

Chapter 2

Data Representation

What is in This Chapter ?

This chapter explains how data is represented in memory. It begins with an explanation of
how bits are stored using various bit models (i.e., magnitude only, sign magnitude, two’s
compliment, fixed point, floating point, ASCII and UNICODE). It then discusses bit
operators that help us understand how to manipulate memory data at the bit level which will
allow us to make efficient use of storage space. Compound data types are introduced, such
as Strings and Arrays (single and multi-dimensional). The chapter concludes with a
discussion of custom type definitions such as structs and unions.

COMP2401 - Chapter 2 – Data Representation Fall 2020

 - 44 -

 2.1 Number Representation and Bit Models

All data stored in a computer must somehow be represented numerically in some way whether
it is numerical to begin with, a series of characters or an image. Ultimately, everything
digitally breaks down to ones and zeros. We need to understand how data is stored (or
represented) in the computer so that we interpret the 1’s and 0’s correctly. For example,
consider this sequence of ones and zeros:

01000011 01001111 01010111

The data can be interpreted in different ways:

• Three unique integers: 67, 79, 87

• One large number: 4,411,223

• A word: COW

• A color (RGB):

The “correct” way to interpret the data depends on the context in which it is used.

Numerical values that we use normally every day are in base 10 … the decimal system. In this
system, a sequence of digits such as 62389 is easily understood to be “sixty-two thousand
three hundred and eighty-nine”. We know this because we perform the following operation in
our head:

 (9 * 1) + (8 * 10) + (3 * 100) + (2 * 1,000) + (6 * 10,000)

Which is the same as doing this:

 (9 * 100) + (8 * 101) + (3 * 102) + (2 * 103) + (6 * 104)

When dealing with computers, we often use other number systems as well such as
Hexadecimal, Octal and Binary. Here is a comparison of these number systems:

Number System Base Digits/Characters Used Example

Binary 2 0, 1 1001011

Octal 8 0, 1, 2, 3, 4, 5, 6, 7 113

Decimal 10 0, 1, 2, 3, 4, 5, 6, 7, 8, 9 75

Hexadecimal 16 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A, B, C, D, E, F 4B

Given a number in any of the non-decimal system formats, we can determine the value in the
same manner as with our decimal number system, using the base as the multiplication factor.

COMP2401 - Chapter 2 – Data Representation Fall 2020

 - 45 -

Consider how to compute the value of the number 1001101? in the various bases:

Base Calculation Decimal Value

2 (1*20) +(0*21) +(1*22) +(1*23) +(0*24) +(0*25) +(1*26) 77

8 (1*80) +(0*81) +(1*82) +(1*83) +(0*84) +(0*85) +(1*86) 262,721

10 (1*100)+(0*101)+(1*102)+(1*103)+(0*104)+(0*105)+(1*106) 1,001,101

16 (1*160)+(0*161)+(1*162)+(1*163)+(0*164)+(0*165)+(1*166) 16,781,569

Hopefully you can remember how to convert from one base to another base. If not, here is
how to convert from Binary to Decimal, Octal and Hex:

Here is how to convert from Octal and Hex to Decimal:

Here is how to convert from Decimal to Binary and Hex:

COMP2401 - Chapter 2 – Data Representation Fall 2020

 - 46 -

Here is a C example which shows how to specify literal values for decimal, octal, hex and
binary numbers:

Code from bases.c

#include <stdio.h>

int main() {

 unsigned char dec = 27; // = (2*10) + 7 = 27

 unsigned char oct = 027; // = (2*8) + 7 = 23
 unsigned char hex = 0xbf; // = (11*16) + 15 = 191

 unsigned int hex2 = 0xbad; // = (11*256) + (10*16) + 13 = 2989

 unsigned char bin = 0b00111100; // = (32 + 16 + 8 + 4) = 60

 printf("%d %d %d %d %d\n", dec, oct, hex, hex2, bin);

 return 0;

}

Bit Models

Consider now binary numbers. Each 1 or 0 is called a bit. We can group bits together. A
group of four consecutive bits is called a nibble and a group of eight consecutive bits is called
a byte. Two nibbles can be grouped to form a byte. We often break things down into nibbles
when we do hexadecimal calculations since each hexadecimal digit is represented with a
nibble. We can then group two, four or 8 bytes together for form a word. We can thus have a
16-bit word, a 32-bit word or a 64-bit word. When we group bits of 1’s and 0’s together,
there are a variety of methods for interpreting them. Each method of interpreting the
sequence of bits is called a bit model. We will look at 6 models:

• Magnitude-only Bit Model

• Sign-Magnitude Bit Model

• Two’s Compliment Bit Model

• Fixed-Point Bit Model

• Floating-Point Bit Model

• ASCII and Unicode Bit Model

COMP2401 - Chapter 2 – Data Representation Fall 2020

 - 47 -

In C, the model that is used will depend on the data type. So, unsigned int, int, float and
char will all have their own bit model. (Note: From here-on in the notes, it is assumed that sequences of

1’s and 0’s are binary numbers, and so the numbers will not have a base 2 subscript indication.)

Magnitude-only Bit Model

This model is for non-negative decimal
numbers (whole numbers). It is the simplest
model since each bit represents an integer
power of 2. With an 8-bit value, we can store a
value in the range of 0 to 255.

00000000 = 0
00000001 = 1
00000010 = 2
00000011 = 3
…
11111101 = 253
11111110 = 254
11111111 = 255

In this representation, we consider the leftmost bit to be considered the most-significant bit
and the rightmost bit as the least-significant bit. (e.g., 10110101)

Interestingly, when adding numbers, we simply add the bits together starting from the least-
significant bit to the most-significant bit:

Example of (10 + 7) Example of (254 + 7)
 00001010

+ 00000111

= 00010001

= 17

 11111110

+ 00000111

=100000101 OVERFLOW!

= 5

Notice that there can be an overflow. Ultimately, there is a limit to the values that we can store
with just one byte. Hence, we often use more than one byte to represent numbers in our
software.

When dealing with combinations of bytes, we can have groups of 8 bits to store words to
provide a larger range of values. For example, a sequence of 4 bytes can represent a much
larger number:

10011001 00001110 01111001 00111001

= (10011001 * 224) + (00001110 * 216) + (01111001 * 28) + (00111001 * 20)
= (153 * 16,777,216) + (14 * 65,536) + (121 * 256) + (57 * 1)
= 2,567,862,585

COMP2401 - Chapter 2 – Data Representation Fall 2020

 - 48 -

Here is a table that shows the range of numbers that can be stored when using combinations
of bytes together using the magnitude-only bit model:

Word Size Bits Used Bytes Used Number Range

byte 8 1 0 to 255

16-bit word 16 2 0 to 65,535

32-bit word 32 4 0 to 4,294,967,295

64-bit word 64 8 0 to 18,446,744,073,709,551,615

In C, the magnitude-only bit model is used with unsigned types:

C – data type Bits Used Bytes Used Number Range
unsigned char 8 1 0 to 255
unsigned short int 16 2 0 to 65,535
unsigned int 32 4 0 to 4,294,967,295
unsigned long int 64 8 0 to 18,446,744,073,709,551,615

Sign-Magnitude Bit Model

This model allows negative decimal numbers
(whole numbers). It is the simplest strategy for
representing negative numbers. It has a
smaller magnitude range though … allowing
numbers only in the range of -127 to +127 for a single byte. The idea is to simply use the most-
significant bit to be the sign bit (which is the reason for the reduction in magnitude using this
bit model). By convention, a value of 0 in the sign bit indicates a positive value, while a 1
indicates a negative value.

00000000 = 0
00000001 = 1
00000010 = 2
…
01111110 = 126
01111111 = 127
10000000 = -0
10000001 = -1
10000010 = -2
…
11111110 = -126
11111111 = -127

This representation is not used often because of a couple of reasons. First, there are two
values for zero … +0 and -0. That is weird. Even more of a hassle is that the math does not
work out evenly. If the signs of the two numbers are the same, we simply add the magnitudes
as unsigned numbers and leave the sign bit intact.

However, we need to be careful about overflow:

COMP2401 - Chapter 2 – Data Representation Fall 2020

 - 49 -

Example of (10 + 7) Example of (-10 + -7) Example of (126 + 7)
 00001010

+ 00000111

= 00010001

= 17

 10001010

+ 10000111

= 10010001

= -17

 01111110

+ 00000111

= 00000101 OVERFLOW!

= 5

If the signs differ, we need to subtract the smaller magnitude from the larger magnitude, and
keep the sign of the larger magnitude:

 Example of (10 + -7) Example of (-10 + 7) Example of (126 + -7)
 00001010

- 10000111

= 00000011

= 3

 10001010

- 00000111

= 10000011

= -3

 01111110

- 10000111

= 01110111

= 119

But this is unpleasant and a bit ugly. Because of the two-zero problem and the need to
subtract instead of add … the sign-magnitude bit model is not often used. It is not used in C.

Two’s Complement Bit Model

This model allows both positive and negative
decimal numbers (whole numbers).
Regarding positive and zero numbers … things
are represented the same way as a magnitude-
only bit model. It has a smaller magnitude range
though … allowing numbers only in the range of -128 to +127.
To represent negative numbers … we take the bits that represent the number as if it were
positive, then invert (or flip) all of the bits and then add 1.

