
Optimal Movement of Mobile Sensors for Barrier

Coverage of a Planar Region∗

Binay Bhattacharya∗¶ Mike Burmester† Yuzhuang Hu∗

Evangelos Kranakis‡¶ Qiaosheng Shi∗ Andreas Wiese§

Abstract

Intrusion detection, area coverage and border surveillance are important applications
of wireless sensor networks today. They can be (and are being) used to monitor large
unprotected areas so as to detect intruders as they cross a border or as they penetrate a
protected area. We consider the problem of how to optimally move mobile sensors to the
fence (perimeter) of a region delimited by a simple polygon in order to detect intruders
from either entering its interior or exiting from it. We discuss several related issues and
problems, propose two models, provide algorithms and analyze their optimal mobility
behavior.

1 Introduction

Monitoring and surveillance are two of the main applications of wireless sensor networks to-
day. Typically, one is interested in monitoring a given geographic region either for measuring
and surveying purposes or for reporting various types of activities and events. Another impor-
tant application concerns critical security and safety monitoring systems. One is interested
in detecting intruders (or movements thereof) around critical infrastructure facilities and ge-
ographic delimiters (chemical plants, forests, etc). Since the information security level of the
monitoring system might change rapidly because of hostile attacks targeted at it, research ef-
forts are currently underway to extend the scalability of wireless sensor networks so that they
can be used to monitor international borders as well. For example, [11] reports the possibility
of using wireless sensor networks for replacing traditional barriers (more than a kilometer
long) at both the building and estate level. Also, “Project 28” concerns the construction of a
virtual fence as a way to complement a physical fence that will include 370 miles of pedestrian
fencing and 300 miles of vehicle barrier (see [8] which reports delays in its deployment along
the U.S.-Mexico border).

To begin, we say that a point is covered by a sensor if it is within its range. In this
paper we will use the concept of barrier coverage as used in [11], which differs from the more
∗School of Computing Science, Simon Fraser University, Vancouver, BC, Canada.
†Department of Computer Science, Florida State University, Tallahassee, Florida, USA.
‡School of Computer Science, Carleton University, Ottawa, Ontario, Canada.
§Institut für Mathematik, Technische Universität Berlin, Berlin, Germany.
¶Research supported in part by NSERC and MITACS.
∗A first version of this manuscript was presented at the 2nd Annual International Conference on Combina-

torial Optimization and Applications (COCOA 2008), St John’s, Newfoundland.

1

traditional concept of full coverage. In the latter case, one is interested in covering the entire
region by the deployment of sensors, while in the former, all crossing paths through the region
are covered by sensors. Thus, one is not interested in covering the entire deployment region
but rather in detecting potential intruders by guaranteeing that there is no path through
this region that can be traversed undetected by an intruder that crosses the border. Clearly,
barrier coverage is an appropriate model of movement detection that is more efficient than full
coverage, since it requires fewer sensors for detecting intruders. This is the case, for example,
when the width of the deployment region is three times the range of the sensors.

In article [3], the authors consider the problem of how individual sensors can determine
barrier coverage locally. In particular, they prove that it is possible for individual sensors to
locally determine the existence of barrier coverage, even when the region of deployment is
arbitrarily curved. Although local barrier coverage does not always guarantee global barrier
coverage, they show that for thin belt regions, local barrier coverage almost always provides
global barrier coverage. They also consider the concept of L-local barrier coverage whereby
if the bounding box that contains the entire trajectory of a crossing path has length at most
L, then this crossing path is guaranteed to be detected by at least one sensor.

1.1 Motivation, model and problem statement

Motivated by the works of [3] and [11], in this paper we go further by asking a question
not examined by any of these papers. More precisely, given that the mobile sensors have
detected the existence of a crossing path (e.g., using any of the above algorithms) how do
they reposition themselves most efficiently within a specified region so as to repair the existing
security hole and thereby prevent intruders.

Furthermore, we stipulate the existence of a geometric planar region (the critical region to
be protected) delimited by a simple polygon, the barrier, and mobile sensors (or robots) that
are lying in the interior of this polygon. The sensors can move autonomously in the plane.
Each sensor has knowledge of the region to be barrier-covered, of its geographic location and
can move from its starting position A to a new position A′ on the perimeter of this polygon
(see Figure 1). For each sensor A, we consider the distance d(A,A′) between the initial and

Figure 1: Sensors move from their initial position to positions on the perimeter of a simple
polygon.

final positions of the sensors, respectively, and investigate how to move the sensors within
this region so as to optimize either the minimum sum or the minimum of the maximum of
the distances covered by the respective sensors. We call this the barrier coverage problem.
In the sequel, we investigate the complexity of this problem for various types of regions and
types of movement of the mobile sensors.

2

1.2 Related work

An interesting research article by [1] surveys the different kinds of holes that can form in geo-
graphically correlated problem areas of wireless sensor networks. The authors discuss relative
strengths and short-comings of existing solutions for combating different kinds of holes, such
as coverage holes, routing holes, jamming holes, sink/black holes, wormholes, etc. [2] looks at
critical density estimates for coverage and connectivity of thin strips (or annuli) of sensors.
In addition, [5] and [6] design a distributed self deployment algorithm for coverage calcula-
tions in mobile sensor networks, and consider various performance metrics, such as coverage,
uniformity, time and distance traveled until the algorithm converges. Related research on
art gallery theorems (see [14]) is concerned with finding the minimal number of positions for
guards or cameras so that every point in a gallery is observed by at least one guard or camera.

In addition to the research on barrier coverage already mentioned, there is extensive liter-
ature on detection and tracking in sensor networks. In [12], the authors consider the problem
of event tracking and sensor resource management in sensor networks and transform the de-
tection problem into finding and tracking the cell that contains the point in an arrangement of
lines. [9] addresses the problem of tracking multiple targets using a network of communicating
robots and stationary sensors by introducing a region-based approach for controlling robot
deployment. [16] considers the problem of accurate mobile robot localization and mapping
with uncertainty using visual landmarks. Finally, related to the problem of detecting a path
through a region that can be traversed undetected by an intruder is the paper [15] which gives
necessary and sufficient conditions for the existence of vertex disjoint simple curves homotopic
to certain closed curves in a graph embedded on a compact surface.

