
Virtual Data Integration

Leopoldo Bertossi

Carleton University
School of Computer Science

Ottawa, Canada

www.scs.carleton.ca/∼bertossi

bertossi@scs.carleton.ca



Chapter 1: Introduction and Issues



3

Data in Different Forms

There is a large and increasing number of data sources

People and companies need to integrate data and the systems
that handle that data

Data in DBMSs: relational, OO, XML, ...

Legacy data in different formats and systems

Text files repositories

Spread sheets



4

Data on the Web

• Non- and semi-structured data in the WWW: Plain
text files, HTML text files, native XML

• Organizational databases

• Libraries, catalogues, etc.

• Data in research repositories: genome databases, sci-
entific databases, environmental databases, etc.

• Web services

• Semantic Web

• Knowledge-Based Systems

• Ontologies: Structurally and semantically reach do-
main descriptions with associated data



5

Database systems have to inter-operate, cooperate, and coordi-
nate with each other

Data has to be shared, exchanged, integrated, ...

In particular, it has to be reconciliated

Syntactically: compatible formats and data types

Semantically: compatible meanings

Data has to be queried

What if the data is spread out in different sources?



6

Some Forms of Data Integration

There are different approaches and paradigms for data integra-
tion, some of them are

Materialized: physical, integrated repository is created

Data Warehouses: physical repositories of selected data ex-
tracted from a collection of DBs and other information
sources

Mediated: data stay at the sources, a virtual integration
system is created ⇐=

Federated and cooperative: DBMSs are coordinated to col-
laborate



7

Exchange: Data is exported from one system to another

Peer-to-Peer data exchange: Many peers exchange data
without a central control mechanism

Data is passed from peer to peer upon request, as query
answers



8

Mediator-Based Data Integration

DB2

DB3DB1

DB4

?

How can users confront such a large and increasing number of
information sources?



9

Interacting with each of the sources by means of queries?

Considering all available sources?

Selecting only those to be queried?

Querying the relevant sources on an individual basis?

Handcraft the combination of results from different sources?

A long, tedious, complex and error prone process ...



10

Independently of other “intrinsic” issues like:

Incomplete data

Redundant data

Inconsistent data

Diverse data formats

Different forms of external data presentation

Different and possibly limited query languages (if any)

Common when interacting with the WWW: keyword search,
fixed query patterns and templates, ...

Restrictions on access to data



11

One way to go:

Use a mediator-based information integration system

1

3 3 3
2

2 2

4

m ediator

data sources



12

A mediator is a software system that offers a common query
interface to a set of heterogeneous information sources

We have:

Collection of data sources that are independent and au-
tonomous

A virtual “database” is created which is accessed via the
mediator

A mediator that creates the illusion on users of being in-
teracting with a real database

Queries are posed and answered via the mediator



13

More precisely, the mediator:

Accepts the participation of different data sources

Contains information about the contents of the data sources

Collects data from sources upon request; at query time

Logically integrates the different data sources by means of
a unifying, global or mediated schema

Receives queries from users that are expressed in the lan-
guage of the global schema

In order to answer global queries, it sends appropriate queries
to the sources

Combines the answers received from the sources to build
up the final answer to the user



14

Main Issues and Features Around VDISs

Autonomy:

Update operations on data sources via the mediator are
not allowed

Individual data source are updated in an independent and
autonomous manner

Sources do not necessarily cooperate with each other

Data sources are mutually independent and may participate
in different mediated systems at the same time



15

Data location and flexibility:

Data is kept in the local, individual sources, and extracted
at the mediator’s request

System allows sources to get in and out

Set and number of participating sources should be flexible
and open

Mediator has to know what kind of data is offered by the
sources and how they relate to the unifying global schema

A problem of describing data and specifying mappings be-
tween data schemas

Description formalism should be expressive, computation-
ally easy to use, and easy to maintain



16

Data presentation:

The interaction with the system is realized through queries
(and answers to them)

Data sources have their own schema, the virtual database
has its own data presentation schema

Database schemas are a special kind of metadata, i.e. data
about data

In this case, schemas say how the data is logically struc-
tured

Establishing the correspondence between the schemas of
the sources and the global schema is a form and instance
of metadata management

Metadata management appears in different forms in all the
subjects around data integration and related subjects



17

Problems with data:

Global system is responsible for solving/addressing prob-
lems with data, like:

Redundancy: to avoid unnecessary computations

Complementarity: data of the same kind may be spread
through different sources and has to be detected and com-
bined

Consistency: two sources, independently, may be consis-
tent, but taken together, possibly not

E.g. Same ID card number may be assigned to different
people in different sources



18

Existing VDISs offer almost no support for consistency han-
dling

Many interesting research issues here ...

Even commercial DBMSs for stand alone databases (no
integration) offer limited general purpose support in this
direction

Consistency maintenance has to be achieved at the applica-
tion level: rejection or compensation of updates via triggers
or application programs



Chapter 2: Components of a Virtual Data
Integration System



20

General Architecture

DB3DB1 DB2 DBn

Wrapper Wrapper Wrapper Wrapper

Global Schema Source Descriptions

Plan Generator

Execution Engine

User Interface
Answers

General Architecture of an Integration System

Main components of a mediator-based VDIS



21

Global or Mediated Schema:

Schema used to present and export the data from the VDIS

For example, if it is a relational schema, then it is a set of
names for relations (tables), their attributes, etc.

Application dependent

Like in a normal, usual relational DB, from the user point
of view

Data is not stored in “tables” of the global schema, but in
the sources

The DB “instance” corresponding to the global schema is
virtual



22

User poses queries in terms of the relations in the global
schema

Relationship between the global schema (or DB) and the
data sources (and their local schemas) is specified at the
mediator level



23

Example: Global schema for a DB “containing” information
about scientific publications:

Conference(Paper,Conference)
Year(Paper,Year)
Place(Conference,Year,Location)

Mediator

Global Schema

Sources

Query

Conference(Paper ,Conference), Year(Paper ,Year),
Place(Conference,Year ,Location)



24

User wants to know where conference PODS’89 was held

Query to global system: a simple selection

SELECT Location
FROM Place
WHERE conference = ‘pods’ AND year = ‘1989’;

Or: ΠL(σ
C=pods,Y =1989

(Place(C, Y, L)))

Or using a rule based query language, like Datalog:

Q : Ans(L)← Place(pods , 1989 , L)

Predicate Ans contains the answers, that are obtained by com-
puting the RHS (the body) of the rule



25

But data is not in table Place

A query plan has to be generated to:

identify relevant data sources

identify relevant data in them

determine (sub- or local) queries to be sent to the sources

combine the answer sets obtained from the sources into
one final answer set



26

DB2 DB3DB1 DB5DB4

Mediator

SELECT  Location
FROM      Place
WHERE   Conference =  'pods'
                  AND  Year=  '1989'

User

?????

Global relations:
Place, etc.

