
 

Chapter 3 

Pointers and Memory Management 
 

 

What is in This Chapter ? 

This chapter presents the fundamental programming concept of pointers.   Pointers are the 
basis for efficient storage and reference of data.  If you want to be a decent C programmer, it is 
absolutely vital that you fully understand how pointers are used.   Command-line arguments 
are then explained, as they allow you to run your program with different parameters without 
having to re-compile.    There is a section on Memory Management that will help you 
understand the memory model being used in C.  It explains how and where everything is 
stored so that you properly understand how the memory is being used by your program.   
Dynamic Memory Allocation is then discussed, as it allows you to write flexible code that can 
handle changes in data size.   The final section discusses a couple of programming examples 
that make use of Dynamic Memory Allocation.   The examples are the construction and usage 
of Singly-Linked Lists and Doubly-Linked Lists.   The concept of flexible-storage data 
structures, such as these linked lists, will be important for you to understand in your life as a C 
programmer.   
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 3.1 Pointers 

 
Students learning C programming often find it difficult to work with pointers.   Pointers, 
however, are fairly simple conceptually.   In fact, we have already been using them in some of 
our code.   It will be important for you to understand the fundamental concept of a pointer and 
get lots of practice using them.  So, what is a pointer? 
 

A pointer is a variable that stores a memory address. 

 
So, a pointer refers to (i.e., is a reference to) a place in memory where some data is stored.    
 
Perhaps the simplest analogy may be to compare pointers to indices in an array.  Each item 
has its own location (or address) within the array that it is stored at.   The index of the item in 
the array is like a pointer to that item: 
 

 
 
In a sense, all of the computer’s memory is indeed an array of consecutive bytes in memory.  
Therefore, an address in memory, really is an index somewhere within this large array of 
bytes.   So, to keep things simple, imagine a pointer to simply be an index into an array. 
 
In memory-managed languages, such as JAVA, we don’t really have to be concerned about 
where things are stored in memory.   All of that is hidden from the programmer.   It makes a 
programmer’s life much more pleasurable, allowing him/her to focus on higher level tasks at 
hand.   For example, in JAVA, each time we create an object using a constructor, we actually 
get back a reference to (i.e., a pointer to) the object’s virtual memory location.   We did 
something simple like this: 
 

Person p = new Person(); 

 
Here, p actually stores a pointer to the memory location at which the Person object is stored. 
 

In C, however, nobody manages memory for us … so we often need to be aware of 
where (and how) our data is stored in memory.   We will talk more about how to 
allocate and deallocate memory later.  For now, we need to understand just the 
basics of simple pointers. 
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A pointer can store, as its value, the memory address of either: 
 

• a variable, or 

• a block of memory that you reserved (a.k.a. allocated) yourself. 
 
Since pointers are somewhat confusing to people, why bother using them?   There are a few 
reasons: 
 

✓ pointers can be stored in a fairly small fixed-size variable (8 bytes … or even just 4)  
 

✓ pointers allow you to change memory that is out of scope (i.e., outside the function) 

• e.g., you can modify a variable that is passed in as a parameter 
 

✓ pointers allow you to have more than one variable pointing to (i.e., sharing) the same 
data.  That relieves us from having to copy the same data multiple times. 

 
In C, a pointer is identified by a * character in front of the variable name: 
 

int  *salary; 

 
This means, for example, that salary is NOT an int … but instead it points to the memory 
location that contains an int.  Visually, imagine the pointer as follows: 
 

 
 
Consider this coding example which shows the difference between an int and an int *: 
 

int     income; 

int    *salary; 

 

income = 45700; 

salary = &income;  // salary is a pointer to the income variable 

 

printf("income = %u\n", income); 

printf("salary = %p\n\n", (void *)salary); 

printf("address of income = %p\n", (void *)&income); 

printf("address of salary = %p\n", (void *)&salary); 

 
 
 

The & operator returns the 
memory address of a variable. 

Use %p and (void *) to print out a pointer. 
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Notice that the salary variable is pointing to the income variable’s memory location (i.e., the 
address (or &) of income).   When printing an address, you should typecast to a (void *) and 
use %p to display it in hexadecimal.   
 
Here is the output, although you should realize that the memory locations will change each 
time that you run the code: 
 

income = 45700 

salary = 0x7ffd9ee76644 

 

address of income = 0x7ffd9ee76644 

address of salary = 0x7ffd9ee76648 

 

 
 
As you can see, the bytes stored in the salary variable represent the Little Endian byte order 
for the number 140,727,269,418,564… which is the memory address of the income variable.  
Changing the value of the income variable will not alter the value of the salary variable since 
the income variable stays in the same location regardless of what value it has. 
 

income = 52300; 

printf("income = %u\n", income);            // prints 52300 now 

printf("salary = %p\n\n", (void *)salary);  // still 0x7ffd9ee76644 

 
You will notice that the pointer addresses in the image above are 48-bit 
addresses.  This gives a range of 248 = 281,474,976,710,656 (i.e, 256TB) unique 
addresses!  That is a lot of address space.  Under the x86-64 architecture, even 
though it is 64-bit, only 48 bits are used.  The topmost 16 bits are zeroed.   
 
 

Memory addresses are 
values up to 256TB!!    
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The * symbol is also used to dereference the value of a pointer.    
 

Dereferencing a pointer means getting the value that is stored in the memory 

location pointed to by the pointer. 
 
Continuing on our previous example, we can ask for the value being pointed to by the salary 
variable: 
 

income = 52300; 

printf(" salary = %p\n", (void *)salary);      // still 0x7ffd9ee76644 

printf("*salary = %u\n", (unsigned int)*salary);   // prints 52300 

 
So, *salary gives us the value at the memory address that salary is pointing at … which is the 
value of the income variable, since salary points to the income variable’s address. 
 

 
 
That is not so difficult to understand.   But here is where it gets tricky.   We can 
actually assign a value to *salary.   That is, when we use *salary to the left of the 
assignment operator, we are changing the value that is stored at the address that 
salary is pointing to: 
 

*salary = 36340; 

printf("income = %u\n", income);                  // prints 36340 !! 

printf(" salary = %p\n", (void *)salary);   // still 0x7ffd9ee76644 

printf("*salary = %u\n\n", (unsigned int)*salary);// prints 36340 

 
Notice that since we changed the value at the location pointed to by salary, the income 
variable’s value has also changed now.    
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The value of a pointer can change at any time throughout our program.   There are two 
situations that can cause problems … when a pointer is … 
 

• NULL (i.e., uninitialized) 

• dangling (i.e., pointing to an invalid/corrupt location) 
 
Ideally, whenever we have a pointer variable that has not been assigned a valid memory 
address yet, we should initialize it with NULL … which is easily distinguishable from a dangling 
or invalid pointer.   But we need to be careful not to dereference NULL or dangling pointers: 
 

salary = NULL; 

printf(" salary = %p\n", (void *)salary);  

printf("*salary = %u\n", (unsigned int)*salary); // BAD IDEA! 

*salary = 200;   // BAD IDEA! 

 
In either case of dereferencing salary in the above code, the NULL pointer is not a valid 
memory location.  Therefore, the program will stop with a segmentation fault. 
 

 
 
 
We can always check for this first though: 
 

if (salary != NULL) 

  printf("*salary = %u\n", (unsigned int)*salary); 

if (salary != NULL) 

  *salary = 200;            

 
However, if salary was a dangling pointer … pointing to some invalid address … then things 
are much worse.   Why?   Because you would be accessing and/or modifying memory 
locations containing other parts of your program!    
 
The result is that your program may crash right away, or you may be overwriting some 
important data … or your code may crash at some other point in your code … making it very 
difficult to debug. 
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Keep in mind that with pointers, we can point to any type of variable: 
 

float *age; 

char  *name; 

Person *friend; 

Car  *vehicle; 

 
Whenever we use pointers on arrays, the pointer typically points to the address of the first 
element of the array. 
 

int  intArr[8] = {23, 54, 67, 88, 43, 12, 83, 46}; 

 
For the above array, if we just use the variable intArr in our code, that is equivalent to using 

&(intArr[0]).  That is, when we just use the name of the array, without an index, it really 

means that we have a pointer to the first element in the array. 
 
Interestingly, since memory addresses are just numbers … we can add and subtract to them to 
get memory addresses before and after a pointer address.  This adding and subtracting, 
however, is with respect to the size of the elements in the array.     
 
So, for example, if we use   intArr + 3  then we get the fourth element in the array (recall 

that arrays start with 0 indexing).   Note that it is NOT the memory location that is 3 bytes after 
the arrays memory location.  Rather, it is 12 bytes after (since ints require 4 bytes).  Therefore, 
the address number of  ptr + n  for a pointer ptr to an array is the address of the array plus  

n * sizeof(ptr[0]).     

 
Make sure that you understand the following example: 
 

Code from arrayPointers.c 

#include <stdio.h> 

 

int main() { 

  int  intArr[8] = {23, 54, 67, 88, 43, 12, 83, 46}; 

 

  printf("int array addr: %p \n", (void *)intArr); 

  printf("First item addr:%p \n", (void *)&intArr[0]); 

  printf("Last item addr: %p \n\n", (void *)&intArr[7]); 

   

  printf("First int:        %d \n", intArr[0]); 

  printf("First int again:  %d \n", *intArr); 

  printf("First int plus 3: %d \n", *intArr + 3); 

  printf("Fourth int:       %d \n", *(intArr + 3)); 

  printf("\n"); 

 

  int  *ptr; 

   

  ptr = &(intArr[6]); 

  ptr = intArr + 6;  // does same as above 

 

  printf("Seventh int: %d \n", *ptr); 

  printf("Eighth int:  %d \n", ptr[1]); 

  printf("Fifth int:   %d \n", *(ptr - 2)); 
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  char charArr[32] = "SAM PULL"; 

 

  printf("\n"); 

  printf("char array addr:%p \n", (void *)charArr); 

  printf("First item addr:%p \n", (void *)&charArr[0]); 

  printf("Last item addr: %p \n\n", (void *)&charArr[7]); 

   

  printf("First char:        %c \n", charArr[0]); 

  printf("First char again:  %c \n", *charArr); 

  printf("First char plus 4: %c \n", *charArr + 4); 

  printf("Fifth char:        %c \n", *(charArr + 4)); 

  printf("\n"); 

 

  char  *cptr; 

 

  cptr = &(charArr[4]); 

  cptr = charArr + 4;  // does same as above 

 

  printf("Fifth char: %c \n", *cptr); 

  printf("Sixth char: %c \n", cptr[1]); 

  printf("Third char: %c \n", *(cptr - 2)); 

  printf("\n"); 
 

  return 0; 

} 

 
The next page shows the output (keep in mind that memory locations will differ each time): 
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int array addr: 0x7ffcddfe1a20 

First item addr:0x7ffcddfe1a20 

Last item addr: 0x7ffcddfe1a3c 

 

First int:        23  

First int again:  23  

First int plus 3: 26  

Fourth int:       88  

 

Seventh int: 83  

Eighth int:  46  

Fifth int:   43  

 

char array addr:0x7ffcddfe1a40 

First item addr:0x7ffcddfe1a40 

Last item addr: 0x7ffcddfe1a47 

 

First char:        S  

First char again:  S  

First char plus 4: W  

Fifth char:        P  

 

Fifth char: P  

Sixth char: U  

Third char: M 

 
 
 
 
Make sure that you 
understand how 
the values are 
stored in memory 
… as this is a key 
to understanding 
how to program 
well in C. 

 
What about pointers to 
structures … do they work the 
same way ?  Yes. 

 

 
 
However, there is a different syntax that we generally use to dereference.   Consider this bank 
account type: 
 

typedef struct { 

  char  *owner; 

  int    accNumber; 

  float  balance; 

} BankAccountType; 

 
Recall that we can set the values of a variable of this type as follows: 
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BankAccountType   account; 

 

account.owner = "Rob Banks"; 

account.accNumber = 190219; 

account.balance = 2573.81; 

 

Now consider a pointer to the account: 
 

BankAccountType   *accPtr = &account; 

 
Here accPtr points to the same data that is stored in the account variable:  
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We can dereference the pointer and then access its internals by using the dot operator: 
 

(*accPtr).owner = "Robin Banks"; 

(*accPtr).accNumber = 193248; 

(*accPtr).balance = (*accPtr).balance - 573.00; 

 
This will alter the contents of the structure’s attributes to be the new values.   However, it is a 
bit cumbersome to put the brackets, * and . characters in order to do this.  The C language 
developers wanted to simplify things, so they came up with another syntax for dereferencing 
struct pointer attributes.   The -> characters can also be used, which are simpler: 

 
accPtr->owner = "Robin Hood"; 

accPtr->accNumber = 193249; 

accPtr->balance = accPtr->balance - 200.00; 

 
Here is a full program to test this: 
 

Code from structPointers.c 

#include <stdio.h> 

 

// Structure that represents a simple bank account 

typedef struct  { 

  char  *owner; 

  int    accNumber; 

  float  balance; 

} BankAccountType; 

 

int main() { 

  BankAccountType   account; 

   

  account.owner = "Rob Banks"; 

  account.accNumber = 190219; 

  account.balance = 2573.81; 

   

  printf("%s' account (#", account.owner); 

  printf("%d) with ", account.accNumber); 

  printf("$%0.2f\n", account.balance); 

 

  BankAccountType   *accPtr = &account; 

  printf("account = %p\n", (void *)accPtr); 

  printf("accPtr  = %p\n", (void *)&accPtr); 

 

  (*accPtr).owner = "Robin Banks"; 

  (*accPtr).accNumber = 193248; 

  (*accPtr).balance = (*accPtr).balance - 573.00; 

  printf("%s' account (#", (*accPtr).owner); 

  printf("%d) with ", (*accPtr).accNumber); 

  printf("$%0.2f\n", (*accPtr).balance); 

   

  accPtr->owner = "Robin Hood"; 

  accPtr->accNumber = 193249; 

  accPtr->balance = accPtr->balance - 200.00; 

  printf("%s's account (#", accPtr->owner); 

  printf("%d) with ", accPtr->accNumber); 

  printf("$%0.2f\n", accPtr->balance); 

} 
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Here is the output … it is fairly straight forward: 
 

Rob Banks' account (#190219) with $2573.81 

account = 0x7ffe96b0b710 

accPtr  = 0x7ffe96b0b708 

Robin Banks' account (#193248) with $2000.81 

Robin Hood's account (#193249) with $1800.81 

 
The use of pointers can speed up our program when it comes to calling functions.   It allows us 
to pass a reference to some data rather than passing the entire set of data.   For example, 
consider the following typedefs which define a person and a student: 
 
 

typedef struct { 

  char *first; 

  char *last; 

  int   age; 

} PersonType; 

 

typedef struct { 

  PersonType   personalInfo; 

  char        *stuNumber; 

  float        gpa; 

} StudentType; 

 
We can verify the sizes with these lines of code: 
 
  printf("PersonType requires %zu bytes\n", sizeof(PersonType));   // = 24 
  printf("StudentType requires %zu bytes\n", sizeof(StudentType)); // = 40 

 
In addition, extra storage would be required to store the characters of the three strings. 
 