1.3 Outline and results of the paper

Section 2 gives the formal model on a disk and defines the min-max (minimizing the maximum)
and min-sum (minimizing the sum) problems for a set of sensors within a disk or a simple
polygon. Section 3 looks at the simpler one-dimensional case, and derives simple optimal
algorithms for the case in which the sensors either all lie on a line or on the perimeter of
the disk. Section 4 and Section 5 are the core of the paper and provide algorithms for
solving the min-max and min-sum problems, respectively. In Section 4, an O(n3.5 log n)-time
algorithm for the min-max problem on a disk and an O(mn3.5 log n)-time algorithm for the
min-max problem on a simple polygon, are proposed (m is the number of edges of the simple
polygon). Our approximation algorithms for min-sum problems on a disk or a simple polygon
are presented in Section 5, where we give a PTAS with approximation 1 + ε having running
time O(1

εmn
5) for a given constant ε. We also present experimental results on the min-sum

problem, and Section 6 gives the conclusion.

2 Preliminaries and formal model

First we describe the formal model on a disk and provide the basic definitions and preliminary
concepts.

2.1 Optimization on the unit disk

The simpler scenario we envision concerns n mobile sensors located in the interior of a unit-
radius circular region (see Figure 2). We assume that the sensors are location aware (i.e.,

3

A

B

C

D

A"

A

B

B'

C

C'

D

D'

Figure 2: Four mobile sensors A,B,C,D located in the interior of a disk move to new positions
A′, B′, C ′, D′ on the perimeter of the disk so that A′B′C ′D′ forms a regular 4-gon.

they know their geometric coordinates) and also know the location of the center of the disk.
We would like to move all the sensors from their initial positions to the perimeter of the disk
so as to:

1. Form a regular n-gon, and

2. Minimize the total/maximum distance covered (see Figure 2).

The motivation for placing the sensors on the perimeter is because it provides the most
efficient way to protect the disk from intruders. Observe that when all n sensors lie on the
perimeter and form a regular n-gon, then each sensor needs only cover a circular arc of size
2π/n so as to be able to monitor the entire perimeter. Using elementary trigonometry, it
follows easily that the transmission range of each sensor must be equal to r = sin(π/n).

More formally, for n given sensors in positions A1, A2, . . . , An, respectively, which move
to new positions A′1, A

′
2, . . . , A

′
n on the perimeter forming a regular n-gon, the total distance

covered is:
n∑
i=1

d(Ai, A′i). (1)

It is clear that the sum is minimized when each sensor Ai moves to its destination A′i in a
straight line.

The reason for having the sensors form a regular n-gon is because this is evidently the
optimal final arrangement that will enable the sensors to detect intruders (i.e., by being
equidistant on the perimeter). Since the final positions A′1, A

′
2, . . . , A

′
n of the sensors form a

regular n-gon it is clear that the final configuration can be parametrized by using a single
angle 0 ≤ θ ≤ 2π. However, a difficulty arises in view of the fact that we must also specify
a permutation σ : {1, 2, . . . , n} → {1, 2, . . . , n} of the sensors such that the i-th sensor moves
from position Aσ(i) to the new position A′i.

Let the n sensors have coordinates (ai, bi), for i = 1, 2, . . . , n. Let us parametrize the
regular polygon with respect to the angle of rotation, say, θ. The n vertices of the regular
n-gon that lie on the perimeter of the disk can be described by

(ai(θ), bi, (θ)) =
(

cos
(
θ +

(i− 1)2π
n

)
, sin

(
θ +

(i− 1)2π
n

))
, for i = 1, 2, . . . , n, (2)

4

respectively, where (ai(θ), bi(θ)) are the vertices of the regular n-gon when the angle of rotation
is θ.

2.1.1 Minimizing the sum

We are interested in minimizing the sum

Sn(θ) :=
n∑
i=1

√
(ai − ai(θ))2 + (bi − bi(θ))2, (3)

as a function of the angle θ. The optimization problem is:

min
θ
Sn(θ). (4)

This of course assumes that the i-th sensor is assigned to position (cos(θ+(i−1)2π/n), sin(θ+
(i−1)2π/n)) on the perimeter. In general, we have to determine the minimum over all possible
permutations σ : {1, 2, . . . , n} → {1, 2, . . . , n} of the sensors. If for a given permutation
σ : {1, 2, . . . , n} → {1, 2, . . . , n} we define the following sum

Sn(σ, θ) :=
n∑
i=1

√(
aσ(i) − ai(θ)

)2 +
(
bσ(i) − bi(θ)

)2 (5)

then the general optimization problem is:

min
σ,θ

Sn(σ, θ). (6)

2.1.2 Minimizing the maximum

The previous problem concerned minimizing the sum of the distance traveled by the robots.
In view of the fact that the robots are moving simultaneously, it makes sense to consider
the problem of minimizing the maximum of the distances traveled by each robot. More
formally, given n sensors in positions A1, A2, . . . , An, respectively, which move to new positions
A′1, A

′
2, . . . , A

′
n forming a regular n-gon on the barrier, the maximum distance covered is:

max
1≤i≤n

d(Ai, A′i). (7)

It is clear that the maximum is minimized when each sensor Ai moves in a straight line to its
destination A′i. The min-max problem involves minimizing the maximum

Mn(θ) := max
1≤i≤n

√
(ai − ai(θ))2 + (bi − bi(θ))2 , (8)

as a function of the angle θ. The optimization problem is therefore to compute

min
θ
Mn(θ). (9)

This of course assumes that the i-th sensor is assigned to position (cos(θ+(i−1)2π/n), sin(θ+
(i−1)2π/n)) on the perimeter. In general, we have to determine the minimum over all possible

5

permutations σ : {1, 2, . . . , n} → {1, 2, . . . , n} of the sensors. If for a given permutation
σ : {1, 2, . . . , n} → {1, 2, . . . , n} we define the following maximum

Mn(σ, θ) := max
1≤i≤n

√(
aσ(i) − ai(θ)

)2 +
(
bσ(i) − bi(θ)

)2
, (10)

then the general optimization problem is:

min
σ,θ

Mn(σ, θ). (11)

2.2 Optimization on a simple polygon

We define the problem of minimizing the sum and minimizing the maximum on a simple
polygon in a similar way, as follows.∗

Let P be a simple polygon. (From now on, a polygon is always assumed to be simple.) We
denote the boundary of P by ∂P . We assume that ∂P is oriented in the clockwise (also called
positive) direction. For any two points A,C ∈ ∂P , π̂P (A,C) denotes the set of all points
B ∈ ∂P such that when starting after A in positive direction along ∂P , B is reached before
C. Let P1, P2, . . . , Pm denote the vertices of P ordered in the positive direction, and let the
edges of P be e1, e2, . . . , em, where edge ei has endpoints Pi and Pi+1, 1 ≤ i ≤ m (the indices
are computed modulo m: so P0 = Pm). Denote by `(ei) the length of edge ei, 1 ≤ i ≤ m,
and by d̂P (A,B) the length of π̂P (A,B) for any two points A and B on ∂P (called polygonal
distance between A and B). Let L(P) =

∑m
i=1 `(ei).