Local relations



27

Wrapper:

Module that is responsible for wrapping a data source, so
that it can interact with the rest of the VDIS

To present/export the data in the source as needed by the
mediator

It presents the data source as a convenient database, with
the right schema, structure, and data

This presentation schema may be different from the real,
internal one (if any)

Data provided by the wrapper my be different from the real
one in the local source

Possibly several wrappers for a data source



28

Wrapper may have to perform some preliminary transfor-
mation, cleaning, etc., before exporting the data to the
VDIS

Provides data as requested by the execution engine

We will not say much about wrappers

We will conceptualize each data source as an appropriate (rela-
tional) database, with the right schema and data

The wrapper will be implicit and taken for granted



29

Description of the Sources:

Mediator needs to know what is available in the sources
and how that data relates to the global schema

How this data is described will heavily determine how to
compute query plans

The sources are described by means of a set of logical
formulas

Like the formulas used to express queries and define views
in terms of base tables in a relational DB

We use logical formulas, usually incarnated as SQL queries
or SQL view definitions, or Datalog



30

Those formulas relate the global (or mediated) schema with
the local schemas

They define the mappings between the global schema and
the local schemas

How is this relationship described?

Main classical approaches:

Global-as-View (GAV): Relations in the global schema are
described as views over the tables in the local schemas

Local-as-View (LAV): Relations in the local schemas (at
the source level) are described as views over the global
schema



31

S

P Q
R

T

mediator

GAV LAV

LAV: Mediated schema may contain details than are not in a
source

GAV: Sources may contain more (and unnecessary) details wrt
the mediated schema



32

Also common, more recently:

Global-and-Local-as-View (GLAV): A correspondence be-
tween views on the global schema and views over the local
schema are established and described

Under certain assumptions on the sources, GAV and LAV
can be obtained as special cases

Gives more expressive power, more natural source descrip-
tions, and more natural mediated schemas

M. Friedman, A. Levy, T. Millstein. Navigational Plans for Data Integration.

Proc. AAAI’99.

The mappings (arrows in the pictures) require a language and a
semantics ... Coming ...



33

S

P Q
R

Tmediator

GLAV

VsView on 
sources

View on 
global schemaVg



34

Plan Generator:

It gets a user query in terms of global relations

It uses the source descriptions and rewrites the query as a
query plan

Which involves a set of queries expressed in terms of local
relations

This is the most complex part

Rewriting depends on mappings (LAV, GAV, or GLAV)

Query plan includes a specification as to how to combine
the results from the local sources



35

Execution Engine:

Query plan is just that, a plan; is has to be executed

Execution engine gets the query plan and distributes the
sub-queries to the relevant sources (to their wrappers)

Then gets the answers from the local sources and composes
the answer for the user

At this point the composer should solve inconsistencies,
etc.

Unless the plan generator is able to anticipate potential
inconsistencies and “solve them in advance”, when the plan
is being generated ... we’ll see ...



36

Description of Data Sources

Given as logical formulas in terms of relations in the global
schema and the relations in the data sources (or their wrap-
pers)

Since under any of the approaches mentioned above (GAV, LAV,
GLAV) we are defining views, we will use a common language to
define views in relational databases: Datalog formulas for view
definitions



37

Example: A relational database with base relations

Employee(Id ,Name,Position), Salary(Id ,Amount)

The definition of a view that gives the employee names and
salaries

NameSal(x, y) ← Employee(u, x, v), Salary(u, y)

This Datalog rule says that, in order to compute the tuples in
the relation on the LHS (the head), we have to go to the RHS
(the body) and compute whatever is specified there

The values of variables in the body that do not appear in the
head are projected out after computing a join via Id (variable
u) of the two base relations

View is defined as a conjunctive query over the base relations



38

Beware: The semantics of Datalog rules does not follow classic
predicate logic semantics

The tuples in the (usually virtual) extension of the view are only
those that can be obtained by propagating body to head

Given an instance D for the base schema, we obtain a possibly
virtual extension NameSal [D] for the view

Employee

Salary

D

NameSal

NameSal[D]

We will keep using the Datalog language for defining views, but
being careful about their semantics in the context of virtual data
integration



39

An Example of GAV

Relations in global schema are described as views of the relations
in the (union of the) local schemas

Conceptually very natural: Usually views are virtual relations de-
fined in terms of material relations (tables)

Since global relations are virtual and local sources are material,
it is conceptually as usual ...



40

Example: We have data sources with different kinds of data
about movies

We integrate those data sources into a mediated system

New sources may be available later, some may disappear, ...

As modelers of the integration system, we decide what common
data interface or schema we want to offer to the outside world

Local sources:

DB1(Title,Dir ,Year)

DB2(Title,Dir ,Year)

DB3(Title,Review)

The first two are complementary, the third of a different, but
related kind



41

A global relation “containing” movies and their years:

MovieYear(Title,Year) ← DB1(Title,Dir ,Year)

MovieYear(Title,Year) ← DB2(Title,Dir ,Year)

A disjunctive view (defined as a disjunction of conjunctive queries)

Defined by two Datalog rules

MovieYear defined as the union of two projections, of DB1 and
DB2 on attributes Title,Year , i.e.

MovieYear := ΠMovie,Year(DB1) ∪ ΠMovie,Year(DB2 )



42

Another global relation containing movies, their directors and
reviews:

MovieRev(Title,Dir ,Review)←DB1(Title,Dir ,Year),DB3(Title,Review)

A view defined by, first, the join of DB1 and DB3 over attribute
Title, and then a projection on Title,Dir ,Review

SELECT DB1.Title, Dir, Review
FROM DB1, DB2
WHERE DB1.Title = DB2.Title;

In relational algebra:

MovieRev(Title,Dir ,Review) := ΠTitle,Dir,Review (DB1 �
Title

DB2)



43

MovieRev(Title,Dir ,Review)←DB1(Title,Dir ,Year),DB3(Title,Review)

defines a conjunctive query, i.e. it is expressed in terms of

conjunctions (or joins)

projections

An important, useful, common, and well-studied class of queries

Using Datalog for view/query definitions makes use of recursion
and syntactic processing of query/view definitions easier

And plan generation will rely on syntactic transformation of view
definitions and queries ...



44

How to pose queries to the integration system?

In a language based on the mediated, global schema

Query: Movies shown in year 2001, with their reviews?

Ans(Title,Review)← MovieYear(Title, 2001),
MovieRev(Title,Dir ,Review)

Query is expressed in terms of the global schema

There is no data in the global “DB”

The data has to be obtained from the sources



45

What are the intended, correct, expected answers to the query?

How can they be computed?

The first question should be answered by providing the semantics
of a virtual data integration system under GAV

It is the semantics that determines the correct answers

This is coming

But, how could we proceed to obtain answers following our first
natural impulse?



46

Ans(Title,Review)←MovieYear(Title, 2001),

MovieRev(Title,Dir ,Review)

The query can be rewritten in terms of the source relations

This is simple under GAV: rule unfolding

“Unfold” each global relation into its definition in terms of the
local relations

Ans ′(Title,Review)←DB1(Title,Dir , 2001),

DB1(Title,Dir , 2001),DB3(Title,Review)

Ans ′(Title,Review)←DB2(Title,Dir , 2001),

DB1(Title,Dir , 2001),DB3(Title,Review)

These new queries do get answers directly from the sources
Final answer is the union of two answer sets, one for each rule



47

Under GAV it seems to be easy to obtain (correct?) answers to
global queries

On the other side, if new sources join in the system or older leave
it, definitions of global relations as views have to be rewritten

Not very flexible ...



