

Chapter 1

Systems Programming and C Basics

What is in This Chapter ?

This first chapter of the course explains what Systems Programming is all about. It explains
how it is closely linked to the operating system. A few basic tools are explained for use with
the gcc compiler under a Linux Ubuntu environment running within a VirtualBox application.
It then introduces you to the C programming language in terms of the basic syntax as it is
compared to JAVA syntax. A few simple programs are created to show how to display
information, compute simple math calculations, deal properly with random numbers,
getting user input., using arrays and calling functions.

 #include <stdio.h>

int main() {
 printf("Hello world\n");

 return 0;
}

COMP2401 - Chapter 1 – Systems Programming and C Basics Fall 2020

 - 2 -

 1.1 Systems Programming and Operating Systems

In COMP1405 and COMP1406, you developed various programs and applications. The goal
was to write programs that “accomplished” something interesting in that it provided a service
for the user … usually resulting in an “app” that interacted with the user. Examples of
common applications are internet browsers, word processors, games, database access
programs, spreadsheets, etc.. So, what you have been doing in your courses has been:

Applications Programming is the programming of software to provide

services for the user directly.

Systems Programming, on the other hand is different. It has a different focus … and can be
defined as follows:

Systems Programming is the programming of software that provides services

for other software … or for the underlying computer system.

So, when you are doing systems programming, you are writing software that does not typically
have a front-end GUI that interacts with the user. It is often the case where the software runs
“behind-the-scenes”… sometimes as a process/thread running in the background. Some
examples of systems programs are:

1. Firmware (e.g., PC BIOS and UEFI).
2. Operating systems (e.g., Windows, Mac OSX, GNU/Linux, BSD, etc...).
3. Game Engines (e.g., Unreal Engine 4, Unity 3D, Torque3D)
4. Assemblers (e.g., GNU AS, NASM, FASM, etc...).
5. Macro Processors (e.g., GNU M4).
6. Linkers and Loaders (e.g., GNU ld which is part of GNU binutils).
7. Compilers and Interpreters (e.g., gcc, python, Java VM).
8. Debuggers (e.g., gdb).
9. Text editors (e.g., vim).
10. Operating system shell (e.g., bash).
11. Device Drivers (e.g., for Bluetooth, network cards, etc..)

Systems software involves writing code at a much more lower level than typical application
software. It is often closely tied to the actual hardware of the machine that it is running on. In
fact, it often uses the operating system directly through system calls. So, when you write
systems software, it is important to have a good understanding of the machine that it will be
running on.

Applications programming is at a higher level than systems programming, and so it is closer to
the way we think as humans. It is more natural and can make use of high level programming
languages and specialized libraries.

System software is the layer between the hardware and application software. It can deal
directly with the hardware and usually controls it. It is therefore, more naturally written in a
lower level programming language. In general, it provides “efficient” services to applications.

COMP2401 - Chapter 1 – Systems Programming and C Basics Fall 2020

 - 3 -

The goal of writing systems software is to make efficient use of resources (e.g., computer
memory, disk space, CPU time, etc..). In some cases, performance may be critical (e.g., like a
fast game engine). In fact, it is often the case that small improvements in efficiency can save
a company a lot of money.

Therefore, in this course, we will be concerned about writing efficient code … something we
didn’t focus on too much in COMP1405/1406.

In this course, we will also be trying to get a better grasp of the computer’s operating system.

An Operating System is system software that manages computer hardware and

software resources and provides common services for computer programs.

Operating systems are the layer of software that sits between the computer’s hardware and
the user applications. It is considered the “boss” of the computer … as it manages everything
that is going on visibly, as well as behind the scenes.

Some operating systems provide time-sharing features that schedule tasks at various times
depending on how the computer’s resources (e.g., memory, disk storage, printers and devices)
are allocated at any different time.

There are various operating systems out there of which you may have heard of:

• Windows

• Mac OSX

• Unix

• Linux

• Android

• Chrome OS

COMP2401 - Chapter 1 – Systems Programming and C Basics Fall 2020

 - 4 -

The operating system acts as the intermediary between the applications and the computer’s
resources. Applications perform system calls to gain access to the resources:

So, in a sense, the operating system provides services for the applications. It provides some
core functionality to users as well as through programs.

Here is some of the functionality that is provided by the operating system, although there is a
lot more than this:

File I/O

• provides file system organization and structure

• allows access to read and write files

• provides a measure of security by allowing access permissions to be set

Device I/O

• allows communication with devices through their drivers

• e.g., mouse, keyboard, printer, bluetooth, network card, game controllers…

• manages shared access (i.e., printer queue)

COMP2401 - Chapter 1 – Systems Programming and C Basics Fall 2020

 - 5 -

Process Management

• allows the starting/stopping/alteration of running executables

• can support multitasking

o (i.e., multiple processes running concurrently)

• allocates memory for each process
o needed for program instructions, variables & keeping track of

function calls/returns.

Virtual memory

• provides memory to every process
o dedicated address space, allocated when process starts up

• appears (to the process) as a large amount of contiguous memory
but in reality, some is fragmented in main memory & some may
even be on disk

• programs use virtual memory addresses as opposed to physical
memory addresses

Scheduling

• allows applications to share CPU time as well as device access

Operating systems vary from one to another.

The Windows operating system:

• expensive when compared to some others

• has limitations that make it harder to work with

• is a closed system that has very restricted access to OS functions

• was designed to make the computer simpler to use … primarily for
business users and the average home user who are not computer savvy.
Hence, the system was designed to allow access at a higher level.

Unix-based operation systems:

• free … open source

• a more open system that allows broad access to OS functions
o "root" or super-user can do anything (extremely dangerous)

• family of options (Linux, Solaris, BSD, Mac OS X, many others)

• OS of choice for complex or scientific application development

COMP2401 - Chapter 1 – Systems Programming and C Basics Fall 2020

 - 6 -

The language of choice for programming Unix-based operating systems is C.

• closer to hardware

• used to write Unix OS, device drivers

• very fast, with negligible runtime footprint

 1.2 Tools for Systems Programming

We will now discus 4 tools that are essential for systems programming:

Shells

A Shell is a command line user interface that allows access to an operating system’s

services.

A shell allows the user to type in various commands to run other programs. It also serves as a
command line interpreter. Multiple shells can be run at the same time (in their own separate
windows).

In Unix, there are three major shells:

• sh - Bourne shell

• bash - Bourne-again shell (default shell for Linux)

• csh - C shell

The shells differ with respect to their command line shortcuts as well
as in setting environment variables.

A shell allows you to run programs with command line arguments (i.e., parameters that you
can provide when you start the program in the shell). The parameters (a.k.a. arguments or
options) are usually preceded by a dash – character.

There are some common shell commands that you can make use of within a shell:

• e.g., alias, cd, pwd, set, which

There are some common system programs that you can make use of within a shell:

• e.g., grep, ls, more, time, sort

You can even get some help by accessing a kind of “user manual” through access of what are
called man pages with the man command.

We will make use of various shell commands and programs throughout the course.

COMP2401 - Chapter 1 – Systems Programming and C Basics Fall 2020

 - 7 -

> <

Text Editors

A Text Editor is a program that allows you to produce a text-based file.

There are a LOT of text editors out there. They are basic. Some are built into standard
Operating System packages. There is a big advantage to knowing how to use one of these
common editors … as they are available on any machine.

It is good to choose one and “stick with it”, as you will likely develop an expertise with it.

There are some common ones such as: vi/vim,
emacs and gedit. You will need to use one for
writing your programs in this course and for
building make files (discussed later).

There is a bit of a learning curve for these editors, as they all require you to use various “hot
keys” and commands in order to be quick and efficient at editing. The commands allow you to
write programs without the use of a mouse … which is sometimes the case on some systems
when you don’t have device drivers working/installed.

Compilers

A Compiler is computer software that transforms source code written in one

programming language into another target programming language.

In this course, we will make use of the GNU compiler.

GNU is a recursive acronym for "GNU's Not Unix!". It was chosen because GNU's design is Unix-like, but
differs from Unix by being free software and containing no Unix code.

The command for using the compiler is gcc. There are many options

that you can provide when you run the compiler. For example, -o

allows you to specify the output file and -c allows you to create the

object code. You will learn how to use these command options
(and others) as the course goes on.

Compilers produce code that is meant to be run on a specific
machine. Therefore, your code MUST be compiled on the same
platform that it runs on. Linux-compiled code, for example, will not
run on Windows, Unix nor MacOS machines.

COMP2401 - Chapter 1 – Systems Programming and C Basics Fall 2020

 - 8 -

Debuggers

A Debugger is a program that is used to test and debug other programs.

