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Query Answering in Inconsistent Databases

Leopoldo Bertossi' and Jan Chomicki?
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2 Dept. of Computer Science and Engineering, University at Buffalo, State
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Abstract. In this chapter, we summarize the research on querying inconsistent
databases we have been conducting over the last five years. The formal frame-
work we have used is based on two concepts: repair and consistent query answer.
We describe different approaches to the issue of computing consistent query an-
swers: query transformation, logic programming, inference in annotated logics, and
specialized algorithms. We also characterize the computational complexity of this
problem. Finally, we discuss related research in artificial intelligence, databases,
and logic programming.

1 Introduction

In this chapter, we address the issue of obtaining consistent information from
inconsistent databases — databases that violate given integrity constraints.
Our basic assumption departs from everyday practice of database manage-
ment systems. Typically, a database management system checks the satisfac-
tion of integrity constraints and backs out those updates that violate them.
However, present-day database applications have to consider a variety of sce-
narios in which data is not necessarily consistent:

Integration of autonomous data sources. The sources may separately sat-
isfy the constraints, but when they are integrated together the constraints
may stop to hold. For instance, consider different, conflicting addresses for
the same person in a taxpayer and a voter registration databases. Each of
those databases separately satisfies the functional dependency that associates
a single address with each person and yet together they violate this depen-
dency. Moreover, since the sources are autonomous they can not be simply
fixed to satisfy the dependency by removing one of the conflicting tuples.

Unenforced integrity constraints. Even though integrity constraints cap-
ture an important part of the semantics of a given application, they may still
fail to be enforced for a variety of reasons. A data source may be a legacy
system that does not support the notion of integrity checking altogether. Or,
integrity checking may be too costly (this is often the reason for dropping
some integrity constraints from a database schema). Finally, the DBMS itself
may support only a limited class of constraints.

Temporary inconsistencies. It may often be the case that the consistency
of a database is only temporarily violated and further updates or transactions
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are expected to restore it. This phenomenon is becoming more and more
common, as the databases are increasingly involved in a variety of long-
running activities or workflows.

Conflict resolution. Removing tuples from a database to restore consis-
tency leads to information loss, which may be undesirable. For example, one
may want to keep multiple addresses for a person if it is not clear which
is the correct one. In general, the process of conflict resolution may be com-
plex, costly, and non-deterministic. In real-time decision-making applications,
there may not be enough time to resolve all conflicts relevant to a query.

To formalize the notion of consistent information obtained from a (possi-
bly inconsistent) database in response to a user query, we propose the notion
of a consistent query answer. A consistent answer is, intuitively, true regard-
less of the way the database is fixed to remove constraint violations. Thus
answer consistency serves as an indication of its reliability. The different ways
of fixing an inconsistent database are formalized using the notion of a repair.
A repair is another database that is consistent and minimally differs from the
original database.

We summarize the results obtained so far in this area by ourselves and
our collaborators. We have studied consistent query answers for first-order
and scalar aggregation queries. We have also considered the specification of
repairs using logic-based formalisms. We relate our results to similar work
undertaken in knowledge representation and logic programming, databases,
and philosophical logic. It should be pointed out that we are studying a
very specific instance of the logical inconsistency problem: the case where
the data is inconsistent with the integrity constraints. We do not address
the issue of how to deal with inconsistent sets of formulas in general. In
standard relational databases negative information is represented implicitly
(through the Closed World Assumption) and inconsistencies appear only in
the presence of integrity constraints.

The trivialization of classical logical inference in the presence of an incon-
sistency is less of a problem in the database context, since database systems
typically do not support full-fledged first-order inference. It is more important
to be able to distinguish which query answers are affected by the inconsis-
tency and which are not.

This chapter is structured as follows. In Section 2, we define the notions
of repair and consistent query answer (CQA) in the context of first-order
queries. In Section 3, we present a corresponding computational methodol-
ogy based on query transformation. In Section 4, we show how to declara-
tively specify database repairs using logic programming and annotated log-
ics. In Section 5, we discuss computational complexity issues. In Section 6,
we show that in the context of aggregation queries the definition of CQAs
has to be slightly modified and we discuss the corresponding computational
mechanisms. In Section 7, we discuss other, related approaches to handling
inconsistent information. In Section 8, we present open problems.
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2 Consistent Query Answers

Our basic assumption is that an inconsistent database is not necessarily going
to be repaired in a way that fully restores its consistency. Therefore, if such
a database is to be queried, we have to distinguish between the information
in the database that participates in integrity violations, and one that does
not. Typically, only a small part of a database will be inconsistent.

We need to make precise the notion of “consistent” (or “correct”) infor-
mation in an inconsistent database. More specifically, our problem consists
of:

1. giving a precise definition of a consistent answer to a query in an incon-
sistent database,

2. finding computational mechanisms for obtaining consistent information
from an inconsistent database, and

3. studying the computational complexity of this problem.

Ezxample 1. Consider the following relational database instance r:

Employee‘ Name Salary
J.Page 5000
J.Page 8000
V.Smith 3000
M .Stowe 7000

The instance r violates the functional dependency f; : Name — Salary
through the first two tuples. This is an inconsistent database. Nevertheless,
there is still some “consistent” information in it. For example, only the first
two tuples participate in the integrity violation. In order to characterize the
consistent information, we notice that there are two possible ways to repair
the database in a minimal way if only deletions and insertions of whole tuples
are allowed. They give rise to two different repairs:

Employeel ‘ Name Salary Employee?2 ‘ Name Salary
J.Page 5000 J.Page 8000
V.Smith 3000 V.Smith 3000
M .Stowe 7000 M .Stowe 7000

We can see that certain information e.g., (M.Stowe,7000), persists in
both repairs, since it does not participate in the violation of the FD f;. On
the other hand, some information, e.g. (J.Page,8000), does not persist in all
repairs, because it participates in the violation of f;.

There are other pieces of information that can be found in both repairs,
e.g. we know that there is an employee with name J. Page. Such informa-
tion cannot be obtained if we simply discard the tuples participating in the
violation.

O
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In the following we assume we have a fixed relational database schema R
consisting of a finite set of relations. We also have two fixed, disjoint infinite
database domains: D (uninterpreted constants) and N (numbers). We assume
that elements of the domains with different names are different. The database
instances can be seen as finite, first order structures over the given schema,
that share the domains D and N. Every attribute in every relation is typed,
thus all the instances of R can contain only elements either of D or of N in
a single attribute. Since each instance is finite, it has a finite active domain
which is a subset of DUN. As usual, we allow the standard built-in predicates
over N (=, #, <, >, <,>) that have infinite, fixed extensions. The domain D
has only equality as a built-in predicate. With all these elements we can build
a first-order language L.

2.1 Integrity constraints

Integrity constraints are typed, closed first-order £-formulas. We assume that
we are dealing with a single set of integrity constraints /C' which is consistent
as a set of logical formulas. In the sequel we will denote relation symbols by
Py, ..., Py, tuples of variables and constants by Z1, ..., Z.,, and a quantifier-
free formula referring to built-in predicates only by ¢. We also represent a
ground tuple @ in a relation P as the fact P(a).

Practically important integrity constraints (called simply dependencies in
[1, chapter 10]) can be expressed as L-sentences of the form

vz 3g. [\/ Pi(@:) v\ —Pi@:) V 6(31,...,20)], (1)
=1 i=m+1
where 7, CxzUy,i=1,...,n.

In this chapter we discuss the following classes of integrity constraints
that are special cases of (1):

1. Universal integrity constraints: L-sentences

Yy, .. 2. [\ Pi@) v\ —Pi@) V 6@, ).
i=1 i=m+1

2. Denial constraints: L-sentences

V1, Ze [\ 2PiE) V O(T1,. ., Em)].

i=1

They are a special case of universal constraints.
3. Binary constraints: universal constraints with at most two occurrences of
database relations.
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4. Functional dependencies (FDs): L-sentences

They are a special case of binary denial constraints. A more familiar
formulation of the above FD is X — Y where X is the set of attributes
of P corresponding to Z; and Y the set of attributes of P corresponding
to To (and Z3).

5. Referential integrity constraints, also called inclusion dependencies (INDs )}
L-sentences

VZ 3%3. [Q(Z1) V P(ZT2,73)],

where the Z; are sequences of distinct variables with Zo contained in Z1,
and P, () database relations. Again, this is often written as QY] C P[X]
where X (resp. Y) is the set of attributes of P (resp. Q) corresponding
to Zo. If P and @) are clear from the context, we omit them and write
the dependency simply as Y C X. If an IND can be written without any
existential quantifiers, then it is called full.

Denial constraints, in particular FDs, and INDs are the most common
integrity constraints occurring in database practice. In fact, commercial sys-
tems typically restrict FDs to key dependencies and INDs to foreign key
constraints.

Given a set of FDs and INDs IC and a relation P with attributes U,
a key of P is a minimal set of attributes X of P such that IC entails the
FD X — U. In that case, we say that each FD X — Y € IC is a key
dependency and each IND Q[Y] C P[X] € IC is a foreign key constraint. If,
additionally, X is the primary key of P, then both kinds of dependencies are
termed primary.

We have seen an FD in Example 1. FDs and INDs are also present in
Example 4. Below we show some examples of denial constraints.