48

Notice: There is a redundant condition (subgoal) in the RHS of
the first rule; and the second rule is completely redundant

The plan generator (or execution engine) should be able to
notice this, optimizing the query, before performing redundant
computations

The second (sub)query is contained in the first one, i.e. for
every database instance, the answer set for the second query is
a subset of the answer set for the first one

Query containment is a key notion in databases

Tests for QC are used in different areas, e.g. query optimization,
query answering using views



49

An Example of LAV

Each table in each local data source is described as a view in
terms of global relations

Somehow unnatural:

From the conceptual point of view

From perspective of usual databases practice

Here, views contain data, but “base tables”don’t

But this approach has some advantages



50

It also makes sense:

A designer of a virtual, mediated system defines its own
schema

The way data will be offered to users

Invites potential contributors of data to participate

May not know who are or will be potential participants

Or how their data is logically structured

The latter have to describe their local relations in terms of
the global relations (that are fixed)

And pass the descriptions to the mediator

Independently from other sources or contributors!



51

Example: Global schema offered by mediated system G:

Movie(Title,Year ,Director ,Genre),AmerDir(Director),
Review(Title,Review)

Sources S1, S2 are defined as views by means of conjunctive
queries with built-ins:

S1 : V1(Title, Year ,Director)←
Movie(Title,Year ,Director ,Genre),

AmerDir(Director),Genre = comedy ,

Year ≥ 1960.

S1: Has a relation V1 containing comedies, filmed after 1960,
with American directors and their years



52

S2 : V2(Title, Review)←
Movie(Title,Year ,Director ,Genre),

Review(Title,Review),Year ≥ 1990.

S2: Has a relation V2 containing movies filmed after 1990 with
their reviews, but no directors



53

S2

R1(title,year,director)

R2(title,review)
“DB”m

at
er

ia
l

global
virtual

Movie(title,year,director,genre)
AmerDir(director)
Review(title,review)

global or mediated
schema

American comedies
after 1960

movies w/reviews
after 1990

S1



54

Definition of each source does not depend on other sources!

Sources can easily leave the system or join in

Other sources’ definitions are not affected

From the perspective of S2, there could be other sources
contributing with information about comedies after 1990
with their reviews

In this sense, information in S2 could be “incomplete” wrt
what G “contains” (or might contain)

So, S2 could containing only a part of the information of
the same kind in the global system

This is the most common scenario: sources are incomplete



55

Query to G: Comedies with their reviews produced since 1950?

Ans(Title,Review)← Movie(Title,Year ,Director , comedy),

Review(Title,Review),Year ≥ 1950.

Query expressed in terms of mediated schema, as expected

Information is in the sources, now defined as views

Not possible to obtain answers by a simple, obvious or direct
computation of the RHS of the query

No simple rule unfolding for the relations in the body: no defi-
nitions for them as in GAV



56

Plan generation to extract information from the sources is more
complex than with GAV

A plan is a rewriting of the query as a set of queries to the sources
and a prescription of how to combine their answers (which is
needed here)

This is a query plan for our query: (we’ll come back to this ...)

Ans ′(Title,Review)← V1(Title,Year ,Director), V2(Title,Review)

Query is rewritten in terms of the views; and can be computed:

1. Extract values for Title from V1

2. Extract the tuples from V2

3. At the mediator level, compute the join via Title



57

Due to the limited contents of the sources, we obtain comedies
by American directors with their reviews filmed after 1990

This is the best or most we can get from the sources

The plan is maximally contained in the original global query

Something that can be made precise and established after defin-
ing the semantics of the system



58

Data Integration and Consistency

In the virtual approach to data integration, one usually assumes
that certain ICs hold at the global level

However, there is no global IC maintenance mechanism

So, no guarantee that global ICs on the global schema hold

Actually, under the LAV approach they are sometimes used to
generate a query plan to answer a global query

There are situations where without assuming and using those
global ICs no query plans can be generated



59

Example: Global schema

Conferences(Paper ,Conference)

Years(Paper ,Year)

Locations(Conference,Year ,Location)

Global functional dependencies (FDs):

Conferences: Paper → Conference

Years: Paper → Year

Locations: Conference,Year → Location



60

Data sources as views of the global DB, i.e. LAV:

S1(P, C, Y ) ←− Conferences(P, C),Years(P, Y )

S2(P, L) ←− Conferences(P, C),Years(P, Y ),Locations(C, Y, L)

S1 contains papers (titles) with their conferences (names) and
years

S2 contains the papers and their locations (of presentation)

A global query about the location of PODS99

Ans(L)← Locations(pods , 1999, L)

Answer cannot be obtained from a single data source, they need
to be combined



61

A query plan to answer it:

Ans ′(L)← S1(P, pods , 1999), S2(P,L).

It prescribes:

First use source S1 to find some paper presented at PODS99

Next, use source S2 to find the location of the conference
where the paper was presented

Plan is correct: every paper is presented at one conference and
in one year only

Without the global FDs, there would be no way to answer this
query using the given sources

But how can we be sure that such global ICs hold?



62
They are not maintained or checked at the global level and could
be easily violated

Even when sources satisfy the natural local ICs related to the
global FDs:

S1 Paper Conference Year

querying inconsistent databases pods 1999
workflow specifications sigmod 1998

... ... ...

This one looks O.K. (wrt Paper → Conference,Year)

S2 Paper Location

querying inconsistent databases philadelphia
querying inconsistent databases schloss dagstuhl

... ...

This one too, given that papers are presented at conferences,
workshops, seminars, ... (no local IC)



63

Each local source seems to be consistent, but not necessarily
the global system

The strategy captured by the plan does not determine a unique
location for a paper presented at PODS99

We cannot be more precise at this stage about consistency issues
of virtual data integration systems because we haven’t present-
ed the semantics of those systems

Since we cannot guarantee the consistency of the virtual system
...



64

An alternative approach: Consistent Query Answering

Do not worry too much about the consistency of the data
“contained” in the integration system (or stand alone DB)

Better deal with the problem at query time

When queries are posed to the integrated system, retrieve
only those answers from the global database that are “con-
sistent with” the global ICs

What is a consistent answer to a query?

The notion of consistency or ICs satisfaction is a holistic
notion, the whole DB satisfies the ICs or not

However, most likely most of the data in DB is still “con-
sistent”



65

When DB is queried, we want only the “consistent an-
swers”, a local notion ...

We need a precise definition of what is a consistent answer
to a query in an inconsistent DB

We need to develop mechanisms for computing consistent
answers, hopefully querying the only available, possibly in-
consistent DB



66

Example: (informal and intuitive) Data sources

CUstudents Number Name OUstudents Number Name

101 john 103 claire
102 mary 101 peter

Both sources satisfy the local FD: Number → Name

Global relation: (defined using GAV)

Students(x, y)← CUstudents(x, y)
Students(x, y)← OUstudents(x , y)

The global data does not seem to satisfy the same FD, but now
considered as a global IC: Students : Number → Name

Consistency of global system cannot be restored from the me-
diator



67

Alternative: consider the global FD when queries are answered

Obtain only the consistent answers

Which is the consistent data in an inconsistent database, in
particular, query answers?