There are two main advantages of using a debugger:

• It allows you to control the running (i.e., execution) of your code.

o can start/stop/pause your program

o good to slow things down in time-critical and resource-
sharing scenarios

• It allows you to investigate what is happening in your program

o can view your variables in the midst of your program

o can observe the control flow of your program to find
out whether certain methods are being called and in what order

The goal is always to debug … to find out where your program is going wrong or crashing.

The command for using the compiler is gdb. You use it to run the program … after it has

been compiled. However, to use it, the program must have already been compiled with the -g

option. When using the debugger, there are various commands that you can apply such as
run, break, display, step, next and continue.

COMP2401 - Chapter 1 – Systems Programming and C Basics Fall 2020

 - 9 -

 1.3 Writing Your First C Program

 The process of writing and using a C program is as follows:

1. Writing: write your programs as .c files.
2. Compiling: send these .c files to the gcc compiler, which will produce .o object files.
3. Linking: the .o files are then linked with various libraries to produce an executable file.
4. Running: run your executable file.

Getting your C programs to run requires a little more work than getting a JAVA program to run.
As with JAVA, your source code must be compiled. Instead of producing .class files, the C
compiler will produce .o files which are called object files. These object files are “linked”
together, along with various library files to produce a runnable program which is called an
executable file. This executable file is in machine code that is meant to be run on a specific
computer platform. It is not portable to other platforms.

Our First Program

The first step in using any new programming language is to understand how to write a simple
program. By convention, the most common program to begin with is always the "hello world"
program which when run ... should output the words "Hello World" to the computer screen. We
will describe how to do this now.

COMP2401 - Chapter 1 – Systems Programming and C Basics Fall 2020

 - 10 -

In this course, you will use either emacs, vim or gedit to write your programs. I will be using
examples that make use of gedit. Once you have your Terminal window open (you will learn
how to do this in the first tutorial), then you start up your editor by specifying the editor name
followed by the name of the file that you want to write … in this case it will be helloWorld.c.

You use the & symbol at the end of the command line to indicate that you want to run the
editor in the background. This allows you to keep the editor open while you are compiling and
running/testing your code. If you don’t use the & character, then you must close the gedit
editor in order to continue to work again in the Terminal window. Of course, you can always
work with a second Terminal window if you’d like, but it is easiest to simply run the editor in
the background.

student@COMPBase:~$ gedit helloWorld.c &

Here is a window that shows the editor with some code in it:

When compared to JAVA (shown on the right), you will notice some similarities as well as
some differences.

Below, on the left, is our first C program that we will write:

C program JAVA program

#include <stdio.h>

int main() {

 printf("Hello world\n");

 return 0;

}

public class HelloWorldProgram {

 public static void main(String[] args) {

 System.out.println("Hello World");

 }

}

Here are a few points of interest in regard to writing C programs:

COMP2401 - Chapter 1 – Systems Programming and C Basics Fall 2020

 - 11 -

1. The #include <stdio.h> on the first line tells the compiler to include a header file.

A Header File is a file containing C declarations and macro definitions to be shared

between several source files.

This this case, stdio.h is the name of the header file. This is a standard file that
defines three variable types, several macros, and various functions for performing input
and output. We need it here because we will be printing something out to the screen
using printf.

2. Unlike JAVA, we don’t need to define the name of a class. So we begin right away with
the main() function. There are no public/private/protected access modifiers in C, so
we leave those out. You will notice that the main() function returns an int, whereas in
JAVA it was void. Also, we are not required in C to specify that there will be command-
line arguments … so we do not need to declare that as a parameter to the main()
function.

3. The procedure for printing is simply printf(), where we supply a string to be printed …
and also some other parameters as options (more on this later). If we want to ensure
that additional text will appear on a new line, we must make sure that we include the \n
character inside the string.

4. The main() function should return an integer. By convention, negative numbers (e.g., -
1) should be returned when there was an error in the program and 0 when all went well.
However, by allowing a variety of integers to be returned, we can allow various error
codes to be returned so as to more precisely what had gone wrong.

5. Finally, notice that C uses braces and semi-colons in the same way that JAVA does.

So ... to summarize, our C programs will have the following basic format:

#include <…>

#include <…>

#include <…>

int main() {

 ;

 ;

 ;

}

You should ALWAYS line up ALL of your brackets using the Tab key on the keyboard.

Now that the program has been written, you can compile it in the same Terminal window by
using the gcc -c command as follows:

student@COMPBase:~$ gedit helloWorld.c &

student@COMPBase:~$ gcc -c helloWorld.c

student@COMPBase:~$

COMP2401 - Chapter 1 – Systems Programming and C Basics Fall 2020

 - 12 -

This will produce an object file called helloWorld.o. You can view the file by using the ls command:

student@COMPBase:~$ gedit helloWorld.c &

student@COMPBase:~$ gcc -c helloWorld.c

student@COMPBase:~$ ls

helloWorld.c helloWorld.o

student@COMPBase:~$

Then, we need to link it (with our other files and standard library files) to produce an executable (i.e.,
runnable) file. We do this as well with the gcc -o compiler as follows:

student@COMPBase:~$ gedit helloWorld.c &

student@COMPBase:~$ gcc -c helloWorld.c

student@COMPBase:~$ ls

helloWorld.c helloWorld.o

student@COMPBase:~$ gcc -o helloWorld helloWorld.o

student@COMPBase:~$

After the -o is the name of the file that we want to be the runnable file. We follow it with a list of all
object files that we want to join together. In this case, there is just one object file. This will produce an
executable file called helloWorld. You can view the file by using the ls command:

student@COMPBase:~$ gedit helloWorld.c &

student@COMPBase:~$ gcc -c helloWorld.c

student@COMPBase:~$ ls

helloWorld.c helloWorld.o

student@COMPBase:~$ gcc -o helloWorld helloWorld.o

student@COMPBase:~$ ls

helloWorld helloWorld.c helloWorld.o

student@COMPBase:~$

You can then run the helloWorld file directly from the command line, but we need to tell it to run in the
current directory by using ./ in front of the file name:

student@COMPBase:~$ gedit helloWorld.c &

student@COMPBase:~$ gcc -c helloWorld.c

student@COMPBase:~$ ls

helloWorld.c helloWorld.o

student@COMPBase:~$ gcc -o helloWorld helloWorld.o

student@COMPBase:~$ ls

helloWorld helloWorld.c helloWorld.o

student@COMPBase:~$./helloWorld

Hello World

student@COMPBase:~$

Notice that when you run your program, any output from the program will appear in the shell
window from which it has been run. As a side point, you can link the files without first
compiling. The linking stage will compile first by default:

student@COMPBase:~$ gcc -o helloWorld helloWorld.c

student@COMPBase:~$

COMP2401 - Chapter 1 – Systems Programming and C Basics Fall 2020

 - 13 -

 1.4 C vs. Java

C code is very similar to JAVA code with respect to syntax. Provided here is a brief
explanation of a few of the similarities & differences between the two languages. To begin,
note that commenting code is the same in C as it is in JAVA:

Commenting in C and JAVA

// single line comment

/* a multiline comment

 which spans more

 than one line.

*/

Displaying Information to the System Console:

JAVA

System.out.print("The avg is " + avg);

System.out.println(" hours");

System.out.println(String.format("Mark is %d years old and weighs

%f pounds", a, w));

C

printf("The avg is %d", avg);

printf(" hours\n");

printf("Mark is %d years old and weighs %f pounds\n", a, w);

Notice that the print statement is easier to use in C. In JAVA, things like
integers and objects could be appended to strings with a + operator. We
cannot do that in C.

Instead, we do something similar to the String.format() function in JAVA by
supplying a list of parameters for the string to be printed. Inside the string we
use the % character to indicate that a parameter is to be inserted there.