Ezxample 2. Consider the relation Emp with attributes Name, Salary, and
Manager, with Name being the primary key. The constraint that no employee
can have a salary greater that that of her manager is a denial constraint:

Vn,s,m,s ,m'. [=Emp(n,s,m)V =Emp(m,s ,m')Vs<s].

Similarly, single-tuple constraints (CHECK constraints in SQL2) are a special
case of denial constraints. For example, the constraint that no employee can
have a salary over $200000 is expressed as:

Vn, s, m.[~Emp(n,s,m) V s < 200000].
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Definition 1. Given a database instance r of R and a set of integrity con-
straints IC, we say that r is consistent if » F IC in the standard model-
theoretic sense; inconsistent otherwise. O

Reiter [87] characterized relational databases as first-order theories by ax-
iomatizing the unique names, domain closure, and closed world assumptions.
Each such a theory is categorical in the sense that it admits the original
database, seen as a first-order structure, as its only model. In consequence,
satisfaction in a model can be replaced by first-order logical entailment. In
this context, a database is consistent with respect to a set of integrity con-
straints if it entails (as a theory) the set of integrity constraints. There is
an alternative notion of database consistency [90]: a database is consistent if
its union (as a theory consisting of the atoms in the database) with the set
of integrity constraints is consistent in the usual logical sense. All the three
notions of consistent relational database, namely the two just presented and
Definition 1, turn out to be equivalent for relational databases, but may differ
for “open” knowledge bases (see [88,89] for a discussion).

Ezample 3. Consider a binary relation P(AB) and a functional dependency
A — B. An instance p of P consisting of two tuples (a,b) and (a,c) is
inconsistent according to Definition 1. The set of formulas I, defined as:

I, ={P(a,b), P(a,c),b# c,Yx,y,z. [P(z,y) V -P(x,z) V y=z|}

is inconsistent in the standard logic sense. O

2.2 Repairs

Given a database instance r, the set X(r) of facts of r is the set of ground
atomic formulas {P(a) | » £ P(a)}, where P is a relation name and a a
ground tuple. The distance A(r,r’') between data-base instances r and r’ is
defined as the symmetric difference of r and r':

Alr,r') = (2(r) = 2(") U (Z() = Z(r)).
Definition 2. [3] A database instance r' is a repair of a database instance
r w.r.t. a set of integrity constraints IC if

1. 7/ is over the same schema and domain as r,

2. r’ satisfies IC,

3. the distance A(r,r') is minimal under set containment among the in-
stances satisfying the first two conditions.

O
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We note that for denial constraints all the repairs of an instance r are
subsets of r (see Example 1). However, for more general constraints repairs
may contain tuples that do not belong to r. For instance, removing violations
of referential integrity constraints can be done not only by deleting but also
by inserting tuples.

Ezample 4. Consider a database with two relations Personnel(SSN,Name)
and Manager(SSN). There are functional dependencies SSN — Name and
Name — SSN, and an inclusion dependency

Manager[SSN] C Personnel[SSN].

The relations have the following instances:

Personnel‘ SSN  Name
123456789 Smith
555555555 Jones
555555555 Smith

Manager‘ SSN
123456789
555555555

The instances do not violate the IND but violate both FDs. If we consider
only the FDs, there are two repairs: one obtained by removing the third tuple
from Personnel, and the other by removing the first two tuples from the same
relation. However, the second repair violates the IND. This can be fixed by
removing the first tuple from Manager. So if we consider all the constraints,
there are two repairs obtained by deletion:

Personnel‘ SSN  Name Manager‘ SSN
123456789 Smith 123456789
555555555 Jones 555555555

and

Personnel‘ SSN  Name Mcmager‘ SSN
‘555555555 Smith ‘555555555

Additionally, there are infinitely many repairs, obtained by a combination of
deletions and insertions, of the form:

Personnel‘ SSN  Name Manager‘ SSN
123456789 ¢ 123456789
555555555 Smith 555555555

where c¢ is an arbitrary string different from Smith. a

Definition 2 reflects the assumption that the information in the database
may be not only incorrect but also incomplete. This assumption is warranted
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in some information integration approaches [72]. On the other hand, restrict-
ing repairs to be subsets of the original database (as in [28]) is based on
the assumption that the information in the database is complete, although
not necessarily correct. That assumption seems appropriate in the context of
data warehousing where dirty data coming from many sources is cleaned in
order to be used as a part of the warehouse itself.

Another variation of the notion of repair assumes a different notion of
minimality: instead of minimizing the symmetric difference, we may minimize
its cardinality. We discuss this issue in Section 7. Still another dimension of
the repair concept was recently introduced by Wijsen [95] who proposed
repairs obtained by modifying selected tuple components.

2.3 Queries and consistent query answers

Queries are formulas over the same language £ as the integrity constraints. A
query is closed (or a sentence) if it has no free variables. A closed query with-
out quantifiers is also called ground.. Conjunctive queries [26,1] are queries
of the form

Ty, T [Pr(Z1) A oo A Pp(@m) N O(Z1,.. ., Tm)]

where ¢(Z1,...,Zm,) is a conjunction of built-in predicate atoms. If a con-
junctive query has no repeated relation symbols, it is called simple.
The following definition is standard:

Definition 3. A tuple ¢ is an answer to a query Q(z) in r iff r = Q(%), i.e.,
the formula Q with z replaced by ¢ is true in r. |

Given a query Q(Z) to an instance r, we want as consistent answers
those tuples that are unaffected by the violations of the integrity constraints
present in 7.

Definition 4. [3] A tuple ¢ is a consistent answer (CQA) to a query Q(z)
in a database instance r w.r.t. a set of integrity constraints IC iff ¢ is an
answer to the query Q(Z) in every repair r’ of r w.r.t. IC. An L-sentence @
is consistently true in r w.r.t. IC if it is true in every repair of r w.r.t IC. In
symbols:

r=rc Q) = v | Q(t) for every repair 7/ of r w.r.t. IC.

Ezample 5. (Example 1 continued) It holds:

L. r E(pny Employee(M.Stowe, 7000)

2. 7 E=¢py (Employee(J.Page,5000) Vv Employee(J.Page,8000))
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3. 7 E¢py 3. [Employee(J. Page, x)]

Notice that through Definition 4 our approach leads to a stronger notion
of inference from inconsistent databases than an approach based on simply
discarding conflicting data. In the latter approach, the last two inferences in
Example 5 would not be possible.

For universal integrity constraints, the number of repairs of a finite da-
tabase is also finite. However, referential integrity constraints may lead to
infinitely many repairs, c.f., Example 4. Having infinitely many repairs is a
problem for those approaches to computing consistent query answers that
construct a representation of all repairs, as do the approaches based on logic
programming (Section 4). Therefore, they use a slightly different notion of
repair by allowing tuples with nulls to be inserted into the database. This
reflects common SQL2 database practice. But that approach does not always
work, as the entity integrity constraint, inherent in the relational data model,
prevents null values from appearing in the primary key.

Ezample 6. Consider Example 4 again. The infinitely many repairs can be
replaced by a single repair

Personnel‘ SSN  Name Manager‘ SSN
123456789 null 123456789
555555555 Smith 555555555

only if it is the SSN attribute which is designated the primary key, not the
Name attribute (which still remains a key). O

One can also avoid dealing with infinitely many repairs by restricting repairs
to be subsets of the original instance, as in [28].

If a different notion of repair than that from Definition 2 is used, the
notion of consistent query answer changes too. In general, the more restricted
the repairs, the stronger the consistent query answers, as illustrated by the
following example.

Ezample 7. Consider a database schema consisting of two relations P(AB)
and S(C). The integrity constraints are: the FD A — B and the IND B C C.
Assume the database instance r; = {P(a,b), P(a,c),S(b)}. Then there is
only one repair ro = {P(a,b),S(b)} which is a subset of r1. On the other
hand, under Definition 2 there is one more repair r3 = {P(a, c), S(b), S(c)}.
Therefore, in the first case P(a,b) is consistently true in the original instance
r1, while in the second case it is not. Note that P(a, c) is not consistently true
in ry either. Therefore, P(a,b) and P(a,c) are treated symmetrically from
the point of view of consistent query answering. However, intuitively there
is a difference between them. Think of A being the person’s name, B her
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address and S a list of valid addresses. Then only under the more restricted
notion of repair would the single valid address be returned as a consistent
answer. U

In the sequel, we will mostly use the notion of repair from Definition 2,
clearly indicating the cases where a different notion is applied.

2.4 Computing CQAs

What we have so far is a semantic definition of consistent query answer in
a (possibly inconsistent) database, based on the notion of database repair.
However, retrieving CQAs via the computation of all database repairs is not
feasible. Even for FDs the number of repairs may be too large.

Ezxample 8. Consider the functional dependency A — B and the following
family of relation instances r,,, n > 0, each of which has 2n tuples (represented
as columns) and 2" repairs:

TTL
Alay ay az az -+ an an
Blbg by bg by -+ by by

Therefore, we develop various methods for computing CQAs without ex-
plicitly computing all repairs. Such methods can be split in two categories:

1. Query transformation. Given a query ) and a set of integrity constraints
IC, construct a query Q' such that for every database instance r the set of
answers to Q' in r is equal to the set of consistent answers to @) in r w.r.t.
IC. This approach was first proposed in [3] for first-order queries. In that
case the transformed query is also first-order, thus after a straightforward
translation to SQL2 it can be evaluated by any relational database engine.
Note that the construction of all repairs is entirely avoided. In [24], the
implementation of an extended version of the method of [3] was described.