The data that is invariant under all “minimal ways” of restoring
consistency

How to compute them? Different techniques

In several cases (of queries and ICs): FO rewriting of the query

Compiling ICs into the query, to enforce consistency



68
Make the answers respect the global ICs

Some global queries:

Ans(x, y)← Students(x, y)

Unrestricted answers (no FD considered):

{(101, john), (101, peter), (102,mary), (103, claire)}
Consistent answers (FD considered):

{(102,mary), (103, claire)}
Ans(x)← Students(x, y)

Unrestricted answers: {(101), (102), (103)}
Consistent answers: {(101), (102), (103)}

Bertossi, L. Consistent Query Answering in Databases. ACM Sigmod Record,
June 2006, 35(2):68-76.

Bertossi, L. and Bravo, L. Consistent Query Answers in Virtual Data Integration

Systems. In ‘Inconsistency Tolerance’, Springer LNCS 3300, 2004, pp. 42-83.



Chapter 3: Semantics of Virtual Data Integration
Systems



70

Idea behind the Semantics of a VDIS

When we pose queries to a VDIS, we expect to receive answers

What answers are we talking about?

What are the correct answers?

It depends on the semantics of the system

So, what are the semantically correct answers?

Notice that there is no global instance and then no answer to a
global query in the classical sense

We proceed by indicating what are the intended models of the
system

More precisely, what are the intended global instances of the
integration system



71

In general, we are not going to materialize those global instances

But the set of admissible, legal global instances will give a mean-
ing to the system

Global instances (of the global schema) must satisfy the con-
straints and parameters of the problem, e.g.

Source descriptions or mappings (e.g. LAV or GAV)

Contents of the data sources

Character of the sources, e.g. incomplete, complete, ... data

Global ICs ×

We will assume there are no global integrity constraints



72

Mediator

Sources

legal potential
global instances a “possible worlds”

semantics



73

Semantics under GAV

Example: Source relations:

S1(Title,Dir ,Year), S2(Title,Dir ,Year), S3(Title,Review)

We can see the collection of local relations as forming a single
source schema S
For each local relation S ∈ S, we have an extension s

And the extensions s as forming a single source instance I

Global relations:

MovieYear(Title,Year) ← S1(Title,Dir ,Year)
MovieYear(Title,Year) ← S2(Title,Dir ,Year)
MovieRev(Title,Dir ,Review)← S1(Title,Dir ,Year),

S3(Title,Review)



74
All this determines a global (mediated) integration system G,
whith a global schema G
The elements of G can be seen as views over S
And each global relation G ∈ G gets an extension G[I] by ap-
plying the view definition on instance I

This is as usual, propagating the data through Datalog rules in
view definitions from body to head

Assume the sources are incomplete (aka. open, sound)

We also assume that the view definitions are given by positive,
non-recursive Datalog rules, possibly with built-ins

A global instance D for schema G is legal if, for each global
relation G, it holds: G[D] ⊇ G[I]

G[D] is the extension of relation G in D



75

Legal(G) denotes the set of legal instances

Its elements are the “possible worlds”

What is true of the mediated system, at the global level, is what
is true of all the possible worlds, i.e. in all the legal (global)
instances

This applies in particular to query answers

If Q(x̄) is a global query

CertainG(Q) = {t̄ | t̄ is a usual answer to Q in D, for every legal
instance D}

=
⋂

D∈Legal(G)
Q[D]

The certain answers to the global query Q

These are the semantically correct answers



76

We have a model theoretic definition of correct answer?

How to compute them?

What is the connection (if any) with the intuitive method we
saw before (unfolding)?

It can be easily proved (using the semantics of Datalog pro-
grams) that the certain answers coincide with those obtained as
follows:



77

1. Take source instance I

2. Propagate its data through the view definitions

3. Obtain extensions g for each of the global relations G

4. The g’s form a global instance D̄, the so-called retrieved
database

The retrieved database is the global instance obtained by
propagating the data at the sources through the rules from
right to left

5. Pose Q to D̄ as usual

6. The obtained answers are exactly the certain answers

From this perspective of query answering, this particular
(and legal) global instance gives the semantics to the inte-
gration system A generic legal instance
...



78

It can also be proved that the unfolding method returns the
same answers

So, it provides correct query plans!

We obtain immediately that obtaining certain answers from a
mediated integration system can be done in polynomial time in
the size of the combined data sources:

1. Computing the retrieved database can be done in polyno-
mial time

2. Querying the retrieved database too



79
Example: (cont.) Given the material sources

S1 = {(aaa, peter, 1989), (abc, john, 1960), (cdde,mary, 1978)}
S2 = {(assd, steve, 1997), (shhhh, alice, 1920)}
S3 = {(shhhh, good), (abc, awful), (kkkk, excellent), (cdde,mediocre)}
The retrieved database is

MovieYear = {(aaa, 1989), (abc, 1960), (cdde, 1978), (assd, 1997),
(shhhh, 1920)}

MovieRev = {(abc, john, awful), (cdde,mary,mediocre)}
This an ordinary relational database

Given the global query

Q : Ans(Dir ,Year)← MovieRev(Title,Dir ,Review),
MovieYear(Title,Year)

The correct answers are: {(john, 1960 ), (mary , 1978 )}



80

Remark: The same semantics can be obtained in classical logical
terms

Each of the view definitions

G(x̄)← ϕ1
S(x̄′)

· · ·
G(x̄)← ϕk

S(x̄′) x̄ ⊆ x̄′

above, where G is a global relation and the formulas in the
bodies are over schema S can be seen as a mapping

G(x̄) 	→ ΦG
S (x̄)

where ΦS(x̄) is a conjunctive query (or disjunction thereof) over
the source schema

It turns out that



81

Legal(G) = {D | D is instance over G and,
for every G ∈ G :
D ∪ I |= ∀x̄(ΦG

S (x̄)→ G(x̄))}
We have classical logical consequence from the theory consisting
of (the logical reconstruction of) I plus D

Actually, “certain query answering” turns out to be logical con-
sequence from a theory in FO logic: t̄ is a certain answer to
query Q(x̄) iff

I ∪ {∀x̄(ΦG
S (x̄)→ G(x̄)) | G ∈ G} |= Q[t̄]

(More precisely, here we should have instead of I, Ray Reit-
er’s logical reconstruction of I as a logical theory; and also a
restriction to Herbrand models)



82

Semantics under LAV

A virtual data integration system G under LAV and open sources

V1(x̄1) ← ϕ1(x̄
′
1) v1

· · · · · · · · ·
Vn(x̄n) ← ϕn(x̄′

n) vn

Here, the Vis are the source relations, and each vi is an extension
(material data source) for relation (view) Vi, the given contents

The ϕi(x̄i) are conjunctions of global database atoms (and pos-
sibly built-ins), i.e. conjunctive view definitions; x̄i ⊆ x̄′

i

G determines a set of legal global instances Which ones?



