

Chapter 3

Repeating Code

What is in this Chapter ?
When programming, it is often necessary to repeat a selected portion of code a specific
number of times, or until some condition occurs. We will look here at the FOR and WHILE
loop constructs that are available in most programming languages.

COMP1405 – Repeating Code Fall 2015

 - 76 -

 3.1 Repeating Code Using For Loops

Assume that we want to stack concrete slabs on top of each
other to form a staircase. Write a program that will
determine how many slabs would be needed to create a
staircase n stairs high. So, for example, the staircase
shown here is 3 stairs high and would require 6 slabs.

To begin, you should realize that n may be a very large
number. What is our mathematical model ?

Noticing how the number of slabs for each stair increases by one each time, here is a formula
that shows how many slabs we need:

1 + 2 + 3 + 4 + … + n

Some of you may realize that this value can be computed as n(n+1)/2. However, assume that
we are unaware of that nifty formula. How would you go about solving this problem ? You
might realize that some kind of counter is required (i.e., a variable) and that we need to keep
adding an increasingly large integer to the count.

Well, in JAVA, we do have a way of repeating code using something called a FOR loop. Here
is the solution that uses a for loop:

int total = 0;
for (int height = 1; height<=n; height++) {
 total = total + height;
}
System.out.println(total + " slabs are needed for staircase of " + n + " stairs.");

Notice that the for loop has parentheses () and then is followed by braces { } which contains
the body of the loop (i.e., the code that is to be repeated). Let us take a look at what is inside
the () parentheses.

Notice that it declares an int variable called height and gives it a value of 1 to begin. This
variable height is called a loop variable and in our example it represents a counter.

After the first semi-colon ; there is a conditional JAVA expression height<=n … which is called
the loop stopping condition. That is, the loop will keep repeating as long as our counter is
less than or equal to the value of n. The moment the height reaches n+1, the loop stops and
our answer is printed.

After the next semi-colon ; there is the loop update expression code height++ which is
evaluated each time the loop completes a cycle. In our case, each time through the loop we
just need to increase the counter by 1.

COMP1405 – Repeating Code Fall 2015

 - 77 -

Notice that we can even use the value of the height variable within the loop. In general, a
loop variable can be used any time within the loop but it cannot be used outside the loop body.
The only exception to this is if we declare the type of the loop variable outside the loop as
follows:

int height;
for (height = 1; height<=n; height++) {
 total = total + height;
}

Here is another example. Suppose that we wanted to print out the odd numbers from 1 to 100.
How could we do this ? Do you know how to check whether or not a number is odd ?

We can check if the remainder after dividing by two is zero. The modulus operator % gives the
remainder after dividing, so we do n%2 on number n. We just need to put this into a for loop:

for (int n=1; n<=100; n++) {
 if ((n%2) > 0)
 System.out.println(n);
}

Notice that we can use the same counter (but called it n this time). Then in the loop we just
check if the modulus is non-zero and print out the number in that case since it would be odd.

We could eliminate the if statement by simply counting by twos (starting at 1) as follows …

for (int n=1; n<=100; n=n+2) {
 System.out.println(n);
}

The above code too will print out only the odd numbers from 1 to 100 since now the counter n
increases by two each time, thereby skipping over all the even numbers. You should realize
that the update expression can be any JAVA code.

Here is another example that prints out all the even numbers backwards from 100 to 1:

for (int n=100; n>0; n=n-2) {
 System.out.println(n);
}

Notice how we started n at a higher value now and that we subtract by two each time (i.e.,
100, 98, 96, etc..). Also, notice that the stopping condition now uses a > instead of <= (i.e., as
long as n is above zero we keep decreasing it by 2).

COMP1405 – Repeating Code Fall 2015

 - 78 -

What would happen if the stopping-expression evaluated to false right away as follows:

for (int n=1; n>=100; n++) {
 System.out.println(n);
}

In this case, n starts at 1 and the stopping condition determines that it is not greater than or
equal to 100. Thus, the loop body never gets evaluated. That is, the for loop does nothing
… your program ignores it.