There are many possible flags that can be used in the format string for the printf. You will
want to look them up. The general format for each parameter is:

%[flags][width][.precision][length]<type>

Here is a table showing what the various values may be for type:

type Description Example Output

%d integer printf("%d", 256)

printf("%d", -256)

256

-256

%u unsigned integer printf("%u", 256)

printf("%u", -256)

256

4294967040

COMP2401 - Chapter 1 – Systems Programming and C Basics Fall 2020

 - 14 -

%f floating point
(6-dec precision)

printf("%f", 3.14159265359)

printf("%f", 314159265.359)

3.141593

314159265.359000

%g floating point
(exp. precision)

printf("%g", 3.14159265359)

printf("%g", 314159265.359)

3.14159

3.14159e+08

%c character printf("%c", 65) A

%s string printf("%s", "Hello") Hello

%x

%X
hexadecimal

printf("%x", 250)

printf("%X", 250)

0fa

0FA

%o octal printf("%o", 250) 372

The width parameter allows us to specify the minimum number of “spaces” that the output will

take up. We can use this width parameter to have things lined up in a table. If the width is

too small, and the number has more digits than the specified width … the width parameter

will not affect the output.
Here are some examples:

printf("%5d", 256) // 256

printf("%5f", 3.14159265359) //3.141593 ... No effect

printf("%5c", 65) // A

printf("%5s", "Hello") //Hello

printf("%10d", 256) // 256

printf("%10f", 3.14159265359) // 3.141593

printf("%10c", 65) // A

printf("%10s", "Hello") // Hello

The precision parameter works differently depending on the value being used. When used

with floating point flag f it allows us to specify how many digits we want to appear after the
decimal place. When used with floating point flag g it allows us to specify how many digits in
total we want to be used in the output (including the ones to the left of the decimal):

printf("%2.3f\n", 3.14159265359); //3.142 ... rounds up

printf("%2.3g\n", 3.14159265359); //3.14

printf("%2.3f\n", 3141592.65359); //3141592.654

printf("%2.3g\n", 3141592.65359); //3.14e+06

When used with string flag s, the precision parameter allows us to indicate how many

characters will be displayed from the string:

printf("%2.1s\n", "Hello"); // H

printf("%2.3s\n", "Hello"); //Hel

printf("%2.5s\n", "Hello"); //Hello

printf("%10.1s\n", "Hello"); // H

printf("%10.3s\n", "Hello"); // Hel

printf("%10.5s\n", "Hello"); // Hello

When used with integer, unsigned integer, octal and hexadecimal flags d, u, o, x, X, the
precision parameter allows us to indicate how many leading zeros will be displayed:

COMP2401 - Chapter 1 – Systems Programming and C Basics Fall 2020

 - 15 -

printf("%6.1X\n", 250); // FA

printf("%6.2X\n", 250); // FA

printf("%6.3X\n", 250); // 0FA

printf("%6.4X\n", 250); // 00FA

printf("%6.5X\n", 250); // 000FA

printf("%6.1d\n", 250); // 250

printf("%6.2d\n", 250); // 250

printf("%6.3d\n", 250); // 250

printf("%6.4d\n", 250); // 0250

printf("%6.5d\n", 250); // 00250

printf("%6.5d\n", -250); //-00250

When used with integer, unsigned integer, octal and hexadecimal flags d, u, o, x, X, the
flags parameter also allows us to indicate how many leading zeros will be displayed.

When used with numbers, the 0 flag allows leading zeros to be inserted and the + allows a
plus sign to be inserted for positive numbers (normally not shown):

printf("%6d\n", 250); // 250

printf("%06d\n", 250); //000250

printf("%+6d\n", 250); // +250

When used with numbers or strings, the - flag allows everything to be left-aligned:

printf("%-6d\n", 250); //250

printf("%-+6d\n", 250); //+250

printf("%-.1s\n", "Hello"); //H

printf("%-.3s\n", "Hello"); //Hel

printf("%-.5s\n", "Hello"); //Hello

There are more options than this, but we will not discuss them any further. You may google for
more information.

In C, there are 4 main primitive variable types (but int has 3 variations). Variables are
declared the same way as in JAVA (except literal float values do not need the ‘ f ’ character).

Variables in C Variables in JAVA

int days = 15;

char gender = 'M';

float amount = 21.3;

double weight = 165.23;

char age = 19;

short int years = 3467;

long int seconds = 17102397834;

char hungry = 1;

int days = 15;

char gender = 'M';

float amount = 21.3f;

double weight = 165.23;

byte age = 19;

short years = 3467;

long seconds = 17102397834;

boolean hungry = true;

Interestingly, there are no booleans in the basic C language. Instead, any value which is
non-zero is considered to be true when used in a boolean expression (more on this below).

COMP2401 - Chapter 1 – Systems Programming and C Basics Fall 2020

 - 16 -

Also, char is used differently since it is based on ASCII code, not the UNICODE character set.
So the valid ranges of char is -128 to +127 (more on this later).

Fixed values/numbers are defined using the #define keyword in C as opposed to final. Also,
the = sign is not used to assign the value. Typically, these fixed values are defined near the
top of the program file. You should ALWAYS name them using uppercase letters with multiple
words separated by underscore characters.

Fixed Values in C: Fixed Values in JAVA:

#define DAYS_IN_YEAR 365

#define RATE 4.923

#define NEWLINE '\n'

final int DAYS_IN_YEAR = 365;

final float RATE = 4.923f;

final char NEWLINE = '\n';

In C, both IF and SWITCH statements work “almost” the same way as in JAVA:

IF statements: SWITCH statements:

if ((grade >= 80) && (grade <= 100))

 printf("Super!\n");

if (grade >= 50) {

 printf("%d", grade);

 printf(" Passed!\n");

}

else

 printf("Grade too low.\n");

switch (someIntegerVariable) {

 case 1:

 printf("Case1"); break;

 case 2:

 printf("Case2"); break;

 case 3:

 printf("Case3"); break;

 case 4:

 printf("Case4"); break;

 default:

 printf("Default");

}

However, there are differences, since there are no boolean types in C. We need to fake it by
using integers (or one-character bytes as a char). Consider this example in C and Java:

Booleans “faked” in C:

Booleans in JAVA:

char tired = 1;

char sick = 0;

if (sick && tired)

 printf("I give up\n");

boolean tired = true;

boolean sick = false;

if (sick && tired)

 System.out.println("I give up");

In the C example, tired is considered to be true since it is non-zero, whereas sick is

considered to be false. When the && is used, the result is always either 1 or 0, indicating
true or false. So, if both sick and tired were set to 1, then (sick && tired) would result

in 1, not 2. The same holds true for the || operator which is used for the OR operation.

The boolean negation character ! will change a non-zero value to 0 and a zero value to 1.

COMP2401 - Chapter 1 – Systems Programming and C Basics Fall 2020

 - 17 -

So …

char tired = 5;

char sick = 0;

tired = !tired; // tired will now be 0

sick = !sick; // sick will now be 1

If it makes your code easier to read, you can always define fixed values for TRUE and FALSE
that can be used in your programs:

#define TRUE 1

#define FALSE 0

Then you can do things like this:

char tired = TRUE;

char sick = FALSE;

There is also another kind of conditional operator called the ternary/conditional operator
which uses the ? and : character in sequence. It is a short form of doing an IF statement:

tired ? printf("tired\n") : printf("not tired\n");

It does the same as this:

if (tired)

printf("tired\n");

else

printf("not tired\n");

However, the ?: is often used to provide a returned value that can be used in a calculation:

int hoursWorked = 45;

int bonus = (hoursWorked > 40) ? 25 : 0;

printf("%d\n", bonus);

In C, the FOR and WHILE loops work the same way:

FOR loops: WHILE loops:

int total = 0;

for (int i=1; i<=10; i++) {

 total += i;

}

printf("%d\n", total);

int speed = 0;

int x = 0;

while (x <= 100) {

 speed = speed + 2;

 x = x + speed;

 printf("%d, %d\n", speed, x);

}

COMP2401 - Chapter 1 – Systems Programming and C Basics Fall 2020

 - 18 -

There is also a DO/WHILE loop … in which the condition is checked at the end of the loop.
This guarantees that the loop is evaluated at least once:

DO/WHILE loops:

int speed = 0;

int x = 0;

do {

 speed = speed + 2;

 x = x + speed;

 printf("%d, %d\n", speed, x);

} while (x <= 100);

In the first-year courses, we were interested in getting our code working. In this course,
however, we will also be interested in getting our code to run quickly and efficiently. One
example of improving efficiency is to make use of the break and continue statements when
doing loops.

For example, here is code that determines all the prime numbers from 1 to 100,000:

#include <stdio.h>

int main() {

 int isPrime;

 printf("The prime numbers from 1 to 100,000 are:\n");

 for (int i=1; i<=100000; i++) {

 isPrime = 1; // Assume that i is prime

 for (int j=2; j<i; j++) {

 if (i%j == 0)

 isPrime = 0; // if factor found, not prime

 }

 if (isPrime)

 printf("%d\n", i);

 }

}

The code goes through all the numbers i from 1 to 100,000 and then checks all values from 2
to i to see if they divide evenly into i. If they do, then i is not a prime number.

The code took about 22 seconds to run in my virtual environment! However, we can speed
this up drastically by using the break statement.