83

Example: (views or sources on LHS, global relations on RHS)

DirYears(Dir ,Year) ← MovieRev(Title,Dir ,Review),

MovieYear(Title,Year)

Movies(Title,Dir) ← MovieRev(Title,Dir ,Review)

Given material extension for DirYears :

{(peter, 1989), (john, 1960), (mary, 1978),
(steve, 1997), (alice, 1920)}

Given material extension for Movies :

{(aaa, peter), (abc, john), (cdde,mary),
(assd, steve), (shhhh, alice)}



84

Let D be a concrete global instance

Its underlying domain U contains all the constants in the
sources and those appearing in the view definitions (and
possibly others)

Vi[D] is the contents of the view Vi when its definition

Vi(x̄i) ← ϕi(x̄i)

is applied to D (the computed view on D)

Example: (cont.) Consider the global instance D0 with

MovieYear = {(aaa, 1989), (abc, 1960), (cdde, 1978),

(assd, 1997), (shhhh, 1920)}
MovieRev = {(shhhh, alice, good), (abc, john, awful),

(cdde,mary,mediocre)}



85

The view definitions evaluated on D0 give:

DirYears [D0] = {(john, 1960), (mary, 1978), (alice, 1920)}
Movies [D0] = {(shhhh, alice), (abc, john), (cdde,mary)}

We can see that the computed views on D0 differ from the given
material contents of the views

Actually, the computed views are both strictly contained in the
original source extensions

We would expect for open sources, their material extensions to
be contained in the computed views, i.e. the other way around

The chosen global instance D0 is not one of the intended in-
stances of the integration system ...



86

Legal(G) := { global D | vi � Vi[D], i = 1, . . . , n}
This is the set of intended global instances

Example: (cont.) Global instance D0 is not legal, because

{(peter , 1989 ), (john, 1960 ), (mary , 1978 ), (steve, 1997 ),
(alice, 1920)} �⊆ DirYears [D0]

{(aaa, peter), (abc, john), (cdde,mary), (assd, steve),
(shhhh, alice)} �⊆ Movies [D0]

Legal instances give the semantics to the integration system

We may have several legal global instances

We can define, as before, the semantically correct answers from
the integration system to a global query Q



87

But now, we may not have something like a single generic, rep-
resentative global instance as in GAV with the retrieved DB

The certain answers to a global query are those that can be
obtained from every legal global instance

CertainG(Q) := {t̄ | t̄ is an answer to Q in D for all D ∈ Legal(G)}



88
Example: System G1 under LAV with global relation R(x, y) and
open sources

V1(x, y)← R(x, y) with v1 = {(a, b), (c, d)}
V2(x, y)← R(x, y) with v2 = {(a, c), (d, e)}
Legal instance: D1 = {R(a, b), R(c, d), R(a, c), R(d, e)}

v1 ⊆ V1[D1] = {(a, b), (c, d), (a, c), (d, e)}
v2 ⊆ V2[D1] = {(a, b), (c, d), (a, c), (d, e)}

All supersets of D1 are also legal global instances; no subset of
D1 is legal, e.g.

{R(a, b), R(c, d), R(a, c), R(d, e), R(c, e)} ∈ Legal(G1)

{R(a, b), R(c, d), R(a, c)} /∈ Legal(G1)



89

Consider now the global query

Q1 : Ans(x, y)← R(x, y)

By direct inspection of the legal instances we get

CertainG1(Q1) = {(a, b), (c, d), (a, c), (d, e)}
Notice (c, e) /∈ CertainG1(Q1)

Q2 : Ans(x)← R(x, y)

CertainG1(Q2) = {(a), (c), (d)}
We did not use any query plan to get them, only the semantics

Here, D1 does act as a generic legal instance



90

Example: Global system G2 with global relations P,Q, and
sources

V1(x, y) ← P (x, z), Q(z, y); v1 = {(a, b)}
V2(x, y) ← P (x, y); v2 = {(a, c)}

Legal(G2)?

From definition of V2 and the contents v2, in any legal
instance P is forced to contain (a, c)

From definition of V1 and the contents v1, a legal global
instance must contain at least a set of tuples of the form
{P (a, e), Q(e, b)}

The legal instances of G2 are all the supersets of instances of
the form {P (a, c), P (a, z), Q(z, b) | z ∈ U}



91{P (a, c), Q(c, b)} ∈ Legal(G2)

{P (a, c), P (a, e), Q(e, b)} ∈ Legal(G2)

{P (a, c), Q(c, b), P (e, e), Q(e, a), Q(d, d), Q(a, c)}
∈ Legal(G2)

{P (a, c), Q(e, b)} /∈ Legal(G2)

Here we have legal instances that are incomparable under set
inclusion!

Global query: Q1 : Ans(x, y)← P (x, y)

CertainG2(Q1) = {(a, c)}
Global query: Q2 : Ans(x)← Q(x, y)

CertainG2(Q2) = {}
Global query: Q3 : Ans(y)← Q(x, y)

CertainG2(Q3) = {(b)}



92

Global query: Q4 : Ans(x, y)← P (x, y), not Q(x, y)

Not a conjunctive query

In legal instances (under open sources) we can always add
new tuples, so not Q(x, y) can always be made false in
some legal global instance: CertainG2(Q4) = ∅
Notion of certain answer does not seem to be a sensible
notion for non-monotone queries

Conjunctive queries (and others) are monotone: the set of
answers may only grow if the database grows: for databases
D1, D2

D1 ⊆ D2 =⇒ Answers to Q in D1 ⊆ Answers to Q in D2

(i.e. Q[D1] ⊆ Q[D2])

General mechanisms for query planning available are for
classes of monotone queries



93

More on Openess, etc.

The definition of legal instance we gave captures the fact that
sources are open (aka. incomplete or sound) sources

There are also the notions (labels) of “closed” (complete) and
“closed and open” (clopen, exact)

The notion of legal instance under LAV can be easily adapted
to capture these other possible labels

Before, more intuition on these concepts



94

Example: A LAV integration system that integrates data sources
about teams participating in the soccer world cup 2002

Global relation Team(Country ,Group)

A first source of information contains the countries whose match-
es in the first round are shown on TV; defined by

ShownOnTV(x)← Team(x, y)

It contains only a subset of the expected entries for relation
Team:

ShownOnTV � ΠCountry(Team)

This source is open (or incomplete or sound)



95
A second source Qual contains all the countries participating in
the qualifying matches (before WC02), e.g. Germany, Canada,
...

Qual(x)← Team(x, y)

Canada did not participate in the World Cup, but did participate
in the qualifying matches, then

Qual �� ΠCountry(Team)

The source is not open, rather

Qual � ΠCountry(Team)

We say the source is closed (or complete)

A third source First contains the countries participating in the
first round: First(x)← Team(x, y)

Now First = ΠCountry(Team), and the source is open and
closed (or clopen or exact)



96

More generally, in an integration system, different sources can
have different labels

E.g. a LAV system G can be something like

V1(x̄1) ← ϕ1(x̄
′
1); v1 = {. . .}; open

V2(x̄2) ← ϕ2(x̄
′
2); v2 = {. . .}; open

V3(x̄3) ← ϕ3(x̄
′
3); v3 = {. . .}; closed

V4(x̄4) ← ϕ4(x̄
′
4); v4 = {. . .}; clopen

The notion of legal instance has to respect the labels:

Legal(G) := { global D | v1 ⊆ V1[D],

v2 ⊆ V2[D],

v3 ⊇ V3[D],

v4 = V4[D]}



97

It is easier to specify the conditions (assumptions) on the source
under LAV than under GAV, because the sources are directly
specified in the system