00010011 = 19
11101100 flipped bits
11101101 added one

11101101 = -19

As it turns out, if the most significant bit is 1, then the number is negative, just like the sign-
magnitude bit model. To determine the magnitude of a negative number, we perform the exact
same steps:

11101101 = -19
00010010 flip bits
00010011 add one

00010011 = 19 magnitude

We add numbers in the same way:

COMP2401 - Chapter 2 – Data Representation Fall 2020

 - 50 -

Example of (10 + 7) Example of (-10 + -7)
 00001010

+ 00000111

= 00010001

= 17

 11110110

+ 11111001

=111101111 extra 1 carried out, no problem

= -17

It is possible, however, that there can be an overflow … resulting in the answer being invalid.
It is easy to tell if an overflow has occurred. There are two cases:

• If the sum of two positive numbers results in a negative result.

• If the sum of two negative numbers results in a positive result.

Example of (126 + 7) Example of (-80 + -100)
 01111110

+ 00000111

= 10000101 … sign bit changed!

= -123 in two’s-complement

 10110000

+ 10011100

=101001100 overflow … sign bit changed!

= 76 in two’s-complement

In C, the two’s complement bit model is used with signed types:

C – data type Bits Used Bytes Used Number Range
char

signed char
8 1 -128 to +127

short int

signed short int
16 2 -32,768 to +32,767

int

signed int
32 4 -2,147,483,648 to +2,147,483,647

long

signed long

signed long int

64 8 -9,223,372,036,854,775,808 to
+9,223,372,036,854,775,807

Here is a program that stores some positive and negative values in signed and unsigned chars
(i.e., bytes). Since the range of signed chars is smaller than unsigned, you will notice some
interesting results for values above 127. You will also notice some interesting results for
values that go beyond the storage range of a char or byte. The compiler actually provides a
warning, but allows the code to compile. Near the end of the code, some of these overflow
values are stored in short data types … and you can see that there are no problems.

It is important to understand that things may not always “appear” as you want them to when it
comes to mixing signed and unsigned values. Be careful when printing out such values …
especially when debugging:

COMP2401 - Chapter 2 – Data Representation Fall 2020

 - 51 -

Code from twosCompliment.c Output

#include <stdio.h>

int main() {

 char sc;

 unsigned char uc;

 sc = uc = 0; //00000000

 printf("0 signed: %d\n", sc);

 printf("0 unsigned: %d\n", uc);

 sc = uc = 1; //00000001

 printf("1 signed: %d\n", sc);

 printf("1 unsigned: %d\n", uc);

 sc = uc = 7; //00000111

 printf("7 signed: %d\n", sc);

 printf("7 unsigned: %d\n", uc);

 sc = uc = 126; //01111110

 printf("126 signed: %d\n", sc);

 printf("126 unsigned: %d\n", uc);

 sc = uc = 127; //01111111

 printf("127 signed: %d\n", sc);

 printf("127 unsigned: %d\n", uc);

 sc = uc = 128; //10000000

 printf("128 signed: %d\n", sc);

 printf("128 unsigned: %d\n", uc);

 sc = uc = 255; //11111111

 printf("255 signed: %d\n", sc);

 printf("255 unsigned: %d\n", uc);

 sc = uc = 256; //100000000 *overflow

 printf("256 signed: %d\n", sc);

 printf("256 unsigned: %d\n", uc);

 sc = uc = 260; //100000100 *overflow

 printf("260 signed: %d\n", sc);

 printf("260 unsigned: %d\n", uc);

 sc = uc = -0; //100000000 *overflow

 printf("-0 signed: %d\n", sc);

 printf("-0 unsigned: %d\n", uc);

 sc = uc = -1; //11111111

 printf("-1 signed: %d\n", sc);

 printf("-1 unsigned: %d\n", uc);

 sc = uc = -7; //11111001

 printf("-7 signed: %d\n", sc);

 printf("-7 unsigned: %d\n", uc);

 sc = uc = -126; //10000010

 printf("-126 signed: %d\n", sc);

 printf("-126 unsigned: %d\n", uc);

0 signed: 0

0 unsigned: 0

1 signed: 1

1 unsigned: 1

7 signed: 7

7 unsigned: 7

126 signed: 126

126 unsigned: 126

127 signed: 127

127 unsigned: 127

128 signed: -128

128 unsigned: 128

255 signed: -1

255 unsigned: 255

256 signed: 0

256 unsigned: 0

260 signed: 4

260 unsigned: 4

-0 signed: 0

-0 unsigned: 0

-1 signed: -1

-1 unsigned: 255

-7 signed: -7

-7 unsigned: 249

-126 signed: -126

-126 unsigned: 130

COMP2401 - Chapter 2 – Data Representation Fall 2020

 - 52 -

 sc = uc = -127; //10000001

 printf("-127 signed: %d\n", sc);

 printf("-127 unsigned: %d\n", uc);

 sc = uc = -128; //10000000

 printf("-128 signed: %d\n", sc);

 printf("-128 unsigned: %d\n", uc);

 sc = uc = -255; //00000001 *weird eh?

 printf("-255 signed: %d\n", sc);

 printf("-255 unsigned: %d\n", uc);

 sc = uc = -256; //100000000 *overflow

 printf("-256 signed: %d\n", sc);

 printf("-256 unsigned: %d\n", uc);

 sc = uc = -260; //011111100 *overflow

 printf("-260 signed: %d\n", sc);

 printf("-260 unsigned: %d\n", uc);

 short ss;

 unsigned short us;

 ss = us = 255; //0000000011111111

 printf("255 signed short: %d\n", ss);

 printf("255 unsigned short: %d\n", us);

 ss = us = 256; //00000000100000000

 printf("256 signed short: %d\n", ss);

 printf("256 unsigned short: %d\n", us);

 ss = us = 260; //00000000100000100

 printf("260 signed short: %d\n", ss);

 printf("260 unsigned short: %d\n", us);

 ss = us = -255; //1111111100000001

 printf("-255 signed short: %d\n", ss);

 printf("-255 unsigned short: %d\n", us);

 ss = us = -256; //1111111100000000

 printf("-256 signed short: %d\n", ss);

 printf("-256 unsigned short: %d\n", us);

 ss = us = -260; //1111111011111100

 printf("-260 signed short: %d\n", ss);

 printf("-260 unsigned short: %d\n", us);

 return 0;

}

-127 signed: -127

-127 unsigned: 129

-128 signed: -128

-128 unsigned: 128

-255 signed: 1

-255 unsigned: 1

-256 signed: 0

-256 unsigned: 0

-260 signed: -4

-260 unsigned: 252

255 signed short: 255

255 unsigned short: 255

256 signed short: 256

256 unsigned short: 256

260 signed short: 260

260 unsigned short: 260

-255 signed short: -255

-255 unsigned short: 65281

-256 signed short: -256

-256 unsigned short: 65280

-260 signed short: -260

-260 unsigned short: 65276

COMP2401 - Chapter 2 – Data Representation Fall 2020

 - 53 -

The three bit-models that we just looked at are used for representing whole
numbers. But how do we represent real (i.e., non-whole) numbers ?

There are two main approaches:

1. Fixed point

• Pros:
o faster than floating-point arithmetic

▪ Used in digital signal processing and game applications where
performance is sometimes more important than precision

• Cons:
o loss of range for integer portion if more precise fraction is needed
o works for fractional powers of 2 but not for powers of 10

2. Floating point

• Pros:
o much better precision and range

• Cons:
o slower than fixed-point arithmetic

Fixed-Point Bit Model

The fixed-point bit model is used to represent real numbers, such as floats and
doubles. The key to the fixed-point bit model is based on the concept of a binary
point … which is like the decimal point in a decimal system that separates the
integer part from the fractional part. Consider the binary point number as follows:

11010.101

This can be calculated as follows:

(1*24) + (1*23) + (0*22) + (1*21) + (0*20) + (1*2-1) + (0*2-2) + (1*2-3)

= (1*16) + (1*8) + (0*4) + (1*2) + (0*1) + (1*1/2) + (0*1/4) + (1*1/8)

= 16 + 8 + 2 + 1/2 + 1/8

= 26.625

Interestingly, if we shift the binary point to the left, we end up with a number half the size:

1101.0101 = 13.3125

and if we shift the binary point to the right, we end up with a number twice the size:

110101.01 = 53.25

So … the position of the binary point is crucial in determining the result. In a fixed-point
representation, therefore, we must always know how many bits are being used (a.k.a. the
width) … and where to position the binary point (a.k.a. the binary point position).

COMP2401 - Chapter 2 – Data Representation Fall 2020

 - 54 -

Consider this number:

11010101

As we have seen it can represent various values, depending on where we place the binary
point. We can use the notation fixedPoint(w,b) to represent a w-bit number with the binary
point position set to have b digits to the right of the point:

Notation Fixed-Point Binary Real Number

fixedPoint(8,0) 11010101 213

fixedPoint(8,1) 1101010.1 105.5

fixedPoint(8,2) 110101.01 53.25

fixedPoint(8,3) 11010.101 26.625

fixedPoint(8,4) 1101.0101 13.3125

fixedPoint(8,5) 110.10101 6.65625

fixedPoint(8,6) 11.010101 3.328125

fixedPoint(8,7) 1.1010101 1.6640625

fixedPoint(8,8) .11010101 0.83203125

Negative numbers are represented as either sign-magnitude or two’s compliment. Assuming
two’s compliment, we represent the number -7.25 as follows:

000111.01 = 7.25 … positive number
111000.10 = flip bits …
111000.11 = add 1 to get negative number -7.25

Number addition is done the same way as two’s compliment. We basically just “ignore” the
decimal when adding:

Example of (2.5 + 1.75) Example of (-2.5 + -7.25)
 000010.10

+ 000001.11

= 000100.01

= 4.25

 111101.10

+ 111000.11

=1110110.01

= -9.75

Floating-Point Bit Model

With the floating-point representation, we can use the available bits in
different ways. As a result, the total precision using 4 bytes is around 8
digits. That means, we can represent numbers like this: 0.123456,
123.456 or 123,456.0 … but we cannot represent numbers like this:
123,456.789012. With the floating-point model, the binary point position
is not fixed … but may move around (i.e., float).

In the decimal number system, a number is written in scientific notation like this:

28410 = 2.84 x 102

COMP2401 - Chapter 2 – Data Representation Fall 2020

 - 55 -

In general, a number is written in scientific notation as:

± M x BE

where M = mantissa, B = base and E = exponent

In C, we have two types that represent real numbers:

C – data type Bits Used Bits used - Exponent Bits used - Mantissa
float 32 8 23
double 64 11 52

There are many ways to represent a floating-point number. Here is one way to represent the
number 284:

284 = 1000111002 = 1.000111 x 28

1-bit sign 8-bit exponent 23-bit mantissa

0 00001000 100 0111 0000 0000 0000 0000

Since the leading digit in the mantissa is always 1 (for non-zero values), we can assume that
this is implied in an improved representation as follows:

1-bit sign 8-bit exponent 23-bit mantissa

0 00001000 000 1110 0000 0000 0000 0000

In the IEEE 754 32-bit floating-point standard, we add a bias of 127 to the exponent as follows:

1-bit sign 8-bit biased exponent 23-bit mantissa

0 10000111 000 1110 0000 0000 0000 0000

There are some special cases:

Number 1-bit sign 8-bit biased exponent 23-bit mantissa

0 00000000 000 0000 0000 0000 0000 0000

∞ 0 11111111 000 0000 0000 0000 0000 0000

-∞ 1 11111111 000 0000 0000 0000 0000 0000

NaN 11111111 Non-zero

NaN is short for “Not a Number” and it is used to represent a number that
does not exist.

When using double-precision numbers, the bias used should be 1023
instead of 127. Otherwise things work the same way.

Adding floating point numbers is a little more work that non-floating-point
numbers.

COMP2401 - Chapter 2 – Data Representation Fall 2020

 - 56 -

Consider adding the following two real numbers:

 345.7500

+ 6,819.1875

 7,164.9375

How do we add these numbers using floating point notation?
First, get them into binary and then scientific notation:

0000101011001.1100 = 1.010110011100 x 28

1101010100011.0011 = 1.1010101000110011 x 212

And now into floating-point representation:

0 10000111 010 1100 1110 0000 0000 0000

0 10001011 101 0101 0001 1001 1000 0000

Now to add them, there are a few steps to take:

1. Get the two mantissas, putting the “1.” before both fractional parts:

N1 = 1.0101100111

N2 = 1.1010101000110011

2. Compare the exponents by subtracting the 2nd exponent from the 1st:

135 – 139 = - 4

Since this is a negative number, we shift the binary point of N1 right by 4 bits so that the
numbers both have exponent 212 now:

N1 = 0.0001010110011100

N2 = 1.1010101000110011

3. Add the mantissas:

 0.0001010110011100
+ 1.1010101000110011

 1.1011111111001111

4. Normalize the mantissa if it has more than one digit to the left of the binary point

5. Round the result if need be (but should not need to if still fits in 23 bits)

6. Assemble the exponent and mantissa back into floating-point notation

0 10001011 101 1111 1110 0111 1000 0000

COMP2401 - Chapter 2 – Data Representation Fall 2020

 - 57 -

7. Verify if answer is correct:

= 1.10111111110011110000000 x 212
= 1101111111100.11110000000
= 7164 + 0.9375
= 7164.9375

As you can see … it can be a little tricky! It is always important to verify that your calculations
are correct.

ASCII and Unicode Bit Model

This model is for representing non-numerical values. It is a way of
mapping characters to numbers. ASCII (American Standard Code
for Information Interchange) and Unicode (not a real acronym but
stands for a Universal code standard) are two ways of representing
characters. The ASCII code standard was released in 1963, and
was subsequently modified in 1967 and again in 1986. It is a subset
of the Unicode standard which was released in 1991. Unicode
incorporates characters from different languages.

Original ASCII code mapped non-accented English text characters and punctuations to
numbers. It also mapped some control characters (e.g., NULL, whitespace, tabs, newline,
separators) to numbers as well. Each character is contained in one byte. Here are the
standard mappings from 0 to 255:

COMP2401 - Chapter 2 – Data Representation Fall 2020

 - 58 -

In C, there are 2 character-types that make use of ASCII:

C – data type Bits Used Bytes Used Conversion
unsigned char 8 1 Decimal value converted to binary

using magnitude-only
char

signed char
8 1 Decimal value converted to binary

using two’s compliment

When dealing with UNICODE characters, there are various encoding schemes. UTF-8 (i.e.,
Unicode Transformation Format) is most commonly used to represent characters from other
languages. Each character can take up to 4 bytes. But in C, we use a short int to hold a 2-
byte Unicode value. There is a LOT to say about the Unicode text format, but we do not want
to get into it too much in this course. We will focus mainly on ASCII code.

COMP2401 - Chapter 2 – Data Representation Fall 2020

 - 59 -

 2.2 Bitwise Operations

Consider an internet company that has 1.2 million people using its services. Perhaps the
company wants to keep track of some simple boolean values per customer … such as whether
they are an adult, whether they are currently logged-on, or something as simple as whether
their account is active. This can be done using an array:

char loggedOn[1200000];

The char data type is the smallest primitive type in C, which uses
1 byte … or 8 bits. We would set each value of the array to be either
TRUE (i.e., 1) or FALSE (i.e., 0), depending on the log-on-status of that
customer. The only values that will be stored in the array are 1 and 0.

It is easy to see that this is a poor use of space. We would actually be
making use of just 1 of the 8 bits in each byte. So we are wasting
87.5% of the storage space required by the array!!!

A simple solution is to allow 8 people’s log-on-status booleans to be
grouped together and stored in a single byte.

In addition to this memory storage problem, sometimes we might need
to access data coming in from (or out to) a hardware port in which a
byte (or set of bytes) contains portions of bit sequences that have
particular meaning, such as on/off flags, error codes, data, instruction
code, etc..

At any given moment, we many need to read or set the bits that are relevant for what we are
trying to do. It is for good reason then that we will need a way of manipulating bytes at the bit-
level. That is what this section of the notes is all about … understanding how to manipulate
the bits.

A bit operator is an operator that takes one or two numbers and performs an

operation on the bits of those numbers.

They are symbols that are used to manipulate individual bits of whole number data types such
as signed char, unsigned char, signed int and unsigned int. These operators

can be used on literals or variables.

Here is a list of available bit-operators in C:

COMP2401 - Chapter 2 – Data Representation Fall 2020

 - 60 -

Operator Action Description
~ bitwise NOT inverts every bit (works on one value)
& bitwise AND performs AND between every bit (requires two values)
| bitwise OR performs OR between every bit (requires two values)
^ bitwise XOR performs Exclusive OR between every bit (requires two values)
>> right- shift moves bits into lower-order (less significant) bit positions
<< left-shift moves bits into higher-order (more significant) bit positions

Here is a program that shows how to use them:

Code from bitOperators.c

#include <stdio.h>

#include <math.h>

void printAsBinary(unsigned char);

int main() {

 unsigned char n1 = 157; // 10011101

 unsigned char n2 = 198; // 11000110

 unsigned char answer;

 answer = ~n1;

 printf("~157 = %d, ~10011101 = ", answer);printAsBinary(answer);

 answer = n1>>1;

 printf("\n157 >> 1 = %d, 10011101 >> 1 = ", answer);printAsBinary(answer);

 answer = n1>>2;

 printf("157 >> 2 = %d, 10011101 >> 2 = ", answer);printAsBinary(answer);

 answer = n1<<1;

 printf("157 << 1 = %d, 10011101 << 1 = ", answer);printAsBinary(answer);

 answer = n1<<2;

 printf("157 << 2 = %d, 10011101 << 2 = ", answer);printAsBinary(answer);

 answer = n1&n2;

 printf("\n157 & 198 = %d, 10011101 & 11000110 = ", answer);printAsBinary(answer);

 answer = n1|n2;

 printf("157 | 198 = %d, 10011101 | 11000110 = ", answer);printAsBinary(answer);

 answer = n1^n2;

 printf("157 ^ 198 = %d, 10011101 ^ 11000110 = ", answer);printAsBinary(answer);

 char n3 = -100; // 10011100

 char answer2;

 answer2 = n3<<1;

 printf("\n-100 << 1 = %d, 10011100 << 1 = ", answer2);printAsBinary(answer2);

 answer2 = n3<<4;

 printf("-100 << 4 = %d, 10011100 << 4 = ", answer2);printAsBinary(answer2);

 answer2 = n3>>1;

 printf("-100 >> 1 = %d, 10011100 >> 1 = ", answer2);printAsBinary(answer2);

 answer2 = n3>>4;

 printf("-100 >> 4 = %d, 10011100 >> 4 = ", answer2);printAsBinary(answer2);

 return 0;

}

COMP2401 - Chapter 2 – Data Representation Fall 2020

 - 61 -

// Convert an unsigned char to an integer that looks like binary

void printAsBinary(unsigned char n) {

 for (int i=7; i>=0; i--) {

 if ((int)(n/pow(2,i)) > 0) {

 printf("1");

 n = n - pow(2,i);

 }

 else

 printf("0");

 }

 printf("\n");

}

The output of the program is as follows:

~157 = 98, ~10011101 = 01100010

157 >> 1 = 78, 10011101 >> 1 = 01001110

157 >> 2 = 39, 10011101 >> 2 = 00100111

157 << 1 = 58, 10011101 << 1 = 00111010

157 << 2 = 116, 10011101 << 2 = 01110100

157 & 198 = 132, 10011101 & 11000110 = 10000100

157 | 198 = 223, 10011101 | 11000110 = 11011111

157 ^ 198 = 91, 10011101 ^ 11000110 = 01011011

-100 << 1 = 56, 10011100 << 1 = 00111000

-100 << 4 = -64, 10011100 << 4 = 11000000

-100 >> 1 = -50, 10011100 >> 1 = 11001110

-100 >> 4 = -7, 10011100 >> 4 = 11111001

Notice that during a right bit shift, zeros are added in on the left as the most significant bit.
Similarly, when shifting left, zeros are added in on the right as the least significant bit. This is
always the case when dealing with unsigned integers (i.e., magnitude only).

However, when right-shifting with negative numbers (i.e., two’s complement), the bits coming
in are 1’s … the highest order sign bit.

Examining bitmasks

In order to extract portions of bits from numbers, we need to use …

A bitmask is a sequence of one or more bits that you apply to another binary

number to read, set or clear the value of one or more bits.

The bitmask number is used to indicate which bits are to be affected by an operation. The
following table shows how to read, set and clear a particular bit (i.e., the nth bit) of a number:

Operation Solution in C code

Set nth bit x OR 2n x = x | (1 << n);

Clear nth bit x AND (NOT 2n) x = x & (~(1 << n));

Read nth bit (x AND 2n) / 2n x = (x & (1 << n)) >> n;

COMP2401 - Chapter 2 – Data Representation Fall 2020

 - 62 -

Here is an example of how we apply mask m to integer x:

Set bit 2 of x Clear bit 4 of x Read bit 4 of x
x = 19 00010011 x = 19 00010011 x = 19 00010011
m = 1<<2 00000100 m = 1<<4 00010000 m = 1<<4 00010000
x | m 00010111 ~m 11101111 x & m 00010000
 x & ~m 00000011 (x & m)>>4 00000001

Let’s look at a more interesting example. Consider our earlier example of a two-byte bit-
sequence that can be used to send commands to a device and to read data from that device.
The device allows up to 16 instructions, some of which require 8-bits of data.

After the device performs the user’s instruction, it will make use of the most significant bit (i.e.,
the OK bit) to indicate an error status. If all went well, this bit will be set to 0, otherwise it will
be set to 1.

The particular kind of error will be indicated by the device which will set the Error Code bits to
indicate one of 8 possible errors that may have occurred. Here is how the bits are organized:

We can store this command in an unsigned short as follows:

unsigned short command;

Now, assume that we want to send instruction 0110 to the device with its corresponding data
10011101. How can we set the instruction and data bits accordingly? Since the OK and Error
Code bits are to be set by the device, we don’t worry about what value they have when
sending our instructions. So, it is easy to set the command.

We just need to shift the data left by 4 bits and add the instruction:

command = instruction + (data << 4);

send(command);

Assuming that the command is then modified by the device to contain an answer in the data
bits. How can we extract that data ? We would need to provide a bitmask indicating which
bits that we want to read as follows:

unsigned short result = receive();

printf("The result from the device is: %d",

 (result & (255<<4)) >> 4);

COMP2401 - Chapter 2 – Data Representation Fall 2020

 - 63 -

But we would have to first check the ok bit to make sure that the data is valid. If not, we should
check the error code bits and inform the user:

if ((result & 0b1000000000000000) > 0)

 printf("An error has occurred with code: %d\n",

 (result & (0b111 << 12)) >> 12);

Here is a completed program that simulates the sending of 5 instructions to a device and then
checks the 5 received results for errors and prints out an appropriate message:

Code from bitmask.c

#include <stdio.h>

#include <math.h>

void printAsBinary(unsigned short);

void send(int);

void receive(int);

unsigned char simulatedInstructions[] = {0b0110, // 6

 0b0000, // 0

 0b0011, // 3

 0b1111, // 15

 0b0001}; // 1

unsigned char simulatedData[] = {0b00110011, // 51

 0b11100000, // 228

 0b10101010, // 170

 0b00000000, // 0

 0b11111111}; // 255

unsigned short simulatedResults[] = {0b0000101000010110, // 161

 0b1010000000000000, // error code 2

 0b1101001110010011, // error code 5

 0b0000111111101111, // 254

 0b0000000111110001}; // 31

int main() {

 unsigned short result;

 // Send 5 commands and get 5 results

 for (int i=0; i<5; i++) {

 send(i);

 receive(i) ;

 }

 return 0;

}

// Simulate the sending of an instruction with data to the device

void send(int i) {

 unsigned short command = simulatedInstructions[i] + (simulatedData[i] << 4);

 printf("Sending Command: ");

 printAsBinary(command);

}

COMP2401 - Chapter 2 – Data Representation Fall 2020

 - 64 -

// Simulate the receiving of a one byte data reply from the device. An

// error may have occurred, so this is checked for before the data is read.

void receive(int i) {

 unsigned short result = simulatedResults[i];

 if ((result & 0b1000000000000000) > 0)

 printf("An error has occurred with code: %d\n", (result & (0b111<<12)) >> 12);

 else

 printf("The result data from the device is: %d\n", (result & (255<<4)) >> 4);

}

// Convert an unsigned short to an integer that looks like binary

void printAsBinary(unsigned short n) {

 for (int i=15; i>=0; i--) {

 if ((int)(n/pow(2,i)) > 0) {

 printf("1");

 n = n - pow(2,i);

 }

 else

 printf("0");

 }

 printf("\n");

}

Here is the program output:

Sending Command: 0000001100110110

The result data from the device is: 161

Sending Command: 0000111000000000

An error has occurred with code: 2

Sending Command: 0000101010100011

An error has occurred with code: 5

Sending Command: 0000000000001111

The result data from the device is: 254

Sending Command: 0000111111110001

The result data from the device is: 31

COMP2401 - Chapter 2 – Data Representation Fall 2020

 - 65 -

 2.3 Compound Data Types

Up until now, we have examined only primitive data types such as char, long int, short int,
int, float and double. We have also looked at how these are broken down into bits to be
stored in the computer’s memory. We will now look at working with compound data types:

A compound data type is a data type that stores multiple values

under a single variable name.

Recall that in JAVA, we have primitive types and we were able to combine multiple primitive
types into one compound type. For example … in JAVA …

• String objects consist of an ordered-sequence of char primitives:

o e.g., String s = new String("Hello ");

s = s + 'T' + 'h' + 'e' + 'r' + 'e';

• Array objects consist of an ordered-sequence of primitives or other same-type
objects:

o e.g., int[] scores = {33, 56, 21, 75, 82, 44, 91};
Car[] cars = new Car[50];

cars[0] = new Car("Red", "Porsche", 260);

cars[2] = new Car("Yellow", "Ferrari", 252);

• Class objects consist of a mixed set of attributes which may be primitives or objects:
o e.g., class Car {

String owner;

int accountNumber;

float balance;

 }

In the C programming language, we can do similar things. We can create Strings and Arrays
as well as Structures (which are similar to the notion of a collection of a class’ attributes but
without its methods). We will examine each of these now.

 2.4 Strings and char Arrays

As in JAVA, strings in C are a sequence of characters. Unlike JAVA, which keeps track of a
string’s length, in C we do not keep track of the length. Instead, the end of a string is
identified by a special null-terminating character … which is the null character '\0' … which has
ACSII value 0. It is a non-printable character … so it cannot be displayed on the screen:

This is JAVA code,
not C code

This is
JAVA code,
not C code

This is JAVA
code, not C
code

COMP2401 - Chapter 2 – Data Representation Fall 2020

 - 66 -

Recall that in JAVA, we cannot modify a string once it has been created. So, for example,
consider appending to a string as follows:

String s = new String("Hello ");

String c = s;

s = s + 'T' + 'h' + 'e' + 'r' + 'e';

System.out.println(s); // prints "Hello There"

System.out.println(c); // prints original string object "Hello"

In JAVA, we get a new string each time that the + operator is used. The original string
remains intact. We are actually unable to modify a created String in JAVA.

In C, however, since strings are just a sequence of char primitives in memory, we can modify
the string at any time, given that we know the memory location of the start of the string. In
fact, strings are defined with respect to a starting location in memory. In C, we declare a
string type in one of two ways as follows:

char myString[4]; or char *myString;

In the first option, we are declaring an array of chars. We can set the characters individually
and modify the array at any time, as with any array:

myString[0] = 'J';
myString[1] = 'e';

myString[2] = 'n';

myString[3] = '\0'; // Make sure to end with a null terminator!!

We can also access the characters as a normal array, but be careful … we are allowed to
access beyond the boundary:

printf("myString = %s\n", myString); // Jen

printf("myString[0] = %c\n", myString[0]); // J

printf("myString[1] = %c\n", myString[1]); // e

printf("myString[2] = %c\n", myString[2]); // n

printf("myString[3] = %c\n", myString[3]); // null char

printf("myString[4] = %c\n", myString[4]); // garbage!

printf("myString[5] = %c\n", myString[5]); // garbage!

printf("myString[6] = %c\n", myString[6]); // garbage!

In addition to setting the characters of the array one at a time, we can also hard-code the
values with a constant (i.e., literal) string as follows:

char myString[] = "Jen";

Note that we do not need to specify the null-terminating character when creating a string in this
manner.

This is JAVA
code, not C
code

COMP2401 - Chapter 2 – Data Representation Fall 2020

 - 67 -

Here is what it would look like as
myString is stored in memory →

Note that it is the same as a char
array in JAVA. The only
difference is the use of the null-
terminating character.

We can even reserve “extra”
space for future characters by
putting a size into the array:

char myString[50];

But in this case, the string is
uninitialized … and hence filled
with garbage characters. It would
not display properly.

printf("myString = %s\n", myString); // myString = `�XH|�

Of course, we could always set it to be purposely blank (and hence display nothing) like this:

char myString[50] = "";

Now, as for the 2nd way of creating a string (i.e., char *myString), take note of the *

character. This indicates that we want the variable to refer to the location (i.e., memory
address) of the first character of the string.

This reference is also known as …

A pointer is a reference to a memory location.

We could assign a value to the string as before:

char *myString = "Jen";

Again, the individual characters of the string can be accessed as if it were an array:

printf("myString = %s\n", myString); // Jen

printf("myString[0] = %c\n", myString[0]); // J

printf("myString[1] = %c\n", myString[1]); // e

printf("myString[2] = %c\n", myString[2]); // n

printf("myString[3] = %c\n", myString[3]); // null char

printf("myString[4] = %c\n", myString[4]); // garbage!

printf("myString[5] = %c\n", myString[5]); // garbage!

printf("myString[6] = %c\n", myString[6]); // garbage!

COMP2401 - Chapter 2 – Data Representation Fall 2020

 - 68 -

Notice that the code is identical as when the string was declared as a char[]. At any time,

we can determine the string’s location in memory by using the & character (which means
address of) as follows:

printf("address of myString = %p\n", (void *) &myString);

This will return the memory location of the start of the string which may look something like
this: 0x7ffd9ee76644 ... which will of course depend on the amount of memory installed on
your computer and how much is allocated to your program etc.. We will talk much more about
pointers and addresses later on.

For now, here is a test program to summarize everything. Feel free to play around with the
code and experiment:

Code from strings.c Output

#include <stdio.h>

int main() {

 char a = 'P';

 char b[] = "Jen";

 char c[50] = "";

 char *d = "Max";

 printf("a = %c\n\n", a);

 printf("b = %s\n", b);

 printf("b[0] = %c\n", b[0]);

 printf("b[1] = %c\n", b[1]);

 printf("b[2] = %c\n", b[2]);

 printf("b[3] = %c\n", b[3]);

 printf("b[4] = %c\n", b[4]);

 printf("b[5] = %c\n\n", b[5]);

 printf("c = %s\n\n", c);

 printf("d = %s\n", d);

 printf("d[0] = %c\n", d[0]);

 printf("d[1] = %c\n", d[1]);

 printf("d[2] = %c\n", d[2]);

 printf("d[3] = %c\n", d[3]);

 printf("d[4] = %c\n", d[4]);

 printf("d[5] = %c\n\n", d[5]);

 printf("address of a = %p\n",(void *) &a);

 printf("address of b = %p\n",(void *) &b);

 printf("address of c = %p\n",(void *) &c);

 printf("address of d = %p\n",(void *) &d);

 return(0);

}

a = P

b = Jen

b[0] = J

b[1] = e

b[2] = n

b[3] =

b[4] =

b[5] =

c =

d = Max

d[0] = M

d[1] = a

d[2] = x

d[3] =

d[4] = a

d[5] =

address of a = 0x7ffc5b2b871f

address of b = 0x7ffc5b2b872c

address of c = 0x7ffc5b2b8730

address of d = 0x7ffc5b2b8720

We may also declare a char or string as constant … or non-modifiable. We do this by using
the const keyword:

COMP2401 - Chapter 2 – Data Representation Fall 2020

 - 69 -

const char d = 'G';

const char *e = "Wow";

const char f[] = "Amazing";

If we try to modify a variable that has been declared as constant within our code, e.g., like this:

d = 'H';

then the compiler will stop us:

strings.c:40:5: error: assignment of read-only variable ‘d’

 d = 'H';

For strings, the use of const is like a safety measure so that we don’t modify the string
accidentally. It also makes it clear in your code (when someone else is reading it) that you
won’t be modifying this later in your program. You should use const whenever you have fixed
Strings (e.g., error messages, text used for printf() statements, or labels on a GUI, etc…).

There are some useful functions that we can use on strings. They are located in the string.h
library. To use them, we must therefore put this header file at the top of our code:

#include <string.h>

strlen()

One of the most useful functions is the strlen() function which returns the number of
characters in a string. It actually returns the number of characters up until it finds the null-
terminating character.

char *t1 = "Mark";

printf("strlen(t1) = %d\n", strlen(t1)); // 4

We have to be careful to make sure that at least one character is available in the string. For
example, notice the varying results when we call the strlen() function on somewhat empty
strings as shown below:

char *t1 = "Please enter your two names: ";

char *t2 = "";

char *t3;

char t4[]; // won’t compile, since no array size specified

char t5[] = "";

char t6[25];

char t7[25] = "";

printf("strlen(t1) = %d\n", strlen(t1)); // 29

printf("strlen(t2) = %d\n", strlen(t2)); // 0

printf("strlen(t3) = %d\n", strlen(t3)); // segmentation fault!!

printf("strlen(t5) = %d\n", strlen(t5)); // 0

printf("strlen(t6) = %d\n", strlen(t6)); // 0

printf("strlen(t7) = %d\n", strlen(t7)); // 0

COMP2401 - Chapter 2 – Data Representation Fall 2020

 - 70 -

Note that t3 does not reserve any space for characters … so it is like an undefined string.

Finding the length of it can cause strange results as well as a segmentation fault. Also, t4[]

will not compile because we must specify a size for all arrays. Both t6 and t7 reserve enough

space to hold plenty of characters but there are no characters in there upon initialization … so
the content of the array is unpredictable. We typically use strlen() in our loops. For example,
if we want to count the spaces in a string we can do this:

char *s = "Please enter your two names: ";

int count = 0;

for (int i=0; i<strlen(s); i++) {

 if (s[i] == ' ')

 count++;

}

printf("Number of spaces = %d\n", count);

strcpy(dest, src) & strncpy(dest, src, n)

The strcpy() function copies the string pointed to by src (including the terminating
null byte) to the buffer pointed to by dest. It is important to ensure that the
destination string is large enough to receive the copy otherwise we might overwrite
memory locations and crash our program. Consider this code:

char *s1 = "This is the original";

char *s2;

strcpy(s2, s1);

It generates a segmentation fault (i.e., program crash)! Why ? Examine the second string
s2. It is declared as a pointer to a string, but no space has been allocated for the characters.
Therefore, when we try to copy over the string, it starts writing over memory locations that may
contain our program or other variables. To fix this, we need to reserve space, perhaps using a
character array as follows:

char *s1 = "This is the original";

char s2[50];

strcpy(s2, s1);

s2[8] = ' ';

s2[9] = 'u';

s2[10] = 'n';

s2[11] = '-';

printf("s1 = %s\n", s1); // displays "This is the original"

printf("s2 = %s\n", s2); // displays "This is un-original"

A similar function is strncpy() which allows us to specify that we just want to copy a few
characters, not all of them. Again, we need to be careful to reserve space for at least n+1
characters (an extra one to hold the null terminator).

COMP2401 - Chapter 2 – Data Representation Fall 2020

 - 71 -

Be aware though, if there is no null byte among the first n bytes of the src, then the string
placed in dest will not be null-terminated. Also, if the length of src is less than n, then
strncpy() will write additional null bytes to dest to ensure that a total of n bytes are written.

char *s1 = "This is the original";

char s3[20];

strncpy(s3, s1, 11);

printf("s3 = %s\n", s3); // displays "This is the���/"
s3[11] = '\0';

printf("s3 = %s\n", s3); // displays "This is the"

strcmp(s1, s2) & strncmp(s1, s2, n)

The strcmp(s1, s2) function compares two strings, s1 and s2, for equality.
If s1 < s2 (alphabetically), then a negative value is returned. If s1 > s2
(alphabetically), then a positive value is returned. If s1 == s2
(alphabetically), then 0 is returned.

char *s4 = "Chris";

char *s5 = "Jen";

char *s6 = "Will";

printf("strcmp(Chris, Jen) = %d\n", strcmp(s4, s5)); // -1

printf("strcmp(Jen, Chris) = %d\n", strcmp(s5, s4)); // 1

printf("strcmp(Jen, Will) = %d\n", strcmp(s5, s6)); // -1

printf("strcmp(Will, Chris) = %d\n", strcmp(s6, s4)); // 1

printf("strcmp(Jen, Jen) = %d\n", strcmp(s5, s5)); // 0

Note that when the strings are not equal, the above code returned -1 and +1. However, these
values are not guaranteed … only the sign is guaranteed.

The strncmp() function works like strcmp(), however it only compares the first (at most) n
characters of the strings:

char *s7 = "Max";

char *s8 = "Mark";

char *s9 = "Melvin";

printf("strncmp(Max, Mark, 2) = %d\n", strncmp(s7, s8, 2)); // 0

printf("strncmp(Max, Mark, 3) = %d\n", strncmp(s7, s8, 3)); // 1

printf("strncmp(Melvin, Mark, 1) = %d\n", strncmp(s9, s7, 1)); // 0

printf("strncmp(Max, Melvin, 5) = %d\n", strncmp(s7, s9, 5)); // -1

printf("strncmp(Max, Max, 8) = %d\n", strncmp(s7, s7, 8)); // 0

strcat(dest, src) & strncat(dest, src, n)

The strcat() function appends the src string to the dest string, over‐writing the terminating null
byte at the end of dest, and then adds a terminating null byte. The dest string must have
enough space for the result to be stored otherwise you again may overwrite valuable memory.

COMP2401 - Chapter 2 – Data Representation Fall 2020

 - 72 -

char *n1 = "Steve";

char *n2 = "Martha";

char *n3 = "Jacob";

char result[50] = ""; // 50 is big enough for this example

strcat(result, n1);

strcat(result, ", ");

strcat(result, n2);

strcat(result, ", ");

strcat(result, n3);

printf("result = %s\n", result); // displays "Steve, Martha, Jacob"

Similarly, the strncat() appends at most n bytes from src. Therefore, the space that dest is
stored in must be at least strlen(dest) + n + 1 bytes.

char *n4 = "Steve";

char *n5 = "ariel";

char *n6 = "tup";

char result2[50] = "";

strncat(result2, n4, 2);

strncat(result2, n5, 2);

strncat(result2, n6, 3);

strncat(result2, n4, 999); // only appends 5 chars since null is there

printf("result2 = %s\n", result2); // displays "StartupSteve"

sprintf()

The sprintf() function works like printf(), except that instead of printing to the console, it prints
the information into a specified string. This function will return the number of bytes in the
resulting string, or a negative value if an error occurs.

It is most useful for converting numbers to strings and for combining multiple values into a
string.

 char answer[50];

 char *name = "Bob";

 int num = 1026784;

 float balance = 67.32;

 int chars = sprintf(answer, "%s's account %d with $%0.2f",

 name, num, balance);

 printf("The string is \"%s\" with %d characters\n", answer, chars);

The answer is:

The string is "Bob's account 1026784 with $67.32" with 33 characters

COMP2401 - Chapter 2 – Data Representation Fall 2020

 - 73 -

Use %zu when
using sizeof().

 2.5 Arrays

Arrays store multiple values of the same type. Every element takes up the same amount of
memory. The size of the array in memory will therefore depend on the type of data stored.
So, for example, the following two arrays would look different in memory:

char arr1[20] = "MARK is having fun!";

int arr2[20] = {590599, 512, 65535};

As we have seen, accessing the arrays is done the same way as in JAVA … by indices …
which start at 0. However, unlike JAVA, C does NOT do any Array Out of Bounds checking!
Therefore, you need to be much more careful when using them.

We can use the sizeof() function in C to determine how many bytes are
required for a particular type or how many bytes a variable is using. This
will help us determine how much storage space is
required for our arrays. So, for example, we can
determine the size of types like this:

printf("The size of int is %zu\n", sizeof(int)); // displays 4

printf("The size of float is %zu\n", sizeof(float)); // displays 4

printf("The size of double is %zu\n", sizeof(double)); // displays 8

printf("The size of char is %zu\n\n", sizeof(char)); // displays 1

COMP2401 - Chapter 2 – Data Representation Fall 2020

 - 74 -

And if we were to create some arrays of these types, we could determine how many bytes the
entire array will require when stored in memory as follows:

int array1[5];

float array2[3];

double array3[6];

char array4[10];

printf("The size of array1 is %zu\n", sizeof(array1)); // 5*4 = 20

printf("The size of array2 is %zu\n", sizeof(array2)); // 3*4 = 12

printf("The size of array3 is %zu\n", sizeof(array3)); // 6*8 = 48

printf("The size of array4 is %zu\n\n", sizeof(array4)); // 10*1 = 10

In C, arrays do not have an attribute nor a function that allows us to know how many items are
in the array. We could keep track of this in a separate variable, as we did in JAVA. Then we
can loop through the elements using a FOR loop. However, there is a way to determine the
capacity of an array. We can use the sizeof() function again. Since sizeof() tells us how
many total bytes are in the array, we just need to divide that number by the size of the type
that the array is storing … as follows:

for (int i=0; i<sizeof(array1)/sizeof(int); i++)

 printf("%d, ", array1[i]);

printf("\n");

for (int i=0; i<sizeof(array2)/sizeof(float); i++)

 printf("%f, ", array2[i]);

printf("\n");

for (int i=0; i<sizeof(array3)/sizeof(double); i++)

 printf("%g, ", array3[i]);

printf("\n");

for (int i=0; i<sizeof(array4)/sizeof(char); i++)

 printf("%d, ", array4[i]);

printf("\n\n");

Here is the result … showing the “garbage” data that is in the uninitialized arrays:

1276585784, 32763, 0, 0, 1,

0.000000, 0.000000, 0.000000,

0, 8.40389e-315, 6.95236e-310, 6.953e-310, 6.953e-310, 6.95236e-310,

0, 0, 16, 44, 67, 78, -2, 127, 0, 0,

We may also create and use multi-dimensional arrays in C:

int array2D[3][4] = { {1, 2, 3, 4},

 {5, 6, 7, 8},

 {9, 10, 11, 12} };

Notice that we have two sets of indices. The first index indicates the
row and the second one indicates the column. Therefore, array2D[2][0]

indicates the 1st item in the 3rd row … which is 9 in the above example.

COMP2401 - Chapter 2 – Data Representation Fall 2020

 - 75 -

To understand fully how to access the sizes of the items, the rows and the columns, we must
fully understand how to use sizeof(). Make sure that you understand the output from the
following code:

printf("The size of array2D is %zu \n",

sizeof(array2D));

printf("The #elements in array2D is %zu \n",

sizeof(array2D)/sizeof(int));

printf("The #elements in each row of array2D is %zu \n",

sizeof(array2D[0])/sizeof(int));

printf("The #rows of array2D is %zu \n",

sizeof(array2D)/sizeof(array2D[0]));

for (int r=0; r<3; r++) {

 for (int c=0; c<4; c++)

 printf("%02d ", array2D[r][c]);

 printf("\n");

}

printf("\n");

Here is the output … was it what you expected?

The size of array2D is 48

The #elements in array2D is 12

The #elements in each row of array2D is 4

The #rows of array2D is 3

01 02 03 04

05 06 07 08

09 10 11 12

Interestingly, we can create even higher dimensional arrays. For example, an array as follows
may be used to represent a cube of colored blocks:

int cube[4][4][4] = { {{1, 2, 3, 4},

 {5, 6, 7, 8},

 {9, 10, 11, 12},

 {13, 14, 15, 16}},

{{17, 18, 19, 20},

 {21, 22, 23, 24},

 {25, 26, 27, 28},

 {29, 30, 31, 32}},

{{33, 34, 35, 36},

 {37, 38, 39, 40},

 {41, 42, 43, 44},

 {45, 46, 47, 48}},

{{49, 50, 51, 52},

 {53, 54, 55, 56},

 {57, 58, 59, 60},

 {61, 62, 63, 64}}

 };

int rows = sizeof(cube)/ sizeof(cube[0]);

int cols = sizeof(cube[0])/ sizeof(cube[0][0]);

int depth = sizeof(cube)/(rows*cols*sizeof(int));

COMP2401 - Chapter 2 – Data Representation Fall 2020

 - 76 -

printf("Cube has %d rows\n", rows);

printf("Cube has %d columns\n", cols);

printf("Cube has %d layers\n", depth);

for (int r=0; r<4; r++) {

 for (int c=0; c<4; c++) {

 for (int d=0; d<4; d++)

 printf("%02d ", cube[r][c][d]);

 printf("\n");

 }

 printf("\n");

}

printf("\n");

Here is the output:

Cube has 4 rows

Cube has 4 columns

Cube has 4 layers

01 02 03 04

05 06 07 08

09 10 11 12

13 14 15 16

17 18 19 20

21 22 23 24

25 26 27 28

29 30 31 32

33 34 35 36

37 38 39 40

41 42 43 44

45 46 47 48

49 50 51 52

53 54 55 56

57 58 59 60

61 62 63 64

COMP2401 - Chapter 2 – Data Representation Fall 2020

 - 77 -

 2.6 Custom Type Definitions: Structures and Unions

Recall that in JAVA we defined various classes to represent
objects. These classes allowed us to group together a
bunch of attributes (a.k.a. fields) that are either primitive
types or other objects. It keeps them all together in a
bundle. You can think of a structure as a bunch of small
pieces of information with an elastic around it:

A structure represents multiple pieces of information that are grouped together.

Consider a person’s full address, which may be represented using multiple strings as follows:

char *name = "Patty O. Lantern";

char *streetNumber = "187B";

char *streetName = "Oak St.";

char *city = "Ottawa";

char *province = "ON";

char *postalCode = "K6S8P2";

We could display the variable values individually:

 printf("%s\n", name); // Patty O. Lantern

 printf("%s %s\n", streetNumber, streetName); // 187B Oak St.

 printf("%s, %s\n", city, province); // Ottawa, ON

 printf("%s\n", postalCode); // K6S8P2

Recall in JAVA that we set up a class to define an address. In C, we do something similar,
except that instead of creating a class, we create a struct. There are two ways of defining the
struct in C.

Consider the similarities and differences as shown here:

JAVA C – just struct C – using typedef

class Address {

 String name;

 String streetNumber;

 String streetName;

 String city;

 String province;

 String postalCode;

}

struct AddressType {

 char *name;

 char *streetNumber;

 char *streetName;

 char *city;

 char *province;

 char *postalCode;

};

typedef struct {

 char *name;

 char *streetNumber;

 char *streetName;

 char *city;

 char *province;

 char *postalCode;

} AddressType;

Note that in C, it is common to put the word “Type” at the end of the structure name. Hence,
we used AddressType instead of simply Address.

COMP2401 - Chapter 2 – Data Representation Fall 2020

 - 78 -

Notice also, that there is a ; character after the struct’s definition. That is because the struct
keyword is just another C statement. So, we can define this struct anywhere in our code.

This is different than JAVA classes, which we usually define each in their own unique file.
However, we usually define all of our structs outside of our functions … for example … at the
top of our program before the main function … or in a header file (more on this later).

In the second C example, we are actually defining a new type. This will make it easier when
we declare variables and parameters. Notice the JAVA vs. C comparison when defining a
variable called addr:

JAVA C – just struct C – using typedef

Address addr;

struct AddressType addr;

AddressType addr;

As you can see, unless we create the typedef, we would need to use the struct keyword
when declaring the variable’s type. Otherwise, the declaration is similar to that of JAVA.

Assigning values to the structure’s attributes is now easy, as it is done in a similar
way to JAVA by using the dot
operator:

addr.name = "Patty O. Lantern";

addr.streetNumber = "187B";

addr.streetName = "Oak St.";

addr.city = "Ottawa";

addr.province = "ON";

addr.postalCode = "K6S8P2";

printf("%s\n", addr.name);

printf("%s %s\n", addr.streetNumber, addr.streetName);

printf("%s, %s\n", addr.city, addr.province);

printf("%s\n", addr.postalCode);

We can define other structs as well and use them inside one another, just like using objects
within objects in JAVA.

COMP2401 - Chapter 2 – Data Representation Fall 2020

 - 79 -

Consider this JAVA code:

JAVA

class Name {

 String first;

 String middle;

 String last;

}

class Address {

 String streetNumber;

 String streetName;

 String city;

 String province;

 String postalCode;

}

class Person {

 Name name;

 Address address;

 int age;

 char gender;

 float weight;

 boolean retired;

}

Here is a C program that constructs and uses this set of objects as structs within structs:

Code from structsInStructs.c

#include <stdio.h>

#define TRUE 1;

#define FALSE 0;

// Structure that represents a person's full name

typedef struct {

 char *first;

 char *middle;

 char *last;

} NameType;

// Structure that represents a person's full address

typedef struct {

 char *streetNumber;

 char *streetName;

 char *city;

 char *province;

 char *postalCode;

} AddressType;

COMP2401 - Chapter 2 – Data Representation Fall 2020

 - 80 -

// Structure that represents a person

typedef struct {

 NameType name;

 AddressType address;

 int age;

 char gender;

 float weight;

 char retired;

} PersonType;

int main() {

 PersonType bob;

 bob.name.first = "Patty";

 bob.name.middle = "O.";

 bob.name.last = "Lantern";

 bob.address.streetNumber = "187B";

 bob.address.streetName = "Oak St.";

 bob.address.city = "Ottawa";

 bob.address.province = "ON";

 bob.address.postalCode = "K6S8P2";

 bob.age = 24;

 bob.gender = 'M';

 bob.weight = 157.2;

 bob.retired = FALSE;

 printf("%s %s %s\n", bob.name.first, bob.name.middle, bob.name.last);

 printf("%d year old %s %s weighing %f pounds\n",

 bob.age,

 bob.retired ? "retired" : "non-retired",

 (bob.gender == 'M') ? "male": "female",

 bob.weight);

 printf("Living at: %s %s, ",

 bob.address.streetNumber,

 bob.address.streetName);

 printf("%s, %s ", bob.address.city, bob.address.province);

 printf("%s\n", bob.address.postalCode);

 return(0);

}

Here is the output:

Patty O. Lantern

24 year old non-retired male weighing 157.199997 pounds

Living at: 187B Oak St., Ottawa, ON K6S8P2

Notice that structs are being
used within other structs.

Attributes are accessed the
same way as in JAVA by
using the dot operator.

COMP2401 - Chapter 2 – Data Representation Fall 2020

 - 81 -

Just a few points about scope … notice that the structs are all defined before the main
function. This makes them global, which means that they can be accessed from anywhere.
By contrast, if we define a struct within a function, then we may ONLY use that struct within
that function. Typically, we want our structs to be used throughout our entire program, so we
usually put their definitions before the main function.

As with JAVA objects, we may also make arrays of structs and we can use them as
parameters to functions. Consider an example in JAVA where we have objects that represent
a Dive, a Performance and an Athlete in a system where athletes perform 3 dives each and
each performance is judged by exactly 8 judges who provide a score each time.

JAVA code C code
class Dive {

 String name;

 int difficulty;

}

typedef struct {
 char *name;

 int difficulty;

} DiveType;

class Performance {

 Dive dive;

 float[] scores;

}

typedef struct {

 DiveType dive;

 float scores[8];

} PerformanceType;

class Athlete {

 String name;

 String country;

 Performance[] performances;

}

typedef struct {

 char *name;

 char *country;

 PerformanceType performances[3];

} AthleteType;

Remember … when creating arrays in C, even in a struct definition, we need to supply the
size of the array. This is different from JAVA attribute definitions, where we just defined the
array and then created the array using a constructor at a later time.

We can create arrays to hold 5 dives and 3 athletes as follows:

DiveType dives[5];

AthleteType athletes[3];

Given that a pointer takes 8 bytes in a 64-bit system, do you understand why the following
should produce the output shown?

printf("%zu\n", sizeof(DiveType)); //should logically print 12

printf("%zu\n", sizeof(PerformanceType)); //should logically print 44

printf("%zu\n", sizeof(AthleteType)); //should logically print 148

printf("%zu\n", sizeof(dives)); //should logically print 60

printf("%zu\n", sizeof(athletes)); //should logically print 444

COMP2401 - Chapter 2 – Data Representation Fall 2020

 - 82 -

Data Structure Byte Alignment:

Although the above size of DiveType is logical, it actually is 16!! The compiler will
attempt to “align” data values in similar-sized byte chunks. It sometimes will add

more bytes within a struct (called padding) to make it a multiple of 2, 4, or 8.
Here, for example, is what you will get as an output:

printf("%zu\n", sizeof(DiveType)); // prints 16

printf("%zu\n", sizeof(PerformanceType)); // prints 48

printf("%zu\n", sizeof(AthleteType)); // prints 160

printf("%zu\n", sizeof(dives)); // prints 80

printf("%zu\n", sizeof(athletes)); // prints 480

Although the manner in which the bytes are aligned depends on the compiler implementation,
the system may tend to look at the largest of the types in the struct and decide to add extra
padding to make it a multiple of that largest type. Some example are as follows:

Definition struct X {

 char a;

}

struct X {

 char a;

 char b;

 char c;

}

struct X {

 char a;

 short b;

}

struct X {

 char a;

 short b;

 char c;

 char d;

}

struct X {

 char a;

 int b;

}

Max type size char = 1 byte char = 1 byte short = 2 bytes short = 2 bytes int = 4 bytes

Padding none none 1 extra byte 1 extra byte 3 extra bytes

sizeof(struct X) 1 3 4 6 8

The next page has a diagram showing how the structs are contained within one another. The
example shows a snapshot in time after Art performed three dives, Dan performed two and
Jen one.

Take note of the fact that the Dives are created just once, but then may be shared between
performances. That is logical, since all athletes, in theory, could perform the exact same dive
… but their performances will likely differ in terms of their individual scores. Hence, each
athlete has unique performances.

COMP2401 - Chapter 2 – Data Representation Fall 2020

 - 83 -

Here is some code that creates an array of 5 fixed dives and an array of 3 athletes. It then
generates three performances for each athlete, choosing a random dive each time. The
performance is then judged via the production of 8 simulated scores. Finally, the athlete’s
data is displayed through use of a function that takes an AthleteType struct as a parameter.

COMP2401 - Chapter 2 – Data Representation Fall 2020

 - 84 -

Code from structArrays.c

#include <stdio.h>

#include <stdlib.h>

#include <time.h>

#define NUMBER_OF_SCORES 8

#define NUMBER_OF_PERFORMANCES 3

typedef struct { // Structure that represents Dive data
 char *name;

 int difficulty;

} DiveType;

typedef struct { // Structure that represents Performance data

 DiveType dive;

 float scores[NUMBER_OF_SCORES];

} PerformanceType;

typedef struct { // Structure that represents Athlete data

 char *name;

 char *country;

 PerformanceType performances[NUMBER_OF_PERFORMANCES];

} AthleteType;

DiveType dives[5]; // An array to hold the 5 types of dives

AthleteType athletes[3]; // An array to hold the 3 athletes

// Procedure that displays an athlete, his/her performances as well as

// the 8 individual scores for each performance.

void displayAthlete(AthleteType athlete) {

 printf("Athlete: %s from %s:\n", athlete.name, athlete.country);

 for (int p=0; p<NUMBER_OF_PERFORMANCES; p++) {

 printf(" Performed %s (diff: %d): [",

 athlete.performances[p].dive.name,

 athlete.performances[p].dive.difficulty);

 for (int s=0; s<NUMBER_OF_SCORES; s++) {

 printf("%0.2f",athlete.performances[p].scores[s]);

 if (s != NUMBER_OF_SCORES-1)

 printf(", ");

 }

 printf("]\n");

 }

 printf("\n");

}

COMP2401 - Chapter 2 – Data Representation Fall 2020

 - 85 -

int main() {

 // Fill in the athletes array with 3 athletes

 athletes[0].name = "Art Class";

 athletes[0].country = "Canada";

 athletes[1].name = "Dan Druff";

 athletes[1].country = "Germany";

 athletes[2].name = "Jen Tull";

 athletes[2].country = "U.S.A.";

 // Fill in the dives array with 5 dives

 dives[0].name = "reverse pike";

 dives[0].difficulty = 3;

 dives[1].name = "cannon ball";

 dives[1].difficulty = 1;

 dives[2].name = "reverse triple twist";

 dives[2].difficulty = 4;

 dives[3].name = "forward pike";

 dives[3].difficulty = 2;

 dives[4].name = "inward straight twist";

 dives[4].difficulty = 5;

 // Assign random performances to athletes and generate random scores

 srand(time(NULL));

 for (int a=0; a<3; a++) {

 for (int p=0; p<NUMBER_OF_PERFORMANCES; p++) {

 // choose a random dive for this performance

 athletes[a].performances[p].dive =

 dives[(int)(rand()/(double)RAND_MAX*5)];

 for (int s=0; s<NUMBER_OF_SCORES; s++) {

 // choose a random judge's score

 athletes[a].performances[p].scores[s] =

 rand()/(double)RAND_MAX*10;

 }

 }

 }

 // Display the results

 for (int a=0; a<3; a++)

 displayAthlete(athletes[a]);

}

Here is the output (although the scores will vary randomly) ... does it make sense to you?