2. Compact representation of repairs. Given a set of integrity constraints
IC and a database instance r, construct a space-efficient representation
of all repairs of r w.r.t. IC, an then use this representation to answer
queries. Different representations have been considered in this context:

2.1. Repairs are answer sets of a logic program [4,6,15]. The compact repre-
sentation is the program, and to obtain consistent answers, one runs the
program.

2.2. Repairs are some distinguished minimal models of a theory written in
annotated predicate logic [8,14].
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2.3. Repairs are maximal independent sets in a hypergraph whose nodes are
database tuples and edges consist of sets of tuples participating in a
violation of a denial constraint. This approach has been applied in [28]
to quantifier-free first-order queries and in [5,7] to aggregation queries.

2.4. The interaction of the database instance and the integrity constraints
is represented as an analytical tableau that becomes closed due to the
mutual inconsistency of the database and the integrity constraints. The
implicit “openings” of the tableau are the repairs [19]. Implementation
issues around consistent query answering based on analytic tableaux for
non-monotonic reasoning are discussed in [20].

In the next sections we describe some of these approaches.

3 Query Transformation

Here we consider first-order queries and universal integrity constraints. Given
a query, we rewrite it, preserving the original database instance. The query is
transformed by qualifying it with appropriate information derived from the
interaction between the query and the integrity constraints. This forces the
satisfaction of the integrity constraints and makes it possible to discriminate
between the tuples in the answer set. The technique is inspired by semantic
query optimization [25].

More precisely, given a query ¢(Z), a new query T%(¢(Z)) is computed
by iterating an operator 7' which transforms a query by conjoining to each
database literal appearing in it the corresponding residue, until a fixed point
is reached. (If there is no residue, then T(Q) = Q.) The residue of a data-
base literal forces the satisfaction of the integrity constraints for the tuples
satisfying the literal. The residues of a literal are obtained by resolving the
literal with the integrity constraints.

Ezample 9. Consider the following integrity constraints:
IC = {Va.[R(x)V -P(z)V -Q(x)], Vz.[P(x) V -Q(z)]}

and the query Q(z). The residue of Q(z) wrt the first constraint is (R(x) V
—P(x)), because if Q(z) is to be satisfied, then that residue has to be true
if the constraint is to be satisfied too. Similarly, the residue of Q(z) wrt the
second constraint is P(z). In consequence, instead of the query Q(x), one
rather asks the transformed query Q(z) A (R(z) V =P(z)) A P(z). The literal
—Q(x) does not have any residues wrt the given integrity constraints, because
the integrity constraints do not constrain it. m]

If we want the CQAs to an L-query ¢(Z) in r, we rewrite the query into
the new L-query T%(¢(Z)), and we pose T (p(Z)) to r as an ordinary query.
We expect that for every ground tuple #:

r o p(t) = rETY(e().
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We explain later under what conditions this equivalence holds.

Ezample 10. (Example 1 continued) The FD f; can be written as the £-
formula

f1: Yayz. [-Employee(x,y) V —Employee(z,z) V y = z]. (2)

If we are given the query Q(z,y) : Employee(x,y), we expect to ob-
tain the consistent answers: (V.Smith, 3000), (M.Stowe, 7000), but not
(J.Page, 5000) or (J.Page, 8000).

The residue obtained by resolving the query with the FD f; is

Vz. [~ Employee(x,z) V y = z].

Note that we get the same residue by resolving the query with the first or
the second literal of the constraint. Thus, the rewritten query T(Q(z,y)) is
as follows:

T(Q(x,y)) :== Employee(x,y) A Vz. [mEmployee(x,z) V y = z],

and returns exactly (V.Smith, 3000) and (M.Stowe, 7000) as answers, i.e.,
the consistent answers to the original query. |

In general, T needs to be iterated, because we may need to consider the
residues of residues and so on. In consequence, depending on the integrity
constraints and the original query, we may need to iterate T" until the infinite
fixed point T“ is obtained. In Example 10, this was not necessary, because
the literal = Employee(z, z) in the appended residue does not have a residue
wrt fi itself. We stop after the first iteration.

Ezample 11. (Example 9 continued) The following are the sets of residues
for the relevant literals (the other literals have no residues):

Literal  Residue

Plx)  A{R(z)V-Q(z)}

Qx)  :{R(x)V-P(z), P(z)}
—P(z) :{=Q(x)}

-R(z) {=P(x) VvV -Q(2)}

The query is transformed into T(Q(z)) = Q(x) A (R(x) vV -P(z)) A P(z).
Now, we apply T again, to the appended residues, obtaining
T*(Q(2)) = Q(z) A (T(R(x)) VT (=P(x))) NT(P())
— Q@) A (R(@) V (~P(x) A ~Q(x))) A P() A (R(z) V ~Q(x)).
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And once more

T*(Q(2)) = Q@) A (R(x) V (=P(x) AT (=Q(x)))) A
Pa) ANT(R(z)) VT (-Q(x))).

Since T(=Q(z)) = —Q(z) and T(R(z)) = R(x), we obtain T%(Q(z)) =
T3(Q(z)), and we have reached a fixed point. O

The important properties of the transformation-based approach are: sound-Jj
ness, completeness and termination [3]. Soundness means that every answer
to T%(Q) is a consistent answer to Q. Completeness means that every con-
sistent answer to @ is an answer to T%(Q). Termination means that there is
an n such that for all m > n, VZ(T"™(Q(z)) = T™(Q(Z)) is a valid formula.

Reference [3] defines some very general sufficient conditions for soundness
of the transformation-based approach, encompassing essentially all integrity
constraints that occur in practice. Completeness is much harder to achieve.
Reference [3] proves completeness of the transformation-based approach for
queries that are conjunctions of literals and binary, generic integrity con-
straints. (A constraint is generic if no ground database literal is a logical
consequence of it.) For example, we may have the query R(u,v) A =P (u,v),
and the binary integrity constraints

IC = {Vz,y.[-P(2,y) V R(z,y)],Vz,y, z.[~P(z,y) V ~P(x,2) Vy = z]}.

However, with disjunctive or existential queries we may lose completeness.
Ezample 12. In Example 10, if we pose the ground disjunctive query

Q: Employee(J.Page, 5000) V Employee(J.Page, 8000),

the straightforward application of operator T produces the rewritten query
T(Q):
(Employee(J.Page,5000) A Vz (=Employee(J.Page,z) V z = 5000)) V
(Employee(J.Page,8000) A Vz (~Employee(J.Page,z) V z = 8000)).

that has the answer (truth value) false in the original database instance,
but, according to the definition of consistent answer, is consistently true in
this instance. a

Termination can be guaranteed syntactically if there is an n such that
T"(Q(z)) and T""1(Q(z)) are syntactically the same. Reference [3] shows
that this property holds for any kind of queries iff the set of integrity con-
straints IC is acyclic, where IC'is acyclic if there exists a function

f:{Pl,...,Pn,_‘Pl,...,_\Pn}HN,
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such that for every constraint
k
V(\/ li(z:) v (x)) € IC
i=1

and every 1 < 4,5 < k, if ¢ # j then f(—-l;) > f(l;). Here f is the level
mapping, similar to the mappings associated with stratified or hierarchical
logic programs, except that complementary literals get values independently
of each other. Any set of denial constraints — thus also FDs — is acyclic.

For example, termination is syntactically guaranteed for any query if

IC = {Vz,y.[-P(x,y) V R(z,y)],Vz,y, z.[-P(z,y) V -P(x,z) Vy = 2]}.

Reference [3] provides further, non-syntactic sufficient criteria for termi-
nation of the transformation-based approach. In particular, termination for
multivalued dependencies is obtained.

In [24], an implementation of the operator T“ is presented. The im-
plementation is done on top of the XSB deductive database system [91],
whose tabling techniques make it possible to keep track of previously com-
puted residues and their subsumption. In this way redundant computation
of residues is avoided and termination is detected for a wider class of in-
tegrity constraints than those presented in [3]. Using XSB allows also a real
interaction with the IBM DB2 DBMS.

The query transformation approach to CQAs — as presented in [3,24] —
has some limitations. First of all, the methodology is designed to handle only
universal integrity constraints, while existential quantifiers are necessary for
specifying referential integrity constraints. Furthermore, as we have shown
the transformation-based approach fails (it is sound but not complete) for
disjunctive or existentially-quantified queries. This failure can be partially
explained by complexity-theoretic reasons. Except for very restricted classes
of constraints and queries, adding an existential quantifier leads to co-NP-
completeness of CQAs. This issue is discussed in more depth in Section 5.

4 Specifying Database Repairs

So far we have presented a model-theoretic definition of CQAs and a compu-
tational methodology to obtain such answers for some classes of queries and
integrity constraints. Nevertheless, what is still missing is a logical specifi-
cation Spec, of all database repairs of an instance r, satisfying the following
property for all queries Q and tuples t:

Spec, F Q) = re Q) (3)

where | is a new, suitable consequence relation. If we had such a specification,
we could consistently answer every query Q(z) by asking for those ¢ such that
Spec,. E Q(1).