Reference:

G. Grahne, A. Mendelzon. Tableaux Techniques for Querying Information Sources

through Global Schemas, ICDT 99



98

Some Remarks on GLAV

Remember that in this case we have mappings between local
views and global views

For motivation, remember that so far the mappings have been
as follows (we express mappings in FOL, not Datalog, for uni-
formity):

1. GAV, open sources; G global relation

G(x̄) 	→ ΦG
S (x̄) (formula on local schema S)

Legal D: D ∪ I |= ∀x̄(ΦG
S (x̄)→ G(x̄))

Or ΦG
S [I] ⊆ G[D]



99
2. LAV, open sources; S local relation

S(x̄) 	→ ΦS
G(x̄) (formula on global schema G)

Legal D: D ∪ I |= ∀x̄(S(x̄)→ ΦS
G(x̄)

Or S[I] ⊆ ΦS
G [D]

Under GLAV, open sources:

view over local schema S 	→ view over global schema G
That is: ΦS(x̄) 	→ ΦG(x̄) (x̄ are the free variables)

Legal D: D ∪ I |= ∀x̄(ΦS(x̄)→ ΦG(x̄)) (i.e. ΦS [I] ⊆ ΦG[D])

In general, the formulas ΦS(x̄) and ΦG(x̄) are conjunctive; so
LAV is a special case

ΦS(x̄) could also be a the query predicate Ans(x̄) for a Datalog
program over the local schema S



100

Example: Source relations: DirYears(Dir ,Year),
Movies(Title,Dir)

Global relations: MovieRev(Title,Dir ,Review),
MovieYear(Title,Year)

Before (LAV):

DirYears(Dir ,Year) ← MovieRev(Title,Dir ,Review),MovieYear(Title,Year)

Movies(Title,Dir) ← MovieRev(Title,Dir ,Review)

Now, we could have a view over local schema:

Directors(Dir)←DirYears(Dir ,Year),Movies(Title,Dir)

And the mapping: (*)

Directors(Dir) 	→ ∃Title,Review MovieRev(Title,Dir ,Review)



101

Equivalently: (view over global schema at the RHS)

∃Year ,Title (DirYears(Dir ,Year) ∧Movies(Title,Dir)) 	→
∃Title,Review MovieRev(Title,Dir ,Review)

I.e. ΦS(Dir) 	→ ΦG(Dir)

We do not have to define every source attribute in (*)

This may me more natural

In the following, until further notice, open sources only ...

The question now is whether a query plan to answer a global
query is capable of retrieving all the certain answers

Now query plans can be assessed against a precise semantics



Chapter 4: Query Answering



103

Query Plans

We have seen that generation of query plans is simple under
GAV

Also that the naive algorithm for query answering is correct: it
obtains all and only certain answers to global queries

We will concentrate on the LAV approach with open sources

Given a global query Q posed in terms of the global schema, we
need to go to the sources to find the local data to return global
answers to the user

How?? We need a plan for evaluating Q

Query Q has to be “rewritten” in terms of the views, i.e. as a
set of queries expressed in terms of the relations in the sources



104

Some rewriting algorithms:

Bucket [Halevy et al.]

Inverse Rules [Duschka, Genesereth, Halevy]

MiniCon [Pottinger, Halevy]

Deductive [Grant, Minker]

...

They are designed to handle conjunctive global queries (and
minor extensions)

We will concentrate on the “Inverse Rules Algorithm” (IRA) due
to its conceptual interest, and to show some general issues



105

Inverse Rules Algorithm

Given: Set of rules describing the source relations as (non recur-
sive Datalog) views of the global schema

Input: A global query expressed in Datalog (may be recursive,
but no negation)

Output: A new Datalog program expressed in terms of the source
relations

Source relations described by conjunctive rules (queries):

S(x̄)← P1(x̄1), . . . , Pn(x̄n)

S a source relation; Pis global relations, no built-ins



106

Example: V1, V2: local relations

R1, R2, R3, R4, R5, R6, R7: global relations

Source descriptions V :

S1: V1(x, z)← R1(x, y), R2(y, z)

S2: V2(x, y)← R3(x, y)

IRA obtains from these descriptions, “inverse rules” that de-
scribe the global relations

Idea: V2 is incomplete, i.e. its contents is a subset of the
“contents” of the (legal) global relation R3

That is, V2 “�” R3, i.e. V2 “⇒” R3



107

More precisely, we invert the rule in the description of V2:

R3(x, y)← V2(x, y)

A rule describing R3!!

We could obtain other rules describing R3, e.g. if we had
a third source description V3(x, y)← R3(x, y), we would
get the inverse rule R3(x, y) ← V3(x, y); and we take the
union

Notice that both V2, V3 are incomplete, they have only part
of the data in R3



108

What about inverting the rule for V1:

R1(x, y), R2(y, z)← V1(x, z) ???

What kind of rule (head) is this? Maybe the conjunction ...

R1(x, y)← V1(x, z)

R2(y, z)← V1(x, z)

We lost the shared variable y (the join), the two occurrences of
y are independent now

Furthermore: what does y in the head mean??

y does not appear in the bodies, so no condition on y ...

Any value for y? Not the idea ...

Those rules are not safe



109

Better:

V1(x, z)← R1(x, y), R2(y, z) is logically equivalent to

V1(x, z)← ∃y (R1(x, y) ∧ R2(y, z))

Inverting the rule, we obtain:

∃y(R1(x, y) ∧ R2(y, z))← V1(x, z)

There is an implicit universal quantification on x, z

∀x∀z(∃y(R1(x, y) ∧ R2(y, z))← V1(x, z))

Each value for y possibly depends on the values for x, z, i.e. y
is a function of x, z



110

To keep this dependence, replace y by a “function symbol” f(x, z)

f is a so-called “Skolem” function

We may need more of them, to capture other dependencies be-
tween variables

One for each rule and existential variable (projection) appearing
in it

(R1(x, f(x, z)) ∧ R2(f(x, z), z))← V1(x, z)

and then
R1(x, f(x, z))← V1(x, z)

R2(f(x, z), z))← V1(x, z)



111

Finally, we have obtained the following inverse rules V−1:

R1(x, f(x, z)) ← V1(x, z)

R2(f(x, z), z) ← V1(x, z)

R3(x, y) ← V2(x, y)

The global relations are described as views of the local relations!

Notice: not exactly a Datalog program, it contains functions ...

In order to answer global queries we can append (always) the
(same) inverse rules to any Datalog global query

We can use the inverse rules to compute global queries ...



112

For example, the query Q

Ans(x, z) ← R1(x, y), R2(y, z), R4(x)

R4(x) ← R3(x, y)

R4(x) ← R7(x)

R7(x) ← R1(x, y), R6(x, y)

A Datalog query in terms of the “base” global relations R1, R2, R3

We have descriptions for those three global relations; the inverse
rules ...