We are given n mobile sensors, which are located in the interior or on the boundary of P .
Each sensor has the knowledge of its geometric coordinates and the simple polygon (i.e., the
coordinates of all vertices Pi, 1 ≤ i ≤ m and the clockwise ordering of these vertices). The
objective is to move all the sensors from their initial positions to ∂P such that:

1. The polygonal distance between any two consecutive sensors on the polygon is L(P)/n,
and

2. The total/maximum distance covered is minimized.

Note that only straight-line moving distance is considered here. That is, we view sensors as
mobile robots with unrestricted movement (therefore, it is allowed to move sensors outside
the perimeter of the given region).

More formally, we are given n sensors located at positions A1, A2, . . . , An, respectively.
Let A′i be the destination position of Ai on ∂P , i = 1, 2, . . . , n. Without loss of any generality,
assume that for any i, 1 ≤ i < n, A′i+1 is the first position after A′i in the positive direction
along ∂P . The new positions A′1, A

′
2, . . . , A

′
n should satisfy d̂P (A′i, A

′
i+1) = L(P)/n, 1 ≤ i ≤ n

(taken modulo n), and we consider the following two objectives:

1. Minimizing the sum: min
∑n

i=1 d(Ai, A′i), and

2. Minimizing the maximum: min maxni=1 d(Ai, A′i),

where d(·, ·) is the straight-line distance metric.
∗Although the approach proposed later (parametric search) will also work for arbitrary simple curves, we

refrain from such a generalization so as to avoid unnecessary complications.

6

3 Mobile sensors in one dimension

In this section, we look at the one-dimensional problem and provide efficient algorithmic
solutions. In particular, since optimization for the min-max is similar (and simpler than the
two dimensional analogue) we provide algorithms only for the min-sum.

3.1 Sensors on the unit line segment

In this model we suppose that the sensors can move on a line segment. Further, instead of
protecting a circular range the sensor can now protect an interval of a given size centered at
the sensor. Consider the min-sum optimization problem for the case of n sensors on a line.
Without loss of generality assume the segment has length 1 and let the n sensors be at the
initial locations A1 ≤ A2 ≤ · · · ≤ An, respectively. Then the destination locations must be at
the positions 2i−1

2n , for i = 1, 2, . . . , n.

Theorem 1 The optimal arrangement is obtained by moving point Ai to position 2i−1
2n , for

i = 1, 2, . . . , n, respectively.

Proof. It is clear that the destinations must be equidistant and cover the endpoints 0 and
1. The optimal configuration is therefore: 1/2n,3/2n, . . . , (2n− 1)/2n. For any point X let
d(X) be its destination. Recall that our goal is to determine the destinations of each point
X so that the sum ∑

X

|X − d(X)| (12)

is minimized.

x y d(x)d(y)

x y d(x)d(y)

x y d(x)d(y)

x yd(x)d(y)

Figure 3: Four possible orderings of x, y, d(x), d(y) where x < y and d(y) < d(x).

7

Suppose that there is an optimal assignment between {A1, . . . , An} and { 1
2n ,

3
2n , . . . ,

2n−1
2n },

which is not the assignment resulting by moving point Ai to position 2i−1
2n , for i = 1, 2, . . . , n,

respectively. Then, in this optimal assignment, there must exist at least one inverse pair
x = Ai and y = Aj (i < j) such that d(x) > d(y). By considering all possible six orderings
of x, y, d(x), and d(y) (Four of them are depicted in Figure 3. The other two are d(y) ≤ x ≤
d(x) ≤ y and d(y) < d(x) ≤ x < y), we can see that the sum of moving distance is smaller or
unchanged if we move x to d(y) and y to d(x) instead. After switching their destinations for
each inverse pair, we obtain the assignment resulting by moving point Ai to position 2i−1

2n ,
for i = 1, 2, . . . , n, respectively. This completes the proof of the theorem.

3.2 Sensors on the perimeter of the unit disk

In this model, we suppose that the sensors can move on the perimeter of a disk. Further,
instead of protecting a circular range, the sensor can now protect an arc on the perimeter of
a given size centered at the sensor. The same idea as for a line segment should work for the
case of the unit disk when the sensors lie on its perimeter. The main difficulty here is that
we no longer have a unique destination. Instead, we can parametrize all possible destinations
of the n points by φ+ 2jπ

n , for j = 0, 1, . . . , n− 1, using a fixed angle 0 ≤ φ < 2π
n .

Suppose we are given n points A1, A2, . . . , An in clockwise order along the perimeter of
the disk. First of all, we prove the following lemma.

Lemma 2 The minimal cost assignment of the destinations for the given points must be
among the n assignments

(A1, . . . , Aj , . . . , An)→
(
Ai + (i− 1)

2π
n
, . . . , Ai + (i− j)2π

n
, . . . , Ai + (i− n)

2π
n

)
,

for i = 1, 2, . . . , n. Note that each such assignment has a fixed point Ai.

Proof. We denote by d(Ai) the destination of Ai on the unit disk, i = 1, 2, . . . , n, and by
π̂(x, d(x)) the arc traveled (clockwise or counter-clockwise) by a sensor from its initial position
x to destination d(x). Clearly, the length of π̂(x, d(x)) is always no more than π.

First we prove that there exists an optimal assignment in which d(A1), d(A2), . . . , d(An) are
also in clockwise order (called Condition A). Let ∆ be a minimal cost (optimal) assignment.
For any pair of initial positions x = Ai and y = Aj (1 ≤ i, j ≤ n) in ∆, we consider the
following two cases.

• Case 1: x and y move to their destinations in different directions. Without loss of
any generality, we assume that x moves clockwise to its destination d(x) and y moves
counter-clockwise to its destination d(y). In this case, π̂(x, d(x)) and π̂(y, d(y)) cannot
overlap, since, otherwise, we can obtain a new assignment that has a smaller cost (a
contradiction with that ∆ is an optimal assignment).

• Case 2: x and y move to their destinations in a same direction. Then we can update
the assignment ∆ to satisfy Condition A among x and y without increasing its cost.

Now, in the assignment ∆, we have the following cases for each pair Ai, Ai+1, i = 1, . . . , n
(note that An+1 = A1): (Assume that Ai clockwise moves to d(Ai).)

• π̂(Ai, d(Ai)) and π̂(Ai+1, d(Ai+1)) are disjoint. See Figure 4(a) and (b) for reference;

8

• π̂(Ai, d(Ai)) and π̂(Ai+1, d(Ai+1)) are overlapping. Then π̂(Ai, d(Ai)) contains Ai+1 and
π̂(Ai+1, d(Ai+1)) contains d(Ai). See Figure 4(c) for reference.

