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Abstract. The availability of low cost powerful parallel graphics cards
has stimulated a trend to port GP on Graphics Processing Units (GPUs).
Previous works on GPUs have shown evaluation phase speedups for large
training cases sets. Using the CUDA language on the G80 GPU, we show
it is possible to efficiently interpret several GP programs in parallel, thus
obtaining speedups also for small training sets starting at less than 100

training cases. Our scheme was embedded in the well-known ECJ library,
providing an easy entry point for owners of G80 GPUs.

1 Introduction

Newly introduced graphics processing units (GPUs) provide fast parallel hard-
ware for a fraction of the cost of a traditional parallel system. GPUs are designed
to efficiently compute graphics primitives in parallel in order to produce the pix-
els of the video screen. Driven by ever increasing requirements from the video
game industry, GPUs have evolved into very powerful and flexible processors,
while their price remained in the range of consumer market. They now offer
floating-point calculation much faster than today’s CPU and, beyond graphics
applications, they are very well suited to address general problems that can be
expressed as data-parallel computations (i.e. the same code is executed on many
different data).

Moreover, several general purpose high level-languages for GPUs have be-
come available such as Brook1 and thus developers do not need any more to mas-
ter the extra complexity of graphics programming APIs when they design non
graphics applications2. In this paper, we work with an Nvidia GeForce 8800GTX
graphics card that is built around the G80 GPU. We used an NVidia provided
extension to the C language, named CUDA (Compute Unified Device Architec-
ture) that runs on the G80 GPU family, allowing fine control over the hardware
capabilities. Note that this toolkit is not available for other manufacturers hard-
ware, and is not backward compatible with older Nvidia GPUs.

Up to now, exploiting the power of GPUs within the framework of evolution-
ary computation has been done mostly for genetic algorithms, e.g. [1,2,3,4,5]. At

1 http://graphics.stanford.edu/projects/brookgpu/
2 See http://www.gpgpu.org for a survey.



the time of the writing of this paper, using GPUs for Genetic Programming is
still fresh matter: a first approach using Microsoft’s Accelerator toolkit has been
proposed by Harding and Banzhaf [6,7], a tutorial-like paper using a graphics
API approach was issued by Chitty[8], and a technical report using the Rapid-
Mind development kit has been made available by Langdon [9]. However we may
expect a quickly increasing number of studies in the near future.

Harding and Banzhaf’s and Chitty’s works are both based on the same ap-
proach: every GP individual is compiled for the GPU native machine code and
then evaluated on the fitness cases using the parallel ability of the GPU. This
scheme is iterated on every individual, until the whole population has been eval-
uated. These authors have obtained interesting speedups but mainly for large
individuals and/or several thousands fitness cases. In [6] this is acknowledged as
a weakness of this scheme: “Many typical GP problems do not have large sets
of fitness cases...” and “this leads to a gap between what we can realistically
evaluate, and what we can evolve”. We also think that evolving programs with
hundreds of thousands training cases is not the most common setting in today’s
GP problems. For example, GP is often used to perform supervised classification,
and it may be difficult to provide large sets of labeled training cases, noticeably
when labeling requires human intervention like medical diagnosis. Moreover, a
look at Koza’s et al. last book (chapter 15 in [10]) suggests that solving real world
problems with GP may be more in need of large populations (up to 5,000,000
individuals in [10]) than large data sets.

In order to also exploit the power of the GPU on training sets of modest size,
we propose another parallelization scheme. Instead of evaluating sequentially the
GP solutions, parallelizing the training cases, we share the parallel capacity of the
GPU between GP programs and data. Thus we evaluate different GP programs
in parallel, and assign to each of them a cluster of elementary processors to treat
the training cases in parallel. This yields more data to fill the pipeline of each
ALU of the GPU, in order to improve the efficiency. As a consequence more
computational power is available for e.g. increasing the population size.