Consider the program logic. In the case where i is 100, for example … as we search in the
inner FOR loop, we find immediately that 2 divides into 100 evenly, so 100 is not prime. The
code, however, will continue to search through remaining numbers from 3 through 99. But this
is pointless, because we have already determined that 100 is not prime.

If we therefore insert a break statement when we find out that i was not prime, then we break
out of that loop and don’t check the remaining numbers from 3 through 99.

COMP2401 - Chapter 1 – Systems Programming and C Basics Fall 2020

 - 19 -

You can imagine how this cuts back on running time even more as i increases to 100,000,000!

for (int i=1; i<=100000; i++) {

 isPrime = 1;

 for (int j=2; j<i; j++) {

 if (i%j == 0) {

 isPrime = 0;

 break; // quit the inner loop right away

 }

 }

 if (isPrime)

 printf("%d\n", i);

}

As a result of this simple addition, the code runs in less than 3 seconds!!!

In a similar way, we can use the continue statement, not to quit the loop, but to go on to the
next item in the FOR loop.

For example, consider having to search 500 resumes to hire a worker.
You may be looking for a particular attribute (e.g., previous
administrative experience). You may go through each application and
browse it quickly. If you do not see the desired attribute right away,
you may want to quickly move on (i.e., continue) to the next resume
instead of spending a lot of time examining this candidate's resume
any further. That would save you a lot of time...

 for (int i=0; i<numResumes; i++) {

 if (/* this candidate has less than 2 years experience */)

 continue;

 // ... code to determine if there is administrative experience ...

 if (/* this candidate does not have administrative experience */)

 continue;

 // ... otherwise check the resume further...

 }

In this course, you should keep an eye out for any opportunities to be able to speed up your
code.

When dealing with mathematical expressions, logic statements and variable assignment … C
and JAVA are almost exactly the same. Notice how similar the code is:

a = 15; // a assigned value of 15

b = a % 4; // b assigned remainder of 3

b++; // b is increased to 4

c = 15.3; // don’t need an f character as with JAVA

d = c / 3; // d assigned value of 5.1

COMP2401 - Chapter 1 – Systems Programming and C Basics Fall 2020

 - 20 -

Here is a table showing the basic operators:

Arithmetic Operators Assignment Operators Relational Operators

+ - * / % ++ --

= += -= *= /=

== != < > <= >=

Logical Operators Bitwise Operators Conditional Operators

&& || !

~ & | ^ >> <<

?:

The order in which expressions are evaluated is very similar to JAVA:

Precedence Operator Description Associativity

1 ++ -- Suffix/postfix increment and decrement Left-to-right

() Function call

[] Array subscripting

. Structure and union member access

-> Structure and union member access through pointer

(type){list} Compound literal(C99)

2 ++ -- Prefix increment and decrement Right-to-left

+ - Unary plus and minus

! ~ Logical NOT and bitwise NOT

(type) Type cast

* Indirection (dereference)

& Address-of

sizeof Size-of

_Alignof Alignment requirement(C11)

3 * / % Multiplication, division, and remainder Left-to-right

4 + - Addition and subtraction

5 << >> Bitwise left shift and right shift

6 < <= For relational operators < and ≤ respectively

> >= For relational operators > and ≥ respectively

7 == != For relational = and ≠ respectively

8 & Bitwise AND

9 ^ Bitwise XOR (exclusive or)

10 | Bitwise OR (inclusive or)

11 && Logical AND

12 || Logical OR

13 ?: Ternary conditional Right-to-Left

14 = Simple assignment

+= -= Assignment by sum and difference

*= /= %= Assignment by product, quotient, and remainder

<<= >>= Assignment by bitwise left shift and right shift

&= ^= |= Assignment by bitwise AND, XOR, and OR

15 , Comma Left-to-right

Many math functions in JAVA are also available in C. To use them however, you must include
the <math.h> header file (and <stdlib.h> for the rand() function):

COMP2401 - Chapter 1 – Systems Programming and C Basics Fall 2020

 - 21 -

Math in C Math in JAVA Trig. in C Trig. in JAVA

N/A

N/A

ceil(a)

floor(a)

round(a)

pow(a, b)

sqrt(a)

fabs(a)

rand()

Math.min(a, b)

Math.max(a, b)

Math.ceil(a)

Math.floor(a)

Math.round(a)

Math.pow(a, b)

Math.sqrt(a)

Math.abs(a)

Math.random()

sin(r)

asin(r)

cos(r)

acos(r)

tan(r)

atan(r)

atan2(r)

N/A

N/A

Math.sin(r)

Math.asin(r)

Math.cos(r)

Math.acos(r)

Math.tan(r)

Math.atan(r)

Math.atan2(r)

Math.toDegrees(r)

Math.toRadians(d)

Here is an example that makes use of some of the operators:

Code from MathOps.c Output

#include <stdio.h>

int main() {

 int x, y, z;

 x = 4;

 y = x;

 z = y + 2 * x - 3;

 printf("%d %d %d\n", x, y, z);

 if (x == y)

 printf("equal\n");

 else

 printf("not equal\n");

 printf("%s\n", ((y == z) ? "equal" : "not equal"));

 x = y = 7;

 z -= x;

 y *= z;

 printf("%d %d %d\n", x, y, z);

 printf("prefix: %d\n", ++x);

 printf("postfix: %d\n", x++);

 printf("next: %d\n\n", x);

 printf("y: %d\n", y);

 printf("y + 1: %d\n", y + 1);

 printf("y: %d\n", y);

 printf("++y: %d\n", ++y);

 printf("y: %d\n\n", y);

 y += 1;

 printf("after y += 1: %d\n\n", y);

 y + 1;

 printf("after y + 1: %d\n\n", y);

}

4 4 9

equal

not equal

7 14 2

prefix: 8

postfix: 8

next: 9

y: 14

y + 1: 15

y: 14

++y: 15

y: 15

after y += 1: 16

after y + 1: 16

COMP2401 - Chapter 1 – Systems Programming and C Basics Fall 2020

 - 22 -

Here is another example that makes use of some math functions. To use the math functions,
however, we must make sure to add -lm (which means “include the math library”) to the end of
our gcc compiling line so that it is linked with the math library:

student@COMPBase:~$ gcc -o trig trig.c -lm

student@COMPBase:~$

Code from trig.c Output

#include <stdio.h>

#include <math.h>

#define PI 3.14159265 // or defined as M_PI in math.h

int main() {

 double angle = 90; // in degrees

 printf("sin(90): %f\n", sin(PI*angle/180));

 printf("cos(90): %f\n", cos(PI*angle/180));

 printf("tan(90): %f\n", tan(PI*angle/180));

 printf("ceil(235.435): %g\n", ceil(235.435));

 printf("floor(235.435): %g\n", floor(235.435));

 printf("pow(2, 8): %g\n", pow(2,8));

 printf("fabs(-15): %g\n", fabs(-15));

}

sin(90): 1.000000

cos(90): 0.000000

tan(90): 557135183.943528

ceil(235.435): 236

floor(235.435): 235

pow(2, 8): 256

fabs(-15): 15

Regarding the rand() function, it returns a pseudo-random integer (i.e., not truly random) in the
range of 0 to RAND_MAX each time. RAND_MAX is defined in <stdlib.h> and has a value

of 2,147,483,647 in the virtual box that we will be running in. So, to get the number into a
value between 0 and 1, as JAVA gives us, we need to divide by RAND_MAX:

double value = rand()/(double)RAND_MAX;

Unfortunately, if you are not careful … the sequence of random numbers
generated will always be the same each time that you run your program.

The following code, for example, always prints out the same 10
randomly-generated numbers every single time that you run it !

Code from randTest1.c Output

#include <stdio.h>

#include <stdlib.h>

int main() {

 for(int i = 0; i<10; i++)

 printf("%g\n", rand()/(double)RAND_MAX);
}

0.840188

0.394383

0.783099

0.79844

0.911647

0.197551

0.335223

0.76823

0.277775

0.55397

COMP2401 - Chapter 1 – Systems Programming and C Basics Fall 2020

 - 23 -

Why? That does not seem random at all! Well, the random number generator is really just
choosing a sequence of random numbers based on some starting point in the sequence. In
order to get a variety of pseudo-random numbers, we need to set the starting point for the
series of numbers generated. We do this by setting the seed of the generator.

The srand(s) function allows us to set the starting point in the sequence to be integer s.

Code from randTest2.c Output

#include <stdio.h>

#include <stdlib.h>

int main() {

 srand(1);

 for (int i = 0; i<5; i++)

 printf("%d\n", (int)(rand()/(double)RAND_MAX*100));

 srand(2);

 for (int i = 0; i<5; i++)

 printf("%d\n", (int)(rand()/(double)RAND_MAX*100));

 srand(683);

 for (int i = 0; i<5; i++)

 printf("%d\n", (int)(rand()/(double)RAND_MAX*100));

}

84

39

78

79

91

70

80

8

12

34

75

10

18

10

91

Of course, if you always use the same seed, you are stuck again with a fixed sequence.

Therefore, what is often done is to set the seed to be somewhat unique each time you run the
program. One way to do this is to incorporate the time of day into the seed. The time of day
can be obtained using the time(NULL) function defined in the <time.h> header. This

function returns the number of seconds that have elapsed since the Epoch (00:00:00 UTC,
January 1, 1970). The code below “always” produces different/unique numbers.

Code from randTest3.c Output

#include <stdio.h>

#include <stdlib.h>

#include <time.h>

int main() {

 srand(time(NULL));

 for (int i = 0; i<10; i++)

 printf("%d\n", (int)(rand()/(double)RAND_MAX*100));

}

32

28

60

83

37

26

36

46

64

70

There is an advantage of having a fixed sequence of random numbers when you run your
program. Imagine, for example, that your program uses a lot of random numbers to make
choices in your program (e.g., a game character makes random decisions to turn left or right or
go straight on a gameboard). If your program crashed or caused some undesirable situation
in your game at some point, you will need to debug your code.

COMP2401 - Chapter 1 – Systems Programming and C Basics Fall 2020

 - 24 -

If you set the sequence of random numbers to be fixed, then each time you run your code, the
character ends up in the same location. This allows you to trace the steps carefully, make
some changes and re-run the same set of steps.

Arrays:

In C, arrays work in a similar way as those in JAVA, but the syntax is not as flexible. If you
want to make arrays fully populated with data, here is what you can do:

Code from arrays.c Output

#include <stdio.h>

int main() {

 int ages[] = {34, 12, 45};

 double weights[] = {4.5, 23.6, 84.1, 78.2, 61.5};

 char vowels[] = {'a', 'e', 'i', 'o', 'u'};

 printf("\nHere is the ages array:\n");

 for (int i=0; i<3; i++)

 printf("%2d: %d\n",i, ages[i]);

 printf("\nHere is the weights array:\n");

 for (int i=0; i<5; i++)

 printf("%2d: %g\n",i, weights[i]);

 printf("\nHere is the vowels array:\n");

 for (int i=0; i<5; i++)

 printf("%2d: %c\n",i, vowels[i]);

 return(0);

}

Here is the ages array:

 0: 34

 1: 12

 2: 45

Here is the weights array:

 0: 4.5

 1: 23.6

 2: 84.1

 3: 78.2

 4: 61.5

Here is the vowels array:

 0: a

 1: e

 2: i

 3: o

 4: u

Although the code looks similar to JAVA, there are some differences. We cannot, for
example, move the square brackets over to the type side as follows:

 int[] ages = {34, 12, 45};

 double[] weights = {4.5, 23.6, 84.1, 78.2, 61.5};

 char[] vowels = {'a', 'e', 'i', 'o', 'u'};

Also, we can specify the maximum capacity of the array even if we do not want to fill it up:

Code from arrays1.c Output

#include <stdio.h>

int main() {

 int ages[8] = {34, 12, 45};

 char vowels[8] = {'a', 'e', 'i', 'o', 'u'};

 printf("\nHere is the ages array:\n");

 for (int i=0; i<8; i++)

 printf("%2d: %d\n",i, ages[i]);

Here is the ages array:

 0: 34

 1: 12

 2: 45

 3: 0

 4: 0

 5: 0

 6: 0

 7: 0

COMP2401 - Chapter 1 – Systems Programming and C Basics Fall 2020

 - 25 -

 printf("\nHere is the vowels array:\n");

 for (int i=0; i<8; i++)

 printf("%2d: %c\n",i, vowels[i]);

 return(0);

}

Here is the vowels array:

 0: a

 1: e

 2: i

 3: o

 4: u

 5:

 6:

 7:

There are some dangers to be aware of with respect to array boundaries. There is no
checking for “Index Out of Bounds” errors as with JAVA. So, C will allow us to access beyond
an array’s boundaries without warning us. This could be a problem:

Code from arrays2.c Output

#include <stdio.h>

int main() {

 int ages[8] = {34, 12, 45};

 char vowels[8] = {'a', 'e', 'i', 'o', 'u'};

 printf("\nHere is the ages array:\n");

 for (int i=0; i<15; i++)

 printf("%2d: %d\n",i, ages[i]);

 // Notice how data beyond boundary is invalid ------>

 printf("\nHere is the vowels array:\n");

 for (int i=0; i<8; i++)

 printf("%2d: %c\n",i, vowels[i]);

 ages[8] = 78; // This goes beyond bounds!!

 // This will overwrite/corrupt

 // any variables declared after it

 printf("\nHere is the vowels array:\n");

 // Notice how data in vowels array is corrupt ------>

 for (int i=0; i<8; i++)

 printf("%2d: %c\n",i, vowels[i]);

 return(0);

}

Here is the ages array:

 0: 34

 1: 12

 2: 45

 3: 0

 4: 0

 5: 0

 6: 0

 7: 0

 8: 1869178209

 9: 117

10: -397217792

11: -1216973860

12: -1076233904

13: 0

14: -1218652617

Here is the vowels array:

 0: a

 1: e

 2: i

 3: o

 4: u

 5:

 6:

 7:

Here is the vowels array:

 0: N

 1:

 2:

 3:

 4: u

 5:

 6:

 7:

We will be using arrays throughout the course. Be aware of these boundary issues, as it can
cause problems in your code in places that you would never had expected it.

COMP2401 - Chapter 1 – Systems Programming and C Basics Fall 2020

 - 26 -

 1.5 Getting User Input

Getting user input is also quite straight forward in C. Recall that in JAVA, we made use of the
Scanner class to get user input:

import java.util.Scanner;

public class GreetingProgram {

 public static void main(String[] args) {

 System.out.println("What is your name ?");

 String name = new Scanner(System.in).nextLine();

 System.out.println("Hello, " + name);

 }

}

In C, we make use of the scanf() function … which has a similar format to that of printf:

Code from userInput.c Output

#include <stdio.h>

int main() {

 char name[20];

 printf("What is your name ? \n");

 scanf("%s", name);

 printf("Hello, %s\n", name);

 return 0;

}

What is your name ?

Mark

Hello, Mark

Notice that the scanf() takes a parameter string, like the printf(). As well, for each parameter
it takes a variable. The variable must actually be a pointer (more on this later). That is …
we need to tell the compiler the memory location that we want the incoming information to be
stored into. In the above example, the variable name is actually a pointer to a char array. If
we want to simply store a value into an int, float, double or single char, then we need to use
the & symbol in front of the variable to indicate that we want the address of the variable (i.e.,
its location in memory).

Code from numberInput.c Output

#include <stdio.h>

int main() {

 int n1, n2, n3;

 printf("Enter three numbers:\n");

 scanf("%d", &n1);

 scanf("%d", &n2);

 scanf("%d", &n3);

 printf("The average is %g\n", (n1+n2+n3)/3.0);

 return 0;

}

Enter three numbers:

34

89

17

The average is 46.6667

COMP2401 - Chapter 1 – Systems Programming and C Basics Fall 2020

 - 27 -

Here are some memory diagrams that show how the char array name is stored in the memory
as well as the integers n1, n2 and n3. Each char takes 1 byte of space. We do not need the
& symbol when we use it because it is implied with arrays that we are talking about the
address of the first item in the list. When using the numbers though, the & is required so that
we give the scanf() function the memory location of where we want to store the incoming
value. Each int takes 4 bytes of space (more on this later).

There are lots of parameters for the scanf() function, just as with printf. We will not discuss
them all here. Instead, we will just mention a few more issues at this time, related to reading
in strings of characters. Note that in the above code, we set the name array to be size 20.
Since we will be treating the char array as a string … most of the string functions expect there
to be a null-terminating character (i.e., a 0) at the end of the string. Therefore, we can only
use 19 of the chars for the name, leaving the last one as 0 to indicate the end of the string.

Thus, our name can be at most 19 characters long. That
means if we enter anything more than this, we will have
crossed our boundary line and will be overwriting the
memory locations that come after it (i.e., 0008737660,
0008737661, 0008737662, etc..). This could be horrible
as we will likely be overwriting important information
stored in other variables. So, we need to prevent this
from happening.

COMP2401 - Chapter 1 – Systems Programming and C Basics Fall 2020

 - 28 -

To prevent the scanf() from accepting more characters, we need to supply the width limit, as
we did when using printf(). So, we would do this:

scanf("%19s", name);

As a result, our code will be safe (i.e., won’t overflow) for names with more than 19 chars (e.g.,
Hatmaguptafratarinagarosterlous … which is an actual first name):

Code from userInput2.c Output

#include <stdio.h>

int main() {

 char name[20];

 printf("What is your name ? \n");

 scanf("%19s", name);

 printf("Hello, %s\n", name);

 return 0;

}

What is your name ?

Hatmaguptafratarinagarosterlous

Hello, Hatmaguptafratarina

The other issue when reading a series of items using scanf() is that sometimes the carriage
return (i.e., \n) is not read in and remains in the buffer. This could cause a problem when
reading in more than one item from the program. In our earlier code, where we read in three
integers, there was no problem because reading in using the %d will ignore the \n character
that is left over from the previous read. However, reading in a character using %c would be a
problem because it will consider the \n from the previous number as being the character that
we want to read in. Consider this code, for example:

 int age;

 char gender, hand;

 printf("How old are you? \n");

 scanf("%d", &age);

 printf("What gender are you (M or F)?\n");

 scanf("%c", &gender);

 printf("What hand do you write with (L or R)?\n");

 scanf("%c", &hand);

 printf("You are a %d year old %c who writes with hand %c\n", age, gender, hand);

Notice the output that would result:

How old are you?

65

What gender are you (M or F)?

What hand do you write with (L or R)?

L

You are a 65 year old

 who writes with hand L

COMP2401 - Chapter 1 – Systems Programming and C Basics Fall 2020

 - 29 -

You can see that the \n character is read in as the gender … which was left over from the age
input. To solve this issue, whenever you read from the keyboard using scanf(), you can call
getchar() to read the carriage return character:

 int age;

 char gender, hand;

 printf("How old are you? \n");

 scanf("%d", &age);

 getchar();

 printf("What gender are you (M or F)?\n");

 scanf("%c", &gender);

 getchar();

 printf("What hand do you write with (L or R)?\n");

 scanf("%c", &hand);

 getchar();

 printf("You are a %d year old %c who writes with hand %c\n", age, gender, hand);

Then the code will work fine:

How old are you?

65

What gender are you (M or F)?

M

What hand do you write with (L or R)?

L

You are a 65 year old M who writes with hand L

There can be many such issues that pop up. It is important to be aware of them. For
example, if we read in a name using this:

scanf("%10s", firstName);
scanf("%15s", lastName);

Then we need to realize that if we enter more than 10 characters in the first name, the unused
characters will be still in the standard keyboard input buffer and will therefore be read in as the
first few letters of the last name! Sometimes, we are simply left with no solution except to
empty out the buffer each time manually like this:

while(getchar() != '\n'); // The ; indicates no body for the loop

which can be used as follows:

 printf("What is your first name? \n");

 scanf("%10s", firstName);

 while(getchar() != '\n');

 printf("What is your last name?\n");

 scanf("%15s", lastName);

 while(getchar() != '\n');

 printf("How old are you?\n");

 scanf("%d", &age);

 while(getchar() != '\n');

 printf("Hi %s %s ... you are %d years old.\n", firstName, lastName, age);

COMP2401 - Chapter 1 – Systems Programming and C Basics Fall 2020

 - 30 -

Example:

Let us write a program (that you may have already done in JAVA) that displays the following
menu:

Luigi's Pizza

 S(SML) M(MED) L(LRG)

1. Cheese 5.00 7.50 10.00

2. Pepperoni 5.75 8.63 11.50

3. Combination 6.50 9.75 13.00

4. Vegetarian 7.25 10.88 14.50
5. Meat Lovers 8.00 12.00 16.00

The program should then prompt the user for the type of pizza he/she wants to order (i.e., 1 to
5) and then the size of pizza 'S', 'M' or 'L'. Then the program should display the cost of the
pizza with 13% tax added.

Once we have the kind and size from the user, we will need to compute the total cost. Notice
that the cost of a small pizza increases by $0.75 as the kind of pizza increases. Also, you
may notice that the cost of a medium is 1.5 x the cost of a small and the cost of a large is 2 x a
small. So, we can compute the cost of any pizza based on its kind and size by using a single
mathematical formula.

A small pizza would cost: smallCost = $4.25 + (kind x $0.75)
A medium pizza would cost: mediumCost = smallCost * 1.5
A large pizza would cost: largeCost = smallCost * 2

Here is the code:

#include <stdio.h>

int main() {

 int kind;

 float cost;

 char size;

 printf("Luigi's Pizza \n");

 printf("---\n");

 printf(" S(SML) M(MED) L(LRG)\n");

 printf("1. Cheese 5.00 7.50 10.00 \n");

 printf("2. Pepperoni 5.75 8.63 11.50 \n");

 printf("3. Combination 6.50 9.75 13.00 \n");

 printf("4. Vegetarian 7.25 10.88 14.50 \n");

 printf("5. Meat Lovers 8.00 12.00 16.00 \n\n");

 printf("What kind of pizza do you want (1-5)?\n");

 scanf("%d", &kind);

 while(getchar() != '\n');

 printf("What size of pizza do you want (S, M, L)?\n");

 scanf("%c", &size);

 while(getchar() != '\n');

COMP2401 - Chapter 1 – Systems Programming and C Basics Fall 2020

 - 31 -

 cost = 4.25 + (kind * 0.75);

 if (size == 'M')

 cost *= 1.5;

 else if (size == 'L')

 cost *= 2;

 printf("\nThe cost of the pizza is: $%0.2f\n", cost);

 printf("The price with tax is: $%0.2f\n", cost * 1.13);

 return 0;

}

Here is the expected output when ordering a Medium Vegetarian pizza:

Luigi's Pizza

 S(SML) M(MED) L(LRG)

1. Cheese 5.00 7.50 10.00

2. Pepperoni 5.75 8.63 11.50

3. Combination 6.50 9.75 13.00

4. Vegetarian 7.25 10.88 14.50

5. Meat Lovers 8.00 12.00 16.00

What kind of pizza do you want (1-5) ?

4

What size of pizza do you want (S, M, L) ?

M

The cost of the pizza is: $10.88

The price with tax is: $12.29

COMP2401 - Chapter 1 – Systems Programming and C Basics Fall 2020

 - 32 -

 1.6 Functions & Procedures in C

When programming, it is often advantageous to write functions in order to modularize our code
and to break complicated code into easily understood pieces that are also maintainable.

In procedural languages, such as C, functions & procedures are the basic building blocks of
our programs. In OO languages, classes are the basic building blocks in that the object
definitions are what structure the code, while functions are “hidden” inside the classes.

When designing functions, if you want to do it “correctly”, you should keep these points in
mind. A function should …

• take data in, do something and then return a result
o results can be returned as return value or through parameters

• be single-purpose
o have a single goal, do one thing only

• encapsulate (i.e., hide) functionality
o user knows what function does, not how it does it

• be reusable
o in the same program or other programs

In C, it is important to understand how data is shared between functions. In some ways, it can
be different in C than in JAVA. A parameter to a function will have one of three purposes:

• input – data passed in and required for the function to complete its task

• output – data that is set or “filled-in” by the function … the results of the function’s work

• input/output – data both required by the function and resulting from it

At ALL times, it is vital that we understand the purpose of each parameter before we write the
code. Interestingly, the return value of a function is almost never used to return data! It is
often used only to return the function’s status … that is … to indicate success or failure.

Consider the following coding example that prompts the user for some integers until either 10
are entered or until a -1 is entered. It then displays the entered values and computes the
maximum.

Code from arrays3.c Output

#include <stdio.h>

#define MAX_SIZE 10 // maximum numbers allowed

int main() {

 int array[MAX_SIZE];

 // Get the numbers from the user

 int totalNums = 0;

 int num;

COMP2401 - Chapter 1 – Systems Programming and C Basics Fall 2020

 - 33 -

 do {

 printf("Enter a number (-1 to quit): ");

 scanf("%d", &num);

 if (num != -1)

 array[totalNums++] = num;

 } while ((totalNums < MAX_SIZE) && (num != -1));

 // Compute the maximum of the array

 int max = 0;

 for (int i=0; i<totalNums; i++) {

 if (array[i] > max)

 max = array[i];

 }

 // Print the array

 printf("\nHere is the array:\n");

 for (int i=0; i<totalNums; i++)

 printf("%2d: %d\n",i, array[i]);

 // Print the maximum

 printf("\nMax is %d\n", max);

 return(0);

}

Enter a number (-1 to quit): 12

Enter a number (-1 to quit): 43

Enter a number (-1 to quit): 65

Enter a number (-1 to quit): 23

Enter a number (-1 to quit): 8

Enter a number (-1 to quit): -1

Here is the array:

 0: 12

 1: 43

 2: 65

 3: 23

 4: 8

Max is 65

We are now going to see how to make three functions from this code. One to get the input,
one to display the array and one to compute the maximum. To begin, let us make a
procedure that simply takes in the array and displays it. We will call the function
displayArray(). It will take two parameters … the array itself and the number of elements in
the array. There is no return value for the procedure, so we use void. Here is the template:

void displayArray(int theArray[], int theArraySize) {

 // ...