Figure 4: Possible orderings of Ai, Ai+1, d(Ai), d(Ai+1) in the updated assignment ∆.

It is not difficult to see that, with such property between each pair of Ai, Ai+1, i = 1, . . . , n,
the updated assignment ∆ satisfies Condition A.

Second, we prove that there exists an optimal assignment among the n assignments

(A1, . . . , Aj , . . . , An)→
(
Ai + (i− 1)

2π
n
, . . . , Ai + (i− j)2π

n
, . . . , Ai + (i− n)

2π
n

)
,

for i = 1, 2, . . . , n. Consider the above minimal cost assignment ∆. Suppose that, in the
corresponding n-gon, none of the corner points is an initial point. Now rotate this n-gon and
keep the assignment unchanged. Let n1 (resp. n2) be the number of initial points that move
clockwise (resp. counter-clockwise) to their destinations. Without loss of any generality, we
assume that n1 ≤ n2. Then the clockwise rotation of the n-gon decreases the cost or remains
the same until it touches an initial point. This completes the proof of the lemma.

Based on Lemma 2, the main steps of the algorithm are the following.

1. For each point Ai ∈ {A1, A2, . . . , An}, map all points Aj to destinations Ai + (i− j)2π
n ,

for j = 1, 2, . . . , n (this implies that Ai is mapped to itself).

2. Select the point Ai ∈ {A1, A2, . . . , An} that optimizes the sum of moving arc distance

Thus, we have proved the following theorem.

Theorem 3 There is an O(n2) algorithm that computes an optimal cost arrangement of
the sensors on the perimeter of the unit disk where the sensors are allowed to move on the
perimeter of the disk.

4 Min-max problem

In this section, we study the min-max problem on a unit disk and a simple polygon, and
provide efficient algorithmic solutions.

9

4.1 On the disk

Let λ∗C be the optimal value of the min-max problem on a disk C, i.e.,

λ∗C = min
σ,θ

Mn(σ, θ).

It is easy to see that λ∗C is no more than the diameter of the disk C, i.e., λ∗C ≤ 2. In this
section we propose a parametric-searching approach [13] to compute λ∗C .

A non-negative value λ is feasible for the min-max problem if all the sensors can move
from their initial positions to the perimeter of the disk such that the new positions form a
regular n-gon and the maximum covered distance is no more than λ, otherwise λ is infeasible.
Clearly, the min-max problem is to compute the minimum feasible value, which is equal to
λ∗C .

The remaining part of this section is organized as follows. We first show that a feasibility
test of a given value λ (0 ≤ λ ≤ 2) can be performed in time O(n3.5). Then we present a
parametric-searching approach for the min-max problem, which runs in O(n3.5 log n) time.

4.1.1 An algorithm to check the feasibility test of λ

For each i, 1 ≤ i ≤ n, we construct a circle of radius λ centered at position Ai, denoted by Ci.
In Figure 5(b), for each i, 1 ≤ i ≤ n, we denote by xli (resp. xui) the shortest distance (resp.
largest distance) between Ai and a point in C. If Ci is contained in C for some i, i.e., λ < xli,
then λ is infeasible since sensor Ai cannot move to the perimeter of C within distance λ. We
therefore assume that for each i, 1 ≤ i ≤ n, either Ci contains C (i.e., λ > xui) or Ci intersects
C (i.e., xli ≤ λ ≤ xui). Referring to Figure 5(a), for each i, 1 ≤ i ≤ n, we denote by Qi the arc
of C that lies in Ci. Let qi(1), qi(2) be the angles of the two endpoints of arc Qi in clockwise
order, i = 1, 2, . . . , n. We let qi(1) = 0 and qi(2) = 2π if Ci contains C.

The following property is important to our algorithm for the feasibility test of λ.

Lemma 4 If λ > 0 is feasible for the min-max problem on the disk C then all the sensors
can move from their initial positions to the perimeter of C such that the new positions form
a regular n-gon, the maximum covered distance is no more than λ, and one corner point of
the regular n-gon is an endpoint of arc Qi for some i, 1 ≤ i ≤ n.

Proof. Since λ is feasible, the destination points of A1, . . . , An, denoted by A′1, . . . , A
′
n form a

regular n-gon, and each point A′i lies on the corresponding arc Qi of the disk, which is cut by
the λ-radius circle centered at Ai. Move the configuration of the destination points clockwise
(or counter-clockwise) until one of the destination points reaches an endpoint of one of the
arcs Qi. In this new arrangement, the maximum moving distance is no more than λ, and
these new destination points still form a regular n-gon.

The following algorithm is used to check the feasibility of λ.

Algorithm Check-Feasibility.

Step 1 Sort the angles of the endpoints of the arcs Qi (1 ≤ i ≤ n) in clockwise order.
Let q′1, q

′
2, . . . , q

′
2n be the angles in increasing order. These angles partition the interval

[0, 2π) into at most 2n pairwise disjoint intervals, denoted by Ij (1 ≤ j ≤ 2n), i.e.,
Ij = (q′j , q

′
j+1).

10

ix

u
ix

(b)(a)

i

i
i

l

i(1)q
i(2)

C

A Q

A

C

q

Figure 5: (a) The arc Qi, and the angles qi(1), qi(2) of its endpoints; (b) xli and xui .

Step 2 For each interval Ij (resp. each angle q′j), 1 ≤ j ≤ 2n, determine the set of sensors,
denoted by Sj (resp. S′j), that lie within distance λ of the corresponding arc on C (resp.
of point q′j on C).

Step 3 For each 1 ≤ j ≤ 2n, do the following:

a Compute the angles of vertices of the regular n-gon, denoted by Bj
1, B

j
2, . . . , B

j
n,

where the angle of Bj
1 is q′j . The angles of vertices of this n-gon are: q′j , (q

′
j +

2π
n) mod 2π, . . . , (q′j + (n− 1)2π

n) mod 2π.

b For each Bj
k (1 ≤ k ≤ n), determine the interval of {It, t = 1, . . . , 2n} that contains

the angle of Bj
k or an angle q′s, 1 ≤ s ≤ 2n that is equal to the angle of Bj

k.

c Construct a bipartite graph Hj between the sensors A1, A2, . . . , An and the vertices
Bj

1, B
j
2, . . . , B

j
n: sensor Ai is linked to angle Bj

k if and only if Ai is in the set of
sensors covering Bj

k within distance λ. Note that the set of sensors covering Bj
k

within distance λ is evident from the combined results of Steps 2 and 3(b).

d Check if there exists a perfect matching in Hj . If so, terminate the process and
return “Feasible”.