As a consequence we must emulate a MIMD task (running different pro-
grams) on a basically SIMD hardware. A solution to this problem has been
proposed in the 1990s [11] in the form on an interpreter that considers the set
of programs as data. This was implemented for GP in the late 90s by Juillé and
Pollack [12] on the MASPAR machine, and a similar technique is also proposed
by Langdon [9] on the G80 GPU. Our approach differs from Langdon’s since
we use the CUDA development kit that allows a finer grain access to the hard-
ware. Thus we can exploit a characteristic of the G80: it runs in Single Program
Multiple Data (SPMD) mode, rather than SIMD, i.e. elementary processors run
the same program (the interpretor) in parallel but they are divided into clusters
that share their own program counter. This gives the opportunity to achieve
increased speedups, since e.g. a cluster can interpret the “if” branch of a test
while another cluster treat independently the “else” branch. On the opposite,
performing the same computation inside a cluster is also possible, but the two



branches are processed sequentially in order to respect the SIMD constraint: this
is called divergence and of course it is less efficient.

We interfaced our CUDA based evaluation with the popular ECJ library3,
and retained the most part of its flexibility. Our experiments have been done with
the mainstream tree representation for GP individuals, using tutorial bench-
marks taken from the ECJ library. The GPU speedup values that we are giving
are for complete evolution runs and not only for the evaluation phase. Thus we
hope these figures are close to the speedup readers may expect with their usual
setting. An archive containing a sample code for a regression application is avail-
able at http://www-lil.univ-littoral.fr/˜robillia/EuroGP08/gpuregression.tgz .

The rest of the paper is organized in the following way: next section provides
some information on the graphics processor unit and the CUDA programming
language. In Section 3, the implementation of the GP system is described. Sec-
tion 4 presents benchmarks and results. Section 5 concludes and discusses future
works.

2 The G80 GPU architecture overview

The graphics card we used is a NVidia GeForce 8800 GTX based on the G80
GPU. It is natively limited to single precision floating point (32-bit data pre-
cision), although double precision can be used through a software library. This
hardware is based on an unified architecture: instead of the traditional special-
ized vertex and fragment processors that are found on many graphics cards, here
the elementary processors are identical and managed as a pool of 16 so-called
multiprocessors. A multiprocessor contains 8 elementary scalar stream processors
that operate at a 1.35 GHz clock rate, giving a total number of 128 elementary
stream processors on the graphics card. A multiprocessor also owns 16 kb of
fast memory that can be shared by its 8 stream processors. Multiprocessors are
SIMD devices, meaning their 8 stream processors execute the same instruction
at every time step on its own data. However alternative and loop structures can
be programmed: if some stream processor, among the 8 that are contained in
a multiprocessor, should not perform a given instruction because e.g. the con-
ditional expression of an while structure results as false when computed on its
own data, then this stream processor is simply put into idle mode during the
remaining loops performed by the others. This is called divergence, and of course
it implies some waste of computing power.

Due to its architecture, the G80 GPU is able to function in SPMD mode
(Single Program, Multiple Data) at the level of the multiprocessors: every mul-
tiprocessor must run the same program, but each of them owns its private pro-
gram counter, thus they do not need to execute the same instruction at the same
time step (as opposed to their internal stream processors). This flexibility allows
to avoid divergence between multiprocessors by carefully dispatching the tasks
on them, but up to now it can only be accessed with the CUDA development kit

3 http://cs.gmu.edu/˜eclab/projects/ecj/



proposed by NVidia. Other toolkits consider this GPU only as a SIMD device
containing 128 elementary processors, thus increasing the risk of divergence and
wasting computing power. This is why we used CUDA when implementing our
population parallel scheme.

Note that our machine was equipped with another graphics card dedicated
to display the X screen, while the 8800GTX card was reserved for the compu-
tations and thus not attached to a X server. This dual cards setting allowed
us to obtain cleaner timings (no interference with the display). Note that it is
perfectly possible to use the 8800GTX for both display and GP evolution, with
some constraints: during intensive computation, the user interaction with the X
desktop is suspended; moreover any given call to the GPU (i.e. executing the
interpreter in our case) cannot last more than 5 seconds, otherwise the process
is killed by the X server.