}

Notice how the array is passed in as a parameter by using the [] characters. We actually

aren’t passing the whole array into the procedure … we just passing in the address of (i.e., a
pointer to) where the array is stored in memory. The * character means that we are passing in
a pointer (i.e., reference) to a memory location. This is the same as in JAVA, in that the object
is passed in as a reference to its memory location.

So in our example, to call the procedure in C, we do this:

displayArray(array, totalNums);

Here, the array parameter doesn’t have brackets. Whenever we pass just an array name, it
represents the memory location (i.e., reference) of the beginning of the array in memory. The
totalNums parameter represents the value of the number stored in the totalNums variable.

COMP2401 - Chapter 1 – Systems Programming and C Basics Fall 2020

 - 34 -

When passing in parameters to functions and procedures in C, we can do one of two things:

Pass-by-value

• value is copied into function

• function works on the local copy

• copy is lost when function returns

• value in calling function cannot be changed

Pass-by-reference

• address of value is passed into function

• value in calling function can be changed

The code for the procedure is straight forward:

void displayArray(int theArray[], int theArraySize) {

 printf("\nHere is the array:\n");

 for (int i=0; i<theArraySize; i++)

 printf("%2d: %d\n",i, theArray[i]);

}

The only change that we made is to use the new incoming parameter names instead of the
names of the variables that were passed in.

We can do something similar for computing the maximum value in the array:

int findMaximum(int theArray[], int theArraySize) {

 int m = 0;

 for (int i=0; i<theArraySize; i++) {

 if (theArray[i] > m)

 m = theArray[i];

 }

 return m;

}

Notice now that this is a function with an int being returned. The code is straight forward from
our existing code that we had written previously. Calling this from the main program is also
easy:

int max = findMaximum(array, totalNums);

The computed maximum will be stored in the max variable when the function returns.

Finally, we can write the code that gets the array data. It will need to return the number of
values entered so that we can use this in our main program to pass it to the other two
functions:

int getArrayData(int theArray[]) {

 int count = 0;

 int num;

COMP2401 - Chapter 1 – Systems Programming and C Basics Fall 2020

 - 35 -

 do {

 printf("Enter a number (-1 to quit): ");

 scanf("%d", &num);

 if (num != -1)

 theArray[count++] = num;

 } while ((count < MAX_SIZE) && (num != -1));

 return count;

}

Again, calling this is easy. We’ll make sure to store the return value:

int totalNums = getArrayData(array);

Finally, we can put it all together.

Code from arrays4.c

#include <stdio.h>

#define MAX_SIZE 10 // maximum numbers allowed

// Function definitions

void displayArray(int[], int);

int findMaximum(int[], int);

int getArrayData(int[]);

int main() {

 int array[MAX_SIZE];

 int totalNums = getArrayData(array); // Get the numbers from the user

 displayArray(array, totalNums); // Print the array

 int max = findMaximum(array, totalNums); // Compute the maximum of the array

 printf("\nMax is %d\n", max); // Print the maximum

 return(0);

}

/***/

/* Display the values of the given array */

/***/

void displayArray(int theArray[], int theArraySize) {

 printf("\nHere is the array:\n");

 for (int i=0; i<theArraySize; i++)

 printf("%2d: %d\n",i, theArray[i]);

}

/**/

/* Find and return the maximum value of the given array */

/**/

int findMaximum(int theArray[], int theArraySize) {

 int m = 0;

 for (int i=0; i<theArraySize; i++) {

 if (theArray[i] > m)

 m = theArray[i];

 }

 return m;

}

COMP2401 - Chapter 1 – Systems Programming and C Basics Fall 2020

 - 36 -

/**/

/* Prompt the user for values and place them into the given */

/* array until the array is full or -1 is entered */

/**/

int getArrayData(int theArray[]) {

 int count = 0;

 int num;

 do {

 printf("Enter a number (-1 to quit): ");

 scanf("%d", &num);

 if (num != -1)

 theArray[count++] = num;

 } while ((count < MAX_SIZE) && (num != -1));

 return count;

}

There is one addition that you may have noticed. Each of the functions must be declared
before it is used. To declare the function, we simply supply its signature:

void displayArray(int[], int);

int findMaximum(int[], int);

int getArrayData(int[]);

If you do not include these declarations, you will get compile errors such as these:

arrays4.c: In function ‘main’:
arrays4.c:23:19: warning: implicit declaration of function ‘getArrayData’ [-Wimplicit-function-declaration]
 int totalNums = getArrayData(array); // Get the numbers from the user
 ^
arrays4.c:24:3: warning: implicit declaration of function ‘displayArray’ [-Wimplicit-function-declaration]
 displayArray(array, totalNums); // Print the array
 ^
arrays4.c:26:13: warning: implicit declaration of function ‘findMaximum’ [-Wimplicit-function-declaration]
 int max = findMaximum(array, totalNums); // Compute the maximum of the array
 ^
arrays4.c: At top level:
arrays4.c:36:6: warning: conflicting types for ‘displayArray’
 void displayArray(int *theArray, int theArraySize) {
 ^
arrays4.c:24:3: note: previous implicit declaration of ‘displayArray’ was here
 displayArray(array, totalNums); // Print the array
 ^

We will talk more in depth later about addresses to arrays and we will do many examples in
which we create functions and pass in parameters by value as well as by reference.

COMP2401 - Chapter 1 – Systems Programming and C Basics Fall 2020

 - 37 -

 1.7 Coding Conventions/Style

This section just mentions a few things that you should keep in mind when
coding in the C language.

Variable/Function Names:

Fixed values should be all uppercase letters with compound names separated
by underscores:

PI

DAYS_OF_THE_WEEK

INTEREST_RATE

Variable names should ALWAYS begin with lowercase letters but when multiple words are
used in a variable name, each word should be capitalized, except the first one. Alternatively,
underscore characters can be used to separate the variable names.

Pick descriptive names, not lame ones that make no sense. Here are some good ones:

count

average

insuranceRate

timeOfDay

aString

latestAccountNumber

weightInKilograms

insurance_rate

time_of_day

a_string

latest_account_number

weight_in_kilograms

Loop counters often use single letters (but you may call them whatever you’d like):

for (int i=0; i<10; i++) {

 // ...

}

for (int r=0; r<10; r++) {

 for (int c=0; c<10; c++) {

 // ...

 }

}

Data types (more on this later) should have names that follow the style
of variable names, except that they should begin with an uppercase
letter … just as class names in JAVA began with an uppercase letter.

 PersonType

 StudentType

 BankAccountType

Finally, for functions and procedures, following the naming
convention for variable names.

If it is a hidden function though (i.e., meant to be private),
the function name should begin with an underscore.

 getBalance

 calculateMonthlyPayment

 _performValidation

COMP2401 - Chapter 1 – Systems Programming and C Basics Fall 2020

 - 38 -

Indentation

As a computer programmer, it is important that you properly indent your code and use decent
spacing. This will ensure that your code is readable. It helps the reader of the code to quickly
understand which statements belong together. It also allows you to easily determine which
brackets match. After all … can you imagine trying to read poorly indented code like this?

 #include <stdio.h>

 int main() {

 int isPrime;

 printf("Prime numbers from 1 to 100 are:\n");

 for (int i=1; i<=100000; i++) {

isPrime = 1; // Assume that i is prime

 for (int j=2; j<i; j++) {

if (i%j == 0) {

 isPrime = 0; // if found, not prime

 break;

 }
 }

 if (isPrime)

 printf("%d\n", i);

 }

 }

A block of code is a sequence of code between one pair of matching braces. A nested block
is a block contained within another block. The general rules are:

• ALL statements within a block must be indented identically.

• ALL blocks nested at the same level must have their statements indented identically

#include <stdio.h>

int main() {

 int isPrime;

 printf("Prime numbers from 1 to 100 are:\n");

 for (int i=1; i<=100000; i++) {

 isPrime = 1; // Assume that i is prime

 for (int j=2; j<i; j++) {

 if (i%j == 0) {

 isPrime = 0; // if found, not prime

 break;

 }
 }

 if (isPrime)

 printf("%d\n", i);

 }

}

Be consistent with your bracketing style … do not mix styles. There are 2 reasonable styles:

COMP2401 - Chapter 1 – Systems Programming and C Basics Fall 2020

 - 39 -

int main() {

 int isPrime;

 printf("Prime numbers from 1 to 100 are:\n");

 for (int i=1; i<=100000; i++) {

 isPrime = 1; // Assume that i is prime

 for (int j=2; j<i; j++) {

 if (i%j == 0) {

 isPrime = 0; // if found, not prime

 break;

 }
 }

 if (isPrime)

 printf("%d\n", i);

 }

}

int main()

{

 int isPrime;

 printf("Prime numbers from 1 to 100 are:\n");

 for (int i=1; i<=100000; i++)

 {

 isPrime = 1; // Assume that i is prime

 for (int j=2; j<i; j++)

 {

 if (i%j == 0)

 {

 isPrime = 0; // if found, not prime

 break;

 }
 }

 if (isPrime)

 printf("%d\n", i);

 }

}

Commenting

Students often ask: “How much should I comment my code?”. This is VERY subjective
indeed. Some like few comments, some like many comments. Some overly comment so that
every line of code is commented … this is too excessive.

As a rule of thumb, comments are usually needed to document:

• The program - comments in the file that contains the main() function.
o purpose of the program
o how to use the program (e.g., explaining command line arguments)
o the author
o revisions over time

/***/

/* */

/* GraphGen.C */

/* */

/* This program generates a graph from a triangle. */

/* The user must supply 3 coordinates for the triangle vertices. */

/* */

/* Usage: graphgen <x1><y1><x2><y2><x3><y3><numSteiners> <outputFilename> */

/* */

/***/

#include <sys/types.h>

#include <stdio.h>

#include <math.h>

#include <stdlib.h>

int main(int argc, char **argv) {

 FILE *outFile;

 int numVertices, numOuterVertices, numEdges, numOuterEdges;

 int i, j, k;

...

COMP2401 - Chapter 1 – Systems Programming and C Basics Fall 2020

 - 40 -

• Each function - appearing before each function
o describes purpose of function
o each parameter, indicating whether input, output, or input/output
o possible return values
o side-effects

/* This function builds projections representing propagation */

/* from a vertex (S) of a TIN. It does this by adding a new */

/* node for each incident face of the vertex. Since TINs */

/* are non-convex polyhedra, we must also add projections */

/* through vertices. */

/* v1 */

/* o */

/* /|\ The projections from S are */

/* / | \ actually the three whole edges. */

/* e1 / | \ e2 Also, we allow propagating */

/* / S \ through the vertices of the */

/* / / \ \ face. */

/* / / \ \ */

/* o/___________\o */

/* v2 e3 v3 */

/* */

/* These projections are built and then stored in the tree */

/* called the "Sequence Tree" (which can have nodes corres- */

/* ponding to edge or vertex projections). */

/* */

/* vertexNode = vertex S from which to project. */

/* seqTree = sequence tree to be returned. */

static void CHSP_VertexPropagate(TreeNode *vertexNode, SeqTree *seqTree) {

 Tin_vertex *aVertex;

 Tin_vertex2D *nextVertex, *nextNextVertex;

 Tin_edge *anEdge;

• Variables and Structures – before variable declaration or alongside

o main purpose of variable
o ranges of variables, or anything that clarifies a value

/* This structure represents the data stored in a vertex node in the */

/* sequence tree. The tree information is not stored here. */

struct VertexNodeInfoStruct {

 Tin_vertex2D image; /* The unfolded image vertex */

 Tin_vertex2D vertex; /* The vertex of projection */

 Tin_face2D *pFace; /* Face projected through */

 float dist; /* Shortest distance from src */

};

typedef struct VertexNodeInfoStruct VertexNodeInfo;

/* This structure represents the data stored in an edge node in the */

/* sequence tree. The tree information is not stored here. */

struct EdgeNodeInfoStruct {

 Tin_edge2D pEdge; /* The edge of projection */

 Tin_face2D pFace; /* Face projected through */

 Tin_vertex2D *image; /* The unfolded image vertex */

 Tin_vertex2D vLeft; /* A projection endpoint */

 Tin_vertex2D vRight; /* A projection endpoint */

 float dist; /* Shortest dist from src */

};

/* For 64 color rasters, I provide some color masks here */

#define DM_BLUE_MASK 0x30 /* 00110000 */

#define DM_GREEN_MASK 0x0C /* 00001100 */

#define DM_RED_MASK 0x03 /* 00000011 */

#define DM_WHITE_MASK 0x3F /* 00111111 */

#define DM_ALL_MASK 0xFF /* 11111111 */

COMP2401 - Chapter 1 – Systems Programming and C Basics Fall 2020

 - 41 -

• Throughout the code – before each chunk of complex/critical code

o explain portion of algorithm that is accomplished by code that follows
o keep it brief

SPPath* CHSP_PathToDestination(SeqTree *aSeqTree, int destID, Tin *aTin) {

 SPPath *path;

 TreeNode *node;

 Tin_vertex2D *last2DVertex, *iPt;

 Tin_vertex *Ie, *last3DVertex;

 EdgeNodeInfo *nodeInfo;

 float scale;

 VertexList *newVertex;

 FILE *chPathFile;

 /* Get the destination node in the sequence tree */

 node = aSeqTree->pathPtrs[destID];

 if (node == NULL) {

 printf("CHError: Destination is unreachable\n");

 return(NULL);

 }

 /* Open a file to store the resulting path */

 if (!(chPathFile = fopen("chenpath.dat", "a"))) {

 printf("Error: Cannot open chenhan.path output file\n");

 return;

 }

 /* Create a new path */

 path = (SPPath *)malloc(sizeof(SPPath));

 path->size = 0;

 path->length = aSeqTree->distances[destID];

 path->firstVertex = (VertexList *)malloc(sizeof(VertexList));

 path->lastVertex = path->firstVertex;

 path->firstVertex->vertex = ((VertexNodeInfo *)(node->data))->vertex.ref;

 path->firstVertex->next = path->firstVertex->prev = NULL;

 path->totalEdgeLength = 0.0;

 path->totalEdgeCount = 0;

 /* Store the first vertex in the path file */

 fprintf(chPathFile, "%d %d\n", path->firstVertex->vertex->id, path->firstVertex->vertex->id);

 /* Now go through and get the links of the path */

 last2DVertex = &(((VertexNodeInfo *)(node->data))->vertex);

 last3DVertex = last2DVertex->ref;

 while(node->parent != NULL) {

 path->size += 1;

 newVertex = (VertexList *)malloc(sizeof(VertexList));

 path->totalEdgeCount++;

 if (node->parent->type == VERTEX_NODE) {

 /* The parent projection was from a vertex */

 newVertex->vertex = ((VertexNodeInfo *)(node->parent->data))->vertex.ref;

 path->totalEdgeLength += TIN_MaxEdgeLengthFromVertex(aTin, newVertex->vertex);

 last2DVertex = &(((VertexNodeInfo *)(node->parent->data))->vertex);

 last3DVertex = newVertex->vertex;

 /* Store the intermediate vertex id in the path file */

 fprintf(chPathFile, "%d %d\n", newVertex->vertex->id, newVertex->vertex->id);

 }

 else {

 /* The parent projection was from an edge, */

 /* we need to find an intersection point. */

 nodeInfo = (EdgeNodeInfo *)(node->parent->data);

 scale = TIN_Edge2D_ScaleFromIntersect(&(nodeInfo->pEdge), last2DVertex,

 nodeInfo->image);

 path->totalEdgeLength += TIN_EdgeLength(nodeInfo->pEdge.ref);

COMP2401 - Chapter 1 – Systems Programming and C Basics Fall 2020

 - 42 -

 /* Store the intermediate edge id in the path file */

 fprintf(chPathFile, "%d %d\n", nodeInfo->pEdge.ref->start->id,

 nodeInfo->pEdge.ref->end->id);

 Ie = TIN_Edge_PointAtScale(nodeInfo->pEdge.start.ref,nodeInfo->pEdge.end.ref, scale);

 Ie->id = -1;

 newVertex->vertex = Ie;

 last3DVertex = Ie;

 }

 /* Add the new vertex to the path */

 path->lastVertex->next = newVertex;

 newVertex->prev = path->lastVertex;

 newVertex->next = NULL;

 path->lastVertex = newVertex;

 /* Get the next projection intersection */

 node = node->parent;

 }

 fprintf(chPathFile, "%d %d\n", INFINITY, INFINITY);

 fclose(chPathFile);

 return(path);

}