A similar unintentional situation may occur if you accidentally place a semi-colon ; after the
round brackets by mistake:

for (int n=1; n<=100; n++); {
 System.out.println(n);
}

In this situation, JAVA assumes that the for loop ends at that semi-colon ; and that it has no
body to be evaluated. In this case, the body of the loop is considered to be regular code
outside of the for loop and it is evaluated once. Hence JAVA “sees” the above code as:

for (int n=1; n<=100; n++){
}
System.out.println(n);

One last point regarding for loops is that you do not need the braces around the loop body if
the loop body contains just one JAVA expression:

for (int n=100; n>0; n=n-2)
 System.out.println(n);

In that case though, you should still indent your code so that it is clear what is in the loop.

Example:

Suppose that you wanted to ask the user for 5 exam marks and then
print the average exam mark.

You might write a program that looks like this:

COMP1405 – Repeating Code Fall 2015

 - 79 -

int n1, n2, n3, n4, n5;

System.out.print("Enter exam mark 1: ");
n1 = new Scanner(System.in).nextInt();
System.out.print("Enter exam mark 2: ");
n2 = new Scanner(System.in).nextInt();
System.out.print("Enter exam mark 3: ");
n3 = new Scanner(System.in).nextInt();
System.out.print("Enter exam mark 4: ");
n4 = new Scanner(System.in).nextInt();
System.out.print("Enter exam mark 5: ");
n5 = new Scanner(System.in).nextInt();

System.out.println("The average is " + ((n1+n2+n3+n4+n5)/5));

The above code gets all the exam marks first and stores them into variables… afterwards
computing the sum and average. Instead of storing each number separately, we can add
each number to an accumulating sum as follows:

int sum;

System.out.print("Enter exam mark 1: ");
sum = new Scanner(System.in).nextInt();
System.out.print("Enter exam mark 2: ");
sum = sum + new Scanner(System.in).nextInt();
System.out.print("Enter exam mark 3: ");
sum = sum + new Scanner(System.in).nextInt();
System.out.print("Enter exam mark 4: ");
sum = sum + new Scanner(System.in).nextInt();
System.out.print("Enter exam mark 5: ");
sum = sum + new Scanner(System.in).nextInt();

System.out.println("The average is " + (sum/5));

While this code may work fine, what would happen if we needed 100 numbers ? Clearly,
some part of the code is repeating over and over again (i.e., adding the next number to the
sum). Here is how we could modify our program to get 100 numbers by using a for loop:

int sum = 0;

for (int count=1; count<=100; count++) {

System.out.print("Enter exam mark " + count + ": ");
sum = sum + new Scanner(System.in).nextInt();

}

System.out.println("The average is " + (sum/100));

COMP1405 – Repeating Code Fall 2015

 - 80 -

In our example, what if we did not know how many time to repeat (i.e., we don’t know how
many exam marks there will be) ? Well, in that case we can ask the user of the program for
the total number as follows …

import java.util.Scanner;

public class CalculateAverageProgram {
 public static void main(String[] args) {

 int nums, sum;
 System.out.println("How many exam marks do you want to average ?");

 nums = new Scanner(System.in).nextInt();
 sum = 0;

 // Get the numbers one at a time, and add them
 for (int count=1; count<=nums; count++) {
 System.out.print("Enter exam mark " + count + ": ");
 sum += new Scanner(System.in).nextInt();
 }
 System.out.println("The average is " + (sum / nums));
 }
}

Notice that the program is now flexible in the number of exam marks that it is able to average.
Here is an example of the output:

How many exam marks do you want to average ?
5
Enter exam mark 1: 10
Enter exam mark 2: 67
Enter exam mark 3: 43
Enter exam mark 4: 96
Enter exam mark 5: 20
The average is 47

Example:

Consider a common situation in which you want to count the total of a set of values. For
example, assume that you are having a pizza lunch and you want your employees to tell you
how many slices they each want. Your goal is to determine how
many large pizzas to buy (assume 8 slices per large pizza … and
all just plain pepperoni). Write a program that does this by first
asking how many people will be at the pizza lunch and then
asking for their desired slice counts.

Here is the structure of the program:

COMP1405 – Repeating Code Fall 2015

 - 81 -

import java.util.Scanner;

public class PizzaLunchProgram {
 public static void main(String args[]) {
 int numEmployees;

 // Find out how many people will be at the lunch
 System.out.print("How many employees will be at the lunch ? ");
 numEmployees = new Scanner(System.in).nextInt();

 // Now ask each for the number of slices that they want and add to total
 ...

 // Now find out how many whole large pizzas to buy
 ...
 }
}

Now we need to repeatedly ask each employee how many slices they want. Using a for loop,
we need to do this numEmployees number of times:

 total = 0;
 for (int i=0; i<numEmployees; i++) {
 System.out.print("How many slices for employee " + i + " ? ");
 slices = new Scanner(System.in).nextInt();
 total += slices;
 }

Notice how i is used as an index to count. This is the most popular loop variable name.
Finally, we need to determine how many pizzas are needed by dividing by the number of slices
per pizza (i.e., 8) and making sure to round up to the next whole number of pizzas. Here is the
final program:

import java.util.Scanner;

public class PizzaLunchProgram {
 public static void main(String[] args) {
 int numEmployees, slices, total;

 // Find out how many people will be at the lunch
 System.out.print("How many employees will be at the lunch ? ");
 numEmployees = new Scanner(System.in).nextInt();

 // Now ask each for the number of slices that they want and add to total
 total = 0;
 for (int i=1; i<=numEmployees; i++) {
 System.out.print("How many slices for employee " + i + " ? ");
 slices = new Scanner(System.in).nextInt();
 total += slices;
 }

 // Now find out how many whole large pizzas to buy
 System.out.println("You need to order " +
 Math.ceil(total /8.0) + " large pizzas.");
 }
}

COMP1405 – Repeating Code Fall 2015

 - 82 -

Notice that we divided by 8.0 (i.e., a double) instead of just 8 (i.e., an int). That is because if
we divide an int by another int, we get an int result which discards any remainders. For
example, 20/8 would give us 2 instead of 2.5. That means we would order 2 pizzas, when we
really needed 2 and a half pizzas. The Math.ceil() function brings the 2.5 up to the nearest
whole number of 3 ... so we would order 3 large pizzas ... having a few leftover slices.

Homework:

Modify the above code to show the average number of pizza slices that each person will eat ?

Example:

Another kind of counting involves searching through some
items to enumerate (i.e., count) them. Perhaps we need to
count the number of items that match some kind of search
criteria. For example, how would we write a program that
asks for the ages of n people and then indicates how many of
them are adults (i.e., 18 or over) ?

import java.util.Scanner;

public class AdultCountingProgram {
 public static void main(String[] args) {
 int numPeople, age, adults;

 // Find out how many people there are
 System.out.print("How many people are there ? ");
 numPeople = new Scanner(System.in).nextInt();

 // Now count the adults
 adults = 0;
 for (int i=1; i<=numPeople; i++) {
 System.out.print("How old is person " + i + " ? ");
 age = new Scanner(System.in).nextInt();
 if (age >= 18)
 adults++;
 }
 System.out.println("There are " + adults + " adults.");
 }
}

COMP1405 – Repeating Code Fall 2015

 - 83 -

Example:

Here is an example that involves a bit more thinking. Imagine that you are creating a game
where two players are moving along a one-dimensional grid (i.e., path). One player always
jumps forward 2 steps at a time, while the other always jumps forward 3 steps at a time.
Develop an algorithm that figures out how many grid locations have not been landed on if the
two players start at the same location (i.e., 0) and they each jumped up to grid location n.

How do we approach this problem ? First, examine the grid locations covered by player 1:

0, 2, 4, 6, 8, 10, 12, 14, … (seems to be the even numbered locations)

and those covered by player 2:

0, 3, 6, 9, 12, 15, 18, 21, … (seems to be the locations that are multiples of 3)

We could try to figure out a formula… but can we do this with some kind of loop counter ?
What if we examine each location at a time … can we determine by the location number
whether or not it would be landed on ?

int spotsNotLandedOn = 0;

for (int i=0; i<=n; i++) {
 if (((i%2) != 0) && ((i%3) != 0))
 spotsNotLandedOn++;
}

How could we change the code so that we display a list of all the locations that the two players
meet at along the way ?

We would just need to find the locations that were multiples of 2 or 3:

for (int i=0; i<=n; i++) {
 if (((i%2) == 0) && ((i%3) == 0))
 System.out.println(i);
}

COMP1405 – Repeating Code Fall 2015

 - 84 -

 3.2 Nested Loops

It is sometimes necessary to have loops within loops. Whenever we have a loop placed inside
of another loop, this is called a Nested Loop. Nested loops are often used when 2-
dimensional tables need to be traversed or displayed.

Example:
Write a program that displays the following table of values by using nested for loops:

1
2 1
3 2 1
4 3 2 1
5 4 3 2 1
6 5 4 3 2 1
7 6 5 4 3 2 1
8 7 6 5 4 3 2 1
9 8 7 6 5 4 3 2 1

To do this, we can display one line at a time. Notice that each line has numbers decreasing in
their values. So, for example, we can do the last line very simply as follows:

for (int i=9; i>0; i--)
 System.out.print(i + " ");

Notice that the index value goes backwards ... starting at 9 and decreasing to 1. Also notice
that we are not using println(), but print() instead, so that consecutive values are displayed on
the same line, separated by spaces. We can place the above code in a for loop so that it
repeats 9 times. Notice to the right, however, the table that would be produced:

for (int r=1; r<=9; r++) {

 for (int i=9; i>0; i--)
 System.out.print(i + " ");

 System.out.println();
}

9 8 7 6 5 4 3 2 1
9 8 7 6 5 4 3 2 1
9 8 7 6 5 4 3 2 1
9 8 7 6 5 4 3 2 1
9 8 7 6 5 4 3 2 1
9 8 7 6 5 4 3 2 1
9 8 7 6 5 4 3 2 1
9 8 7 6 5 4 3 2 1
9 8 7 6 5 4 3 2 1

This is an example of a nested loop. Notice that the outer loop uses a different loop variable
(i.e., r) than the inner loop (i.e., i). This code, however, does not produce exactly what we
want. Notice as well the use of System.out.println() AFTER the inner loop, which prepares
for displaying onto the next line. Thinking backwards ... we need to do the following for the
2nd last line in the table:

for (int i=8; i>0; i--)
 System.out.print(i + " ");

This code is identical to what we have for the inner loop ... except that the starting loop value
of 8 is used instead of 9. I think that you can see that each row, when going up from the

COMP1405 – Repeating Code Fall 2015

 - 85 -

bottom, has a starting value of one less than the row below it. Hence, instead of fixing a value
of 9 as the starting value for the inner loop, we can have it be adjustable according to the row
number as follows:

for (int r=1; r<=9; r++) {

 for (int i=r; i>0; i--)
 System.out.print(i + " ");

 System.out.println();
}

1
2 1
3 2 1
4 3 2 1
5 4 3 2 1
6 5 4 3 2 1
7 6 5 4 3 2 1
8 7 6 5 4 3 2 1
9 8 7 6 5 4 3 2 1

Now we have the result that we want.

Example:

This one is a bit trickier. Write a program that displays the following table of values by using
nested for loops (ignore the bold values for the moment):

1 2 3 4 5 6 7 8 9
2 1 2 3 4 5 6 7 8
3 2 1 2 3 4 5 6 7
4 3 2 1 2 3 4 5 6
5 4 3 2 1 2 3 4 5
6 5 4 3 2 1 2 3 4
7 6 5 4 3 2 1 2 3
8 7 6 5 4 3 2 1 2
9 8 7 6 5 4 3 2 1

At first glance, you may notice that the bottom left triangle is the same as our previous
example. So, maybe we can start with that code as a template. But what is different ? Well,
it appears that non-bold values are almost the reverse of our inner loop. So perhaps, after
displaying one line from our inner loop, we can have a second inner loop to continue that line
by increasing the numbers again:

for (int r=1; r<=9; r++) {

 for (int i=r; i>0; i--)
 System.out.print(i + " ");

 // for (???)
 // System.out.print(???);

 System.out.println();
}

The second inner loop will simply require counting from 2 to (10 - r) as follows:

COMP1405 – Repeating Code Fall 2015

 - 86 -

for (int r=1; r<=9; r++) {

 for (int i=r; i>0; i--)
 System.out.print(i + " ");

 for (int i=2; i<=10-r; i++)
 System.out.print(i + " ");

 System.out.println();
}

Notice that we were able to re-use the loop variable i again in the 2nd inner loop, since the first
inner loop has been completed by the time that the 2nd inner loop is called. Hence, i is no
longer defined after the first inner loop completes. Notice as well that it can be a bit tricky to
get this right, especially if we make some small errors in the start/end bounds. Here are some
bad results from some of these kinds of errors:

for (int r=1; r<=9; r++) {
 for (int i=r; i>0; i--)
 System.out.print(i + " ");
 for (int i=2; i<10-r; i++)
 System.out.print(i + " ");
 System.out.println();
}

1 2 3 4 5 6 7 8
2 1 2 3 4 5 6 7
3 2 1 2 3 4 5 6
4 3 2 1 2 3 4 5
5 4 3 2 1 2 3 4
6 5 4 3 2 1 2 3
7 6 5 4 3 2 1 2
8 7 6 5 4 3 2 1
9 8 7 6 5 4 3 2 1

for (int r=1; r<=9; r++) {
 for (int i=r; i>0; i--)
 System.out.print(i + " ");
 for (int i=2; i<9-r; i++)
 System.out.print(i + " ");
 System.out.println();

 }

1 2 3 4 5 6 7
2 1 2 3 4 5 6
3 2 1 2 3 4 5
4 3 2 1 2 3 4
5 4 3 2 1 2 3
6 5 4 3 2 1 2
7 6 5 4 3 2 1
8 7 6 5 4 3 2 1
9 8 7 6 5 4 3 2 1

for (int r=1; r<=9; r++) {
 for (int i=r; i>0; i--)
 System.out.print(i + " ");
 for (int i=1; i<r; i++)
 System.out.print(i + " ");
 System.out.println();

 }

1
2 1 1
3 2 1 1 2
4 3 2 1 1 2 3
5 4 3 2 1 1 2 3 4
6 5 4 3 2 1 1 2 3 4 5
7 6 5 4 3 2 1 1 2 3 4 5 6
8 7 6 5 4 3 2 1 1 2 3 4 5 6 7
9 8 7 6 5 4 3 2 1 1 2 3 4 5 6 7 8

Example:

Now let us do an example where we have to think a little
more. Write a program that determines all the prime
integers from 1 to 100. An integer is prime if it is only
divisible by itself and 1. So, let us say that we wanted to
determine if the number 25 is prime. We can try dividing 25
by all the numbers from 2 through 24 (no need to check 1
and 25 because they will divide evenly for sure).
Here is what we need to do:

COMP1405 – Repeating Code Fall 2015

 - 87 -

25/2 = 12.5 // 25%2 = 1
25/3 = 8.33 // 25%3 = 1
25/4 = 6.25 // 25%4 = 1
25/5 = 5 // 25%5 = 0

We can stop as soon as we divide by 5 because the result is a whole number. Therefore, 25
must not be prime. We can use the modulus operator to determine if a number divides
evenly into another. (x%y) will give a zero value if y divides evenly into x, otherwise it will
give the integer remainder (see values on the right above).

So, to write the program, we could simply loop through all 100 numbers from 1 through 100
and try dividing each number by all the numbers before it. Can you sense this structure:

 for (int i=1; i<=100; i++) {
 for (int j=2; j<i; j++) {
 if (i%j == 0) {
 ...
 }
 }
 }

In the above code, the potential prime numbers are the values of i. The value of j represents
all numbers less than i, except 1 and i itself. All that remains now is to print out the prime
numbers when we find them. For the inner loop, when the if statement evaluates to true, then
we found that i is not prime because of the numbers below it divided into i evenly. So, in that
case, we need to continue the inner loop, we can set some kind of boolean flag to false to
indicate that i was not prime. Then after the inner loop, we can check the flag and print out i
as prime if the flag was not set to false. Here is the code:

for (int i=1; i<=100; i++) {
 isPrime = true; // Assume that i is prime
 for (int j=2; j<i; j++) {
 if (i%j == 0)
 isPrime = false; // if factor found, not prime
 }
 if (isPrime)
 System.out.println(i);
}

There is one small aspect of this program that is a little inefficient. Many numbers will be
divisible by two ... which is the first value of j when going through the inner loop. In those
cases, the flag will be set to false right away but the inner loop continues checking all of the
other values up to i-1. This is wasted time, since we already found out that the number was
divisible by 2, and so it is not prime. When programming, there are many times that we want
to exit a loop based on some condition occurring.

In JAVA, to indicate that we want to exit a loop early (i.e., without completing it fully), we use
the break statement. Whenever JAVA encounters a break statement, it immediately stops
looping and the program continues with the code that immediately follows the loop.

COMP1405 – Repeating Code Fall 2015

 - 88 -

Here is the final code:

public class PrimeNumbersProgram {
 public static void main(String[] args) {
 boolean isPrime;

 System.out.println("The prime numbers from 1 to 100 are:");
 for (int i=1; i<=100; i++) {
 isPrime = true; // Assume that i is prime
 for (int j=2; j<i; j++) {
 if (i%j == 0) {
 isPrime = false; // if factor found, not prime
 break;
 }
 }
 if (isPrime)
 System.out.println(i);
 }
 }
}

On a similar note, there is a continue statement that can be used instead of break. It does
not cause the loop to quit altogether, rather it causes JAVA to stop that particular iteration (i.e.,
round) of the loop and go to the next iteration of the loop. It would not be beneficial in this
program. It is more useful when there is a lot of "work" to be done for each item.

For example, consider having to search 500 resumes to hire a worker.
You may be looking for a particular attribute (e.g., previous
administrative experience). You may go through each application and
browse it quickly. If you do not see the desired attribute right away,
you may want to quickly move on (i.e., continue) to the next resume
instead of spending a lot of time examining this candidate's resume
any further. That would save you a lot of time...

 for (int i=0; i<yearsExperience.length; i++) {

 if (yearsExperience[i] < 2)
 continue;

 // ... code to determine if there is administrative experience ...
 if (!hasAdminExperience)
 continue;

 // ... otherwise check the resume further...
 }

You should use break and continue in order to speed up your loops, especially when you
have a lot of data to sift through.

COMP1405 – Repeating Code Fall 2015

 - 89 -

 3.3 Conditional Iteration: While Loops

In some situations, we do not know how many times to repeat
something. That is, we may need to repeat some code until a
particular condition occurs. For example, consider a cashier
scanning items at a checkout line in a store. The cashier
repeatedly adds the items to a running total. In this scenario
there is no way the cashier could know in advance how many
items will be scanned ... it could be 1, 10, 50, etc… In real life,
the cashier would likely press a particular button (e.g., done)
once all items are scanned.

Whenever we have a looping situation in which we do not know how many times to loop, we
should use the while loop ... which has this format:

while (stopping condition) {
 ... loop body ...
}

The stopping condition must be a boolean expression that evaluates to true or false. If the
stopping condition starts off as true, then the loop body code runs once and then the stopping
condition is checked again. As long as the stopping condition remains true, the loop keeps
going. Whenever it is found to be false, the loop stops and the program continues with the
code that follows the while loop.

Here is some code that uses a while loop to print the numbers from 0 to 99. To the right is an
equivalent for loop:

int count = 0;
while (count < 100) {
 System.out.println(count++);
}

for (int count = 0; count<100; count++) {
 System.out.println(count);
}

In such a situation, we would always use a for loop instead, since we know exactly how many
times to repeat the code. while loops are meant for situations where we are waiting for some
condition to occur in order to stop looping.

Just as with for loops, you should be careful not to put a semi-colon ; after the round brackets,
otherwise your loop body will not be evaluated. Usually your code will loop forever because
the stopping condition will likely never change to false:

while (count < 100); { // This code will loop forever
 System.out.println(count++);
}

COMP1405 – Repeating Code Fall 2015

 - 90 -

As with the if statements and for loops, the braces { } are not necessary when the loop body
contains a single JAVA expression:

while (count < 100)

System.out.println(count++);

Some students tend to confuse the while loop with if statements and try to replace an if
statement with a while loop. Do you understand the difference in the two pieces of code
below ?

if (age > 18) while (age > 18)
 discount = 0; discount = 0;

Assume that the person’s age is 20. The code on the left will set the discount to 0 and move
on. The code on the right will loop forever, continually setting the discount to 0.

Example:

Recall our example in which we found the average of a bunch of exam marks. We asked the
user how many exams there were before starting and then used a for loop as follows:

int nums, sum;

System.out.println("How many exam marks do you want to average ?");
nums = new Scanner(System.in).nextInt();
sum = 0;

// Get the numbers one at a time, and add them
for (int count=1; count<=nums; count++) {
 System.out.print("Enter exam mark " + count + ": ");
 sum = sum + new Scanner(System.in).nextInt();

}
System.out.println("The average is " + (sum / nums));

Consider though, the situation in which we do not know how many exams
we have (e.g., someone just plops them down on our desk). Instead of
forcing the user to count them all ahead of time so that he can enter the
number of exams at the start of the program, we can allow him to just start
entering the marks one at a time and then look for a “special” value that
will indicate the completion of the entries (e.g., -1). Then we can use a
while loop to look for that “special” value.

COMP1405 – Repeating Code Fall 2015

 - 91 -

Here is how it can be done:

import java.util.Scanner;

public class CalculateAverageProgram2 {
 public static void main(String[] args) {
 int count=1, sum=0, enteredValue=0;

 while (enteredValue >= 0) {
 System.out.print("Enter exam mark " + count + " (or -1 to quit): ");
 enteredValue = new Scanner(System.in).nextInt();
 if (enteredValue >= 0) {
 sum = sum + enteredValue;
 count++;
 }
 }
 if (count > 1)
 System.out.println("The average is " + (sum /(count-1.0)));
 }
}

Notice that the enteredValue must start off with a value that is non-negative ... in order to get
into the while loop the first time. Any positive values entered are then added to the sum. In
the code we also need to count how many numbers that we have entered because we will
need this count to determine the average later. This is done using the count variable ... which
starts at 1. This count variable is also used in the print statement so that the user knows
which mark number is being entered. Notice as well, that this count is checked at the end to
make sure that it is not still at 1. If, for example, the user entered -1 as the first value, then the
count would be 1 and the final calculation would attempt to do a divide by zero ... since there
are no numbers to average. Lastly, notice that we do a (count -1.0) instead of (count-1).
This will ensure that the calculation is done as a double ... so that the results will not be
integers but instead the more precise floating point value.

Example:

Assume that you have a nice rectangular room that
measures Wcm x Hcm. You want to place tiles down on
the floor arranged in a grid pattern so that the entire
floor is covered. However, you do not want to cut any
tiles! Assuming that you can buy pre-cut square tiles of
any size, what size of tiles should you buy ?

How do we approach the problem ?

Step 1 is to make sure that we UNDERSTAND THE
PROBLEM.

COMP1405 – Repeating Code Fall 2015

 - 92 -

Consider the picture to the right which
has a 350cm x 500cm room. In order for
the tiles to fit properly, we can only have
whole tiles across any row and any
column. That means, if we have R tiles
across a row, then for tiles that are
Tcm x Tcm , then RxT must equal exactly
350. In other words, 350 / T must be a
whole number, not a fraction. So the T
must divide evenly into 350. Similarly, T
must divide evenly into 500 if we are to fit
them properly in each column as well.