Consider creating a variable to hold one of these students and filling it up: 

 

StudentType aStudent; 

 

aStudent.personalInfo.first = "April"; 

aStudent.personalInfo.last = "Rain"; 

aStudent.personalInfo.age = 22; 

aStudent.stuNumber = "100444555"; 

aStudent.gpa = 9.0; 

 
Now consider a simple function which is supposed to increase the age for a student: 
 

void increaseAge(StudentType stu) { 

  stu.personalInfo.age++; 

} 

 

If we were to call this function with our student we just created, what would happen ? 
 

increaseAge(aStudent);  

 

Well, looking inside the function, it goes into the student struct and gets the age and then 
increases it.   However, why does the following code print out the same number twice? 
 

printf("%d\n", aStudent.personalInfo.age);  // displays 22 

increaseAge(aStudent);  

printf("%d\n", aStudent.personalInfo.age);  // displays 22 

(8 + 8 + 4 + 4 padding)  
= 24 bytes 

(24 + 8 + 4 + 4 padding)  
= 40 bytes 
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The problem lies in the way in which the student is passed to the function.    Recall our 
discussion about Pass-by-value and Pass-by-reference from chapter 1.  In our code, which 
one are we doing?    Are we passing a value or are we passing a reference? 
 
We are in fact, passing a value, not a reference.  Notice the difference: 
 

Pass-by-value 

• value is copied into function 

• function works on the local copy 

• copy is lost when function returns 

• value in calling function cannot be changed 
 

Pass-by-reference 

• address of value is passed into function 

• value in calling function can be changed 
 
So, when we pass in aStudent to the function, the parameter stu, actually gets a copy of the 
student data.   When we increase the age, we are increasing the copy’s age, not the original’s. 
 

 
What actually happens to the stu variable once the function completes?   It is discarded.  The 
memory is freed up again once the function returns.   Therefore, it is usually useless to modify 
the value of an incoming pass-by-value parameter within the function. 
 
Now consider re-writing the function to take a StudentType * as follows: 
 

void increaseAge(StudentType *stu) { 

  stu->personalInfo.age++; 

} 
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To call the function, we will pass in the address of the student as follows: 
 

increaseAge(&aStudent);  

 

Now what will happen ?   Well … we are passing in a pointer to the memory location of the 
struct that contains the student data … so we are passing a reference to the struct.   Now, 
when we increase the age, we are increasing the age of the original student being passed in: 
 

 
 

Hence, the following code prints out the correct results: 
 

printf("%d\n", aStudent.personalInfo.age);  // displays 22 

increaseAge(&aStudent);  

printf("%d\n", aStudent.personalInfo.age);  // displays 23 

 
Now consider an array of such students: 
 

StudentType students[250]; 

int         numStudents = 3; 

 

students[0].personalInfo.first = "April"; 

students[0].personalInfo.last = "Rain"; 

students[0].personalInfo.age = 22; 

students[0].stuNumber = "100444555"; 

students[0].gpa = 9.0; 
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students[1].personalInfo.first = "May"; 

students[1].personalInfo.last = "Flowers"; 

students[1].personalInfo.age = 24; 

students[1].stuNumber = "100222333"; 

students[1].gpa = 8.7; 

 

students[2].personalInfo.first = "June"; 

students[2].personalInfo.last = "Bugs"; 

students[2].personalInfo.age = 99; 

students[2].stuNumber = "100777888"; 

students[2].gpa = 11.5; 

 

Interestingly, we can set up a pointer to the beginning of the array like this: 
 

StudentType *studentPtr = students; 

 
We can then iterate through the array without indices by increasing the pointer value: 
 

for (int i=0; i<numStudents; i++) { 

  increaseAge(studentPtr); 

  ++studentPtr;  // Go to the next student 

} 

 
Note that we simply increase the pointer with the ++ operator.   This does not increase the 
pointer by 1, but actually increases by sizeof(StudentType) … which is 40.  Adding this line in 
the loop will verify this: 

 

printf("studentPtr = %p\n", (void *)studentPtr); 

 
You should see something like this (although numbers will vary each time you run): 
 

studentPtr = 0x7ffc887bfa10 

studentPtr = 0x7ffc887bfa38 

studentPtr = 0x7ffc887bfa60 

 
Here is a complete program for you to try: 

Code from moreStructPointers.c 

#include <stdio.h> 

#include <string.h> 

 

#define MAX_STUDENTS   250 

 

typedef struct { 

  char *first; 

  char *last; 

  int   age; 

} PersonType; 

 

typedef struct { 

  PersonType   personalInfo; 

  char        *stuNumber; 

  float        gpa; 

} StudentType; 
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// Functions/Procedures used in this program 

void increaseAge(StudentType *); 

void printStudent(StudentType *); 

 

int main() { 

  StudentType students[MAX_STUDENTS]; 

  int         numStudents = 3; 

 

  printf("StudentType requires %zu bytes\n", sizeof(StudentType)); 

 

  students[0].personalInfo.first = "April"; 

  students[0].personalInfo.last = "Rain"; 

  students[0].personalInfo.age = 22; 

  students[0].stuNumber = "100444555"; 

  students[0].gpa = 9.0; 

  students[1].personalInfo.first = "May"; 

  students[1].personalInfo.last = "Flowers"; 

  students[1].personalInfo.age = 24; 

  students[1].stuNumber = "100222333"; 

  students[1].gpa = 8.7; 

  students[2].personalInfo.first = "June"; 

  students[2].personalInfo.last = "Bugs"; 

  students[2].personalInfo.age = 99; 

  students[2].stuNumber = "100777888"; 

  students[2].gpa = 11.5; 

 

  printf("Age before increasing: %d\n", students[0].personalInfo.age); 

  increaseAge(&students[0]);  

  printf("Age after increasing: %d\n\n", students[0].personalInfo.age); 

 

  StudentType *studentPtr = students; 

  for (int i=0; i<numStudents; i++) { 

    printf("studentPtr = %p\n", (void *)studentPtr); 

    increaseAge(studentPtr); 

    printStudent(studentPtr); 

    ++studentPtr;  // Go to the next student 

  } 

  printf("\n"); 

  return 0; 

} 

 

// Increases the student's age 

void increaseAge (StudentType *s) { 

  s->personalInfo.age++; 

} 

 

// Displays student to the console showing name, age and GPA. 

void printStudent (StudentType *s) { 

  printf("%d year old %s %s has a GPA of %.1f \n",  

         s->personalInfo.age, 

    s->personalInfo.first, 

    s->personalInfo.last, 

    s->gpa); 

} 
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 3.2 Command-Line Arguments 

 
Up until now, we have written programs with a main() function that has no parameters.   We 
will now consider what are called Command-Line Arguments.    
 

Command-Line Arguments are parameters/values 

that can be passed into your program when it starts.  These 
parameters/values are supplied in the command line when the 
program is run. 

 

Command-line arguments in C are represented as an array of strings.   
If you want your program to read in these values, you need to supply parameters to the main() 
function. Here are the options for the main() function signature: 
 

int main() { … }      // no parameters 

int main(int argc, char *argv[]) { … }  // we will use this 

int main(int argc, char **argv) { … }  // this will make sense later 

 
The argc parameter tells you how many command-line arguments there are while the argv 
array contains the strings that represent the arguments.   
 
Here is a program that shows all the command-line arguments: 
 

Code from cmdLineArgs.c 

#include <stdio.h> 

 

int main(int argc, char *argv[]) { 

 

  printf("There are %d arguments\n", argc); 

 

  for (int i=0; i<argc; ++i) 

    printf("Argument %d is %s \n", i, argv[i]); 
   

  return 0; 

} 

 

 
What would be the result when running this code ?   Well it really depends on what you type in 
on the command-line when you run the program.   Here are some examples: 
 

student@COMPBase:~$ ./cmdLineArgs 

There are 1 arguments 

Argument 0 is ./cmdLineArgs 

student@COMPBase:~$  

 

student@COMPBase:~$ ./cmdLineArgs 24 

There are 2 arguments 

Argument 0 is ./cmdLineArgs 

Argument 1 is 24 

student@COMPBase:~$  
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student@COMPBase:~$ ./cmdLineArgs 24 67.934 false Mark 

There are 5 arguments 

Argument 0 is ./cmdLineArgs 

Argument 1 is 24  

Argument 2 is 67.934  

Argument 3 is false  

Argument 4 is Mark 

student@COMPBase:~$  

 

As you can see, the arguments are separated by space characters as their delimiter.   Beware 
though, the arguments are all strings … so if you want to enter numbers and use them in your 
program, you will have to perform a conversion.  In the <stdlib.h> package, there are some 
functions for converting strings to other types: 
 

char     *str = "…"; 

 

int       iVal; 

double    dVal; 

long int  lVal; 

 

iVal = atoi(str); 

dVal = atof(str); 

lVal = atol(str); 

 
So, we could for example, write a program that reads in numbers from the command-line, 
converts them to ints and then performs some calculation (e.g., average) on them as follows: 
 

Code from average.c 

#include <stdio.h> 

#include <stdlib.h>   // needed for conversion function atoi 

 

int main(int argc, char *argv[]) { 

  double total = 0; 

   

  for (int i=1; i<argc; ++i) 

    total += atoi(argv[i]); 

     

  printf("The average of those %d numbers is %0.1f\n", argc-1, total/(argc-1)); 
   

  return 0; 

} 

 

 
Notice that we subtract 1 from argc to get the actual number of numbers, since the program 
name is the first argument in the array.   Here is the output after running a few times: 
 

student@COMPBase:~$ ./average 12 64 55 

The average of those 3 numbers is 43.7 

student@COMPBase:~$  

 

student@COMPBase:~$ ./average 1 2 3 4 5 6 7 8 9 10 

The average of those 10 numbers is 5.5 

student@COMPBase:~$  
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student@COMPBase:~$ ./average  

The average of those 0 numbers is -nan 

student@COMPBase:~$  

 

The big advantage of using command-line arguments is that we can run our program many 
times with different values and we won’t need to compile. 
 
Often, command-line arguments are used for setting parameters to the program, as opposed 
to passing in data to be processed.  For example, arguments are often: 
 

• flags to enable disable certain parts of your program 

• file names 

• number of items to be processed 

• iterations to perform (e.g., simulation programs) 

• etc.. 
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 3.3 Memory Management 

 
Some languages, such as JAVA, are memory-managed.   That means that programmers do 
not need to concern themselves with allocating and deallocating chunks of memory to store 
data (e.g., objects).   In JAVA, for example, we simply write code like this: 
 

Car       myCar   = new Car("Red", "Porsche", "911"); 

Car       yourCar = new Car("Green", "Ford", "Escort"); 

Person[] people  = new Person[200]; 

 
Then we use these objects in our program and when we are finished using them, 
we don’t really do anything, we just leave them as they are.  Eventually, a 
“garbage collector” process comes along and cleans things up by releasing (i.e., 
recycling) the memory that is being taken up by these objects that are no longer 
being used.   All is hidden “behind the scenes” so as to make our life easier as 
programmers, allowing us to concentrate on the higher-level logic of our code 
without having to worry about these tedious aspects of memory management.   
 
As you may recall, here is the JAVA memory model: 
 

 
In this model, the HEAP memory grows and shrinks as objects are created and destroyed, 
respectively.  The STACK memory grew when a method was called and its variables were 
declared, and then it shrunk upon the return from the method.  As you will see, there are some 
similarities in C.  The C memory model has 4 main segments: 
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Notice a couple of similarities to the JAVA model.   Both have HEAP and STACK space as 
well as a static area.   In C, the static area is separated in two: the CODE and DATA 
segments.   The CODE and DATA segments do not change in size as the program runs, but 
the HEAP and STACK segments grow and shrink.  Here is what each segment of the memory 
stores: 
 

• CODE segment 
o program instructions 
o addresses of functions 
o sometimes string literals 

 

• STACK segment 
o manages order of function calls 
o local variables 

• DATA segment 
o global variables 
o static variables and constants 
o literals (e.g., fixed strings) 

 

• HEAP segment 
o manages dynamically-allocated 

data 
 
Fun Fact:  The segmentation fault error that we sometimes get, means that we are 
accessing memory locations outside of our allowed segment in memory. 
 
First, consider the CODE segment, which is also known as the Text segment.   This contains 
all of your program’s executable instructions … all the instructions that are sent to the CPU to 
do things and make stuff happen. Interestingly, 
this does not include any constant values, 
variables or allocated memory.  It is just the 
instructions produced after you compile and 
link your code to get your executable.  It is 
machine-dependent code.  It represents a 
static area in memory that will not need to 
change … in fact … it is often read-only so that 
the program does not overwrite this area of 
memory.  This data is not meant to be 
displayed as text, as you can see here: 
The DATA segment is also static/unchanging 
in that it is determined at compile time.   It is actually broken into two chunks … uninitialized 
and initialized data.   The compiler will go through your program to identify any static/global 
variables and constants as well as string literals and will then allocate enough space for the 
DATA segment to store all of that information.  Keep in mind, however, that it does NOT store 
any local variables … only static ones whose value will not change.   Local variables are stored 
in the STACK segment. 
 
One way to get a bit of a feel for this is to use the size command in Linux.   This will give you 
an idea as to how the static memory has been allocated in your executable program. 
 
For example, consider this simple “empty” program, stored in a file called memory.c: 
 

int main() { 

} 

 
Assuming that we compiled the program to produce the executable called memory, we can 
use the size command to see how the static memory is allocated: 
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student@COMPBase:~$ size memory 

   text    data     bss     dec     hex filename 

   1415     544       8    1967     7af memory 

student@COMPBase:~$  

 

This tells us that the CODE (i.e., text) segment takes up 1415 bytes (that is a lot of overhead 
for an empty program isn’t it?).   The DATA segment is comprised of the data and bss (from 
the words “block started by symbol”) portions … corresponding to initialized and uninitialized static 
data, respectively.   So, there are 544 + 8 = 552 bytes of static/global variables/constants for a 
blank program.   In total, this blank memory program takes up 1967 bytes. 
 
What if we add a variable to the main function?  How will the CODE & DATA space change ? 
 

int main() { 

  int x; 

} 

 
It won’t !    Why not ?  well, we have not really added any instructions to the 
program … we just created a variable.   Moreover, this variable is not static 
… it is a regular variable, so it will be allocated and stored in the STACK 
space.  What if we put the variable outside the main() function … making it a global variable? 
 

int x; 

int main() { 

} 

 
There will be no change!   It seems that there must be some padding going on.  If we add a second 
variable, we get a change: 
 

int x, y; 

  int main() { 

} 

 

student@COMPBase:~$ size memory 

   text    data     bss     dec     hex filename 

   1415     544       16    1975     7b7 memory 

student@COMPBase:~$  

 

With the two variables, the bss jumps to 16.   It must be padding to multiples of 8 byte-chunks.  
We can verify this by trying: int x,y,z; which still stays at 16 bytes, but int w,x,y,z; 

jumps to 24 bytes.  If we were to give values to x and y, it should allocate those extra bytes 
under data instead of bss: 
 

int x = 890, y = 75; 

  int main() { 

} 

 

student@COMPBase:~$ size memory 

   text    data     bss     dec     hex filename 

   1415     552       8    1975     7b7 memory 

student@COMPBase:~$  
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Consider adding another initialized variable and one more uninitialized one: 
 

int   x = 890, y = 75; 

char *c; 

 

int main() { 

  static float y = 200.67; 

} 

 

student@COMPBase:~$ size memory 

   text    data     bss     dec     hex filename 

   1415     556       16    1987     7c3 memory 

student@COMPBase:~$  

 

Finally, we will change *c to be a string literal: 
 

int   x = 890, y = 75; 

char *c = "HELLO"; 

 

int main() { 

  static float y = 200.67; 

} 

 

student@COMPBase:~$ size memory 

   text    data     bss     dec     hex filename 

   1445     568       8    2021     7e5 memory 

student@COMPBase:~$  

 

Notice that *c is now initialized, so 8 bytes less in bss and 12 bytes more in data (i.e., 8 from 
the pointer moving over plus 4 bytes padding).  Also, take note that the CODE segment (i.e., 
text) now increased by 30 … apparently 24 bytes of overhead plus 1 byte for each of the 6 
characters (including null terminator) that make up the string literal.  Some compilers will store 
string literals in the DATA segment.    
 
Hopefully, you have a rough idea now as to what is stored in these static areas at compile 
time.   We will now look at the STACK and HEAP segments which will grow and shrink over 
time as the program is running. 
 
The STACK segment is also called the Function Call Stack.   You may not have thought 
about the lower-level details before, but when multiple functions are called in sequence, the 
program needs to remember the order in which the functions are called as well as the location 
in the program to return to when the function call returns.   In addition, each time a function 
with parameters is called, the program needs to store those parameters for use in the function 
as well as any local variables declared in that function.   It then needs to release them 
afterwards since they won’t be needed anymore once the function completes. 
 
Consider the following code.   We will examine exactly what happens with the STACK when 
each function is called.   In the code, the main() function calls a stat() function, which calls the 
avg() function which calls the add() function.   The program, therefore, has nested function 
calls.   Each time a function is called, you will notice that the parameters, return address and 
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local variables are all added to the STACK memory.   These are all shown as single items, but 
you should keep in mind that they represent int & float types as well as memory addresses 
…each taking up 4 to 8 bytes of memory.   Try to follow along with the explanation given. 
 

Code from stackExample.c 

 #include <stdio.h> 

 

 1.  int add(int n1, int n2) { 

 2.    int sum = n1 + n2; 

 3.    return sum; 

 4.  } 

 

 5.  float avg(int m1, int m2, int m3) { 

 6.    int ttl = add(m1, m2) + m3; 

 7.    return ttl/3.0; 

 8.  } 

 

 9.  void stat(int i1, int i2, int i3) { 

10.    float r = avg(i1, i2, i3); 

11.    printf("%0.2f\n", r); 

12.  } 

 

13.  int main() { 

14.    int  t = 30; 

15.    stat(t, 25, 55); 

16.  } 

 

 
When the program begins with the main function, the local 
variable t is placed onto the STACK, using up 4 bytes of 
memory.  Then, the program continues until the stat() 
function is called.   At this point, the STACK memory 
increases… 
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When the stat() function is called, the parameters to the 
function (i.e., i1, i2, i3) are pushed onto the STACK in 
reverse order.  Then the return address of the calling 
function (i.e., the main function) is placed onto the STACK.   
The program lies in the CODE segment of memory.  This 
return address represents the next instruction that will be 
executed upon return of the stat() function.  In order to 
keep things simple, we will assume that the program 
returns to line 16 of the code. Lastly, all local variables of 
the stat() function (i.e., just r in this case) are pushed onto 
the STACK.   
 
All items just pushed onto the STACK are implicitly 
grouped into what is called a Stack Frame.  The Stack 
Frame contains all “dynamic” data required for the function 
(i.e., excludes global variables).   When the function 
returns, the Stack Frame is removed from the STACK and 
discarded. 
 
Now … the program continues until the avg() function is 
called.   At this point, the STACK memory increases again. 
 

 

 
 

 

 
In a similar manner, when the avg() function is called, the 
parameters m1, m2 and m3 are pushed onto the STACK 
and the return address of the stat() function is placed onto 
the STACK.   This would correspond to the instruction (at 
around line 10 of the code) that would assign r to the value 
returned from the function.   Lastly, local variable ttl is 
pushed onto the STACK.   
 
Now … the program continues until the add() function is 
called.   At this point, the STACK memory increases again. 
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When the avg() function is called, the parameters n1 and 
n2 are pushed onto the STACK followed by the return 
address of avg() (at around line 6 of the code where m3 is 
added to the return value from add()).  Lastly, local variable 
sum is pushed onto the STACK.   
 
Finally, the program continues until the add() function has 
completed.   At this point, the program will be returning from 
the function.    
 
How many Stack Frames are there ?   Well, we made 3 
successive function calls and we started with the main() 
function… so there are 4 Stack Frames.  The memory 
being used is (12 x 4) bytes for variables + (3 x 8) bytes for 
return addresses = 72 bytes. 
 
Do you now understand why we 
sometimes get a Stack Overflow 
Error when we write recursive 
functions ?   If we write a function 
that keeps calling itself (perhaps 
taking up 16 to 24 bytes each time), 
then you can easily see that the 
STACK will just keep growing, taking 
up more and more space until there 
is no space left.  

 

 
Now what happens as the functions start to return ?    
 
A single Stack Frame is removed as follows:   
 

• All local variables are removed from the STACK and discarded. 
 

• The program returns control to the memory address corresponding to the return 
address which is popped off the STACK. 

 

• All parameters are removed from the STACK.    
 
So … you can see that when the add() function returns, the STACK shrinks back to the way it 
was before the add() function was called (left picture on next page).   Then the result is added 
to m3 and that ttl is divided by 3 and this value is returned from the avg() function.  Then the 
Stack Frame corresponding to the avg() function is removed from the STACK in the same 
way.  As a result, we end up with the shrunken STACK shown in the middle picture on the next 
page.  Finally, the returned average is stored in variable r and then printed by the stat() 
function, at which point the Stack Frame for the stat() function is removed from the STACK 
and control returns to the main() function (see rightmost picture on next page).   Once the 
program ends with the completion of the main() function, the STACK is empty. 
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What about the HEAP space ? 
 
The HEAP segment is used whenever we want to store chunks of memory for our own usage.   
In order to use this space, we need to understand how to allocate and de-allocate memory.    
 
Things work similar to the STACK segment in that when we allocate memory, the HEAP space 
grows and the FREE space shrinks.   However, there is a specific order to the STACK space 
in that space was deallocated in the reverse order that it was allocated (i.e., order of function 
calls).  With the HEAP, we can allocate and de-allocate memory chunks at any time, which 
may be in any unspecified/random order. 
 

Allocating means reserving (i.e., using up) a sequential chunk of memory. 
 
De-allocating means releasing (i.e., freeing up) an allocated chunk of memory. 

 
Dynamic memory allocation and de-allocation implies that it all happens while our program is 
running (i.e., runtime).  This is different from the memory allocation that the compiler did in our 
DATA and CODE segments (i.e., at compile time). 
 
Since the compiler will automatically allocate memory for us at compile time to store our 
variables … why would we want to allocate memory on our own ?  
 
The main advantage is that we can make more efficient use of the computer’s memory.   For 
example, suppose that you want a program to store bank accounts.   You can allocate an array 
to do this, but you need to know the maximum size for that array.   If you choose too small of a 
number (e.g., 500) then you cannot store more accounts past that number.   If you choose a 
big number (e.g., 10,000,000), then you may not need all that space and may be wasting 
memory by reserving it.   Dynamic memory allocation allows you to reserve the exact space 
that you need without waste.  The next section goes into much more detail about this. 
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 3.4 Dynamic Memory Allocation 

 
Allocating and de-allocating memory is as simple as calling predefined C functions.   It is not 
hard.   However, it can become difficult to manage all of the allocated memory.   That is, you 
MUST ALWAYS carefully keep track of the memory that you allocated so that you use it 
properly and so that you free it properly.    
 
All too often, when C programming, programs will crash because the programmer did not 
properly keep track of allocated memory.   It is important that you keep organized while 
programming and that you have some fixed ways of remembering what has been allocated 
and when it should be freed.  
 
If memory is continually allocated and never freed … the program will eventually run out of 
memory and crash.   Sometimes you may think that you have freed up all the memory that you 
allocated but there may be some lingering chunks of memory that never get freed.  These are 
known as: 
 

A Memory Leak is a chunk of allocated memory that is never freed. 
 
It is called a “leak” because your program may slowly lose available 
memory … like a slow-leaking tire losing air.  Eventually the vehicle can 
no longer be driven.  And … as it always seems to be the case … 
memory leaks happen at inconvenient times (like when you are under 
pressure to meet a software deadline at work). 
 
The most annoying thing about memory leaks is that they are often 
difficult to locate in your program.   It can be a difficult task to sift through 
thousands of lines of C code looking for a memory leak.   So, do your 
best to stay organized and write your code neatly, in order to minimize the likelihood of getting 
leaks. 
 
Lets get started with the simplest function.  To allocate a chunk of memory in the HEAP space 
we use the malloc() function.   The malloc() function takes a single parameter that indicates 
the number of bytes that you want to reserve for yourself.  It returns a pointer to the memory 
location representing the start of the reserved chunk of bytes in memory.  
 
This is similar to the idea in JAVA when we call a constructor by using new.   When we say 
new Person() for example, we get back the pointer (or reference) to the object in memory … 
which is really just the starting address of a sequence of bytes that store the object’s attribute 
values. 
 
Assume that we want to store some integers.   We already know that we can do this: 
 

int grades[500]; 

 
This will allow us to store up to 500 integers.  But remember the advantage of dynamic 
allocation … we may only want 5 integers … or maybe 5000 integers.   An array size of 500 
can be either wasteful or not enough.    
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Using dynamic memory allocation, we can do this instead: 
 

int   nums = 5; 

int  *grades; 

 

grades = (int *) malloc(nums * sizeof(int)); 

  
This code allocates 5 * 4 = 20 bytes that will allow us to store 5 integers. 
 

 
 
In order to use the malloc() function, we’ll need to include the <stdlib.h> header file. 
 
You will notice that we typecasted the result of malloc to int *.  The malloc() function actually 
returns a type of void *.   Although a type-cast is not required, it is proper programming style to 
typecast the result of malloc() to the type of the variable that you are storing it in.   This allows 
for more robust error-checking by the compiler. 
 



COMP2401 - Chapter 3 – Pointers and Memory Management Fall 2020 
 

  - 120 - 

In addition, it is possible that the memory cannot be allocated (i.e., if the system is out of 
memory).  In this case, a value of NULL (i.e., a NULL pointer) will be returned.  If you tried to 
use the pointer, you would then get an error and the program would crash.   Therefore, it is 
proper to check for NULL each time that you call malloc() with some kind of error message 
and perhaps exiting the program as follows: 
 

if (grades == NULL) {  
    printf("Memory allocation error\n");  
    exit(0);  
}  

 
Once this memory is allocated, we can do what we want with it.  For example, we can treat it 
as an array of 5 integers and we can iterate through the grades data using indices.   Or we 
can just treat the returned reference address as a pointer and work with it that way. 
 
Here is a sample program that does this: 
 

Code from malloc.c 

#include <stdio.h> 

#include <stdlib.h> 

 

int main() { 

  int   nums = 5; 

  int  *grades; 

 

  grades = (int *) malloc(nums * sizeof(int)); 

  if (grades == NULL) {  
    printf("Memory allocation error\n");  
    exit(0);  
  }  
 

  grades[0]   = 10; 

  grades[1]   = 20; 

  grades[2]   = 30; 

  *(grades+3) = 40; 

  *(grades+4) = 50; 

 

  for (int i=0; i<nums; i++) 

    printf("%d ", grades[i]);  // use it like an array 

  printf("\n"); 

 

  for (int i=0; i<nums; i++)  

    printf("%d ", *grades++);  // use it via pointers 

  printf("\n"); 

} 

 
The output is the same for both loops: 
 

10 20 30 40 50  

10 20 30 40 50 

 
In the above code, grades is a pointer to the allocated memory.   You must 
be VERY careful in your code not to lose this pointer!    If you lose it, or 
erase it somehow, then you will NEVER be able to free up the reserved 
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memory.   In our code above, we are never freeing up the memory.  It will not matter in this 
case, however, because the program is small and we know that it won’t run out of memory.  
But this is poor coding style.  You should always free up allocated memory that you are not 
using.  
 
To free allocated memory in C, you use the free(*ptr) function.  This function takes the pointer 
(e.g., grades) that you got back from the malloc() function call.   It has no return value. 
 
What would happen if we put free(grades); as the last line of code in the above program ? 
 

  … 
  for (int i=0; i<nums; i++)  

    printf("%d ", *grades++);  // use it via pointers 

  printf("\n"); 

 

  free(grades); 

} 

 
You might think that all is ok … but the program will crash!   Why?   Well, within the loop we 
are increasing the grades pointer by 4 (i.e., size of int) each time by using ++.   Hence, we are 
actually losing the original pointer location! 
 
A solution to this would be NOT to alter the grades pointer at any time, or so store a pointer to 
the original start location: 
     … 

  int  *grades, *gradesStart; 

 

     grades = gradesStart = (int *) malloc(nums * sizeof(int)); 

  … 
  for (int i=0; i<nums; i++)  

    printf("%d ", *grades++);  // use it via pointers 

  printf("\n"); 

 

  free(gradesStart); 

} 

 
As you might start to see … it is easier than you think to lose track of 
pointers.  Sometimes another part of your code can clobber (i.e., overwrite) 
other parts of the code, including pointers.  From my personal experience, 
this often happened when dealing with char * types.  It can also happen that 
you allocate a pointer within a function and store it in a local variable but 
upon returning from the function you no longer have access to that variable.    
 
Remember … once a pointer has been lost … it is lost forever.   If this happens too often, your 
program will run out of HEAP space. 
 
Sometimes a memory leak will occur and can be hard to find.   There is a Linux tool called 
valgrind which you can use to check for a memory leak.   You use it on your compiled 
executable file.   It will tell you whether or not you have memory leaks.  For example, consider 
these two simplified programs: 
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Code from leakTest1.c 

#include <stdlib.h> 

 

int main() { 

  int   nums = 5; 

  int  *grades; 

 

  grades = (int *) malloc(nums * sizeof(int)); 

  free(grades); 

} 

 

Code from leakTest2.c 

#include <stdlib.h> 

 

int main() { 

  int   nums = 5; 

  int  *grades; 

 

  grades = (int *) malloc(nums * sizeof(int)); 

} 

 
One has the memory allocated and freed … the other allocates without freeing.   Assume that 
both programs have been compiled.  We can then run valgrind on them as shown here.  
Notice the difference in output as highlighted: 
 
student@COMPBase:~$ valgrind --leak-check=yes ./leakTest1 

==3088== Memcheck, a memory error detector 

==3088== Copyright (C) 2002-2015, and GNU GPL'd, by Julian Seward et al. 

==3088== Using Valgrind-3.11.0 and LibVEX; rerun with -h for copyright info 

==3088== Command: ./leakTest1 

==3088==  

==3088==  

==3088== HEAP SUMMARY: 

==3088==     in use at exit: 0 bytes in 0 blocks 

==3088==   total heap usage: 1 allocs, 1 frees, 20 bytes allocated 

==3088==  

==3088== All heap blocks were freed -- no leaks are possible 

==3088==  

==3088== For counts of detected and suppressed errors, rerun with: -v 

==3088== ERROR SUMMARY: 0 errors from 0 contexts (suppressed: 0 from 0) 

student@COMPBase:~$  

 
student@COMPBase:~$ valgrind --leak-check=yes ./leakTest2 

==3109== Memcheck, a memory error detector 

==3109== Copyright (C) 2002-2015, and GNU GPL'd, by Julian Seward et al. 

==3109== Using Valgrind-3.11.0 and LibVEX; rerun with -h for copyright info 

==3109== Command: ./leakTest2 

==3109==  

==3109==  

==3109== HEAP SUMMARY: 

==3109==     in use at exit: 20 bytes in 1 blocks 

==3109==   total heap usage: 1 allocs, 0 frees, 20 bytes allocated 

==3109==  

==3109== 20 bytes in 1 blocks are definitely lost in loss record 1 of 1 

==3109==    at 0x402D17C: malloc (in /usr/lib/valgrind/vgpreload_memcheck-x86-
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linux.so) 

==3109==    by 0x8048431: main (in /home/student/code/ch3/leakTest2) 

==3109==  

==3109== LEAK SUMMARY: 

==3109==    definitely lost: 20 bytes in 1 blocks 

==3109==    indirectly lost: 0 bytes in 0 blocks 

==3109==      possibly lost: 0 bytes in 0 blocks 

==3109==    still reachable: 0 bytes in 0 blocks  
==3109==         suppressed: 0 bytes in 0 blocks 

==3109==  

==3109== For counts of detected and suppressed errors, rerun with: -v 

==3109== ERROR SUMMARY: 1 errors from 1 contexts (suppressed: 0 from 

0)0)student@COMPBase:~$  

 

So … you can see that if we forget to free some allocated memory, then it can be detected.  It 
even mentions the function (in this case main) that the unfreed malloc was made within. 
 
valgrind can also detect when you are reading or writing to invalid locations in memory.  This 
can be very useful when debugging.   Here is an example: 
 

Code from badReadWrite.c 

#include <stdio.h> 

#include <stdlib.h> 

 

int main() { 

  int   nums = 5; 

  int  *grades; 

 

  grades = (int *) malloc(nums * sizeof(int)); 

 

  grades[0]  = 10; 

  grades[1]  = 20; 

  grades[2]  = 30; 

  grades[67] = 4544;           // this is an invalid write 

 

  printf("%d\n", grades[99]);  // this is an invalid read 

   

  free(grades); 

} 

 
As you can see, we are attempting to read from an unallocated memory location as well as 
write to an unallocated memory location.   The program actually runs without any noticeable 
error !   But here is a valgrind test on the program: 
 
student@COMPBase:~$ valgrind --leak-check=yes ./badReadWrite 

==3531== Memcheck, a memory error detector 

==3531== Copyright (C) 2002-2015, and GNU GPL'd, by Julian Seward et al. 

==3531== Using Valgrind-3.11.0 and LibVEX; rerun with -h for copyright info 

==3531== Command: ./badReadWrite 

==3531==  

==3531== Invalid write of size 4 

==3531==    at 0x80484C1: main (in /home/student/code/ch3/badReadWrite) 

==3531==  Address 0x4208134 is 196 bytes inside an unallocated block of size 

4,194,168 in arena "client" 

==3531==  



COMP2401 - Chapter 3 – Pointers and Memory Management Fall 2020 
 

  - 124 - 

==3531== Invalid read of size 4 

==3531==    at 0x80484CF: main (in /home/student/code/ch3/badReadWrite) 

==3531==  Address 0x42081b4 is 324 bytes inside an unallocated block of size 

4,194,168 in arena "client" 

==3531==  

0  
==3531==  

==3531== HEAP SUMMARY: 

==3531==     in use at exit: 0 bytes in 0 blocks 

==3531==   total heap usage: 2 allocs, 2 frees, 1,044 bytes allocated 

==3531==  

==3531== All heap blocks were freed -- no leaks are possible 

==3531==  

==3531== For counts of detected and suppressed errors, rerun with: -v 

==3531== ERROR SUMMARY: 2 errors from 2 contexts (suppressed: 0 from 0) 

student@COMPBase:~$  

 

As you can see, valgrind can find memory read/write errors that we may not even be aware of 
when we run our programs.   You should make good use of valgrind to ensure that your code 
is running cleanly and properly with respect to memory allocation, memory access and 
memory modification. 
 
Sometimes, memory problems occur because we are misusing pointers.   That is, 
sometimes we think that we are using pointers a certain way but we get confused 
and end up writing code that does not work the way that we expected.   
 
Consider this function that creates (and returns a pointer to) a random integer array with the 
specified amount of items in it: 
 

int *getRandomArray(int amount) { 

  int *memoryPointer = (int *) malloc(amount * sizeof(int)); 

     if (memoryPointer == NULL) {  
       printf("Memory allocation error\n");  
      exit(0);  
     }  

  for (int i=0; i<amount; i++)  

    memoryPointer[i] = rand(); 

  return memoryPointer; 

} 

 
The code works.   We can test it as follows: 
 

int main() { 

  int  *nums; 

 

  nums = getRandomArray(5); 

 

  for (int i=0; i<5; i++) 

    printf("%d ", nums[i]); 

  printf("\n"); 

 

  free(nums); 

} 
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The code will produce what was expected … 5 random integers: 
 
1804289383 846930886 1681692777 1714636915 1957747793 

 
Now consider altering the function to allocate two integer arrays.   We’d need to return two 
arrays from the function, so we will need to use parameters instead of the return value: 
 

void getRandomArrays(int *a1, int *a2, int amount) { 

  a1 = (int *) malloc(amount * sizeof(int)); 

  a2 = (int *) malloc(amount * sizeof(int)); 

  if ((a1 == NULL) || (a2 == NULL)) {  
       printf("Memory allocation error\n");  
      exit(0);  

  } 

  for (int i=0; i<amount; i++) { 

    a1[i] = rand(); 

    a2[i] = rand(); 

  } 

} 

 
The code creates the two arrays properly and fills them in with random values.   How do we 
call this function now ?  Well, here is how we will try to do it: 
 

int main() { 

  int  *array1 = NULL, *array2 = NULL; 

  getRandomArrays(array1, array2, 5); 

  free(array1); 

  free(array2); 

} 

 

However, if we were to run this program, we would get an error when we try to free the arrays.  
Why ?   Well, we should examine the code carefully.  We are defining two arrays whose values 
are uninitialized at first.   Then we call the function, which should “hopefully” set the array 
pointers properly so that we can use them.  But we can insert some print statements to check 
and see if these pointers are being set properly: 
 

int main() { 

  int  *array1= NULL, *array2 = NULL; 

 

  printf("array1 = %p\n", (void *)array1); 

  printf("array2 = %p\n", (void *)array2); 

 

  getRandomArrays(array1, array2, 5); 

 

  printf("array1 = %p\n", (void *)array1); 

  printf("array2 = %p\n", (void *)array2); 

 

  free(array1); 

  free(array2); 

} 

 
If you were to run the above code, you would notice that the output would be as follows: 
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array1 = (nil) 

array2 = (nil) 

array1 = (nil) 

array2 = (nil) 

 
Clearly, the pointers are not being set.  Why not ?  Well, when we call the function, we are 
actually passing in the value of the pointer … which is a NULL address … which is 0.  In the 
function, we take in these NULL pointers as parameters and then assign the result from the 
malloc calls to the parameter.   Since we are only altering the parameter, we never alter the 
pointers out in the main function.   This is a very common problem in C programming that we 
must be aware of.   We are essentially passing-by-value instead of what we need to do … 
pass-by-reference.   So, we need to pass in the memory address of the pointers that we want 
to alter.  Here is the changed code: 
 

int main() { 

  int  *array1= NULL, *array2= NULL; 

 

  printf("array1 = %p\n", (void *)array1); 

  printf("array2 = %p\n", (void *)array2); 

 

  getRandomArrays(&array1, &array2, 5); 

 

  printf("array1 = %p\n", (void *)array1); 

  printf("array2 = %p\n", (void *)array2); 

 

  free(array1); 

  free(array2); 

} 

 
Now, we will need to alter the function so that it knows that it is getting an address to a pointer 
each time, not the pointer itself: 

 

void getRandomArrays(int **a1, int **a2, int amount) { 

  *a1 = (int *) malloc(amount * sizeof(int)); 

  *a2 = (int *) malloc(amount * sizeof(int)); 

  if ((a1 == NULL) || (a2 == NULL)) {  
       printf("Memory allocation error\n");  
      exit(0);  

  } 

  for (int i=0; i<amount; i++) { 

    (*a1)[i] = rand(); 

    (*a2)[i] = rand(); 

  } 

} 

 

Notice the use of the double ** characters.   This is called a double pointer.  They are used 

often in C programming.   They are essentially pointers to pointers.    
 
Notice that we use *a1 and *a2 to the left of the assignment operators.  That means, we are 
dereferencing the double pointer to get the actual pointer that was passed in.  Then we can 
assign values to those pointers.  Also, to use the pointers in the function, we must first 
dereference the double pointer to get the single pointer by using (*a1) and (*a2).  Finally, the 
output of the main function will show proper addresses: 
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array1 = (nil) 

array2 = (nil) 

array1 = 0x5608f9213670 

array2 = 0x5608f9213690 

 
Here is the completed, working code: 
 

Code from doublePointer.c 

#include <stdio.h> 

#include <stdlib.h> 

 

void getRandomArrays(int **a1, int **a2, int amount) { 

  *a1 = (int *) malloc(amount * sizeof(int)); 

  *a2 = (int *) malloc(amount * sizeof(int)); 

  if ((a1 == NULL) || (a2 == NULL)) {  
    printf("Memory allocation error\n");  
    exit(0);  
  } 

  for (int i=0; i<amount; i++) { 

    (*a1)[i] = rand(); 

    (*a2)[i] = rand(); 

  } 

} 

 

int main() { 

  int  *array1 = NULL, *array2 = NULL; 

 

  getRandomArrays(&array1, &array2, 5); 

   

  for (int i=0; i<5; i++)  

    printf("%d ", array1[i]);  

  printf("\n"); 

  for (int i=0; i<5; i++)  

    printf("%d ", array2[i]);  

  printf("\n"); 

 

  free(array1); 

  free(array2); 

} 

 
Here is the memory map showing how the pointers are stored.  Note that the parameters a1, 
a2 and amount are also shown, which are valid only during the function call: 
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Why use double pointers?  So that we can change the value of a parameter: 
 

void function1(int p1) { 

 

  p1= 14; 

 

} 

 

void function2(int *p2) { 

 

  *p2= 14; 

 

} 

 

 

void function3(int **p3) { 

 

 

  int *tmp = (int *) malloc(sizeof(int)); 

 

 

  *tmp= 86; 

 

 

 

 

  *p3= tmp; 

 

} 

 
void  main() { 

 

  int   x = 37; 

  int  *y = &x; 

  

  function1(x); 

  printf("%d\n",x);  //prints 37 

 

  function2(&x); 

  printf("%d\n",x);  //prints 14 now  

  printf("%d\n",*y); //prints 14 as well 

 

  function3(&y); 

  printf("%d, %d\n",x, *y); //prints 14, 86 

 

  free(y); // frees the allocated memory 

} 

 
 
 

We use a double 
pointer so that y 
can be changed 
from within the 
function. 
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When you use malloc(), you should remember that it will allocate memory which is not 
initialized.   That is, there could be garbage data in the memory locations. This is not usually a 
problem since the programmer knows that the memory has not been filled in with valid data 
when it is first obtained.   Normally the programmer will keep track of what data is valid.   For 
example, when we allocate big arrays (e.g., size 10,000) and then put a couple of hundred 
items into the array … we also keep track of how many items we put in there so that we do not 
end up accessing invalid/garbage data. 
 
If you want to ensure that the data is initialized (i.e., not garbage but zeroed), then there is a 
calloc() function that you can use.  calloc() will allocate memory and also clear all the bytes to 
zero.  It is used similarly to malloc() except that we don’t need to multiply the size of the type 
by the number of elements we want, we keep the two parameters separate.   Here is the 
difference: 
 

pointer = malloc(numberOfArrayItems * sizeof(int)); 

pointer = calloc(numberOfArrayItems, sizeof(int)); 

 
The advantage of using calloc() is that you are sure that there is no garbage data … it will all 
be zeroed (which is easily identifiable as being uninitialized).  The downside of using calloc() 
is that it is slower than malloc() since it must go through all the bytes and fill them with zero.   
It is up to the programmer as to whether or not it is worth initializing, at the expense of slower 
code. 
 
There is one more memory allocation function to mention … realloc().  The realloc() function 
is used to re-allocate memory in a situation in which we want to “grow” an array, for example.  
Here is how to use it to grow a memory chunk that was used to store a string: 
 

Code from realloc.c 

#include <stdio.h> 

#include <stdlib.h> 

#include <string.h> 

 

int main() { 

  char  *string; 

 

  string = (char *) malloc(10); 

  strcpy(string, "Small"); 

  printf("Initial String = \"%s\" stored at address = %p\n",  

         string, (void *) string); 

 

  string = (char *) realloc(string, 40); 

  strcat(string, ", but now the string is bigger."); 

  printf("Bigger String = \"%s\" stored at address = %p\n",  

         string, (void *) string); 

 

  free(string);  

} 
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Here is the output: 
 

Initial String = "Small" stored at = 0x560b7a4ca260 

Bigger String = "Small, but now the string is bigger." stored at = 0x560b7a4ca690 

 
Notice a couple of  things.  Notice that the original pointer (i.., string variable) is passed in as a 
parameter to realloc().   This must either be a valid memory location that was obtained from 
malloc(), calloc() or realloc() previously … or NULL.   If it is NULL, then the function behaves 
just like a regular call to malloc(). 
 
In the output, you may have noticed that the address of the string changes.   As it turns out, if 
the function is able to extend the current block of memory further, it will maintain the same 
address.   However, if it is unable to allocate a bigger contiguous (i.e., all together) block of 
memory, it will find a different block in memory that is big enough and return a pointer to that 
location.   Regardless, you will notice that the data values that are in the original memory block 
are copied over to the new block.  You can see this in the example, since the “Small” part of 
the string was in the original allocated memory and it also appears in the newly-allocated 
memory block.  You may also reallocate to a smaller memory chunk if you want. 
 
Regardless of whether or not we use malloc(), calloc() or realloc(), it is possible that the 
function will not be able to allocate memory.   If this is the case, the function will return NULL.  
Therefore, you should always check the return value from these memory allocation functions to 
ensure that the memory has been allocated: 
 

string = (char *) realloc(string, 40); 

if (string == NULL) { 

 free(string); 

 printf("It's all over man!   Error (re)allocating Memory!\n"); 

 exit(-1); 

} 
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 3.5 Linked Lists 

 
As you may now realize, a lot of the time we spend programming has to 
do with writing data to memory, reading that data from memory later on 
and processing it … and then re-writing the new data to memory.   Since 
much of our program’s time is spent on this memory reading/writing, we 
want to write code that allows the fastest possible access to memory and 
that also uses the least amount of memory.    
 
There is always a tradeoff in computer science when it comes to speed 
versus memory.   This is understandable.   Imagine, for example, that you 
had to organize/sort 500 exam papers by putting them in order of grade 
from lowest to highest.   Imagine having very little physical space to do 
this (e.g., on your lap).    
 
It would take you a ridiculous amount of time to 
sort them because you don’t have enough space to 
work on your lap.   It would be much easier of you 
had a large desk on which to work so that you can 
make partially-sorted piles.   
 
To get the best use of space and speed, it is 
important to use the right data structure.   You have had ample opportunity to work with arrays.   
You should have also been introduced to linked-lists as well by now.   Here are the tradeoffs 
between the two: 
 
 
Arrays 
 
Advantage: 

✓ Faster access since elements are contiguous (one beside another in sequence).    
 
Disadvantage:  

 re-size limitations.   
o You cannot grow or shrink an array to match the amount of data that you 

currently have.    
o If the array is made too big, you waste memory space.   If it is made too small, 

you run the risk of running out of space to store your items.   
o You can always allocate a bigger array in that case and then copy the elements 

over … but this takes time. 
 
Linked Lists  
 
Advantage: 

✓ no size-limitations.    
o can be resized any time and elements can be inserted, removed anywhere in the 

list.   
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Disadvantage: 

 slower access since elements are not contiguous … we need to follow the pointers. 
 
The most basic linked list is a singly-linked list.  It has a head which points to the first item in 
the list.   Optionally, it may have a tail, which points to the last item in the list. 

 
 
Each element of the list is actually a list in itself.  That is, if we grab any item and “shake off” 
the items before it … we actually have a sub-list.  Here is a struct definition: 
 

struct LinkedListItem { 

  int                     data; 

  struct LinkedListItem  *next; 

}; 

 
Notice that the LinkedListItem is just a piece of data (i.e., an int) and then a pointer to the 
next LinkedListItem in the list.  It is a self-referencing data structure. 
How do we create the following singly-linked list ? 
 

 
 
We would need to allocate memory for each item: 
 

struct LinkedListItem   *myList, *myList1, *myList2, *myList3,  

                        *myList4, *myList5, *myList6, *myList7; 

 

// Set up all the data 

myList = (struct LinkedListItem *) malloc(sizeof(struct LinkedListItem)); 

myList->data = 23; 

myList1 = (struct LinkedListItem *) malloc(sizeof(struct LinkedListItem)); 

myList1->data = 65; 

myList2 = (struct LinkedListItem *) malloc(sizeof(struct LinkedListItem)); 

myList2->data = 87; 

myList3 = (struct LinkedListItem *) malloc(sizeof(struct LinkedListItem)); 

myList3->data = 45; 

myList4 = (struct LinkedListItem *) malloc(sizeof(struct LinkedListItem)); 

myList4->data = 56; 

myList5 = (struct LinkedListItem *) malloc(sizeof(struct LinkedListItem)); 

myList5->data = 34; 

myList6 = (struct LinkedListItem *) malloc(sizeof(struct LinkedListItem)); 

myList6->data = 95; 

myList7 = (struct LinkedListItem *) malloc(sizeof(struct LinkedListItem)); 

myList7->data = 71; 
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// Connect them all together now 

myList->next = myList1; 

myList1->next = myList2; 

myList2->next = myList3; 

myList3->next = myList4; 

myList4->next = myList5; 

myList5->next = myList6; 

myList6->next = myList7; 

myList7->next = NULL; 

 
This sure seems like a lot of work.   Not only that, but we seem to be using a variable for each 
list item.  That does not seem scalable.   How is the list supposed to be able to grow without 
requiring more variables?  Well, we are hardly done.   Agreeably, the above code is long 
because we are manually making the list and connecting things together.   It makes more 
sense, however, to write a function to do this.    
 
We can write a function that takes the tail of the list and then simply adds an item to grow the 
list by connecting that tail to a new item which we will allocate.   Here is a function to do this: 
 

struct LinkedListItem  *add(struct LinkedListItem *tail, int item) { 

  struct LinkedListItem *newItem; 

  newItem = (struct LinkedListItem *) malloc(sizeof(struct  

    LinkedListItem)); 

  if (newItem == NULL) {  
      printf("Memory allocation error\n");  

    exit(0);  
  } 

  newItem->data = item; 

  newItem->next = NULL; 

  tail->next = newItem; 

  return newItem; 

} 

 
As you can see, the function takes in a LinkedListItem called tail which must be the tail of the 
list, otherwise we will lose any data after this list item.   It then creates a newItem to add to the 
list by allocating memory.  Finally, it connects it to the tail via the next pointer.   The newItem 
is returned from the function so that we can have access to this item as the list’s new tail in 
order to add onto it the next time. 

 
 
 
 
How will this simplify our list-building code?   Look … 
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struct LinkedListItem   *myList; 

 

myList = (struct LinkedListItem *) malloc(sizeof(struct  

LinkedListItem)); 

myList->data = 23; 

add(add(add(add(add(add(add(myList, 65), 87), 45), 56), 34), 95), 71); 

 
As you can see, since the call to the add() function returns a LinkedListItem structure which 
is the new tail of the list, we just use that as the parameter for the next add() function call.   So 
they are all chained together. 
 
We can even add some code in the add() function to handle a new (i.e., NULL) list so that we 
don’t need to do the malloc() outside the function to start things off: 
 

struct LinkedListItem *add(struct LinkedListItem *tail, int item) { 

  struct LinkedListItem  *newItem; 

  newItem = (struct LinkedListItem *) malloc(sizeof(struct  

LinkedListItem)); 

  if (newItem == NULL) {  
      printf("Memory allocation error\n");  

    exit(0);  
  } 

  newItem->data = item; 

  newItem->next = NULL; 

  if (tail != NULL) 

    tail->next = newItem;  
  return newItem; 

} 

 
Then the creation of the list is a bit simpler … although we have to make sure to hang on to the 
head of the list, by storing it into the myList variable: 
 

struct LinkedListItem   *myList; 

 

add(add(add(add(add(add(add(myList = add(NULL, 23), 65), 87), 45), 

56), 34), 95), 71); 

 
How can we display the list ?   We can write a function that takes the head of the list as a 
parameter, and then repeatedly iterates through the list items one-by-one by following the next 
pointers until NULL is reached: 
 

void printList(struct LinkedListItem *listItem) { 

  while(listItem != NULL) { 

    printf("%d", listItem->data); 

    if (listItem->next != NULL) 

      printf(" ---> "); 

    else 

      printf("\n"); 

    listItem = listItem->next; 

  } 

} 
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Calling the function is as easy as this:   printList(myList);   Here is the output: 

 
23 ---> 65 ---> 87 ---> 45 ---> 56 ---> 34 ---> 95 ---> 71 

 
There are many ways to play around with the code to allow different ways of creating the list.  
For example, what if we wanted to create a linked-list from this array: 
 

int  initData[] = {23, 65, 87, 45, 56, 34, 95, 71}; 

 
We can make a function called addAll() and perhaps pass a pointer to this list as well as the 
array and the size of the array: 
 

void addAll(struct LinkedListItem **initTail, int items[], int size) { 

  struct LinkedListItem *newItem; 

  struct LinkedListItem *tail = *initTail; 

 

  for (int i=0; i<size; i++) { 

    newItem = (struct LinkedListItem *) malloc(sizeof(struct  

LinkedListItem)); 

    if (newItem == NULL) {  
        printf("Memory allocation error\n");  

      exit(0);  
    } 

    newItem->data = items[i]; 

    newItem->next = NULL; 

    if (tail != NULL) 

      tail->next = newItem; 

    else 

      *initTail = newItem; // newItem becomes the head of the list 

    tail = newItem; 

  } 

} 

 
Notice that the initTail parameter is actually a pointer to the tail of the list, not the tail itself.   
This allows us to set it from within the function.   In our example, we will create a new list, so 
the head will also be the tail … which will be NULL when we call the function.   Near the end of 
the function there is a check to see if the tail is NULL.   If so, it sets the first created newItem 
to be the tail which is set from the function as the result list parameter.   This allows us to 
“return” the head of the list, for newly created lists.   Here is how we should call the function: 
 

struct LinkedListItem   *yourList = NULL; 

 

int  initData[] = {23, 65, 87, 45, 56, 34, 95, 71}; 

addAll(&yourList, initData, sizeof(initData)/sizeof(int)); 

 
Notice that yourList is initialized to NULL when the variable is declared.   
This is IMPORTANT!   If we do not do this, the yourList variable may point 
to a garbage/invalid memory address.   In our addAll() function, we are 
explicitly checking for NULL as the incoming value.  The function is relying 
on a NULL value for new lists.   If we did not initialize to NULL, we’d likely 
get a segmentation fault in our code. 
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The last thing that we need to do is free the list. Consider the two lists that we made.   We 
could do this: 
 

free(myList); 

free(yourList); 

 
This code will compile and run fine.   However, if we were to do a valgrind on the code, we 
would get this result: 
 

… 

==3329== LEAK SUMMARY: 

==3329==    definitely lost: 16 bytes in 2 blocks 

==3329==    indirectly lost: 96 bytes in 12 blocks 

… 

 
There is a memory leak!   What is wrong?  Didn’t we free the two lists ?   
 
Think for a moment.   Each time we do a malloc() call, we reserved a chunk of memory.   
There should be a free() call for each malloc() that we did.   Creating the two lists … we did 16 
malloc() calls in total in order to create the 16 list items.   But we only did two calls to free().    
Sadly, a common problem in C-programming is forgetting to free the pieces of our linked-lists. 
 
In order to free the memory properly, we would need to iterate through the lists and free the 
items one-by-one.  We’ll have to write a function: 
 

void freeList(struct LinkedListItem *listItem) { 

  struct LinkedListItem *nextItem; 

   

  while(listItem != NULL) { 

    nextItem = listItem->next; 

    free(listItem); 

    listItem = nextItem; 

  } 

} 

 
This should free up all items.   The completed programming example is shown here: 
 

Code from singlyLinkedList.c 

 

#include <stdio.h> 

#include <stdlib.h> 

 

 

// Structure that represents a singly-linked-list of integers 

struct LinkedListItem {   

  int                     data; 

  struct LinkedListItem  *next; 

}; 
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// Takes a list tail and adds the given item to it, returning the new item added 

struct LinkedListItem *add(struct LinkedListItem *tail, int item) { 

  struct LinkedListItem *newItem; 

  newItem = (struct LinkedListItem *) malloc(sizeof(struct LinkedListItem)); 

  if (newItem == NULL) {  
    printf("Memory allocation error\n");  
    exit(0);  
  } 

  newItem->data = item; 

  newItem->next = NULL; 

  if (tail != NULL) 

    tail->next = newItem; 

  return newItem; 

} 

 

// Add all elements from items to the given Singly-Linked List and 

// set the list to point to the head of the resulting list 

void addAll(struct LinkedListItem **initTail, int items[], int size) { 

  struct LinkedListItem *newItem; 

  struct LinkedListItem *tail = *initTail; 

  for (int i=0; i<size; i++) { 

    newItem = (struct LinkedListItem *) malloc(sizeof(struct LinkedListItem)); 

    if (newItem == NULL) {  
      printf("Memory allocation error\n");  
      exit(0);  
    } 

    newItem->data = items[i]; 

    newItem->next = NULL; 

    if (tail != NULL) 

      tail->next = newItem; 

    else 

      *initTail = newItem; // newItem becomes the head of the list 

    tail = newItem; 

  } 

} 

 

// Print the contents of a Singly-Linked List 

void printList(struct LinkedListItem *listItem) { 

  while(listItem != NULL) { 

    printf("%d", listItem->data); 

    if (listItem->next != NULL) 

      printf(" ---> "); 

    else 

      printf("\n"); 

    listItem = listItem->next; 

  } 

} 

 

// Free all items in a Singly-Linked List  

void freeList(struct LinkedListItem *listItem) { 

  struct LinkedListItem *nextItem; 

   

  while(listItem != NULL) { 

    nextItem = listItem->next; 

    free(listItem); 

    listItem = nextItem; 

  } 

} 
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int main() { 

  struct LinkedListItem   *myList = NULL, *yourList = NULL; 

 

  add(add(add(add(add(add(add(myList = add(NULL, 23),65),87),45),56),34),95),71); 

 

  int  initData[] = {23, 65, 87, 45, 56, 34, 95, 71}; 

  addAll(&yourList, initData, sizeof(initData)/sizeof(int)); 

 

  printList(myList); 

  printf("\n"); 

  printList(yourList); 

 

  freeList(myList); 

  freeList(yourList); 

} 

 

 
Now consider writing a program that creates a list of 
students and their majors.   Assume that we do not 
know how many students there will be.  So, we will 
need to create a list of students, allocating memory 
for each student as that student is entered into the 
system.   
 
Here, to the right, is an example of the list that we 
will create, using the struct defined below: 
   

typedef struct Student { 

  char            name[MAX_STR]; 

  char            major[MAX_STR]; 

  struct Student *next; 

} StudentType; 

 
Notice that the struct is a Student struct and the 
overall type is defined as StudentType.  The 
program is on the next page.   It follows from the 
previous example that we just completed.    
 
Interestingly, notice how the code produces the list in 
the reverse order that the items are entered, with the 
most recent one being the head.   As an exercise, 
see if you can alter the code to reverse the order. 
 
 
 

 

Code from basicStudentList.c 

 

#include <stdio.h> 

#include <stdlib.h> 

#include <string.h> 

 

#define MAX_STR  32 
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typedef struct Student { 

  char            name[MAX_STR]; 

  char            major[MAX_STR]; 

  struct Student *next; 

} StudentType; 

 

 

// These are the functions used in the main function. 

// They are defined here since the main function appears 

// before them. 

void createStudent(char*, char*, StudentType**); 

void printStudent(StudentType*); 

void freeList(StudentType*); 

 

 

int main() { 

  StudentType *ourClassroom = NULL; 

  StudentType *currStudent; 

  char         str1[MAX_STR]; 

  char         str2[MAX_STR]; 

 

  printf("\nEnter student names and their majors (use -1 when done): "); 

  while(1) { 

    printf("\nEnter name: "); 

    scanf("%s", str1); 

    if (strcmp(str1, "-1") == 0) 

      break; 

    printf("Enter major: "); 

    scanf("%s", str2); 

 

    createStudent(str1, str2, &currStudent); 

     

    currStudent->next = ourClassroom; 

    ourClassroom = currStudent; 

  } 

 

  printf("\nHere is the list:\n"); 

  printf("%-15s %-15s\n", "NAME","MAJOR"); 

  printf("--------------- ---------------\n"); 

 

  currStudent = ourClassroom; 

  while(currStudent != NULL) { 

    printStudent(currStudent); 

    currStudent = currStudent->next; 

  } 

  freeList(ourClassroom); 
} 

 

// Allocates memory for a new student and initializes it with the given data 

void createStudent(char *name, char *major, StudentType **student) { 

  *student = (StudentType *) malloc(sizeof(StudentType)); 

  if (student == NULL) {  
    printf("Memory allocation error\n");  
    exit(0);  
  } 

  strcpy((*student)->name,  name); 

  strcpy((*student)->major, major); 

  (*student)->next = NULL; 

} 
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// Prints a single student's information 

void printStudent(StudentType *sPtr) { 

  printf("%-15s %-15s\n", sPtr->name, sPtr->major); 

} 

 

// Free all items in a Singly-Linked List  

void freeList(StudentType *listItem) { 

  StudentType *nextItem; 

   

  while(listItem != NULL) { 

    nextItem = listItem->next; 

    free(listItem); 

    listItem = nextItem; 

  } 

} 

 

 
Here is the output for our particular example shown earlier: 
 

Enter student names and their majors (use -1 when done):  

Enter name: Orson 

Enter major: Biology 

 

Enter name: Ash 

Enter major: CompSci 

 

Enter name: Steve 

Enter major: CompSci 

 

Enter name: Lily 

Enter major: Math 

 

Enter name: -1 

 

Here is the list: 

NAME            MAJOR           

--------------- --------------- 

Lily            Math            

Steve           CompSci         

Ash             CompSci         

Orson           Biology     

 

In this example, we are actually doing some very bad software engineering     .   Why ?   

You may have noticed that the structure mixed the data of the list item with the list mechanics.   
That is, we have name, major and next as all seemingly equal parts of the structure.   This is 
not proper encapsulation.   When dealing with lists of items, the mechanics of how the list is 
defined (i.e., next pointer … and previous pointers for doubly-linked lists … we’ll talk about that 
later) is not clearly identifiable.   Each item is hard-coded to point to a specific other item.  
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What if we wanted the same item to 
appear in multiple lists in order to share 
data ?   We cannot do it with this 
current structure. 
 
A solution to this poor design is to 
apply encapsulation.   We will keep the 
data-related stuff together by making a 
separate structure for the data itself.   
Then we can point to that data and 
even re-use it in other lists whenever 
we need to. So, we should define two 
separate structs as follows: 
 

typedef struct { 

  char   name[MAX_STR]; 

  char   major[MAX_STR]; 

} StudentType; 

 

typedef struct Node { 

  StudentType  *data; 

  struct Node  *next; 

} NodeType; 

 

 

Of course, there is a bit more work now.   We have to allocate memory for the student data 
and also allocate memory for the node itself.   Here is the updated code: 
 

Code from advancedStudentList.c 

 

#include <stdio.h> 

#include <stdlib.h> 

#include <string.h> 

 

#define MAX_STR  32 

 

 

typedef struct { 

  char   name[MAX_STR]; 

  char   major[MAX_STR]; 

} StudentType; 

 

 

typedef struct Node { 

  StudentType  *data; 

  struct Node  *next; 

} NodeType; 

 

 

void createStudent(char*, char*, StudentType**); 

void createNode(NodeType**, StudentType*); 

void printStudent(StudentType*); 

void freeList(NodeType*); 
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int main() { 

  NodeType    *ourClassroom = NULL; 

  NodeType    *currNode = NULL; 

  StudentType *currStudent; 

  char         str1[MAX_STR]; 

  char         str2[MAX_STR]; 

 

  printf("\nEnter student names and their majors (use -1 when done): "); 

  while(1) { 

    printf("\nEnter name: "); 

    scanf("%s", str1); 

    if (strcmp(str1, "-1") == 0) 

      break; 

    printf("Enter major: "); 

    scanf("%s", str2); 

 

    createStudent(str1, str2, &currStudent); 

    createNode(&currNode, currStudent); 

     

    currNode->next = ourClassroom; 

    ourClassroom = currNode; 

  } 

 

  printf("\nHere is the list:\n"); 

  printf("%-15s %-15s\n", "NAME", "MAJOR"); 

  printf("--------------- ---------------\n"); 

 

  currNode = ourClassroom; 

  while(currNode != NULL) { 

    printStudent(currNode->data); 

    currNode = currNode->next; 

  } 

  freeList(ourClassroom); 
} 

 

 

// Allocates memory for a new student and initializes it with the given data 

void createStudent(char *name, char *major, StudentType **student) { 

  *student = (StudentType *) malloc(sizeof(StudentType)); 

  if (student == NULL) {  
    printf("Memory allocation error\n");  
    exit(0);  
  } 

  strcpy((*student)->name,  name); 

  strcpy((*student)->major, major); 

} 

 

 

// Allocates memory for a new list Node 

void createNode(NodeType **node, StudentType *data) { 

  *node = (NodeType *) malloc(sizeof(NodeType)); 

  if (node == NULL) {  
    printf("Memory allocation error\n");  
    exit(0);  
  } 

  (*node)->data = data; 

  (*node)->next = NULL; 

} 
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// Prints a single student's information 

void printStudent(StudentType *sPtr) { 

  printf("%-15s %-15s\n", sPtr->name, sPtr->major); 

} 

 

// Free all items in a Singly-Linked List  

void freeList(NodeType *aNode) { 

  NodeType *nextItem; 

   

  while(aNode != NULL) { 

    nextItem = aNode->next; 

    free(aNode->data); 

    free(aNode); 

    aNode = nextItem; 

  } 

} 

 
The code produces the same output, but it adheres to proper software-engineering principles. 
 
Let us now work on the functions of inserting and deleting elements in a list, since these are 
very common operations that we need to perform on dynamic lists. 
 
When inserting ... there are four cases that we will need to consider: 
 

• inserting into an empty list 

• inserting at the front of a list (i.e., a new head) 

• inserting at the end of a list (i.e., a new tail) 

• inserting in the middle of the list 
 
Assume that we want to write our insert function so that it takes the head of the list, the data 
and the position in the list that we want to insert at (assuming 0 is the front of the list). 
 
Here is the case for an empty list insertion: 
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Here is the case for a new head insertion: 
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Here is the case for a new tail insertion: 
 

 
 
Here is what we need to do for the general case of insertion into the middle: 
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For the special cases of inserting at the front of the list or for an empty list, we just have to 
make sure that we update the head.  Here are the steps involved: 
 

• Iterate through p nodes to get to node Np at position p. 

• If we run out of nodes before getting to p, then p is invalid. 

• Allocate memory for new node N. 

• If p == 0, then make node N the new head. 

• Otherwise update the next pointer for node at position Np-1 to point to node N. 

• Set the next pointer for node N to point to node Np. 
 
Here is the code: 
 

void insertStudent(NodeType **head, StudentType *student, int pos){ 

  NodeType   *newNode; 

  NodeType   *currNode, *prevNode; 

  int         currPos; 

 

  // Iterate through the list up to the position to insert  

  // at, keeping track of the previous node in the list so that 

  // we can connect to it. 

  prevNode = NULL; 

  currNode = *head; 

  currPos  = 0; 

  while (currNode != NULL) { 

    if (currPos == pos) 

      break; 

    currPos++; 

    prevNode = currNode; 

    currNode = currNode->next; 

  } 

 

  // If the position was invalid, then quit 

  if (currPos != pos) { 

    printf("invalid position\n"); 

    free(student); // needed for our code, but not in general 

    return; 

  } 

 

  // Create the new node 

  newNode = (NodeType *) malloc(sizeof(NodeType)); 

  if (newNode == NULL) {  
    printf("Memory allocation error\n");  
    exit(0);  
  } 

  newNode->data = student; 

  newNode->next = NULL; 

   

  // If prevNode is NULL, then this is the first position in 

  // the list, or the list was NULL to begin with.  Otherwise 

  // we are inserting in the middle or at the end of the list. 

  if (prevNode == NULL) 

    *head = newNode; 

  else 

    prevNode->next = newNode; 

 

  newNode->next = currNode; // Connect new node to rest of the list 

} 
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What about the removal of nodes ?   When deleting ... there are 5 cases to consider: 
 

• removing from an empty list 

• removing the only element in the list 

• removing from the front of a list (i.e., we’ll need to update the head) 

• removing from the end of a list (i.e., there will be a new tail) 

• removing from the middle of the list 
 
Assume that we want to write our remove function so that it takes the head of the list and the 
data to be removed.   Of course, we could have written a function that removed the element at 
a given position, but for variety, we’ll remove based on finding a matching element. 
 
The case for 
removing from an 
empty list is simple 
… if the list is 
NULL, then do 
nothing.    
Also, if it is the only 
element in the list, 
then we just need to 
update the head of 
the list when done. 
 
If it is the head of an existing list with multiple elements … we just move the head over: 
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For removing the tail … there is only one pointer to update: 
 

 
 
 
Finally, here is what we need to do for the general case of removal from the middle: 
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Here are the steps involved: 
 

• Iterate through the nodes to get to node Ni whose data matches the item to remove. 

• If i == 0, then make Ni+1 the new head. 

• Otherwise update the next pointer for the node at position Ni-1 to point to node Ni+1. 

• Free the memory corresponding to the data of the removed node, if necessary. 

• Free the memory corresponding to the removed node itself. 
 
Here is the code: 
 

int deleteStudent(NodeType **head, char *nameToDelete) { 

  NodeType *currNode, *prevNode; 

 

  // Iterate through the list to find the student with the given 

  // name, keeping track of the previous node in the list so that 

  // we can disconnect it. 

  prevNode = NULL; 

  currNode = *head; 

  while (currNode != NULL) { 

    if (strcmp(currNode->data->name, nameToDelete) == 0) 

      break; 

    prevNode = currNode; 

    currNode = currNode->next; 

  } 

 

 

  // If the name was not found, then quit with a -1 

  if (currNode == NULL) 

    return -1; 

 

  // If the removed node was the head, then update the head, 

  // otherwise move the next pointer around this removed node. 

  if (prevNode == NULL) 

    *head = currNode->next; 

  else  

    prevNode->next = currNode->next; 

 

  // Make sure to free up the node and the data! 

  free(currNode->data); // does not necessarily need to be done here 

  free(currNode); 

 

  return 0; 

} 

 
Here is the completed code all together:  
 

Code from completeStudentList.c 

#include <stdio.h> 

#include <stdlib.h> 

#include <string.h> 

 

#define MAX_STR  32 
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typedef struct { 

  char   name[MAX_STR]; 

  char   major[MAX_STR]; 

} StudentType; 

 

typedef struct Node { 

  StudentType  *data; 

  struct Node  *next; 

} NodeType; 

 

void createStudent(char*, char*, StudentType**); 

void createNode(NodeType**, StudentType*); 

void printStudent(StudentType*); 

void freeList(NodeType*); 

void insertStudent(NodeType**, StudentType*, int); 

int  deleteStudent(NodeType**, char*); 

 

 

int main() { 

  NodeType    *ourClassroom = NULL; 

  NodeType    *currNode = NULL; 

  StudentType *currStudent; 

  char         str1[MAX_STR]; 

  char         str2[MAX_STR]; 

 

  printf("\nEnter student names and their majors (use -1 when done): "); 

  while(1) { 

    printf("\nEnter name: "); 

    scanf("%s", str1); 

    if (strcmp(str1, "-1") == 0) 

      break; 

    printf("Enter major: "); 

    scanf("%s", str2); 

 

    createStudent(str1, str2, &currStudent); 

    insertStudent(&ourClassroom, currStudent, 0); 

  } 

 

  printf("\nHere is the list:\n"); 

  printf("%-15s %-15s\n", "NAME", "MAJOR"); 

  printf("--------------- ---------------\n"); 

 

  currNode = ourClassroom; 

  while(currNode != NULL) { 

    printStudent(currNode->data); 

    currNode = currNode->next; 

  } 

 

  printf("Who would you like to delete? "); 

  scanf("%s", str1); 

  printf("Deleting %s ...\n", str1); 

  if (deleteStudent(&ourClassroom, str1) == -1) { 

    printf("Error deleting student %s ... continuing with program ...\n", str1); 

  } 

 

  printf("\nHere is the list:\n"); 

  printf("%-15s %-15s\n", "NAME", "MAJOR"); 

  printf("--------------- ---------------\n"); 
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  currNode = ourClassroom; 

  while(currNode != NULL) { 

    printStudent(currNode->data); 

    currNode = currNode->next; 

  } 

 

  freeList(ourClassroom); 

} 

 

 

// Allocates memory for a new student and initializes it with the given data 

void createStudent(char *name, char *major, StudentType **student) { 

  *student = (StudentType *) malloc(sizeof(StudentType)); 

  if (student == NULL) {  
    printf("Memory allocation error\n");  
    exit(0);  
  } 

  strcpy((*student)->name,  name); 

  strcpy((*student)->major, major); 

} 

 

 

// Allocates memory for a new list Node 

void createNode(NodeType **node, StudentType *data) { 

  *node = (NodeType *) malloc(sizeof(NodeType)); 

  if (node == NULL) {  
    printf("Memory allocation error\n");  
    exit(0);  
  } 

  (*node)->data = data; 

  (*node)->next = NULL; 

} 

 

// Prints a single student's information 

void printStudent(StudentType *sPtr) { 

  printf("%-15s %-15s\n", sPtr->name, sPtr->major); 

} 

 

// Free all items in a Singly-Linked List  

void freeList(NodeType *listItem) { 

  NodeType *nextItem; 

   

  while(listItem != NULL) { 

    nextItem = listItem->next; 

    free(listItem->data); 

    free(listItem); 

    listItem = nextItem; 

  }  

} 

 

// Insert the given student into the given list at the specified position. 

// If position is 0, then insert as new head of the list. 

void insertStudent(NodeType **head, StudentType *student, int pos){ 

  NodeType   *newNode; 

  NodeType   *currNode, *prevNode; 

  int         currPos; 

 

  // Iterate through the list up to the position to insert  

  // at, keeping track of the previous node in the list so that 

  // we can connect to it. 
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  prevNode = NULL; 

  currNode = *head; 

  currPos  = 0; 

  while (currNode != NULL) { 

    if (currPos == pos) 

      break; 

    currPos++; 

    prevNode = currNode; 

    currNode = currNode->next; 

  } 

 

  // If the position was invalid, then quit 

  if (currPos != pos) { 

    printf("invalid position\n"); 

    free(student); // needed for our code, but not in general 

    return; 

  } 

 

  // Create the new node 

  newNode = (NodeType *) malloc(sizeof(NodeType)); 

  if (newNode == NULL) {  
    printf("Memory allocation error\n");  
    exit(0);  
  } 

  newNode->data = student; 

  newNode->next = currNode; // Connect rest of the list to the new node 

 

  // If prevNode is NULL, then this is the first position in 

  // the list, or the list was NULL to begin with.  Otherwise 

  // we are inserting in the middle or at the end of the list. 

  if (prevNode == NULL) 

    *head = newNode; 

  else 

    prevNode->next = newNode; 

} 

 

 

// Delete the student with the given name from the given list. 

// If position is 0, then change the head of the list.  Return 

// -1 if the name was not found in the list, else return 0. 

int deleteStudent(NodeType **head, char *nameToDelete) { 

  NodeType *currNode, *prevNode; 

 

  // Iterate through the list to find the student with the given 

  // name, keeping track of the previous node in the list so that 

  // we can disconnect it. 

  prevNode = NULL; 

  currNode = *head; 

  while (currNode != NULL) { 

    if (strcmp(currNode->data->name, nameToDelete) == 0) 

      break; 

    prevNode = currNode; 

    currNode = currNode->next; 

  } 

 

  // If the name was not found, then quit with a -1 

  if (currNode == NULL) 

    return -1; 
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  // If the removed node was the head, then update the head, 

  // otherwise move the next pointer around this removed node. 

  if (prevNode == NULL) 

    *head = currNode->next; 

  else  

    prevNode->next = currNode->next; 

 

  // Make sure to free up the node and the data! 

  free(currNode->data); // does not necessarily need to be done here 

  free(currNode); 

 

  return 0; 

} 

 
You may have noticed that the functions that we wrote on a list always required us to pass in 
the head of the list.   Sometimes, however, it is more convenient and faster to pass in arbitrary 
elements from a list.   For example, what if you iterate through a list and find a particular item 
that you were looking for and then you pass that item to a function to inspect or modify it.   
Perhaps you may end up wanting to delete it from the list.    
 
Assume that we found Steve here from the middle of the ourClassroom list in our example: 
 

 
 
Assume that there is much more information than just the name and major … such as GPA, 
CGPA, etc…    If we are in a function that is examining Steve’s data and we decide that Steve 
should be removed from the class list … how do we do it ?   Since Steve is in the middle of 
some list somewhere … we will need to know who was before Steve in the list so that we could 
update that node’s next pointer to bypass Steve.   We could always start at the front of the list 
again and iterate through the nodes until we find Steve … keeping track of the previous item … 
just as we did in the deleteStudent function that we wrote.   But this is slow.    
 
A quicker way to do this would be to have the nodes in the list keep track of the previous node 
along with the next node.   Then we would know who comes before Steve in the list and could 
update that node’s next pointer quickly to bypass Steve.   This would make the deletion an 
O(1) operation instead of O(n).   To make this happen, we’d have to redefine the NodeType 
data structure to be a Doubly-Linked List.   That means, we’d need to add a link (i.e., a 
pointer) to the previous node as follows: 
 

typedef struct Node { 

  StudentType  *data; 

  struct Node  *next; 

  struct Node  *prev; 

} NodeType; 
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So … each item in the list will know the item before it and the item after it: 

 
 
We would need to update our insertStudent() function to update both next and prev pointers:  
 

 
 
We just need to set the prev pointers for the newNode and currNode: 
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void insertStudent(NodeType **head, StudentType *student, int pos){ 

  NodeType   *newNode; 

  NodeType   *currNode, *prevNode; 

  int         currPos; 

 

  // Iterate through the list up to the position to insert at 

  prevNode = NULL; 

  currNode = *head; 

  currPos  = 0; 

 

  while (currNode != NULL) { 

    if (currPos == pos) 

      break; 

    currPos++; 

    prevNode = currNode; 

    currNode = currNode->next; 

  } 

 

  // If the position was invalid, then quit 

  if (currPos != pos) { 

    printf("invalid position\n"); 

    free(student);   // needed for our example, but not in general 

    return; 

  } 

 

  // Create the new node 

  newNode = (NodeType *) malloc(sizeof(NodeType)); 

  if (newNode == NULL) {  
    printf("Memory allocation error\n");  
    exit(0);  
  } 

  newNode->data = student; 

  newNode->next = currNode; // Connect rest of the list to the new node 

  newNode->prev = prevNode; 

 

  // If prevNode is NULL, then this is the first position in 

     // the list, or the list was NULL to begin with.  Otherwise 

  // we are inserting in the middle or at the end of the list. 

  if (prevNode == NULL) 

    *head = newNode; 

  else  

    prevNode->next = newNode; 

 

  if (currNode != NULL) 

    currNode->prev = newNode; 

} 

 

We would also need to update our deleteStudent() function, making sure that the next and 
prev pointers are set properly: 
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Here is the code: 
 

int deleteStudent(NodeType **head, char *nameToDelete) { 

  NodeType *currNode; 

 

  // Iterate through the list to find the student with the given name 

  currNode = *head; 

  while (currNode != NULL) { 

    if (strcmp(currNode->data->name, nameToDelete) == 0) 

      break; 

    currNode = currNode->next; 

  } 

  // If the name was not found, then quit with a -1 

  if (currNode == NULL) 

    return -1; 

 

  // If the removed node was the head, then update the head, 

  // otherwise move the next pointer around this removed node. 

  if (currNode->prev == NULL) 

    *head = currNode->next; 

  else 

    currNode->prev->next = currNode->next; 

   

  if (currNode->next != NULL) 

    currNode->next->prev = currNode->prev; 

 

  // Make sure to free up the node and the data! 

  free(currNode->data); // needed for our example 

  free(currNode); 

  return 0; 

} 
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Linked-lists have an advantage over static arrays in that they can grow and shrink as needed 
to accommodate the current amount of data.   In that way, they are space-efficient with respect 
to the data being stored.    
 
However, we must keep in mind that there is a space overhead involved since we need to 
store the next and previous pointers for each item in the doubly-linked list.   This is 
an overhead of 16-bytes per item for a 64-bit system.   If we are trying to store 
1MB of data, then this can be a 16MB overhead!! Singly-linked lists would have 
half the overhead (i.e., 8MB).  Nevertheless, this is wasteful. 
 
Another option that can be used for the efficient storage of data that does not require this large 
pointer overhead is that of using dynamically-allocated arrays.   As a bit of review, in order to 
make this clear, consider a statically-allocated array of StudentType data as follows: 
 

#define MAX_STR         32 

#define MAX_CAPACITY   375 

 

typedef struct { 

  char   name[MAX_STR]; 

  char   major[MAX_STR]; 

} StudentType; 

 

StudentType  myClassroom[MAX_CAPACITY]; 

 

Here we would be creating a fixed (i.e., static) array that could store exactly 375 Students, 
each requiring 64 bytes of storage to store their name and major.   That means, we would be 
taking up 375 * (64) = 24,000 bytes upon initialization.   This memory would be allocated 
permanently for the program regardless of whether or not we have less (or more) students.  It 
is clearly inefficient.   
 
Instead, we could create myClassroom as a dynamically-allocated array as follows: 
 

StudentType  *myClassroom[MAX_CAPACITY]; 

 
How much space does this require ?  Well … it still stores 375 pointers … but each pointer is 
just 8 bytes (assuming a 64-bit system) … so it takes up just 3,000 bytes.  This is much 
smaller upon initialization.  But … these are just pointers.  We’d still need to allocate space for 
each student that we added.  With the array of pointers, there is an 8-byte overhead in addition 
to allocating the space to store the name and major for a student.  Therefore, a full array of 
375 students would require 375 * (64 + 8) = 27,000 bytes.   So, it is takes up a 
little bit more storage.   However, if we only needed to store 100 students, the 
first strategy takes up 24,000 bytes (since it is static … fixed-size upon compiling) 
while the pointer version would only take up 7,200 bytes.   In conclusion, it is 
more efficient to use the pointer version as long as there are less than 334 
students (calculated as 24,000/27,000 * 375). 
 
In the case where we actually don’t have any idea as to what capacity to use, we can make 
that flexible as well.    
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Consider the following typedef: 
 

typedef struct { 

  int           size; 

  StudentType **items; 

} ArrayType; 

 
Now we can create the myClassroom array using a completely dynamically-allocated array as 
follows: 
 

ArrayType  myClassroom; 

 
Now this variable only takes up 12 bytes (assuming 64-bit system) upon initialization.   It keeps 
track of its own number of elements using the size attribute.  The items are then dynamically-
allocated.    If we want 100 students, we just do this: 
 

myClassroom.size = 100; 

myClassroom.items = (StudentType **)malloc(100*sizeof(StudentType *)); 

 

This makes the array able to hold 100 pointers to students, although no students have been 
created as of yet.   We would need to malloc() space for each student that we added and 
store the resulting pointer in the myClassroom.items array.    
 
This is the most “size-flexible” way of allocating arrays if you are worried about storage space.   
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 3.6 Function Pointers 

 
You should now understand how to create and use pointers to variables.   We will now look at 
pointers to functions. 
 

A function pointer is a variable that stores a pointer to a function’s code in memory. 

 
We can call a function by using a function pointer. These function pointers can be passed in as 
parameters … just like any other variable.   
 
Why should we use them?   They can be used a little bit like a selection 
dial to select a function/mode.  They allow us substitute whatever function 
we want to call while our program is running.   So, rather than requiring a 
set of IF statements to decide which function to call in a certain 
circumstance, we just pass in the function as needed. 
 
In JAVA, we “sort of” used function pointers when we plugged in our 
event handlers.   That allowed us to plug in our own function that was to be called whenever a 
button was clicked, for example, on the user interface. 
 
Here is an example of how to declare a function pointer variable: 
 

void (*fPtr)(int, float); 

 
Here, fPtr is the variable name.  It is being declared as a pointer to a function that takes two 
parameters (i.e., an int and a float) and returns void. 
 
Consider a function that takes two such parameters: 
 

void add(int x, float y) { 

  printf("%f\n", x + y); 

} 

 
We can “plug” this function into the fPtr variable as follows: 
 

fPtr = add;  or          fPtr = &add; 

 
Notice that the & character is optional.    
 
Once we have plugged the function in, we can then call the add() function either directly, or 
through the function pointer.   
 
All three lines below will call the add() function resulting in the output of 7.000000: 

 
 add(2, 5.0);  // call the function directly 

 fPtr(2, 5.0);  // call the function via the pointer 

(*fPtr)(2, 5.0); // call function via de-referenced pointer 
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The benefit of the pointer is not seen in this example.   But consider now using different 
functions for different operations.   Here is code that plugs 3 different functions into the pointer: 
 

Code from functionPointer.c 

 

#include <stdio.h> 

#include <stdlib.h> 

 

int add(int x, int y) { 

  return (x + y); 

} 

int subtract(int x, int y) { 

  return (x - y); 

} 

int multiply(int x, int y) { 

  return (x * y); 

} 

 

int main() { 

  int (*fPtr)(int, int); 

     

  fPtr = add; 

  printf("%d\n", fPtr(2, 5));  // Call the add function  

   

  fPtr = subtract;     

  printf("%d\n", fPtr(2, 5));  // Call the subtract function 

 

  fPtr = multiply;     

  printf("%d\n", fPtr(2, 5));  // Call the multiply function 

} 

 
Notice how the function is called the same way all three times.  The result is 7, -3 and 10. 
 
The following example shows how flexible this pointer can be.  It creates an array of 4 function 
pointers and uses a FOR loop to iterate through the 4 functions: 
 

Code from functionPointerArray.c 

#include <stdio.h> 

#include <stdlib.h> 

 

int add(int x, int y) { return (x + y); } 

int subtract(int x, int y) { return (x - y); } 

int multiply(int x, int y) { return (x * y); } 

int divide(int x, int y) { return (x / y); } 

 

int main() { 

  int (*fPtr[4])(int, int) = {add, subtract, multiply, divide}; 

 

  for (int i=0; i<4; i++)  

    printf("%d\n", fPtr[i](2,5)); 

} 

 
This code produces the numbers 7, -3, 10, 0. 
Hopefully, you are beginning to see how flexible our code can become with function pointers. 
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Here is one more example showing how we can plug a function in according to our needs.  It 
processes an array of ints … first to print out the odd numbers, then to print out the even: 
 

Code from processArray.c The output: 

#include <stdio.h> 

#include <stdlib.h> 

 

#define ARRAY_SIZE 10 

 

int processArray(int *arr, void (*printFunction)(int *)) { 

  for (int i=0; i<ARRAY_SIZE; i++, arr++) 

    printFunction(arr); 

} 

 

void printOdd(int *num) { 

  if (*num %2 == 1) printf("%d\n",*num); 

} 

 

void printEven(int *num) { 

  if (*num %2 == 0) printf("%d\n",*num); 

} 

 

 

int main() { 

  int arr[10] = {11, 14, 22, 34, 41, 53, 61, 76, 87, 98}; 

 

  printf("Odd:\n"); 

  processArray(arr, printOdd); 

  printf("\nEven:\n"); 

  processArray(arr, printEven); 

} 

 

 

 

 

 

 

 

 
Odd: 

11 

41 

53 

61 

87 

 

Even: 

14 

22 

34 

76 

98 

 
Here is a variation of the code that uses the individual functions to decide if the number should 
be selected for printing by returning 1 or 0 as a char (since booleans are not available in C).  
 

Code from processArray2.c The output: 

#include <stdio.h> 

#include <stdlib.h> 

 

int processArray(int *arr, char (*shouldPrint)(int *)) { 

  for (int i=0; i<10; i++, arr++) 

    if (shouldPrint(arr)) 

       printf("%d\n", *arr); 

} 

 

char odd(int *num) { 

  return (*num%2 == 1);  

} 

char even(int *num) {  

  return (*num%2 == 0);  

} 

char all(int *num) {  

  return 1;  

} 

 

Odd: 

11 

41 

53 

61 

87 

 

Even: 

14 

22 

34 

76 

98 

 

All: 

11 

14 

22 

34 
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int main() { 

  int arr[10] = {11, 14, 22, 34, 41, 53, 61, 76, 87, 98}; 

 

  printf("Odd:\n"); 

  processArray(arr, odd); 

  printf("\nEven:\n"); 

  processArray(arr, even); 

  printf("\nAll:\n"); 

  processArray(arr, all); 

} 

41 

53 

61 

76 

87 

98 

 
As a final example, we will consider the quick-sort sorting algorithm.  
This algorithm sorts by comparing two values at a time through use of 
a comparator function (just as we used in JAVA).   We will want to be 
able to plug in different comparator functions in order to sort in 
different ways, such as increasing or decreasing order.  
 
C provides a built-in qsort() function that implements the quicksort 
algorithm.   It operates on arrays and can sort any data type.  It is 
available in <stdlib.h>.   The function is defined as follows: 
 

void qsort(void *buf, size_t numItems, size_t itemSize,  

 int(*compare)(const void *, const void *));  

Here, buf is the address of the array to be sorted, numItems is the number of items to be 
sorted and itemsSize is the size (in bytes) of each item.   compare is a comparison function 
that accepts two array items as parameters and returns an integer indicating the relationship 
between the items.    
 
The order by which things are sorted is based on the comparison function.  Consider a simple 
comparison function that takes two integers n1 and n2.   The function should return a negative 
number (e.g., -1) if n1 is supposed to come before n2 in the sort order.  It should return a 
positive non-zero number (e.g., 1) if n1 is supposed to come after n2 in the sort order.   It 
should return 0 if n1 equals n2.  Here is an example of such a function as we might write it in 
JAVA: 
 

int compare(int n1, int n2) { 

  if (n1 < n2) return -1; 

  if (n1 > n2) return 1; 

  return 0; 

} 

 
In C, however, the parameters must be declared as const void *, not as int.   So, we’ll need to 
do some typecasting and dereferencing: 

 

int compare(const void *p1, const void *p2) { 

  int n1 = *(int *)p1; 

  int n2 = *(int *)p2; 

 

  if (n1 < n2) return -1; 

  if (n1 > n2) return 1; 

  return 0; 

} 
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Here is an example showing how to plug such a function into the qsort() function to sort a list 
of 10 randomly-created integers.   We plug in three functions … one to sort in increasing order, 
one to sort in decreasing order and one to sort in order of the number of digits in each number: 
 

Code from qsort.c The output: 

#include <stdio.h> 

#include <stdlib.h> 

#include <string.h> 

 

 

#define ARRAY_SIZE 10 

 

 

int compareIncreasing(const void *p1, const void *p2) { 

  int n1 = *(int *)p1; 

  int n2 = *(int *)p2; 

   

  if (n1 < n2) return -1; 

  if (n1 > n2) return 1; 

  return 0; 

} 

 

 

 

int compareDecreasing(const void *p1, const void *p2) { 

  int n1 = *(int *)p1; 

  int n2 = *(int *)p2; 

   

  if (n1 < n2) return 1; 

  if (n1 > n2) return -1; 

  return 0; 

} 

 

 

int compareDigits(const void *p1, const void *p2) { 

  int n1 = *(int *)p1; 

  int n2 = *(int *)p2; 

  char s1[10], s2[10]; 

 

  sprintf(s1, "%d", n1); 

  sprintf(s2, "%d", n2); 

   

  if (strlen(s1) < strlen(s2)) return -1; 

  if (strlen(s1) > strlen(s2)) return 1; 

  return 0; 

} 

 

 

int main() { 

  int arr[ARRAY_SIZE]; 

  

  for(int i=0; i<ARRAY_SIZE; i++) 

    arr[i] = rand()%20 * (rand()%20); 

 

  printf("Before qsort() \n"); 

  for(int i=0; i<ARRAY_SIZE; i++) 

    printf("%d\n", arr[i]); 

 

Original Order 

18 

255 

195 

72 

9 

14 

190 

18 

0 

192 

 

Increasing Order 

0 

9 

14 

18 

18 

72 

190 

192 

195 

255 

 

Decreasing Order 

255 

195 

192 

190 

72 

18 

18 

14 

9 

0 

 

Digit Count 

Order 

9 

0 

72 

18 

18 

14 

255 

195 

192 

190 
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  qsort(arr, ARRAY_SIZE, sizeof(int), compareIncreasing); 

 

  printf("\nAfter qsort() in Increasing Order\n"); 

  for(int i=0; i<ARRAY_SIZE; i++) 

    printf("%d\n", arr[i]); 

 

 

  qsort(arr, ARRAY_SIZE, sizeof(int), compareDecreasing); 

 

  printf("\nAfter qsort() in Decreasing Order\n"); 

  for(int i=0; i<ARRAY_SIZE; i++) 

    printf("%d\n", arr[i]); 

 

  qsort(arr, ARRAY_SIZE, sizeof(int), compareDigits); 

 

  printf("\nAfter qsort() in Digit Count Order\n"); 

  for(int i=0; i<ARRAY_SIZE; i++) 

    printf("%d\n", arr[i]); 

 

} 

 