The goal R6 cannot be computed, there is no description for it,
in particular, it does not appear in any source description, its
contents is empty



113

Then, R7 cannot be evaluated either (also empty contents);
delete that rule; we are left with

Ans(x, z) ← R1(x, y), R2(y, z), R4(x)

R4(x) ← R3(x, y)

R4(x) ← R7(x)

For the same reason, the second rule for R4 cannot be evalu-
ated; delete it

Ans(x, z) ← R1(x, y), R2(y, z), R4(x)

R4(x) ← R3(x, y)

We obtain a pruned query Q−



114

Then the plan Plan(Q) returned by the IRA is Q− ∪ V−1:

Ans(x, z) ← R1(x, y), R2(y, z), R4(x)

R4(x) ← R3(x, y)

R1(x, f(x, z)) ← V1(x, z)

R2(f(x, z), z) ← V1(x, z)

R3(x, y) ← V2(x, y)

A “Datalog” program with functions ...

This is “the best we have for answering the original query”

We will get answers to Q, and “the most” that could be com-
puted

These claims require a precise formulation and proof ...



115

This Datalog query can be evaluated, e.g. bottom-up, from con-
crete source contents, e.g. assume that the source relations are:

V1 = {(a, b), (a, a), (c, a), (b, a)}
V2 = {(a, c), (a, a), (c, d), (b, b)}

Ans(x, z) ← R1(x, y), R2(y, z), R4(x) (1)

R4(x) ← R3(x, y) (2)

R1(x, f1(x, z)) ← V1(x, z) (3)

R2(f1(x, z), z) ← V1(x, z) (4)

R3(x, y) ← V2(x, y) (5)

Using rules (5), (3), (4) we get

R3 = {(a, c), (a, a), (c, d), (b, b)}
R1 = {(a, f(a, b)), (a, f(a, a)), (c, f(c, a)), (b, f(b, a))}
R2 = {(f(a, b), b), (f(a, a), a), (f(c, a), a), (f(b, a), a)}



116

Now rule (2)

R4 = {(a), (c), (b)}
Finally, rule (1)

Πx,z(R1 � R2) = {(a, b), (a, a), (c, a), (b, a)}

We keep only those tuples in this relation such that the
first argument appears in R4; all of them in this case

Finally, Ans = {(a, b), (a, a), (c, a), (b, a)}



117

Remarks:

We process the functions symbolically

They did not appear in the final answer set

This may not be always the case

If tuples with function symbols appear in the final answer
set, we filter them out ...

It may be necessary to introduce more than one function
symbol

We may get several rules describing the same global rela-
tion, in this case, that relation is described by a disjunctive
query (view)

We illustrate all these issues with an example



118

Example: Source descriptions V
V1(x) ← R(x, y), G(y, z)

V2(x, y) ← R(z, x), U(x, y)

Inverse rules:

R(x, f1(x)) ← V1(x)

G(f1(x), f2(x)) ← V1(x)

R(f3(x, y), x) ← V2(x, y)

U(x, y) ← V2(x, y)

Source contents:

V1 = {(a), (d)}
V2 = {(a, c), (c, d), (b, a)}



119

Global query: Ans(x)← R(x, y)

R = {(a, f1(a)), (d, f1(d))} ∪
{(f3(a, c), a), (f3(c, d), c), (f3(b, a), b)}

Πx(R) = {(a), (d)} ∪ {(f3(a, c)), (f3(c, d)), (f3(b, a))}
Ans = {(a), (d)}
The definition of R by the two rules

R(x, f1(x)) ← V1(x)

R(f3(x, y), x) ← V2(x, y)

reflects the fact that each of V1, V2 contains only part of the
data of its kind, i.e. that the source relations are incomplete wrt
to the same kind of data in the system



120

Several questions:

Are the answers obtained with IRA any good?

In what sense?

Is there a better plan?

Or better mechanisms for generating plans?

Better in what sense?

What is the most information we can get from such a sys-
tem?

What is the “data contained in the system”, i.e. in the
global relations if they were to be materialized?

There must be some sort of data, otherwise how can we
be obtaining answers to global queries?



121

All these questions have to do with the semantics of a virtual
data integration system we introduced before

Some of them have been answered already, and for answering
the others we also have the basic semantic framework



122

Properties of the IRA

The query plan obtained may not be exactly a Datalog program,
due to the auxiliary function symbols

The same inverse rules can be used with any global query; we
compute them once

The query plan can be evaluated in a bottom-up manner and
always has a unique fix point

The query plan can be constructed in polynomial time in the
size of the original query and the source descriptions

The resulting plan can be evaluated in polynomial time in the
size of the underlying data sources (polynomial time in data
complexity)



123

The plan obtained is the best we can get under the circum-
stances, i.e. given the query, the sources, and their descriptions

More precisely, the query plan is maximally contained in the
original query Q

There is no (other) query plan that retrieves a proper superset
of certain answers to Q from the integration system

We’ll make this precise ...



124

Maximal Containment

Consider a query plan P (like the Datalog program above) for
answering the global query Q using the views in V
How can we compare the original query, that is expressed in
terms of global predicates, with the query plan, that contains
view predicates?

Let’s compare them in the language of the mediated schema

The expansion P exp of P is obtained from P by replacing the
view predicates in P by their definitions

(possibly using fresh variables for existential variables in the
views)

In this way we obtain a new program with global predicates only



125

Example: (continued) To answer query Q we had the plan

Ans(x, z) ← R1(x, y), R2(y, z), R4(x)

R4(x) ← R3(x, y)

R1(x, f(x, z)) ← V1(x, z)

R2(f(x, z), z) ← V1(x, z)

R3(x, y) ← V2(x, y)

The query Q did not contain the views V1, V2

We can eliminate the views using their descriptions

We obtain a plan in terms of the global relations



126

Ans ′(x, z) ← R1(x, y), R2(y, z), R4(x)

R4(x) ← R3(x, y)

R1(x, f1(x, z)) ← R1(x, y), R2(y, z)

R2(f1(x, z), z) ← R1(x, y), R2(y, z)

R3(x, y) ← R3(x, y)

This one is expressed in terms of the global relations R1, R2, R3

only (and views defined on them)

It can be compared with the original query Q



127

By definition, the query plan P using views is maximally con-
tained in a query Q if

1. P exp ⊆ Q

I.e. for every global database instance D, P exp [D] ⊆ Q[D]

2. for every query plan P ′ such that (P ′)exp ⊆ Q, it holds
P ′ ⊆ P

Here, P exp ⊆ Q (or P ′ ⊆ P ) is the usual and central notion of
query containment

That is, P exp ⊆ Q means that the extension of the query pred-
icate in P exp is included in the extension of the query predicate
in Q for every database instance over the global schema



128

We are using the classical and important notion of query con-
tainment

E.g. for the queries

Q1 : Ans(x, y)← R(x, y) and

Q2 : Ans(x, y)← R(x, y), S(x, y),

it holds Q2 ⊆ Q1

because for every possible contents for the relations R,S, the
answers to Q2 are contained among the answers to Q1



129
So, we want P exp to be maximally contained in Q

What about the functions introduced by the former?