3 Population parallel model

As said above, previous works about GP on GPU have demonstrated interesting
speedups for very large training sets and/or programs. Indeed if we execute one
GP program at a time on the G80, parallelizing only the training data as it is
proposed in [6], then we do not have enough data to fill all ALU pipelines of
the 128 stream processors, thus the GPU is under-exploited. This phenomenon,
in addition to compilation overheads, may also explain the bad GPU timings
observed by [6] on the 7300 GPU with small training cases sets. A possible
solution is to evaluate several programs in parallel to increase the computation
load.

As the G80 is a SPMD device, SP meaning Single Program, we cannot per-
form the direct execution of several different programs in parallel. The same
problem arose for Juillé and Pollack when they implemented GP on the MAS-
PAR machine [12] and they proposed to bypass this limitation by interpreting
GP solutions. In the same way, we run one program on the GPU: an interpreter
dedicated to execute any GP program for our benchmark problems. The GP
programs are simply considered as data from the interpreter point of view. This
is clearly a trade-off choice: the computing time of iterating interpreted code on
training cases is to be balanced against the time of compiling and iterating a
compiled code. Few training cases means few iterations thus the interpreter may
be a sensible trade-off.

In order to interpret the GP programs, we first have to copy them into the
graphics card memory. This is not straightforward, since we want to integrate
the GPU evaluation inside the ECJ library, while retaining the most part of its
flexibility. Indeed, GP tree nodes in ECJ are scattered into memory, so we need
to compact them into a single chunk of memory that can be transfered to the
GPU. We also translate the trees into linear stack-based postfixed notation code
that will be easier to interpret, although it is not required. This is illustrated in
Figure 1.
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Fig. 1. Sample GP tree and its translation into linear postfixed notation, prior to its
interpretation.

The interpreter code is run on the GPU and is quite simple, being composed
of a main loop fetching the next instruction to process, and a switch that per-
forms the operations required depending on this instruction, see pseudo-code in
Table 1. The if structure and the short-circuit {And, Or} operators are imple-
mented as usual in code generation, i.e. bypassing branches that do not need to
be evaluated (see [13]). A detailed GP oriented implementation is found in [12].
We use a stack to hold temporary results.

Table 1. Pseudo code of the interpreter.

sp = 0 ; // initialize stack pointer

GP_pc = baseAddress[i] ; // load base address of prog i

while (instructionArray[GP_pc] != RETURN) {

switch (instructionArray[GP_pc]) {

case OPERAND : stack[sp++] = data; // push data on stack

case ADD : stack[sp-2] = stack[sp-1] + stack[sp-2]; sp–;

case MUL : stack[sp-2] = stack[sp-1] * stack[sp-2]; sp–;

...

}

GP_pc++;

}

In order to limit the occurrences of divergence, we dispatch the population
of GP trees in such a way that, at any time, each multiprocessor interprets only
one GP tree. That is, GP trees are parallelized on the multiprocessors, giving
up to 16 GP programs interpreted in parallel on the G80, and the fitness of a
given tree is in turn parallelized on the 8 stream processors contained in the
multiprocessor. This scheme is illustrated in Figure 2. So every stream processor



evaluates 1/8th of the training cases. This 1/8th factor leaves enough data to
fill the ALU pipelines in most cases, even with small training sets. In a scheme
where only one GP program is run and only the training data are parallelized,
each stream processor receives only 1/128th of the training cases and this leads
to under-exploitation with small training sets.

Fig. 2. Parallelization scheme: multiprocessors independently execute the interpreter
code. On every multiprocessor, each stream processor handles a part of the training set
and stores in register memory the current address of the GP program instruction to
be interpreted (GP pc). Every GP pc do not need to point to the same part of the GP
program. However, if the instructions to be interpreted in parallel are not the same for
all the stream processors, this will imply divergence and loss of efficiency while some
stream processors wait in idle mode.

To sum up some characteristics of our scheme:

– when the evaluation of a GP program is finished on a multiprocessor, there
is no need to wait in idle mode for the completion of programs that are
interpreted on other multiprocessors: another GP tree can be interpreted
immediately; this is possible because we work in SPMD mode, versus the
SIMD scheme proposed by [12,9];

– the same holds when two different programs contain if or loop instructions:
this does not create divergence between programs;

– however we can incur divergence between stream processors on the same
multiprocessor, as they always work in SIMD mode, when e.g. an if struc-



ture resolves into different cases within the set of 8 training cases that are
processed in parallel4.

4 Results and discussion

In this section, we assess the performance of our parallelization scheme on the
G80 GPU against an Intel 2,6 GHz CPU (single core). We used three standard
benchmarks taken from the ECJ library: real and boolean regression and a clas-
sification problem. Two of these benchmarks were also used by [6], although it
is not possible to perform a direct comparison since we do not use the same
hardware. Anyway, we do not focus on GP being able to solve these standard
benchmarks — this has been covered in numerous previous works — but rather
on the computing time speedup that can be brought by the GPU. Timings are
monitored for the evaluation phase, that includes translation to postfixed code
in the GPU case, and also for full evolutionary runs.

All runs were done using 32-bits floating point arithmetics on both CPU and
GPU. We noticed small differences between the fitness values computed on both
schemes. These differences were about 10−7 in magnitude and are implied by
the parallelization scheme: the raw fitness is cumulated into a single loop on the
CPU, while on the GPU each stream processor computes the fitness associated
to a part of the training cases before the global result is cumulated. Thus small
rounding errors appear that can change the result of the evolutionary selection
phase, especially with the bigger populations where probabilities are higher to
meet individuals with very close fitness values. These rounding errors tend to
accumulate over generations and can yield slightly different runs between CPU
and GPU. Here the situation is somewhat comparable to what happens when
one performs a GP benchmark between machines with different precision levels.
Thus, in order to obtain significant figures, we have done 30 independent evolu-
tionary runs for each problem and setting, then we have averaged the running
times. In turn, these average times are divided by the average evolved tree size
observed respectively for the CPU and the GPU, in order to obtain a comparable
time per node ratio. The speedup indicates how many times the GPU version is
faster than the CPU one and is computed as:

speedup =
GPU mean tree size

CPU mean tree size
∗

CPU mean running time

GPU mean running time

The first benchmark is the standard regression problem x6
−2x4+x2 (see [14]),

using population sizes of 100, 500, 2500 and 12500 individuals, 50 generations,
and training set sizes of 64, 256 and 1024 training cases. The function set is
{+, -, *, /, sin, cos, exp, log} and terminal set {ERC (i.e. Ephemeral Random

4 Actually this is a bit more complex since CUDA schedules multiples of 4 computa-
tions per stream processor in order to amortize memory access overheads. A detailed
explanation is not possible within the size constraints of this paper.



Constants), X}. Depending on the population and training set sizes, the aver-
age evolved tree size ranges from 30 to 66 nodes. Speedup figures are shown in
Figure 3.

Full run speedup for regression problem.
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Evaluation phase speedup for regression problem.
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Fig. 3. GPU vs CPU speedup on regression problem x
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2. On the left, speedup
for whole evolutionary runs, on the right speedup for evaluation phase only.

The second benchmark is based on the multiplexer-6 and multiplexer-11
problems (see [14]) with respectively 64 and 2048 training cases, for popula-
tion sizes 100, 500, 2500 and 12500 individuals, and 50 generations. We used as
function set {And, Or, Not, If} and terminal set {A0-A1, D0-D4}, resp. {A0-
A2, D0-D7}. The “And” , “Or” and “If” are shortcut versions (i.e. bypassing
branches that do not need to be evaluated) and boolean values are stored as
integers, to obtain comparable results with the ECJ standard code. Depending
on the population and training set sizes, the average evolved tree size ranges
from 112 to 157 nodes. Speedup is illustrated in Figure 4.

The third benchmark is the intertwined spirals problem (see [15]), again
population sizes range from 100 to 12500 individuals, and the training set size
is fixed to 194. The function set is {+, -, *, /, sin, cos, Iflte5} and the terminal
set is {ERC, X}. Depending on the population size, the average evolved tree size
ranges from 119 to 208 nodes. Speedup is illustrated in Figure 5.