Step 4 Return “Infeasible”.

The sorting in the first step can be completed in O(n log n) time, and the computation of
sets of sensors Sj and S′j (1 ≤ j ≤ 2n) in the second step can be completed in O(n2) time,

11

since
∑

j |Sj |+ |S′j | could be O(n2). In the third step, the process might try all O(n) regular
n-gons. For each regular n-gon, it takes O(n2) to construct the corresponding bipartite graph
and O(n2.5) time to check if there exists a perfect matching (see [7]). Therefore, we have the
following lemma.

Lemma 5 One can determine whether a given positive value λ is feasible in the min-max
problem in O(n3.5) time.

4.1.2 A parametric-searching approach

Our approach for the solution to the min-max problem is to run Algorithm Check-Feasibility
parametrically, which has a single parameter λ, without specifying the value of λ∗C a priori.
For a fixed value of the parameter, the algorithm is executed in O(n3.5) steps. Imagine that
we start the algorithm without specifying a value of the parameter λ. The parameter is
restricted to some interval, denoted by Λ, which is known to contain the optimal value λ∗C .
Initially, we start with the interval Λ = [0, 2]. As we proceed, at each step of the algorithm
we update and shrink the interval Λ, ensuring that it includes the optimal value λ∗C . The
final interval contains λ∗C and any value in it is feasible. Therefore, the minimum value of the
final interval is the optimal value λ∗C .

The whole approach for the min-max problem is described as follows. For each i, 1 ≤ i ≤ n,
let Ci(λ) be the circle of radius λ centered at position Ai. Note that here λ is an unknown
parameter. If xli ≤ λ ≤ xui , then we denote by Qi(λ) the arc of C that lies in Ci(λ) and let
qi(1)(λ), qi(2)(λ) be the angle functions of the two endpoints of arc Qi(λ) in clockwise order,
i = 1, 2, . . . , n. Note that, if λ < xli then Ci(λ) is completely contained in C, and if λ > xui ,
then C is completely contained in Ci(λ).

Algorithm Optimization.

Preprocessing Step Shrink the interval Λ = [0, 2] to be [max {xli, 1 ≤ i ≤ n}, 2]. Among
the set {xui , 1 ≤ i ≤ n}, find the smallest feasible value and shrink Λ accordingly. If
xuj is infeasible for some j, then Cj(λ∗C) contains C, since λ∗C > xuj . Therefore, it is
safe to remove sensor Aj without affecting the remaining computation. Also, if xuj is
feasible, then Cj(λ∗C) intersects with C. These feasible/infeasible values can be identified
by solving O(log n) feasibility tests.

In the following, we assume that none of the sensors is removed in the preprocessing
step (to simplify the notations).

Step 1 with unknown λ∗C Sort the angle functions qi(1)(λ), qi(2)(λ) of the arcs Qi(λ), 1 ≤
i ≤ n, in clockwise order, for an unknown value λ = λ∗C ∈ Λ. Note that a comparison
between any two angle functions when λ = λ∗C can be computed by performing at most
two feasibility tests (see Figure 6 for reference). The sorting step with unknown λ∗C can
be performed by solving O(log 2n) feasibility tests [13] if a parallel sorting network that
runs O(log n) steps with n processors is used. However, it can be reduced to O(log n)
feasibility tests if Cole’s result is applied [4].

Let q′1(λ), q′2(λ), . . . , q′2n(λ) be the sorted angle functions in clockwise order. Note that,
in this ordering, two adjacent functions might be equal for some value λ in the most
recent interval Λ. Now we have an interval Λ which contains λ∗C , and for any value

12

y’

y

i
y

j

y’

A

C

A

Figure 6: The two critical values y and y′ in the comparison between angle functions of sensors
Ai and Aj .

λ ∈ Λ, the ordering (just computed) of {qi(1)(λ), qi(2)(λ), 1 ≤ i ≤ n} contains the
ordering of {qi(1)(λ∗C), qi(2)(λ∗C), 1 ≤ i ≤ n}. Here we call an ordering O1 containing
another ordering O2 if O2 does not conflict with O1. For example, the ordering y1 ≤ y2

contains the ordering y1 < y2 and y1 = y2.

The angle functions, q′1(λ), . . . , q′2n(λ), partition the interval [0, 2π) into at most 2n
pairwise disjoint intervals, denoted by Ij(λ), i.e., Ij(λ) = (q′j(λ), q′j+1(λ)), 0 ≤ j ≤ 2n.

Step 2 with unknown λ∗C ∈ Λ The endpoints of each interval Ij(λ) (1 ≤ j ≤ 2n) are func-
tions of λ ∈ Λ. But, we can compute the set of sensors, denoted by Sj(λ), that lie
within distance λ of the corresponding arc on C for each interval Ij(λ). Similarly, we
determine the set of sensors, denoted by S′j(λ), that covers the point on C with angle
q′j(λ), 1 ≤ j ≤ 2n. Note that sets Sj(λ) and S′j(λ) are not functions of λ. They do not
change for any value λ ∈ Λ.

In this step, no feasibility tests are needed, since the order of the endpoints of the
arcs Qi(λ), 1 ≤ i ≤ n, provides enough information to compute sets Sj(λ) and S′j(λ),
1 ≤ j ≤ 2n.

Step 3 with unknown λ∗C ∈ Λ For each 1 ≤ j ≤ 2n, we compute the angles of vertices of
a regular n-gon, denoted by Bj

1(λ), Bj
2(λ), . . . , Bj

n(λ), where the angle of Bj
1(λ) is q′j(λ).

The angles of vertices of this n-gon are: q′j(λ), (q′j(λ) + 2π
n) mod 2π, . . . , (q′j(λ) + (n −

1)2π
n) mod 2π.

a We now sort all the angle functions of {Bj
i (λ), 1 ≤ i ≤ n and 1 ≤ j ≤ 2n} for

an unknown value λ = λ∗C ∈ Λ. The set size is O(n2). Similar to the sorting
step in Step 1 of Algorithm Optimization, the sorting of O(n2) angle functions for
an unknown value λ∗C can be completed by solving O(log n) feasibility tests. Let

13

q′′1(λ), q′′2(λ), . . . , q′′2n2(λ) be the sorted angle functions of the vertices of 2n different
regular n-gons in clockwise order. Now, we have a new interval Λ which contains
λ∗C and for any value λ ∈ Λ, the ordering (just computed) of angle functions of
{Bj

i (λ), 1 ≤ i ≤ n and 1 ≤ j ≤ 2n} contains the ordering of angles of {Bj
i (λ
∗
C), 1 ≤

i ≤ n and 1 ≤ j ≤ 2n}.
b To obtain the exact ordering of angles of {Bj

i (λ
∗
C), 1 ≤ i ≤ n and 1 ≤ j ≤ 2n}, we

continue to investigate that: for each k, 1 ≤ k ≤ 2n2, whether q′′k(λ∗C) = q′′k+1(λ∗C)
or q′′k(λ∗C) < q′′k+1(λ∗C). We already know that q′′k(λ∗C) ≤ q′′k+1(λ∗C).
For each adjacent pair, i.e., q′′k(λ∗C) and q′′k+1(λ∗C), 1 ≤ k ≤ 2n2 (Note that
q′′2n2+1(λ∗C) = q′′1(λ∗C)), we compute critical values determined by them. Clearly,
there are only O(n2) such critical values. Let K be the set of these O(n2) critical
values and y′ be the smallest feasible value in K.