Denote by P↓ the “pruned” plan P that computes the answer
set for P , but with all the tuples containing Skolem functions
deleted at the end

Theorem: For every global Datalog program Q and every set of
conjunctive source descriptions V , the query plan (Q−,V−1)↓ is
maximally contained in Q

Even more, as a consequence, under LAV with open sources,
conjunctive view definitions, and conjunctive queries, IRA re-
turns all and only the certain answers to conjunctive queries

I.e. under these conditions, IRA is a sound and complete mech-
anism for query answering



130
Complexity?

Under the same conditions as above, for conjunctive queries Q
without built-ins, the data complexity of deciding is a tuple is a
certain answer is polynomial

That is, for every fixed set of view definitions V and fixed Q(x̄),
the problem:

{ (I, t̄) | t̄ ∈ CertainG(Q)}
can be decided in polynomial time in the size of I

Here:

I is the collection of data source instances

G is the VDIS formed by V and I

How?

Use the IRA for computing the certain answers to Q and check



131

With slightly more expressive queries, e.g. conjunctive with built-
in �=, the problem becomes coNP -complete
(even with purely conjunctive view definitions)

Under GAV it is still polynomial: compute the retrieved database
and pose an ordinary query ...

Some references:

Serge Abiteboul, Oliver M. Duschka: Complexity of Answering Queries Using
Materialized Views. PODS 1998: 254-263

Oliver M. Duschka, Michael R. Genesereth, Alon Y. Levy: Recursive Query Plans
for Data Integration. J. Log. Program. 43(1): 49-73 (2000)

Maurizio Lenzerini: Data Integration: A Theoretical Perspective. PODS 2002:

233-246



132

The Need for Recursion

Given a conjunctive or Datalog query Q, IRA will produce a
query plan that is a Datalog program with functions

If Q is conjunctive or non-recursive Datalog, IRA produces a
non-recursive Datalog query plan

If Q is a recursive Datalog query, IRA produces a recursive Dat-
alog query plan

So, for conjunctive queries we do not need recursion?

In some cases yes; and we need to modify the plan if the query
plan is to be maximally contained in the original query

At least this is the case when there are some restrictions on the
query patterns or query bindings



133

For example, when the data sources may be accessed only with
particular patterns or bindings

Example: (of query bindings) We may have a table of employees

Emp(SecretCode,Name, Salary)

For privacy reasons, we are not allowed to pose queries of the
form

Ans(y, z)← Emp(x, y, z)

But a query like this could be allowed

Ans(z)← Emp(xi56rf , john, z)

I.e. the first two arguments of Emp must have bindings (or have
to be bound), and only the last one can be free



134

These restrictions can be expressed using binding patterns in
query atoms

For example, for table Gradesbf (Student ,Grade) (b indicates
that the variable has to be “bound”, f that the variable can be
“free”)

Meaning that

Not allowed to ask “give me all the students with their
grades”, i.e. Grades(x, y)?

Allowed to ask for grades of specific students, e.g. “give
me John’s grades”, i.e. Grades(john, y)?

Typically web pages can be queried with fixed patters, e.g. a
(key)word to be typed in a slot window



135

Our data sources could have pattern restrictions on queries that
can receive

Those restrictions have to be taken into account by the query
planner ...

Example: Three global relations

AAAIpapers(x) “contains” papers presented at the AAAI
conference

Cites(x, y) contains papers citing other papers; papers pre-
sented anywhere

AwardPaper(x) contains award winning papers (presented
anywhere)

Three open data sources



136

One containing papers presented at the AAAI conference,
no access restrictions

AaaiDB f (x)← AAAIpapers(x)

Another containing papers and their citations, but can be
accessed providing the title of the citing paper

CitationDB bf (x, y)← Cites(x, y)

Finally, one containing award winning papers, that can be
accessed to check specific papers

AwardDB b(x)← AwardPaper(x)

Global query: “Give me all award winning papers”, i.e.

Q : Ans(x)← AwardPaper(x)



137

AwardPaper cannot be used directly, because no data there

Going to AwardDB that allows only ground queries does not
help much ...

Need to connect with to AAAIpapers and also to Cites if we
want to find as many papers as possible

A query plan Q′:

Ans ′(x)← AaaiDB(x),AwardDB(x)

Ans ′(x)← AaaiDB(V ),CitationDB(V, x1), . . . ,CitationDB(xm, x),
AwardDB(x)

No plan that fixes the length m of the chain of citations will be
maximally contained in the original query



138

Instead, the following recursive Datalog query plan Q′′ will do
...

papers(x) ← AaaiDB(x)

papers(x) ← papers(y),CitationDB(y, x)

Ans(x) ← papers(x),AwardDB(x)

(Collect all possible papers and check if they are award winners)

Reference:

O. Duschka, M. Genesereth, A. Levy. Recursive Query Plans for Data Integration.

J. Logic Programming, 2000



Chapter 5: Related Subjects



140

Query Answering Using Views

In LAV, GAV, and GLAV, generation of query plans becomes
an instance of a more general and traditional problem: query
answering using views, in particular, query rewriting using views

Given is a collection of views (queries) V1, . . . , Vn

Whose contents (answers) have already been computed

New query Q arrives

Instead of computing its answers directly, try to use the
answers to (contents of) V1, . . . , Vn

Every query can be seen as a view, but usually they are not
defined as such in the DBMS, because they will not be of any
interest later on



141

query

query

query

query

query
X

Instead, views will be used along the session or across sessions

They are usually kept virtual, and are recomputed when needed
(if updates on base tables are executed and whole recomputation
of views is easy)



142

However, it may be useful to materialize the contents of views;
the same with answers to queries, so the view contents and
query answers are cached

We do this if computing those answers has been expensive and
the information obtained has been detected as potentially useful
by being related to answers to future queries

Query answering using view has obvious applications in VDI, but
also in query optimization (stand alone databases), dataware-
houes (that can be conceived as collections of materialized views),
etc.

When a new query arrives, one could try to take advantage of
those precomputed, cached results ... How?



143

An obvious problem consists in characterizing and determining
how much of the real answer we get by using the precomputed
views only? What is the maximum we can get?

Query containment is again a key notion/technique in this con-
text

References:

A. Levy, A. Mendelzon, D. Srivastava and Y. Sagiv. Answering queries using
views. PODS 95

A. Halevy. Answering Queries using Views: a Survey. VLDB Journal, 2006



144

Stay in touch ...

www.scs.carleton.ca/∼bertossi

bertossi@scs.carleton.ca



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /All
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveEPSInfo true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile ()
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org)
  /PDFXTrapped /Unknown

  /Description <<
    /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200061006d00e9006c0069006f007200e90065002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
    /ENU (Use these settings to create PDF documents with higher image resolution for improved printing quality. The PDF documents can be opened with Acrobat and Reader 5.0 and later.)
    /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308000200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
    /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e0065002000760065007200620065007300730065007200740065002000420069006c0064007100750061006c0069007400e400740020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
    /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e0030002000650020007300750070006500720069006f0072002e>
    /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e006700200066006f00720020006100740020006600e50020006200650064007200650020007500640073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
    /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f0067006500720065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000650065006e0020006200650074006500720065002000610066006400720075006b006b00770061006c00690074006500690074002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
    /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200070006100720061002000610075006d0065006e0074006100720020006c0061002000630061006c006900640061006400200061006c00200069006d007000720069006d00690072002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
    /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a00610020004100630072006f006200610074002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
    /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
    /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006200650064007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
    /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006f006300680020006400e40072006d006500640020006600e50020006200e400740074007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice


