain finite input set
of atoms is a stable model of the program. The repair checking problem (RC) consists,
for a fixed set of ICs IC , if D′ if a repair of D wrt to IC. Here, D, D′ are inputs to
the problem. Both SMC and RC are coNP -complete (cf. [21] and [16], resp.). Since
by Fagin’s theorem (cf. [22] and [29, chapter 9]), universal SO logic captures the class
coNP , there is a a universal SO sentence that specifies the repairs. For the same reason,
the stable models of a fixed program can be specified in universal SO classical logic.
(Cf. also [20] for applications of such representation results.)

In this work we have shown concrete specifications of repairs in SO classical logic.
They have been obtained from the results in [23], that presents a characterization of the
stable models as models of a theory in SO predicate logic. However, due to the nature of
repair programs, we are able to provide a circumscriptive SO characterization of them.
A first and preliminary circumscriptive approach to the specification of database repair
was presented in [9].

Furthermore, we have shown, starting from the SO specification of stable models
in [23], that, in the case of repair programs wrt functional dependencies, it is possible
to obtain a specification in first-order classical logic. The FO theory can be obtained
from the circumscriptive theory by newer quantifier elimination techniques that have
their origin in the work of Herbrand on decidable classes for the decision problem. In
particular, we have shown that it is possible to obtain FO rewritings for CQA of the
kind presented in [4].

Many problems are open for ongoing and future research. For example, and most
prominently, the natural question is as to whether the combination of a repair program
and a query program can be used, through their transformation, to obtain more efficient
algorithms that the standard way of evaluating disjunctive logic programs under the
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stable model semantics. We know that, in the worst cases of CQA, this is not possible,
but it should be possible for easier classes of queries and ICs.

More specifically, the following are natural problems to consider: (a) Identification
of classes of ICs and queries for which repair programs can be automatically “simpli-
fied” into queries of lower complexity. In particular, reobtaining previously identified
classes, and identifying new ones. (b) More generally, we would like to obtain new
complexity results for CQA. (c) Shed more light on those cases, possibly classes, where
CQA can be done in polynomial time, but not via FO rewriting.

Furthermore, the “logic” of CQA is not fully understood yet. We should be able
to better understand the logic of CQA through the analysis of repair programs. How-
ever, their version in classical logic as presented in this work seems more appropriate
for this task. For example, we would like to obtain results about compositionality of
CQA, i.e. computing consisting answers to queries on the bases of consistent answers
to subqueries or auxiliary views. Techniques of this kind are important for the practice
of CQA. We know how to logically manipulate and transform a specification written in
classical FO or SO logic, which is not necessarily the case for logic programs. It seems
to be easier to (meta)reason about the specification if it is written in classical logical
than written as a logic program, which is mainly designed to compute from it.

Also dynamic aspects of CQA have been largely neglected (cf. [33] for some initial
results). Computational complexity results and incremental algorithms for CQA are still
missing. Results on updates of logic programs and/or theories in classical logic might
be used in this direction.

Acknowledgements: Useful comments from anonymous reviewers are much appreci-
ated.
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Appendix: Basic Notions
Disjunctive logic programs

We consider disjunctive Datalog programs Π [21] with a finite number of rules of the
form

A1 ∨ . . . An ← P1, . . . , Pm, not N1, . . . , not Nk,

with 0 ≤ n,m, k, and the Ai, Pj , Ns are positive FO atoms. The terms in these atoms
are constants or variables. The variables in the Ai, Ns appear all among those in the Pj .
The constants in the program Π form the (finite) Herbrand universe U of the program.
The ground version of program Π , gr(Π), is obtained by instantiating the variables in
Π in all possible combinations using values from U . The Herbrand base HB of Π con-
sists of all the possible atomic sentences obtained by instantiating the predicates in Π in
U . A subset M of HB is a model of Π it is satisfies gr(Π), that is: For every ground rule
A1 ∨ . . . An ← P1, . . . , Pm, not N1, . . . , not Nk of gr(Π), if {P1, . . . , Pm} ⊆ M
and {N1, . . . , Nk} ∩M = ∅, then {A1, . . . , An} ∩M 6= ∅. M is a minimal model of
Π if it is a model of Π , and Π has no model that is properly contained in M . MM (Π)
denotes the class of minimal models of Π .

Now, take S ⊆ HB(Π), and transform gr(Π) into a new, positive program gr(Π)↓
(i.e. without not), as follows: Delete every rule A1 ∨ . . . An ← P1, . . . , Pm, not N1,
. . . , not Nk for which {N1, . . . , Nk} ∩ S 6= ∅. Next, transform each remaining rule
A1 ∨ . . . An ← P1, . . . , Pm, not N1, . . . , not Nk into A1 ∨ . . . An ← P1, . . . , Pm.
Now, S is a stable model of Π if S ∈ MM (gr(Π)↓).

A disjunctive Datalog program is stratified if its set of predicates P can be parti-
tioned into a sequence P1, . . . ,Pk in such a way that, for every P ∈ P:

1. If P ∈ Pi and predicate Q appears in a head of a rule with P , then Q ∈ Pi.
2. If P ∈ Pi and Q appears positively in the body of a rule that has P in the head,

then Q ∈ Pj , with j ≤ i.
3. If P ∈ Pi and Q appears negatively in the body of a rule that has P in the head,

then Q ∈ Pj , with j < i.

If a program is stratified, then its stable models can be computed bottom-up by prop-
agating data upwards from the underlying extensional database, and making sure to
minimize the selection of true atoms from the disjunctive heads. Since the latter intro-
duce a form of non-determinism, a program may have several stable models.
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Circumscription

Let P̄ , Q̄ be disjoint tuples of FO predicates. The circumscription of P̄ wrt ¹ in the FO
sentence Σ(P̄ , Q̄) with variable Q̄ can be expressed by means of the SO sentence [30]
Circ(Σ(P̄ , Q̄); P̄ ; Q̄): Σ(P̄ , Q̄)∧¬∃X̄Ȳ (Σ(X̄, Ȳ )∧X̄ ¹ P̄ ∧X̄ 6= P̄ ), where X̄, Ȳ
are tuples of SO variables that replace P̄ , resp. Q̄ in Σ(P̄ , Q̄), producing Σ(X̄, Ȳ ).

Here, ¹ stands for a FO definable pre-order relation (reflexive and transitive) be-
tween tuples of predicate extensions. All the other predicates in Σ(P̄ , Q̄) are left un-
touched and they are kept fixed during the minimization of those in P̄ , while those
in Q̄ become flexible. By appropriately choosing the relation ¹, different forms of
circumscription can be captured. Prioritized circumscription is based on a prioritized
partial order relation between tuples S̄ = (S1, . . . , Sm), and T̄ = (T1, . . . , Tm) of
similar predicates (i.e. same length and corresponding arities). It can be defined by
S̄ ¹pri T̄ ≡ ∧m

i=1(
∧i−1

j=1 Si = Ti → Si ≤ Ti). Here, ≤ stands for the subset relation.
The parallel circumscription of the predicates in P̄ can be obtained by means of the
relation: S̄ ¹par T̄ ≡ ∧m

i=1 Si ≤ Ti.
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