Certainly we could use 1cm x 1cm tiles in
our example above, but that would
require 175000 tiles (surely you would
not want to lay those down yourself) !

In fact, here are all the possible solutions for our example:

Tile Size Tiles Required
1cm x 1cm 350 x 500 = 175000
2cm x 2cm 175 x 250 = 43750
5cm x 5cm 70 x 100 = 7000

10cm x 10cm 35 x 50 = 1750
25cm x 25cm 14x 20 = 280
50cm x 50cm 7 x 10 = 70

Likely, the favored solution is the one that requires the least amount of tiles … which is the
50cm x 50cm tile solution. The number 50 happens to be the greatest common divisor (i.e.,
GCD) … or greatest common factor (i.e., GCF) of the numbers 350 and 500. In fact, the
problem that we are trying to solve requires us to find the GCD of our two numbers (i.e., of the
width and the height). Here is a solution that uses a while loop:

Algorithm: SimpleGCD
 length, width: numbers to which we need to find the GCD

1. gcd ← minimum of length and width
2. found ← false
3. while (not found) {
4. if (gcd divides evenly into length) AND (gcd divides evenly into width) then
5. found ← true
6. otherwise
7. gcd ← gcd - 1

}
8. print(gcd)

COMP1405 – Repeating Code Fall 2015

 - 93 -

This program will start off with an attempt to see whether or not the smaller number divides
evenly into the larger one. If that is true, then we have our answer and the while loop quits.
Otherwise, the program keeps subtracting 1 from the potential gcd until one is found.
Ultimately, this number will keep decreasing and eventually reach 1, and that will be a common
divisor to any number (although it is the least common divisor). The program assumes that
neither number is zero or negative to begin with.

import java.util.Scanner;

public class GCDProgram {
 public static void main(String[] args) {
 int length, width, gcd;
 boolean found;

 System.out.print("Enter the floor length (cm): ");
 length = new Scanner(System.in).nextInt();

 System.out.print("Enter the floor width (cm): ");
 width = new Scanner(System.in).nextInt();

 gcd = Math.min(length, width);
 found = false;
 while (!found) {
 if (((length%gcd) == 0) && ((width%gcd) == 0))
 found = true;
 else
 gcd--;
 }
 System.out.println("You need (" + gcd + "cm x " + gcd + "cm) tiles.");
 }
}

Here is some sample output:

Enter the floor length (cm): 350
Enter the floor width (cm): 500
You need (50cm x 50cm) tiles.

The above solution will require 300 iterations of the while loop (i.e., gcd decreases from 350,
349, 348, 347, … down to 50).

There are more efficient solutions...

COMP1405 – Repeating Code Fall 2015

 - 94 -

For example, since the gcd divides both 350 and 500, we can see that it is still possible to find
the gcd by ignoring a large 350cm x 350cm portion of the floor area and concentrating on the
remaining area:

As seen in the diagram above, given that we have a W x L floor area remaining, we can
continually extract a W x W floor area (if W < L) or a L x L floor area (if L < W) until we end up
with a remaining floor area in which W = L. In this case, W (or L, since they are equal) is the
gcd. We can adjust our algorithm do compute the answer in this manner by repeatedly
extracting the minimum of the dimensions:

import java.util.Scanner;

public class GCDProgram2 {
 public static void main(String[] args) {
 int length, width;

 System.out.print("Enter the floor length (cm): ");
 length = new Scanner(System.in).nextInt();

 System.out.print("Enter the floor width (cm): ");
 width = new Scanner(System.in).nextInt();

 while (length != width) {
 if (length > width)
 length = length - width;
 else
 width = width - length;
 }
 System.out.println("You need (" + length + "cm x " + length + "cm) tiles.");
 }
}

This algorithm produces a better solution … which requires only 5 iterations of the while loop!

COMP1405 – Repeating Code Fall 2015

 - 95 -

Homework:

In fact, it can be improved even further (i.e., only 3 iterations of the while loop) by using the
modulus operator which takes multiples of the lower dimension away in one step. See if you
can change the program to do this (put a print statement in the while loop to see how many
times it gets evaluated):