Return λ∗C = y′.

We call an ordering an exact ordering if only = and < are used in the ordering. From
the algorithms for feasibility tests and the optimization problem described above, an exact
ordering of the angle functions of {Bj

i (λ), 1 ≤ i ≤ n and 1 ≤ j ≤ 2n} determines the feasibility
of a value λ, since an exact ordering determines the set of sensors covering each corner point
in {Bj

i (λ), 1 ≤ i ≤ n and 1 ≤ j ≤ 2n}. Hence, we have the following facts.

• The optimal value λ∗C is some critical value computed in the comparison between two
adjacent angle functions qi(s)(λ) + 2k1π

n & qj(t)(λ) + 2k2π
n , 1 ≤ i, j ≤ n, s, t = 1, 2 and

0 ≤ k1, k2 ≤ n− 1.

• The minimum of λ-values, which produces an ordering of angle functions of {Bj
i (λ)}

that is exactly the same as the ordering of angles of {Bj
i (λ
∗
C)}, is λ∗C .

In Step 3(a), we sort all the angle functions of {Bj
i (λ), 1 ≤ i ≤ n and 1 ≤ j ≤ 2n} for an

unknown value λ = λ∗C . The computed ordering, denoted by O′, might not be the exact
ordering for λ = λ∗C , denoted by O∗, but, O′ contains O∗. In Step 3(b), we continue to find
the exact ordering O∗, and said that the smallest feasible value y′ in K is λ∗C . The proof
is described briefly as follows. Suppose that K does not contain λ∗C . As we know, λ∗C is a
critical value between a pair of angle functions, say, q′′k(λ) and q′′l (λ) where 1 ≤ k < l ≤ 2n2

and l 6= k+1. So, we can see that q′′k(λ∗C) = q′′l (λ∗C). Since q′′k(λ∗C) ≤ q′′k+1(λ∗C) ≤ · · · ≤ q′′l (λ∗C),
we have that q′′k(λ∗C) = q′′k+1(λ∗C) = · · · = q′′l (λ∗C), which implies that λ∗C is in K. This proves
the correctness of the optimization algorithm.

From the above discussion, only O(log n) feasibility tests in total are needed to compute
λ∗C . Therefore, we have the following theorem.

Theorem 6 The min-max problem on the disk can be solved in O(n3.5 log n) time.

Note that our algorithm can be easily extended to the model in which all sensors are
arbitrarily located on the plane (not restricted to the interior of the disk C).

14

4.2 On a simple polygon

In this model we discuss the min-max problem on a simple polygon as defined in Section 2.2.
The parametric-searching approach for a disk (described in Section 4.1) should work for the
case of a polygon where the destination positions of all sensors lie on the perimeter of the
polygon. The main difficulty here is that to check the feasibility of a positive value λ, there
might be O(m) isolated polygonal chains of ∂P within the disk Ci (of radius λ centered at
position Ai) for each sensor Ai. In other words, for a given positive value of λ, each sensor
will contribute O(m) candidate sets of n destination positions on P instead of at most two
candidate sets on a circle. Hence, one can determine whether a given positive value λ is
feasible in the min-max problem on a simple polygon by solving O(mn) matching problems
of size n. Therefore, the feasibility test of the min-max problem on a simple polygon can be
solved in O(mn3.5) time.

Theorem 7 The min-max problem on a simple polygon can be solved in O(mn3.5 log n) time
where m is the size of the simple polygon.

5 Approximation algorithms for the min-sum problem

In this section we discuss the min-sum problem on a disk and a simple polygon, and provide
approximation solutions.

5.1 On the disk

Let λ∗s,C be the optimal value of the min-sum problem on the disk, i.e., λ∗s,C = minσ,θ Sn(σ, θ).
We present two approximation algorithms for the min-sum problem. One algorithm (the

first approach) has an approximation ratio π+1 (Section 5.2). The other (the second approach)
uses the first approach as a subroutine to obtain lower and upper bounds for λ∗s,C and has an
approximation ratio 1 + ε, where ε is an arbitrary constant (Section 5.3).

More notations are introduced as follows. Let d̂C(X,Y) denote the shortest arc distance
between two points X and Y on the boundary of the disk C and let π̂C(X,Y) denote the arc
of length d̂C(X,Y) between X and Y . Clearly, d̂C(X,Y) ≤ π for any two points X and Y on
C. For a point X on C, we denote by Q̂X(r) the arc consisting of all points Y on C such that
d̂C(X,Y) ≤ r.

For each i = 1, 2, . . . , n, let ωi be the smallest distance between Ai and the disk C, and
denote by Bi the point on C for which the distance d(Ai, Bi) = ωi. We note that for each
i = 1, 2, . . . , n, Bi is unique if Ai is not located at the center of C. In the case when Ai is
located at the center of C, an arbitrary point on C is selected to be Bi. Let Ω =

∑n
i=1 ωi.

Hence, we have the following lemma.

Lemma 8 Ω ≤ λ∗s,C .

5.2 The first approach

The first approach, called Algorithm 1, consists of three steps.

Algorithm 1

15

Step 1 For each sensor Ai, i = 1, 2, . . . , n, compute Bi.

Step 2 Compute the optimal min-sum assignment for the set of n points B1, B2, . . . , Bn, by
using the algorithm for sensors on the perimeter of the disk described in Section 3.2.
Let B′i be the destination of Bi, 1 ≤ i ≤ n.

Step 3 Move Ai to B′i, 1 ≤ i ≤ n, and compute S1
n =

∑n
i=1 d(Ai, B′i).

In Section 3.2 we showed that Step 2 of Algorithm 1 can be implemented in O(n2) time.
Thus the above algorithm can be solved in O(n2) time.