Athlete: Art Class from Canada:

 Performed inward straight twist (diff: 5): [0.1, 6.7, 6.7, 2.1, 1.4, 3.2, 3.2, 3.4]

 Performed reverse pike (diff: 3): [5.4, 6.1, 0.6, 7.7, 4.7, 5.6, 9.0, 9.5]

 Performed reverse pike (diff: 3): [0.6, 7.8, 1.4, 2.9, 4.7, 2.6, 0.5, 3.3]

Athlete: Dan Druff from Germany:

 Performed inward straight twist (diff: 5): [4.8, 1.0, 6.2, 4.5, 1.1, 2.9, 1.2, 3.2]

 Performed reverse triple twist (diff: 4): [4.4, 6.4, 7.7, 5.5, 1.8, 3.8, 6.1, 9.4]

 Performed inward straight twist (diff: 5): [1.7, 8.5, 8.0, 2.4, 9.1, 5.8, 3.9, 2.0]

Athlete: Jen Tull from U.S.A.:

 Performed reverse pike (diff: 3): [6.4, 2.5, 3.7, 4.7, 7.4, 4.7, 0.9, 1.9]

 Performed reverse triple twist (diff: 4): [3.8, 3.1, 9.0, 8.1, 7.5, 5.4, 5.8, 3.0]

 Performed forward pike (diff: 2): [9.6, 9.1, 6.6, 8.1, 0.8, 5.0, 6.1, 3.2]

COMP2401 - Chapter 2 – Data Representation Fall 2020

 - 86 -

The typedef keyword actually allows you to have multiple names (i.e., aliases) for a type. So,
for example, you can do this:

typedef AthleteType Athlete;

typedef int StudentNumber;

typedef char Letter;

This would allow you to use the types AthleteType and Athlete interchangeably.

Athlete athletes[20]; // instead of AthleteType athletes[20];

Athlete jen; // instead of AthleteType jen;

And you could use char and Letter interchangeably as well as int and StudentNumber:

typedef struct {

 char *name;

 StudentNumber studentID; // instead of int studentID;

 Letter gender; // instead of char gender;

} StudentType;

But there is a need to be cautious with these aliases. The more you make,
the harder it is for someone else to know what type a variable is actually
storing. Imagine that we have these variables being used in our code:

Name n;

Age a;

Status s;

Just looking at this code, we cannot be sure what each of these types are. Name, for
example, may be a simple char * string or it could be a struct with multiple attributes. Age
could be an int or perhaps a float where we want more accurate ages. And Status … well …
we have no clue what that is. We would need to go looking through all our C code (which may
be spread out over many files) in order to hunt down the particular typedef definition. So, we
should try to minimize the number of aliases that we create so as to make life easier for our
fellow programmers who will read and maintain our code at some time in the future.

When creating objects in JAVA, there is a tendency to be wasteful because we don’t usually
worry about memory usage and memory allocation/deallocation. The same could be true in
C. However, we are normally more space-usage-conscious when programming in the lower-
level C language. This can be important in embedded systems where memory is scarce.

One way to be space-efficient, is to allow variables of different types to share the same chunk
of memory.

A union is a value that may have any of several representations or formats within the

same position in memory.

COMP2401 - Chapter 2 – Data Representation Fall 2020

 - 87 -

The union itself does not have a specific type to it. Rather, it kind of “takes on the role” of one
of its member types dynamically. It is similar to the idea of having a chunk of memory
changing its type at various times throughout a program’s execution. The main advantage of
using unions is to be able to access pieces (or components) of a type value. In C, defining a
union is as easy as replacing the word struct by union.

Consider this union:

typedef union {

 int i;

 float f;

 char c[5];

 double d;

} Data;

How much memory space does this union take up? If it were a struct instead of a union, it
would require (4 + 4 + 5 + 8 + 3 bytes padding) = 24 bytes. However, when a union is used,
since all the members of the union overlap one another in memory, it only takes up MAX(4, 4,
5, 8) = 8 bytes.

printf("sizeof(Data): %zu\n", sizeof(Data)); // returns 8

COMP2401 - Chapter 2 – Data Representation Fall 2020

 - 88 -

The downside, is that we only get to use one member at a time:

Data data;

data.i = 678;

printf("data.i is: %d\n", data.i); // 678

data.f = 3.1415;

printf("data.f is: %f\n", data.f); // 3.141500

strcpy(data.c, "Hi!");

printf("data.c is: %s\n", data.c); // Hi!

printf("data.i has been overwritten: %d\n", data.i); // 2189640

printf("data.f has been overwritten: %f\n\n", data.f); // 0.000000

Notice that once we give a value to any member of the union, all other union member’s data
is overwritten, and will therefore be invalid.

There are, however, some uses of unions in which we don’t care about the memory being
overwritten. Consider this example which is useful for determining the bytes that make up an
integer:

typedef union {

 unsigned int value;

 unsigned char bytes[4];

} DecomposableInteger;

DecomposableInteger number;

number.value = 584340;

printf("%d, %d, %d, %d\n", number.bytes[0], number.bytes[1],

 number.bytes[2], number.bytes[3]);

The code allows you to treat the number either as an unsigned int, or as an array of 4 bytes.
So, in this example, we put a large number (i.e., 584340) into the union. Then, we extract it
as the 4 bytes that are used to store the number. The resulting output is:

148, 234, 8, 0

Which is correct, since 148*20 + 234*28 + 8*216 + 0*232 = 148 + 59,904 + 524,288 = 584340

In this example, the least significant byte is first in the sequence of bytes. This ordering is
called Little Endian Byte Order. The least significant byte (the "little end") of the data is
placed at the byte with the lowest address. The rest of the data is placed in order in the next
three bytes in memory. A different ordering is the Big Endian Byte Order. In that case, the
most significant byte (the "big end") of the data is placed at the byte with the lowest address.

Endianness is a property of the CPU, not of the operating system. If you want to determine
the ordering of the bytes on your machine, you can type lscpu into the terminal window:

COMP2401 - Chapter 2 – Data Representation Fall 2020

 - 89 -

student@COMPBase:~$ lscpu

Architecture: x86_64

CPU op-mode(s): 32-bit, 64-bit

Byte Order: Little Endian

CPU(s): 1

On-line CPU(s) list: 0

Thread(s) per core: 1

Core(s) per socket: 1

Socket(s): 1

NUMA node(s): 1

Vendor ID: GenuineIntel

CPU family: 6

Model: 30

Model name: Intel(R) Core(TM) i7 CPU 870 @ 2.93GHz

Stepping: 5

CPU MHz: 2926.002

BogoMIPS: 5852.00

Hypervisor vendor: KVM

Virtualization type: full

L1d cache: 32K

L1i cache: 32K

L2 cache: 256K

L3 cache: 8192K

NUMA node0 CPU(s): 0

Flags: fpu vme de pse tsc msr pae mce cx8 apic sep mtrr pge

mca cmov pat pse36 clflush mmx fxsr sse sse2 syscall nx rdtscp lm

constant_tsc rep_good nopl xtopology nonstop_tsc cpuid pni monitor ssse3

sse4_1 sse4_2 x2apic hypervisor lahf_lm pti

student@COMPBase:~$

Here is another example that lets us store a phone number string in format (xxx)xxx-xxxx and
then allows us to extract the individual pieces:

Code from unions.c

#include <stdio.h>

#include <string.h>

typedef union {

 char whole[14]; // enough to store (613)220-2600\0

 struct {

 char openPar;

 char area[3];

 char closePar;

 char prefix[3];

 char dash;

 char lineNum[4];

 char null;

 } parts;

} PhoneNumber;

Here is the info.

COMP2401 - Chapter 2 – Data Representation Fall 2020

 - 90 -

int main() {

 PhoneNumber myNumber;

 strcpy(myNumber.whole, "(613)520-2600");

 printf("\noriginal num: %s\n", myNumber.whole);

 strcpy(myNumber.parts.area, "416");

 strcpy(myNumber.parts.prefix, "555");

 strcpy(myNumber.parts.lineNum, "8888");

 myNumber.parts.null = 0;

 printf("whole num: %s\n", myNumber.whole); // corrupted now

 printf("areaCode: %s\n", myNumber.parts.area);

 printf("prefix: %s\n", myNumber.parts.prefix);

 printf("lineNumber: %s\n", myNumber.parts.lineNum);

 return 0;

}

The output is as follows:

original num: (613)520-2600

whole num: (416

areaCode: 416

prefix: 555

lineNumber: 8888

Notice that once we alter the original number, we cannot display it using the whole field. That
is because when we wrote the individual parts.area, parts.prefix and parts.lineNum, each
time it added a '\0' null terminating character:

In general, unions should be used sparingly, as it complicates what is happening in your
program and could make things genuinely confusing for the typical programmer when many
unions are used since at any instant of time, we may not be sure which part of the union was
written last. Therefore, we may make wrong assumptions and end up with wrong data.