As the following example shows, b has to be non-monotonic.
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Ezample 13. The database containing the table

Employee‘ Name Salary
J.Page 5000
V.Smith 3000
M .Stowe 7000

is consistent wrt the FD f; of Example 1. In consequence, the set of CQAs
to the query Q(z,y) : Employee(x,y) is

{(J.Page, 5000), (V.Smith, 3000), (M.Stowe, 7000)}.

If we add the tuple (J.Page, 8000) to the database, the set of CQAs to the
same query is reduced to

{(V.Smith, 3000), (M.Stowe, 7000)}.

A specification Spec, may provide new ways of computing CQAs and shed
some light on the computational complexity of this problem.

4.1 Logic programs

We show here how to specify the database repairs of an inconsistent database
r by means of a logic program IT,. [4,6]. In order to pose and answer a first-
order query Q(Z), a stratified logic program IT(Q) plus a new goal query
atom G(Z) is obtained by a standard methodology [80,1], and the query
G(Z) is evaluated against the program II, U IT(Q). The essential part is the
program I1,..

The first observation is that when a database is repaired most of the data
persists, except for some tuples. More precisely, by default all the positive and
implicit negative data persist from r to the repairs, except for some tuples
that have to added or removed to restore the consistency of the database. In
order to capture this idea, we may use logic programs with exceptions [69], in
this case containing:

o default rules capturing the persistence of the data, and
e cxception Tules stating that certain changes have to be made and the
integrity of the database has to be restored.

The exception rules should have higher priority than the default rules. The
semantics is that of e-answer sets, based on the answer set semantics for
extended disjunctive logic programs [48]. A logic program with exceptions can
be eventually translated into an extended disjunctive normal logic program
with answer set semantics [69]. Now we give an example of this transformed
version, where default rules have been replaced by persistence rules, so that
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the whole program has an answer set semantics. (In addition to disjunction,
the program has two kinds of negation: classical negation — and negation-as-
failure not.)

Ezample 14. Consider the full inclusion dependency Vz.[-P(z)V Q(x)] and
the inconsistent database instance r = {P(a)}. The program IT, that spec-
ifies the repairs of r contains two new predicates, P’ and @Q’, corresponding
to the repaired versions of P, @, resp., and the following sets of rules:

1. Persistence rules:
P'(z) « P(z),not =P'(z);  Q'(x) «— Q(z),not ~Q'(x)

-P'(z) «— not P(x),not P'(x); —Q'(x) — not Q(x),not Q' (x).

The defaults say that all data persists from the original tables to their
repaired versions.

2. Triggering exception: —P'(x)V Q' (x) «— P(x), not Q(z).
This rule is needed as a first step towards the repair of r. It states that
in order to “locally” repair the constraint by deleting P(x) or inserting
Q).

3. Stabilizing exceptions: Q' (x) «— P'(x); —P'(x)«— -Q'(x).
The rules say that eventually the constraint has to be satisfied in the
repairs. This kind of exception rules are important if there are interacting
integrity constraints and local repairs alone are not enough.

4. Database facts: P(a).

If we instantiate the rules in all possible ways in the underlying domain,
we obtain a ground program IT,.. A set of ground literals M is an answer set of
I7, if it is a minimal model of IT, where IT = {A; V---V A,, < By, -+, By, |
A1V -~V A, « By, ,Bp,not Cq,--- ,not Cy, € Il and C; ¢ M for
1 <4 < k}. If M has complementary literals, then M is a trivial answer set
containing all ground literals.

In this example, the answer sets of the program correspond to the ex-
pected database repairs: {—=P’(a),—-Q’'(a), P(a)}; {P'(a), Q'(a),P(a)}.
The first one indicates through the underlined literal that P(a) has to be
deleted from the database; the second one — that Q(a) has to be inserted in
the database. O

In [6], it is proved that for the class of binary integrity constraints (de-
fined in Section 2), there exists a one-to-one correspondence between answer
sets and database repairs. In consequence, in (3) we can take Spec, as a
the appropriate extended disjunctive logic program and the notion of logical
consequence there as being true wrt all answer sets of the program (i.e. the
skeptical answer set semantics).



Inconsistent Databases 17

(From the correspondence results just mentioned, we can obtain a method
to compute database repairs by using any implementation of the answer set
semantics for extended disjunctive logic programs. To compute CQAs, one
needs to have a way to obtain atoms true in every answer set of the logic
program. In [6] the experiments with the deductive database system DLV
[39] are reported. It is also possible to extend the methodology to include
referential integrity constraints containing existentially quantified variables
[4,6].

The logic programming approach is very general since it applies to arbi-
trary first-order queries. However, the systems computing answer sets work
typically by grounding the logic program. In the database context, this may
lead to huge ground programs and be impractical.

Logic programs for repairing databases and computing CQAs wrt arbi-
trary universal constraints have been independently introduced in [56]. That
work is further discussed in Section 7.

4.2 Annotated logics

As explained at the beginning of this section, we would like to have a logical
specification of database repairs. Such a specification must contain informa-
tion about the database and the integrity constraints — two pieces of infor-
mation that will be mutually inconsistent if the database does not satisfy
the integrity constraints. So including them into a classical first-order theory
would lead to an inconsistent theory and the trivialization of reasoning. In
consequence, if we want a first-order theory, we have to depart from classical
logic, moving to non-classical logic, where reasoning in the presence of classi-
cal inconsistencies does not necessarily collapse. Following [8], we show here
how to generate a consistent first-order theory with a non-classical semantics.
We use Annotated Predicate Calculus (APC) [67].

In APC, database atoms are annotated with truth values taken from a
truth-value lattice. The most common annotations are: true (t), false (f),
contradictory (T), and unknown (L). In [8] a lattice was used to capture
the preference for integrity constraints when they conflict with the data: the
integrity constraints cannot be given up but the database can be repaired.
The new truth values in the lattice are:

e Database values: tq and fy, used to annotate the atoms in the original
database, resp. outside of it.

e Constraint values: t. and f¢, used to annotate, depending of their sign,
the database literals appearing in the disjunctive normal form of the
integrity constraints. The built-in atoms appearing in the integrity con-
straints are annotated with the classical annotations t and f.

o Advisory values: t, and f,, used to solve the conflicts between the
database and the integrity constraints, always in favor of the integrity
constraints that are not to be given up, whereas the data is subject to
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changes. This is represented in the lattice Latt in Figure 1. Intuitively,
if a ground atom becomes annotated with both tq and f., then it gets
the value f, (the least upper bound of the first two values in the lattice),
meaning that the advice is to make it false, as suggested by the integrity
constraints. That is, the facts for which the advisory truth values f, and
t. are derived are to be removed from, resp. inserted into, the database
in order to satisfy the integrity constraints.

Fig. 1. The truth-value lattice Latt

In this lattice, the top element is T, that is reached as the least upper
bound (lub) of any pair of contradictory annotations. The annotations tq
and f, for example, are not considered definitely contradictory (i.e. with lub
T) if we can still make them compatible by passing to their lub f,. If there
is no conflict between a data and a constraint annotation, then we pass to
their lubs, i.e. t or f.

Now, both the database r and the integrity constraints IC', with the ap-
propriate annotations taken from the lattice, can be embedded into a single
and consistent APC theory Th(r, IC). We show this embedding by means of
an example.

Ezample 15. (Example 1 continued) The integrity constraint
Y, y, z.[7Employee(z,y) V —Employee(x,z) V y = z]
is translated into
Va,y, z.[Employee(x,y): f. V Employee(x,z):f, V y=z:t].

Each of the database facts is annotated, e.g. Employee(J.Page, 5000) as
Employee(J.Page,5000): tq. We also introduce annotated axioms represent-
ing the unique names assumption, and the closed world assumption [87]. In
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this way we generate the annotated first-order theory Th(r, IC). m]

As mentioned before, navigation in the lattice and an adequate definition
of APC formula satisfaction help solve the conflicts between the database and
the integrity constraints. The notion of formula satisfaction in a Herbrand
interpretation I (now containing annotated ground atoms) is defined as in
classical first-order logic, except for atomic formulas. By definition, for such
formulas I |= p:s, with s € Latt, iff for some s’ such that s <jqu ', p:s’ € I.

In [8] it is shown that for every database r, there is a one-to-one corre-
spondence between the repairs of » w.r.t. IC' and the models of Th(r,IC)
that make true a minimal set of atoms annotated with t, or f, (corre-
sponding to the fact that a minimal set of database atoms is changed). In
consequence, the specification Spec,, postulated in (3) at the beginning of
this section, is simply Th(r, IC') and the corresponding (non-monotonic) no-
tion of consequence is truth in all {t,, fo }-minimal annotated models of the
theory. The approach of [8] produces from Th(r, IC) a set of advisory clauses
that are then processed by specialized algorithms. The approach is applica-
ble to queries that are conjunctions or disjunctions of positive literals, and
to universal constraints.