5.2.1 Approximation bound of Algorithm 1

In this section, we show that S1
n computed by the first approach is bounded by (π+1)×λ∗s,C .

Suppose that A′i is the destination of sensor Ai, i = 1, 2, . . . , n, in an optimal solu-
tion. Clearly, A′1, A

′
2, . . . , A

′
n lie on C and form a regular n-gon. Also,

∑n
i=1 d̂C(Bi, B′i) ≤∑n

i=1 d̂C(Bi, A′i) since {B′1, B′2, . . . , B′n} is an optimal solution for the one dimensional min-
sum problem with the input {B1, B2, . . . , Bn}. The following lemma is easy to show.

Lemma 9 For any two points x, y on C, d̂C(x, y) ≤ π
2 × d(x, y).

In the following, we establish an upper bound on S1
n.

S1
n =

n∑
i=1

d(Ai, B′i)

≤
n∑
i=1

[d(Ai, Bi) + d̂C(Bi, B′i)] (Triangle Inequality)

≤
n∑
i=1

d(Ai, Bi) +
n∑
i=1

d̂C(Bi, A′i)

≤
n∑
i=1

d(Ai, Bi) +
π

2
×

n∑
i=1

d(Bi, A′i) (Lemma 9)

≤
n∑
i=1

d(Ai, Bi) +
π

2
×

n∑
i=1

[d(Bi, Ai) + d(Ai, A′i)] (Triangle Inequality)

≤ (π + 1)× λ∗s,C (Lemma 8).

From the above discussion, it follows that

Theorem 10 Algorithm 1 can be implemented in O(n2) time and its approximation ratio is
no more than π + 1.

5.3 The second approach

The following lemma is crucial for the second approach (Algorithm 2).

Lemma 11 In an optimal solution, there exists at least one sensor Ai (1 ≤ i ≤ n), such that
its destination A′i on C is on the arc Q̂Bi(

π
2 ×

S1
n
n).

16

Proof. It is clear that S1
n ≥ λ∗s,C . Let A′i be the destination of sensor Ai in an optimal

solution, i = 1, 2, . . . , n. Then there is at least one sensor, say Ak (1 ≤ k ≤ n), such that the
distance d(Ak, A′k) is no more than S1

n
n .

A
B

x

x

1

2

k
k

Figure 7: Lemma 11: d̂C(x1, Bk) = d̂C(x2, Bk) = π
2 ×

S1
n
n ⇒ d(x1, x2) ≥ 2S1

n
n (Lemma 9).

By Lemma 9, all points on C at distance no more than S1
n
n from Ak lie on the arc Q̂Bk

(π2 ×
S1

n
n) (recall that Bk is the point on C closest to Ak), which completes the proof of Lemma 11.

We now describe the second algorithm.

Algorithm 2

Step 1 Use Algorithm 1 to compute S1
n, as defined above.

Step 2 For each i = 1, 2, . . . , n, find the arc Q̂Bi(
π
2 ×

S1
n
n) and compute the set of points that

partition the arc into d 1
ε′ e pieces of equal length where ε′ = 2ε

π(π+1) . Clearly, there are
n× (d 1

ε′ e+ 1) such points in total.

Step 3 For each point X, construct a regular n-gon PX with one vertex located at X, and
find the optimal assignment of the n sensors A1, A2, . . . , An, to the vertices of PX by
solving a weighted bipartite matching problem. (The Hungarian method to solve the
weighted matching problem in a complete bipartite graph of size n takes O(n3) time
(see [10])).

Step 4 Among all n × (d 1
ε′ e + 1) regular n-gons thus constructed, find the one with the

minimum cost (denoted by S2
n), and output the arrangement of the n sensors to the

vertices of the n-gon.

Remark. Step 1 and Step 2 of Algorithm 2 use Algorithm 1 as a subroutine to locate a
destination point that lies within the arc Q̂Bi(

π
2 ×

S1
n
n), which is then partitioned into pieces.

5.3.1 Analysis of the second approach

First, it is evident that the running time of the second approach is determined by the time
needed to solve n× (d 1

ε′ e+ 1) ∈ O(nε) bipartite matching problems.

17

According to Lemma 11, there exists an optimal solution in which one of the vertices of
the corresponding regular n-gon is located at a point on the arc Q̂Bk

(π2 ×
S1

n
n) for some k,

1 ≤ k ≤ n. In Step 2, the arc Q̂Bk
(π2 ×

S1
n
n) is partitioned into d 1

ε′ e pieces, and therefore, the

length of each piece is no more than πS1
nε
′

n (note that the length of Q̂Bk
(π2 ×

S1
n
n) is πS1

n
n). Since

all possible values of k are considered, the difference between S2
n (computed by the second

approach) and λ∗s,C (the optimal cost) is no more than

n× 1
2
× πS1

nε
′

n
=
πS1

nε
′

2
=

S1
nε

π + 1
≤ ελ∗s,C (Theorem 10).

Therefore, we have the following theorem.

Theorem 12 The approximation ratio of Algorithm 2 is no more than 1 + ε for a given
constant ε, and the running time is O(1

εn
4).

5.4 On a simple polygon

Let λ∗s,P be the optimal value of the min-sum problem on a polygon P . In this subsec-
tion we present an approximation algorithm for the min-sum problem on P , which has an
approximation ratio 1 + ε where ε is an arbitrary constant.

Our algorithm for a simple polygon is very similar to the second approach for the disk.
This is due to the fact that we use the Euclidean metric (not the geodesic metric) to measure
the distance between two points in the plane. In our second approach for the disk, we
use Algorithm 1 as a subroutine to obtain lower and upper bounds for λ∗s,C . However, our
approximation algorithm for a simple polygon uses the solution for the min-max problem on
the polygon to obtain lower and upper bounds for λ∗s,P . Let λ∗m,P be the optimal value of the
min-max problem on P . It is easy to see that λ∗m,P ≤ λ∗s,P ≤ n× λ∗m,P .

Our algorithm for a simple polygon P is described below.

Step 1 Use the approach for the min-max problem on P to compute λ∗m,P as described above.

Step 2 For each i, j, where 1 ≤ i ≤ n and 0 ≤ j < n, find the sub-edge e′i,j of edge ej that is
within the circle of radius λ∗m,P centered at position Ai, and compute a set of points that

partition the sub-edge into dnε e pieces of equal length. There aremn×(dnε e+1) ∈ O(mn
2

ε)
such points in total.

Step 3 For each point X, construct a set of n positions on P such that one of them is located
at X and the polygonal distance between any two consecutive positions is L(P)/n, and
find the optimal assignment of the n sensors A1, A2, . . . , An to the set of n positions by
using the algorithm [10].