These Figures show that, in all but one case, evaluation on the GPU yields
a speedup in computing time, for small training cases sets and short expression
lengths: the largest average tree size we encountered was 208 nodes. However the
CPU is superior for the multiplexer-6 problem: the memory transfer and tree-
to-postfix translation overheads cannot be counter-balanced by the speedup in

5 Iflte is a quaternary operator that stands for “If sibling1 less than sibling2 then
sibling3 else sibling4.



Full run speedup for multiplexer.
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Fig. 4. GPU vs CPU speedup on multiplexer-6 and multiplexer-11 (64 and 2048 train-
ing cases respectively). On the left, speedup for whole evolutionary runs, on the right
speedup for evaluation phase only.

Full run speedup for intertwined spirals.
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parallel computation. Note that typical solutions to this problem contain many
If operators and may be suspected to create a high divergence between the 8
inner stream processors that deal with one GP program. This means that many
branches of the GP tree must be interpreted with part of the stream processors
in idle mode to respect the SIMD constraint, with a drop of performance.

For full runs, the speedup increases with the population size until we reach
a threshold where it begins to stagnate or drop. Of course the speedup cannot
increase indefinitely and must anyway reach an upper bound when the GPU
is saturated. But in our case, this phenomenon occurs earlier due to one basic
implementation choice: the breeding phase is done by the ECJ library, so it is
computed on the CPU and its cost increases faster than the evaluation cost, as
can be seen on Figure 6. We recall that the evaluation time includes the cost of
compacting the programs in linear form and translating them to postfixed nota-
tion. This phase is also performed on the CPU in our current implementation,
and thus does not benefit from parallelization. This is responsible for the slight
drop of evaluation speedup in the right plot of Figure 3 with population size
12500.

At last, speedup factors obviously depend on the problem, especially if it
needs operators such as “If” that create unavoidable divergence between stream
processors, wasting computation cycles. This explains the difference in perfor-
mance between the regression benchmark and the two others.

GPU evaluation with CPU breeding time.
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regression problem, with 1024 cases. As breeding is kept on the CPU, it becomes the
bottleneck when processing large populations.



5 Conclusions and future works

Previous works about parallelizing GP on GPU brought speedups with respect
to large programs or/and large training sets. However it is not always possible
to gather large training sets, e.g. when labeling training cases requires human
intervention like medical diagnosis. It is neither always easy to evolve large GP
individuals without incurring a high level of over-fitting. Thus it is also interest-
ing to obtain speedups for small GP trees and small training cases.

We worked on one of the current fastest GPU, the Nvidia G80. Our solution
consists in parallelizing both GP programs and training data, as opposed to run
sequentially each compiled program and parallelizing only the training set. When
several programs are run in parallel, they process proportionally more training
cases on each elementary processor of the GPU, so we can expect a better filling
of the ALUs and an overall increased efficiency. As running different GP pro-
grams on a basically SIMD architecture is not possible, we use an interpreter
to process both programs and training cases as data. A typical problem raises
when the main interpreter switch is required to execute different instructions in
parallel: the GPU executes these instructions sequentially, putting alternatively
some of the elementary processors in idle mode. This is called divergence. As our
scheme relies on a fine grain parallelization allowed by the CUDA language, we
have the opportunity to exploit the SPMD architecture of the G80. We dispatch
one program per multiprocessor, thus divergence appears only in the case when
the GP function set contains “if” or “loop” nodes.

With this parallelization scheme we obtained evaluation phase speedups rang-
ing from 8 times to 80 times for 5 out of 6 benchmarks, using from 64 to 1024

training cases and mean evolved tree sizes from 30 to 208 nodes. However no
speedup was obtained on the multiplexer-6 benchmark, which cumulates a small
training set together with a high tendency to create divergence through the
major part of its function set (if, shortcut and, shortcut or).

By implementing the GPU evaluation as part of the Java ECJ library, we also
allow other users of G80 cards to easily develop their own GP applications. How-
ever, keeping ECJ flexibility has a drawback: the breeding phase is performed
on the CPU and does not benefit from the GPU power. Experiences showed
that when population size increases, the breeding time grows until it is no more
negligible against the evaluation time.

Future works includes extending ECJ to store the GP population into an
array and implementing an interpreter for prefix code, removing the need for
compacting and translating GP trees to postfix. Nonetheless the cost of the
breeding phase suggests that it is also required to implement it on the GPU,
in order to take full advantage of the new graphics cards power to evolve large
populations.
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