4.3 Logic programs with annotation constants

In [15] a method to obtain a disjunctive logic program IT7""(r,IC) from
Th(r,IC) is presented. This program, having a stable model semantics, spec-
ifies the database repairs. The program has annotations as additional predi-
cate arguments, thus it is a standard, not an annotated [68], logic program,
and the standard results and techniques apply to it. We give here an example
only.

Ezxample 16. Consider the same database r and integrity constraints IC as
in example 14. The logic program should have the effect of repairing the
database. Single, local repair steps are obtained as before by deriving the
annotations t, or f,. This is done when each constraint is considered in
isolation, but there may be interacting integrity constraints, and the repair
process may take several steps and should stabilize at some point. In order
to achieve this, we need additional, auxiliary annotations t*, f*, t**, and f**
that are new, special constants in the language.

The annotation t*, for example, groups together the annotations tq and
ta for the same atom (the rules 1. and 4. below). This new, derived annotation
can be used to provide a feedback to the bodies of the rules that produce
the local, single repair steps, so that a propagation of changes is triggered
(the rule 2. below). The annotations t** and £** are just used to read off the
literals that are inside (resp. outside) a repair. This is achieved by means of
the rules 6. below, that are used to interpret the models as database repairs.
The following is the program II°"™"(r, IC):
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1.  P(z,f*) « P(x,fy). P(z,t*) < P(z,ta). P(x,t*) — P(x,tq).

Qz,f) — Qz,fa).  Qx,t") — Qz,ta).  Qz,t") — Q(x,ta).

P(z,fa) VQ(z,ta) — P(z,t*),Q(x, ).

P(a,td) —.

P(x,f*) «— not P(z,tq). Q(z,f*) — not Q(x,tq).

— P(Z,ta), P(7,fa). — Q(Z,ta),Q(Z, fa).

P(z,t*) «— P(x,ta). P(z,t**) «— P(z,tq), not P(z,f,).

A e
—~

Pz, ) « P(z,f,). Pz, ) «— not P(xz,tq), not P(x,t,).

Qx,t™) «— Q(z,ta). Q(z,t*) «— Q(x,ta), not Q(x,f,).
Qx, ) — Q(z,fa).  Q(z,f7) « not Q(z,ta), not Q(z,ta).

The rule 2. is the only rule dependent on the integrity constraints. It says
how to repair the constraint when an inconsistency is detected. If there were
other integrity constraints interacting with this constraint, having passed
to the annotations t* and f* will allow the system to keep repairing the
constraint if it becomes violated due to the repair of a different constraint.
Rules in 3. contain the database atoms. Rules 4. capture the closed world
assumption. The rules in 5. are denial constraints for coherence. That is,
coherent models do not contain atoms annotated with both t, and f,.

Stable models are defined exactly as the answer sets in Example 14, but
considering sets of ground atoms only since in the programs with annotations
there is no classical negation.

The program in this example has two stable models:

{P(a,ta), P(a,t*),Q(a,f*),Q(a, ta), P(a, t**), Q(a, t*), Q(a, t**)}
and

{P(a,ta), P(a,t"), P(a, f*), Q(a, f*), P(a, £"), Q(a, "), P(a, fa)},

the first one saying, through its underlined atoms that Q(a) is to be inserted
into the database; the second one — that P(a) is to be deleted. a

In [15], a one-to-one correspondence between the stable models of the
programs IT°""(r, IC') and the repairs of r wrt IC is established. Consistent
answers can thus be obtained by “running” a query program together with
the repair program IT%""(r, IC'), under the skeptical stable model semantics.

The programs with annotations obtained are simpler than those in section
4.1 in the sense that they contain one change triggering rule per constraint
(rule 4. in the example), whereas the natural extension to arbitrary univer-
sal constraints of the approach in Section 4.1 may produce programs with
the number of rules which is exponential in the number of disjuncts in the
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disjunctive normal forms of the (universal) integrity constraints [6,56]. The
method of [15] can also capture repairs of referential integrity constraints
(under the notion of repair allowing tuples with nulls, as discussed in Section
2). Thus, the approach in [15] is the most general considered so far, since it
applies to arbitrary first-order queries, and arbitrary universal or referential
integrity constraints (with the exception of the cases that may lead to the
violations of the entity integrity constraint, c.f., Example 6).

In some cases, optimizations of the program are possible. For example,
the program we just gave is head-cycle free [16]. In consequence, it can be
transformed into a non-disjunctive normal program, reducing the complexity
of its evaluation from IT} to co-NP [74,34]. Not every repair program with
annotations will be head-cycle free though, because there are some limita-
tions imposed by the intrinsic computational complexity of the problem of
consistent query answering.

5 Computational Complexity

We summarize here the results about the computational complexity of consis-
tent query answers [3,7,29,28]. We will adopt the data complezity assumption
[1,65,94] which measures the complexity of the problem as a function of the
number of tuples in a given database instance. The given query and integrity
constraints are considered fixed.

The query transformation approach [3] — in the cases where it terminates
— provides a direct way to establish PTIME-computability of consistent query
answers. If the original query is first-order, so is the transformed version. In
this way, we obtain a PTIME (or, more precisely AC?) procedure for comput-
ing CQAs: transform the query and evaluate it in the original database. Note
that the transformation of the query is done independently of the database
instance, and therefore does not affect the data complexity. For example, in
Example 8 the query R(z,y) will be transformed (similarly to the query in
Example 10) to another first-order query and evaluated in PTIME, despite
the presence of an exponential number of repairs. However, the query trans-
formation approach is sound, complete and terminating only for restricted
classes of queries and constraints. More specifically, the results of [3] imply
that for binary denial constraints and full inclusion dependencies consistent
answers can be computed in PTIME for queries that are conjunctions of
literals. The logic programming approaches described in Section 4 do not
have good asymptotic complexity properties, since they are all based on IT5-
complete classes of logic programs [34]. So it was an open question how far the
boundary between tractable and intractable can be pushed in this context.

The paper [28] ([29] is an earlier version containing only some of the
results) shows how the complexity of computing CQAs depends on the type
of the constraints considered, their number, and the size of the query. Several
new classes for which consistent query answers are in PTIME are identified:
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e ground quantifier-free queries and arbitrary denial constraints;

e closed simple (without repeated relation symbols) conjunctive queries,
and functional dependencies, with at most one FD per relation;

e ground quantifier-free or closed simple conjunctive queries, and key func-
tional dependencies and foreign key constraints, with at most one key per
relation.

Additionally, the paper [28] analyzes the data complexity of repair checking:
the problem of testing whether one database is a repair of another. (The
paper [28] makes the assumption that repairs are subsets of the original in-
stance.) It is shown that repair checking is in PTIME for all the above classes
of constraints, as well as for arbitrary FDs together with acyclic INDs. The
results obtained are tight in the sense that relaxing any of the above restric-
tions leads to co-NP-hard problems. (This, of course, does not preclude the
possibility that introducing additional, orthogonal restrictions could lead to
more PTIME cases.) To complete the picture, it is shown that for arbitrary
sets of FDs and INDs repair checking is co-NP-complete and consistent query
answers is IT5-complete.

We outline now the proof of the first result listed above, since it is done
using a technique different from query transformation. We introduce first the
notion of a conflict hypergraph that will serve as a succinct representation of
all the repairs of a given instance.

Definition 5. The conflict hypergraph Gr, is a hypergraph whose set of
vertices is the set X(r) of facts of an instance r and whose set of edges
consists of all the sets

{Pi(t1), P2(t2), .. Bi(t)}
such that Py (1), Pa(t2),... Pi(t;) € X(r), and there is a constraint
VT, Ta,... 2. [OP1(Z1) V 2P(T2) V ... V 2P(Z) V ¢(T1,Ta,... 7))

in F such that Py (t1), Pa(f2), ... P/(f;) violate together this constraint, which
means that there exists a substitution p such that p(Z1) = t1,p(T2) =
to,...p(Z;) =t and that ¢(t1,1s,... 1) is false.

By an independent set in a hypergraph we mean a subset of its set of
vertices which does not contain any edge. Clearly, each repair of r w.r.t. F
corresponds to a maximal independent set in Gp,,.

We prove here that for every set F' of denial constraints and ground
quantifier-free query @, the data complexity of checking whether @ is consis-
tently true w.r.t. F' in an instance r is in PTIME. We assume the sentence is
in CNF, i.e., of the form @ = &1 APy A. .. Dy, where each &; is a disjunction of
ground literals. @ is true in every repair of r if and only if each of the clauses
@, is true in every repair. So it is enough to provide a polynomial algorithm
which will check if a given ground clause is consistently true.
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It is easier to think that we are checking if for a ground clause true is
not a consistent answer. This means that we are checking, whether there
exists a repair r’ in which —®; is true for some i. But —®; is of the form
{31({1) A Py(ta) Ao A Pp(tm) A =Ppi1(tmy1) A ... A =Py(t,), where the
t;’s are tuples of constants. WLOG, we assume that all the facts in the set
{Pi(t1), ..., Py(tn))} are mutually distinct.

The nonderministic algorithm selects for every j, m+1 < j <n,t; € r, an
edge E; € Gp, such that t; € E;. Additionally the following global condition
needs to be satisfied: there is no edge E € Gp, such that E C r’" where

v ={f,....En}t U U & -{&D.

m+1§j§n,fj er

If the selection succeeds, then a repair in which —@; is true can be built by
adding to r’ new tuples from r until the set is maximal independent. The al-
gorithm needs n — m nondeterministic steps, a number which is independent
of the size of the database (but dependent on @), and in each of its nonde-
terministic steps selects one possibility from a set whose size is polynomial
in the size of the database. So there is an equivalent PTIME deterministic
algorithm.

6 Aggregation Queries

So far we have considered only first-order queries but in databases aggrega-
tion queries are also important. In fact, aggregation is essential in scenarios,
like data warehousing, where inconsistencies are likely to occur, and keeping
inconsistent data may be useful. Only some aggregation queries, e.g. com-
puting a maximum or minimum value of an attribute in a relation can be
expressed as first-order queries. Even in this case, due to its syntax, the
resulting first-order query cannot be handled by the query transformation
methodology described earlier.

We will consider here a restricted scenario: the integrity constraints will be
limited to functional dependencies, and the aggregation queries will consist
of single applications of one of the standard SQL-2 aggregation operators
(MIN, MAX, COUNT(*), COUNT(A), SUM, and AVG). Even in this case, it was
shown [5] that computing consistent query answers to aggregation queries is
a challenging problem.

Ezample 17. Consider again the instance r of Employee from Example 1. It
is inconsistent w.r.t. the FD f1: Name — Salary.

Employee‘ Name Salary
J.Page 5000
J.Page 8000
V.Smith 3000
M .Stowe 7000




24 Leo Bertossi and Jan Chomicki

The repairs are:

Employeel ‘ Name Salary Employee?2 ‘ Name Salary
J.Page 5000 J.Page 8000
V.Smith 3000 V.Smith 3000
M .Stowe 7000 M .Stowe 7000

If we pose the query
SELECT MIN(Salary) FROM Employee

we should get 3000 as a consistent answer: MIN(Salary) returns 3000 in
each repair. Nevertheless, if we ask

SELECT MAX(Salary) FROM Employee

then the maximum, 8000, comes from a tuple that participates in the viola-
tion of FD. Actually, MAX(Salary) returns a different value in each repair:
7000 or 8000. Thus, there is no consistent answer in the sense of definition 4. O

We give a new, slightly weakened definition of consistent answer to an
aggregation query that addresses the above difficulty.

Definition 6. [5] (a) A consistent answer to an aggregation query @ with
respect to a database instance r and a set of integrity constraints F' is the
minimal interval I = [a,b] such that for every repair v’ of r w.r.t. F, the
scalar value Q(r') of query @ in " belongs to I.

(b) The left and right endpoints of the interval I are the greatest lower bound
(glb) and least upper bound (lub), resp., answers to @ in 7. o

According to this definition, in Example 17 the interval [7000, 8000] is the
consistent answer to the query

SELECT MAX(Salary) FROM Employee

and 7000 and 8000 are the glb-answer and lub-answer, resp. Notice that the
consistent query answer interval represents in a succinct form a superset of
the values that the aggregation query can take in all possible repairs of the
database r wrt a set of FDs. The representation of the interval is always poly-
nomially sized, since the numeric values of the endpoints can be represented
in binary.

Example 18. Along the lines of Example 8, consider the functional depen-

dency A — B and the following family of relation instances S,,, n > 0:

Tn
Alay a1 az az az az -+ a, an
B|0O1 0204 --- 02"
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The aggregation query SUM(B) takes all the exponentially many values be-
tween 0 and 2"*1 — 1 in the (exponentially many) repairs of the database
[5]. An explicit representation of the possible values the aggregation func-
tion would then be exponentially large. Moreover, it would violate the 1NF
assumption. On the other hand, the interval representation has polynomial
size. O

Next, we consider the complexity of the problem of computing the glb-
and lub-answers. The complexity results are given in terms of data complexity
[1,65,94]. For classifying the problems of consistent answering to different
aggregation queries in terms of complexity and for finding polynomial time
algorithms in tractable cases, it is useful to use a graph representation of the
set of all repairs. Because we are dealing with functional dependencies, we
can specialize the notion of conflict hypergraph (Definition 5) to that of a
conflict graph (edges contain two vertices).

Ezample 19. Consider the schema R(AB), and a set F of two functional
dependencies A — B and B — A, and the inconsistent instance r =
{(a1,b1), (a1,b2), (az,bs), (az,by)} over this schema. The following is the con-
flict graph Gp ,:

(a1,b1) (a1,b2)

(ag,b1)  (a2,b2)

The two maximal independent sets { (a1, b1), (a2, b2)} and {(a1, b2), (a2, b1) }i
correspond to the two possible repairs of the database. O

The paper [7] contains a complete classification of the tractable/intractablel]
cases of the problem of computing consistent query answers (in the sense of
Definition 6) to aggregation queries. Its results can be summarized as follows:

e for all the aggregate operators except COUNT (A), the problem is in PTIME
if the set of integrity constraints contains at most one non-trivial FD;

e for COUNT(A) the problem is NP-complete even for one non-trivial FD
(one can encode the HITTING SET problem [47]);

e for more than one non-trivial FD, even the problem of checking whether
the glb-answer to a query is < k (resp. the problem of checking whether
the lub-answer to a query is > k) is NP-complete.

For the aggregate operators MIN, MAX, COUNT(*) and SUM and a single
FD, the glb- and lub-answers are computed by SQL2 queries (so this is in a
sense an analogue of the query transformation approach for first-order queries
discussed earlier). For AVG, however, the PTIME algorithm is iterative and
cannot be formulated in SQL2.
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Ezample 20. Continuing Example 17, the greatest lower bound answer to the
query

SELECT MAX(Salary) FROM Employee
is computed by the following SQL2 query

SELECT MAX(C) FROM
(SELECT MIN(Salary) AS C
FROM Employee
GROUP BY Name) .

In [5,7], some special properties of conflict graphs in restricted cases were
identified, paving the way to more tractable cases. For example, for two FDs
and the relation schema in Boyce-Codd Normal Form, the conflict graphs are
claw-free and perfect [22], and computing lub-answers to COUNT (*) queries
can be done in PTIME.

Given the intractability results, it seems appropriate to find approxima-
tions to consistent answers to aggregation queries. Unfortunately, “maximal
independent set” seems to have bad approximation properties [60].

7 Related work

We discuss here related work on dealing with inconsistency in artificial intel-
ligence, databases and logic programming. We will attempt to characterize
various approaches along several common dimensions, including:

e semantics: What is the underlying notion of inconsistency? Are the no-
tions of repair and consistent query answer supported in any sense?

e scope: What classes of databases, integrity constraints and queries can be
handled?

e computational mechanisms: How is consistent information obtained in
the presence of inconsistency?

e computational complexity.

To be able to delineate the scope of different approaches, one has to ob-
serve whether they are first-order or propositional, and if they are first-order
— whether they can be reduced to propositional. The approaches presented in
this paper so far are first-order. However, they can be reduced to the propo-
sitional case for universal integrity constraints and ground queries, since the
constraints themselves can be grounded using the constants in the database
and the query. For more general classes of queries and constraints, e.g., ref-
erential integrity constraints, such a reduction does not apply. Moreover, the
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approaches which do not require grounding, e.g., query transformation in
Section 3, are preferable from the efficiency point of view.

A specific dimension of the computational mechanisms under considera-
tion is the support for locality of inconsistency. Locality in our context means
that the consistency violations that are irrelevant to a given query are ignored
in the process of obtaining consistent answers to the query. Clearly, locality
is desirable but it is supported only by a few approaches. The query transfor-
mation approach (Section 3) supports locality, since the violations occurring
in the relations not mentioned in the transformed query are irrelevant for the
evaluation of this query and are ignored. The approaches based on some form
of specification of all repairs (Section 4) do not support locality, because they
require the resolution of all violations through the construction of all answer
sets (or minimal models). The algorithm described in Section 5 is based on
constructing the conflict hypergraph of the given instance and while it does
not resolve all the conflicts, it has to detect all of them. Other PTIME algo-
rithms mentioned in that section support locality. It seems possible to refine
the non-local approaches mentioned above in such a way as to obtain locality.

7.1 Belief revision and update

Semantically, our approach to consistency handling corresponds to some of
the approaches followed by the belief revision/update community [45,46]. Da-
tabase repairs (Definition 2) coincide with revised models defined by Winslett
[96]. Both use the same notion of minimality. Comparing our framework with
that of belief revision, we have an empty domain theory, one model: a data-
base instance, and a revision by a set of integrity constraints. The revision
of a database instance by the integrity constraints produces new database
instances — the repairs of the original database. The scenario adopted by
most belief revision papers is thus more general than ours, since such papers
typically assume that it is a formula (or, equivalently the set of its models)
that is undergoing the revision, and that the domain theory is nonempty.
On the other hand, the research on belief revision is typically limited to the
propositional case.

Our implicit notion of revision satisfies the postulates (R1) — (R5),(R7)
and (R8) introduced by Katsuno and Mendelzon [66]. Dalal [32] postulated
a different notion of revision, based on minimizing the cardinality of the set
of changes, as opposed to minimizing the set of changes under set inclusion
[3,96]. In [6] it is shown how to capture repairs under Dalal’s notion of revision
by means of logic programs for consistent query answering.

The belief revision community has adopted a notion of inference called
counterfactual inference [45] that corresponds to our notion of a formula being
consistently true. Counterfactual inference is based on the Ramsey test for
conditionals: a formula 8 > v is a counterfactual consequence of a set of
beliefs K if for every closest context in which K is revised in such a way that
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[ is true, v is also true. In our case, K is a database, 3 is the set of integrity
constraints, and + is the query.

Winslett’s approach [96] is mainly propositional, but a preliminary ex-
tension to the first-order ground case can be found in [30]. Those papers
concentrate on the computation of the models of the revised theory, i.e., the
repairs in our case. Inference or query answering is not addressed. The com-
plexity of belief revision and counterfactual inference was exhaustively clas-
sified by Eiter and Gottlob [40]. The paper [40] deals with the propositional
case only. We have outlined above how to reduce — in some cases — consistent
query answering to the propositional case by grounding. However, grounding
of integrity constraints results in an update formula which is unbounded, i.e.,
whose size depends on the size of the database. This prevents the transfer of
any of the PTIME upper bounds from [40] into our framework. Similarly, the
lower bounds from [40] require different kinds of formulas from those that we
use. The classic paper on updating logical theories by Fagin et al. [41] focuses
on the semantics of updates but does not address the computational issues.
Moreover, the proposed framework is also limited to the propositional case.
It is interesting that [41] proposes yet another notion of repair minimality by
giving priority to minimizing deletions over minimizing insertions.

The approaches pursued by the belief revision community are non-local
in the sense of having to resolve all the inconsistencies in the database, even
those that are irrelevant to the query.

7.2 Reasoning in the presence of inconsistency

There are many approaches to inconsistency handling in the literature!. Many
of them have been proposed by the logic community, the most prominent
being the family of paraconsistent logics [31,61]. Such logics protect reasoning
in the presence of classical inconsistencies from triviality — the property that
an inconsistent theory entails every formula. Their applicability in the context
of inconsistent databases is, however, limited. First, they typically do not
address the issue of the special role of integrity constraints whose truth cannot
be given up during the inference process. Second, most paraconsistent logic
are monotonic, and thus fail to capture the nonmonotonicity inherent in the
notion of consistent query answer (Example 13). Third, they are mostly non-
local. Below we discuss those paraconsistency-based approaches that are the
closest to ours.

Bry [23] was, to our knowledge, the first author to consider the notion
of consistent query answer in inconsistent databases. He defined consistent
query answers using provability in minimal logic. The proposed inference
method is nonmonotonic but fails to capture minimal change (thus Bry’s
notion of consistent query answer is weaker than ours). Moreover, Bry’s ap-
proach is entirely proof-theoretic and does not provide a computational mech-

! For recent collections of papers see [17,36].
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anism to obtain consistent answers to first-order queries. Other formalisms,
e.g., [78], are also limited to propositional inference. Moreover, they do not
distinguish between integrity constraints and database facts. Thus, if the data
in the database violates an integrity constraint, the constraint itself can no
longer be inferred (which is not acceptable in the database context).

Ezample 21. Assume the integrity constraint is (—p V —¢q) and the database
contains the facts p and ¢. In the approach of Lin [78], p V ¢ can be inferred
(minimal change is captured correctly) but p, ¢ and (—pV —g) can no longer
be inferred (they are all involved in an inconsistency). a

Several papers by Lozinskii, Kifer, Arieli and Avron [9,67,81] studied the
problem of making inferences from a possibly inconsistent, propositional or
first-order, knowledge base. The basic idea is to infer the classical conse-
quences of all maximal consistent subsets of the knowledge base [81] or all
most consistent models of the knowledge base [9,67] (where the order on mod-
els is defined on the basis of atom annotations drawing values from a lattice
or a bi-lattice). This provides a non-monotonic consequence relation but the
special role of the integrity constraints (whose truth cannot be given up) is
not captured. Also, no computational mechanisms for answering first-order
(or aggregation) queries are proposed, neither are computational complex-
ity issues addressed. In section 4, we described how the approach of Kifer
and Lozinskii [67] can be adapted to the task of computing consistent query
answers.

In [35] a logical framework based on a three-valued logic is used to dis-
tinguish between consistent and inconsistent (controversial) information. A
database instance is a finite set of tuples, each tuple associated with the value
1 (safe), 0 (false, does not need to be stored) or 1 (controversial). Integrity
constraints are expressed in a first-order language and have three-valued se-
mantics. A repair J of I is an instance satisfying a set of integrity constraints
IC, which is <;-minimal among all the instances satisfying IC, where <j is
defined as follows. The distance between I and J is the sum over all tuples u
of [I(u) — J(u)|, where I(u) and J(u) are the values associated to w in I and
J, respectively. Then, J <; K if the distance between I and J is less than
or equal to the distance between I and K. Furthermore, in [35] an algorithm
for computing repairs is introduced. This algorithm is based on the tableau
proof system for the three-valued logic used in the framework. A related ap-
proach of Arieli et al. [10] introduces executable specifications of repairs using
abductive logic programming [64]. In both approaches, however, no notion
analogous to consistent query answers is proposed and no complexity analysis
provided.

Pradhan [85,86] introduced a logic for reasoning in the presence of con-
testations that are conflicts of different kinds: logical, semantical, domain
dependent, etc. They are declared together with the domain specification
which is, e.g., a logical theory or a normal logic program. The logic has a
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non-classical, four-valued semantics that allows inferring conflict-free sets of
consequences. For example, if conflicts have been declared as classical logical
conflicts, no logical contradiction will be found in the set of consequences.
A deductive evaluation mechanism is developed for ground queries that are
strong consequences of the specification, i.e. that hold in all conflict-free mod-
els. Furthermore, it is also shown how to represent — as a set of conflicts —
the inconsistency of a deductive database wrt a set of integrity constraints.
An interesting approach to integrity constraints in database is taken: they
should restrict the possible answers one can get from the database, rather
that capture the semantics of the domain or restrict the states of the da-
tabase. This view is quite compatible with the approach in [3], and could
be used as another motivation for it. However, the general deductive system
for strong consequences is not explicitly applied nor specialized to consis-
tent (conflict-free) query answering in databases. Complexity issues are not
addressed.

Further related treatments of inconsistency have been developed in the
areas of knowledge representation [43], and formal specifications in software
engineering [12,84].

7.3 Databases

The approaches discussed here and in the next subsection are applicable to
relational databases, and first-order queries and integrity constraints.

Asirelli et al. [11] treat integrity constraints as views over a deductive da-
tabase. In that way, queries can be answered “through the views”, in such a
way that the resulting answers satisfy the integrity constraints, and answers
that do not satisfy them are filtered out. This approach is the closest to
the transformation-based approach presented in Section 3 and also supports
locality. However, the approach [11] is a deductive, resolution-based, direct
query answering method, similar to the approaches to query answering in
deductive databases in the presence of integrity constraints [70,90]. More-
over, queries are restricted to be conjunctions of literals. No computational
complexity issues are addressed.

Wijsen [95] studies the problem of consistent query answering in the con-
text of universal constraints. In contrast to Definition 2, he considers repairs
obtained by modifying individual tuple components. Notice that a modifi-
cation of a tuple component cannot be necessarily simulated as a deletion
followed by an insertion, because this might not be minimal under set inclu-
sion. Wijsen proposes to represent all the repairs of an instance using a single
trustable tableau. From this tableau, answers to conjunctive queries can be
efficiently obtained. It is not clear, however, what is the computational com-
plexity of constructing the tableau, or even whether the tableau is always of
polynomial size.

Franconi et al. [42] also discuss repairs based on updating individual val-
ues, in the context of a data cleaning application. The aim is to compute all
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possible repairs, in this case of a particular kind of databases storing census
data, rather that consistent query answering. The issues addressed consist of
detecting and solving conflicts inside the database, and conflicts between an-
swers to questionnaires and the intended, declarative semantics of the latter,
as opposed to conflicts between data and integrity constraints. This work is
a specific case of data cleaning [44].

It has been widely recognized that in database integration the integrated
data may be inconsistent with the integrity constraints. A typical (theoret-
ical) solution to the problem of database inconsistency in this context is
to augment the data model to represent disjunctive information. Different
disjuncts correspond to different ways of resolving an inconsistency. The fol-
lowing example explains the need for a solution of this kind.

Ezxample 22. Consider the functional dependency “every person has a single
salary” in Example 1. It is violated by the first two tuples. Each of those tuples
may be coming from a different data source that satisfies the dependency.
Thus, both tuples are replaced by their disjunction

Employee(J.Page, 5000) V Employee(J . Page, 8000)

in the integrated database. Now the functional dependency is no longer vio-
lated. a

To solve this kind of problem, Agarwal et al. [2] introduced the notion of
flexible relation, a non-1NF relation that contains tuples with sets of non-key
values (with such a set standing for one of its elements). This approach is
limited to primary key functional dependencies and was subsequently gener-
alized to other key functional dependencies by Dung [37]. In the same context,
Baral et al. [13,53] proposed to use disjunctive Datalog, and Lin and Mendel-
zon [79] tables with OR-objects [62,63]. Agarwal et al. [2] introduced flexible
relational algebra to query flexible relations, and Dung [37] introduced flex-
ible relational calculus (a proper subset of the calculus can be translated to
flexible relational algebra). The remaining papers did not discuss query lan-
guage issues, relying on the existing approaches to query disjunctive Datalog
or tables with OR-objects. There are several important differences between
the above approaches and ours. First, they rely on the construction of a sin-
gle (disjunctive) instance and the deletion of conflicting tuples. The integrity
constraints are used solely for conflict resolution. However, all the conflicts
need to be resolved and thus the above approaches are non-local. In our ap-
proach, the underlying databases are incorporated into the integrated one in
toto, without any changes. There is no need for introducing disjunctive in-
formation. The integrity constraints are used only during querying. Second,
the above approaches do not generalize to arbitrary functional dependencies
and other kinds of integrity constraints. Imielinski et al. [63] provide a com-
prehensive characterization of the computational complexity of evaluating
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conjunctive queries in databases with OR-objects. Those results carry over
into our framework only in very limited cases, as discussed in [7,28].

Motro [83] addressed the issue of integrating data from possibly mutually
inconsistent sources in a fashion different from the above and closer to our
approach. He proposed, among others, the notion of sound query answers
— the answers present in the query result in every source. For functional
dependencies and single-literal queries, every sound answer (in Motro’s sense)
is a consistent answer (in our sense). However, the converse is not true, since
a tuple that appears only in a single source will not be a sound answer,
while it is a consistent answer if it does not conflict with any other tuple.
Also, for general denial constraints, there may be sound answers that are not
consistent. The computational mechanism proposed in [83] consists of simply
taking the intersection of the query answers in individual sources and thus it
is local. No complexity analysis is provided.

Gertz [49,50] described techniques based on model-based diagnosis for
detecting causes of inconsistencies in databases and computing the corre-
sponding repairs. However, he didn’t address the issue of query answering in
the presence of an inconsistency.

Cholvy [27] introduced a deductive approach based on modal logic that
allows limiting the impact of inconsistent information that is related to a
query. The logic tells apart sure and doubtful information. From the original
inconsistent deductive database that includes integrity constraints, a new
database consisting of modal formulas is constructed. There are modalities
S and D for the sure and doubtful formulas. Then, the idea is to derive
the sure answers from the deductive system, so query processing consists of
constructing a proof in an appropriate modal logic. Integrity constraints are
considered at the same level of reliability than data, and in consequence, they
could be considered “doubtful”. No complexity analysis is provided.

7.4 Logic programming

Greco et al. [56,58] independently developed a logic-programming-based ap-
proach to inconsistency handling in databases, alternative to those presented
in sections 4.1 and 4.2. In that approach, disjunctive logic programs with
stable model semantics are used to specify the sets of changes that lead to
database repairs in the sense of [3]. The authors present a general solution
based on a compact schema for generating repair programs for universal in-
tegrity constraints. The application of such a schema leads to rules whose
heads involve essentially all possible disjunctions of database literals that oc-
cur together in a constraint. Thus a single constraint can produce exponen-
tially many clauses. The approach of [4,6] can be generalized to non-binary
constraints along the same lines. (In contrast to [4,6,56,58], the approach of
[15] does not lead to an exponential blowup.) The approach of [56] is con-
centrated mainly on producing the sets of changes, rather than the repaired



Inconsistent Databases 33

databases explicitly. In particular, there are no persistence rules in the gener-
ated program. In consequence, the program cannot be directly used to obtain
consistent query answers. An additional contribution of [56] is the notion of
repair constraints that specify preferences for certain kinds of repairs (e.g.,
deletion over insertion).

Another approach to database repairs based on logic programming se-
mantics consists of revision programs proposed by Marek and Truszczynski
[82]. The rules in those programs explicitly declare how to enforce the satis-
faction of an integrity constraint, rather than explicitly stating the integrity
constraints, e.g.

in(a) «— in(a1),...,in(ax), out(by),. .., out(by,)

has the intended procedural meaning of inserting the database atom a when-
ever ai,...,ay but not by,...,b, are in the database. Also a declarative,
stable model semantics is given to revision programs (thus providing also
a computational mechanism). Preferences for certain kinds of repair actions
can be captured by including the corresponding rules in the revision program
and omitting the rules that could lead to other forms of repairs. No notion
analogous to consistent query answers is proposed.

There are several proposals for language constructs specifying nondeter-
ministic queries that are related to our approach (witness [1], choice [51,52,57]).]]
Essentially, the idea is to construct a maximal subset of a given relation that
satisfies a given set of functional dependencies. Since there is usually more
than one such subset, the approach yields nondeterministic queries in a natu-
ral way. Clearly, maximal consistent subsets (choice models [51]) correspond
to repairs of Definition 2. Stratified Datalog with choice [51] combines enforc-
ing functional dependencies with inference using stratified Datalog programs.
Answering queries in all choice models (VG-queries [57]) corresponds to our
notion of computation of consistent query answers for first-order queries (Def-
inition 4). However, in [57] the former problem is shown to be co-NP-complete
and no tractable cases are identified. One of the sources of complexity in this
case is the presence of intensional relations defined by Datalog rules. Such
relations are absent from our approach. Moreover, the procedure proposed
in [57] runs in exponential time if there are exponentially many repairs, as
in Example 8. Also, only conjunctions of literals are considered as queries in
[57]. Arbitrary first-order or aggregation queries are not studied. Neither is
the approach generalized beyond functional dependencies.

Blair and Subrahmanian [21] introduced paraconsistent logic program-
ming. Paraconsistent logic programs have non-classical semantics, inspired
by paraconsistent first-order semantics. Kifer and Subrahmanian [68] dis-
cussed annotated logic programs with lattice-based, non-classical semantics.
Atoms in clauses have annotations, as in [67], but now they may also contain
variables and functions, providing a stronger representation formalism. The
implementation of annotated logic programs and query answering mecha-
nisms are discussed in [71]. Subrahmanian [92] further generalized annotated
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programs, in order to use them for amalgamating databases by resolving po-
tential conflicts between integrated data. For this purpose the product of the
lattices underlying each database is constructed as the semantic basis for
the integrated database. Conflict resolutions and preferences are captured
by means of function-based annotations. Other approaches to paraconsistent
logic programming are discussed in [33]. These works do not define notions
analogous to repairs and consistent query answers.

8 Open Problems and Ongoing Work

8.1 Flexible repairs

The existing notions of consistent answer as presented in [3-5,56,58,72] are
based on the notion of database repair from [3]. Database repairs of an in-
consistent database instance are new instances that satisfy the integrity con-
straints, but differ from the original instance by a minimal set of whole data-
base tuples, where minimality is understood under set inclusion. In Section
2 we mentioned some alternative notions of repair. In particular, in some
situations it may be more natural to consider more flexible repairs that allow
modifications of individual tuple components [95].

Other alternatives, independently on how repairs are defined, should con-
sider more flexibility wrt the class of all repairs. For example, considering an
answer as consistent if it is true in the majority of the database repairs, or
true in some preferred repairs, under some predefined notion of preference.
Majority-based approaches to consistency have been studied in [79] and [81]
in the context of data integration. The whole issue of preferences for cer-
tain changes and repairs remains still to be investigated. Some work is this
direction is presented in [56].

8.2 Data integration

Assume we have a collection of (materialized) data sources Si,...,S,, and a
global, virtual database G, that integrates data from Sy,...,S,. According
to the local-as-view approach [75,83,93], we can look at the data sources, S;,
as views of the global schema G. Now, given a query @ to G, one can generate
a query plan that extracts the information from the sources [54,75,77,76]. In
the global-as-view approach [73], the global database is defined as a view over
the data sources.

Sometimes one assumes that certain integrity constraints hold in the
global system, and those integrity constraints are used in the generation of the
query plan; actually, there are situations where without integrity constraints
no query plan can be generated [38,55,59]. The problem is that we cannot
be sure that such global integrity constraints hold. Even in the presence of
consistent data sources, a global system that integrates them may become
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inconsistent. The global integrity constraints are not maintained and could
easily be violated. In consequence, data integration is a natural scenario to
apply the methodologies presented before. What we have to do is to retrieve
consistent information from the global system.

Several new interesting issues appear, among them: (a) What is a con-
sistent answer in this context? (b) If we are going to base this notion on
a notion of repair, what is a repair? Notice that we do not have global in-
stances to repair. (¢) How can the consistent answers be retrieved from the
global systems? What kind of query plans do we need? These and other is-
sues are addressed in [18] for the local-as-view approach and in [72] for the
global-as-view approach.

8.3 Other problems

An important achievement of this line of research would be to integrate the
mechanisms for the retrieval of consistent query answers with a full-fledged
DBMS. In such a system it should be possible to specify in SQL soft integrity
constraints (constraints that are not explicitly maintained) and pose the usual
SQL queries. The consistent answers to those queries would be obtained by an
enhanced SQL engine. Note that different users, having different perceptions,
could specify different soft constraints.

So far we have developed our notions of consistent answer and repair in
the context of relational databases. Nevertheless, it would be interesting to
extend these notions, and the corresponding computational mechanisms, to
other forms of databases, like semi-structured, deductive, spatio/temporal
etc.
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