Step 4 Among all O(mn
2

ε) candidate sets of n positions thus constructed, find the one with
the minimum cost.

It is evident that the running time of the above approach is determined by the time needed
for solving O(mn

2

ε) weighted bipartite matching problems.
The reason why the approximation ratio of the above approach is bounded by 1 + ε, is

as follows. Since λ∗s,P ≤ n × λ∗m,P , there is at least one sensor whose moving distance to

18

its destination is no more than λ∗m,P in an optimal solution. Let Ai be one such sensor; its
destination position lies on edge ej in the optimal solution. In Step 2, the sub-edge e′i,j is

partitioned into dnε e pieces, and therefore, the length of each piece is no more than
2ελ∗m,P

n .
Since all possible values of i and j are considered, the difference between the value computed
by the above approach and λ∗s,P (the optimal cost) is no more than

n× 1
2
×

2λ∗m,P
n

= ελ∗m,P ≤ ελ∗s,P .

Therefore, we have the following theorem.

Theorem 13 The approximation ratio of the approach for a simple polygon is no more than
1 + ε for a given constant ε, and the running time is O(1

εmn
5).

5.5 Experimental results on the complexity of the min-sum problem

It is not known whether the min-sum problem can be solved optimally. Two related problems
which could help clarify the issue are the following.

1. Given a counter-clockwise ordering of n sensors on the perimeter of the disk C, solve
the min-sum problem.

2. Sweep a regular n-gon along the perimeter of C. The initial position of one corner point
of the regular n-gon has angle of zero and the end position of that corner point has angle
of π/n. Find the number of different counter-clockwise orderings of n sensors on the
perimeter of C, that is, the number of changes of their matchings to the corner points
of the n-gon.

Table 1 shows our experimental results to resolve the second problem described above.

Table 1: Experimental result for the number of different orderings (over 20 test sets)

of sensors (n) # of regular n-gons (t) average # of orderings
10 1,000 5.40
20 2,000 8.40
30 3,000 11.75
40 4,000 15.45
50 5,000 18.10
60 6,000 19.80
70 7,000 24.50
80 8,000 26.60
90 9,000 30.85
100 10,000 35.55

The first column in the table represents the number n of sensors contained in C (the
n sensors are randomly generated), the second column represents the number t of regular
n-gons being tested (i.e., the arc distance between two consecutive regular n-gons is 2π

t∗n),

19

and the third column represents the average number of different counter-clockwise orderings
of the n sensors to the vertices of the t n-gons (for each value of n, 20 different sets of n
sensors are generated). From this table, we can see that there are no more than n different
counter-clockwise orderings in the experiment.

6 Conclusion and open problems

In this paper we gave an algorithm for solving the min-max problem and a PTAS (Polyno-
mial Time Approximation Scheme) for the min-sum problem in both one and two dimensions.
Although it is unknown whether the min-sum problem is NP -hard, we conjecture that it can
be solved in polynomial time. In addition, several other variants of the problem on simple
polygons and regions are of interest for further investigation, including k-barrier coverage,
regions with holes, and various types of sensor placements and motions. Thus, in Subsec-
tion 2.2, in order to minimize the number of sensors used when scanning the perimeter, one
should take into account sections already scanned. For example, this is the case if the polygon
is a narrow rectangle of height less than the range of a sensor; this in itself is an interesting
optimization problem which is worthy of further investigation. Also of interest is to refine the
sensor motion model, the network model, and the communication model in order to enable
effective intrusion detection and barrier coverage. For example, the communication model
becomes crucial when assuming the sensors either do not have knowledge of the region or do
not know their coordinates.

Acknowledgements

We would like to thank the anonymous reviewers for their valuable feedback, insights and
comments.

References

[1] N. Ahmed, S.S. Kanhere, and S. Jha. The holes problem in wireless sensor networks: a
survey. ACM SIGMOBILE Mobile Computing and Communications Review, 9(2):4–18,
2005.

[2] P. Balister, B. Bollobas, A. Sarkar, and S. Kumar. Reliable density estimates for coverage
and connectivity in thin strips of finite length. Proceedings of the 13th Annual ACM
International Conference on Mobile Computing and Networking, pages 75–86, 2007.

[3] A. Chen, S. Kumar, and T.H. Lai. Designing localized algorithms for barrier coverage.
Proceedings of the 13th Annual ACM International Conference on Mobile Computing
and Networking, pages 63–74, 2007.

[4] R. Cole. Slowing down sorting networks to obtain faster sorting algorithms. Journal of
the ACM (JACM), 34(1):200–208, 1987.

[5] N. Heo and PK Varshney. A distributed self spreading algorithm for mobile wireless
sensor networks. Wireless Communications and Networking, 2003. WCNC 2003. 2003
IEEE, 3, 2003.

20

[6] N. Heo and PK Varshney. Energy-efficient deployment of intelligent mobile sensor net-
works. Systems, Man and Cybernetics, Part A, IEEE Transactions on, 35(1):78–92,
2005.

[7] J.E. Hopcroft and R.M. Karp. An n2.5 algorithm for maximum matchings in bipartite
graphs. SIAM Journal on Computing, 2(4):225–231, 1973.

[8] S. S. Hu. ‘Virtual Fence’ along border to be delayed. Washington Post, Thursday,
February 28, 2008.

[9] B. Jung and G.S. Sukhatme. Tracking targets using multiple robots: the effect of envi-
ronment occlusion. Autonomous Robots, 13(3):191–205, 2002.

[10] H. W. Kuhn. The Hungarian method for the assignment problem. Naval Research
Logistics Quarterly, 2:83–97, 1955.

[11] S. Kumar, T.H. Lai, and A. Arora. Barrier coverage with wireless sensors. Wireless
Networks, 13(6):817–834, 2007.

[12] J. Liu, P. Cheung, F. Zhao, and L. Guibas. A dual-space approach to tracking and
sensor management in wireless sensor networks. Proceedings of the 1st ACM International
Workshop on Wireless Sensor Networks and Applications, pages 131–139, 2002.

[13] N. Megiddo. Applying parallel computation algorithms in the dsign of serial algorithms.
Journal of the ACM (JACM), 30(4):852–865, 1983.

[14] J. O’Rourke. Art gallery theorems and algorithms. Oxford University Press, Inc. New
York, NY, USA, 1987.

[15] A. Schrijver. Disjoint circuits of prescribed homotopies in a graph on a compact surface.
Journal of Combinatorial Theory Series B, 51(1):127–159, 1991.

[16] S. Se, D. Lowe, and J. Little. Mobile robot localization and mapping with uncertainty
using scale-invariant visual landmarks. The International Journal of Robotics Research,
21(8):735, 2002.

21

