

Chapter 5

Concurrent Computing

What is in This Chapter ?

This chapter will introduce you to the basics of concurrent computing. We first discuss some
types of concurrent systems and a few issues/concerns that we must be aware of when
having more than one task being performed at the same time. We then discuss process
management at the unix shell level and then at the programming level, with functions like
fork(), exec(), wait() and system() calls. The next section discusses inter-process
communication (IPC) and the use of signals to inform other processes when tasks are
complete. The use of TCP sockets and Datagram sockets are then discussed as they
pertain to client/server models. Finally, threads are discussed, along with the need to use
semaphores & mutexes to facilitate proper resource-sharing.

COMP2401 - Chapter 5 – Concurrent Computing Fall 2020

 - 185 -

 5.1 Concurrent Systems

When we start out to learn how to program, we find it easiest to focus on one task at a time.
That is, we imagine our program as being run by a single computer that simply follows the
instructions that we give it, based on our source code. It is challenging enough to learn how
to program well with a single program.

However, the real world is not so simple. In reality, many things are happening all around us
at the same time. In English, the word concurrent means “occurring or operating at the same
time”. In computer science, the term concurrency implies that multiple programs (or
processes) are working together at the same time … hopefully to accomplish some task faster.
Here is a definition extracted from wikipedia:

Concurrent computing is a form of computing in which several computations are
executed during overlapping time periods (i.e., concurrently) instead of sequentially
(i.e., one completing before the next starts).

A large system makes use of concurrent computing when it is (a) multithreaded, (b) has
multiple processes or (c) is distributed. Here is a diagram showing all three. A host computer
may run multiple processes (i.e., programs) each working together to perform some task in the
system. A single process may have multiple threads running at the same time … all working
together. Finally, processes running on different machines on a network may be interacting
together, forming a distributed system. Usually, the user interacts with just one process.

COMP2401 - Chapter 5 – Concurrent Computing Fall 2020

 - 186 -

We will examine each of these three forms of concurrency.

Distributed Systems

A distributed system is typically a large program that
executes over multiple physical host machines. Usually,
these machines are in different locations, cities or even
countries. The interaction is over a network. This network
may be:

• Intranet – a network internal to an organization

• Internet – a public network, external to all organizations

One interesting aspect about distributed computing is that each host machine has different
resources. That is, they may have different CPUs, different processing capabilities, different
file systems, etc..

It sounds a bit complicated (and slower?) to have different types of computers interacting over
a network. Why would anyone want to do distributed computing ? Here are some reasons:

• Speed: A single host may have insufficient processing power to complete a task in a
reasonable time. Having other hosts join in on the work … it will hasten task
completion, as long as the amount of network communication is kept low.

• Necessity: Often clients need to connect to servers which are in different physical
locations. Completing the task-at-hand may require connection to various servers to
obtain database information, to record transactions, etc..

• Convenience: Users may need to connect to a host that is not in the same location.

Multi-Process Systems

A multi-process system is a system where multiple
processes (i.e., executables) are running at the same time
and communicating with one another to accomplish a task.
The executables need not be unique. There may even be
multiple copies of the same program running.

Each executable has its own independent control flow and
virtual memory. That is, it operates on its own, although it may rely on data and instructions
from other processes in order to complete its individual task. The operating system contains
mechanisms that allow Inter-Process Communication (IPC) to allow processes to
communicate, usually to have access to shared data.

As with distributed systems, it may seem like we are complicating things by having multiple
processes communicate through the operating system. Why would anyone want to implement
a multi-process system?

COMP2401 - Chapter 5 – Concurrent Computing Fall 2020

 - 187 -

Here are a couple of reasons:

• Simplifying: Often there are many different tasks to perform which may be
independent from one another. It can be easier to schedule a different process for
each task.

• Resource Management: Certain tasks can be “assigned to” a particular resource (e.g.,
client to communicate with user, server to handle requests, process to regulate access
to database), reducing the need for multiple processes to access the same resources.
As a result, the system can reduce bottlenecks and operate more efficiently.

Multi-Threaded Systems

A multi-threaded system is a single process with multiple
control flows. That is … multiple tasks are performed by the
same CPU but they take turns by sharing the CPU’s
processing time. The threads share the same virtual
memory, address space and resources as they operate in
the same process. There is a need at times to synchronize
different threads in order to avoid race conditions and
deadlocks.

The idea of a multi-threaded system is similar to a multi-process system in that they are often
used when different tasks are to be performed. In the multi-threaded system, however, the
tasks are usually dependent on each other. The main advantage of using multiple threads is:

• Simplicity: It is conceptually simpler to think of two tasks being done separately at the
same time, even though they are sharing the CPU … taking turns to get their task done.

Some situations where multi-threading is often beneficial is:

• Handling user input. One thread blocks and waits for incoming requests, while
another thread processes requests that have already come in.

• Quick refresh. Sometimes it is nice to have a thread responsible for refreshing the
user interface (e.g., graphics/animation) while the program continues processing.

There are a few (potentially serious) issues that may arise when doing concurrency. As a
result, it can be more difficult to write software for concurrent systems. It can also be difficult
to debug concurrent systems.

Here are some of these issues:

COMP2401 - Chapter 5 – Concurrent Computing Fall 2020

 - 188 -

1. Shared Resources. Multiple process (or threads) will at
times need the same resource. There needs to be some
coordination rules so that this sharing takes place decently
and respectfully. Typically, shared resources are files and
variables.

• When accessing a file, it can be “locked” for use by one process/thread so that
others cannot access it while it is in use. Of course, a process/thread that “hogs” a
file resource can be slowing down the system if not careful.

• When accessing a shared variable, a semaphore or mutex can be used:

A mutex (mutual exclusion object) is a program object that is created so that

multiple program threads can take turns sharing the same resource, such as
access to a file. Only the thread that locked or acquired the mutex can unlock it.

A semaphore is a variable used to control access to a common resource by

multiple processes. It is a generalization of a mutex. A thread waiting on a
semaphore can be signaled by a different thread so that it can have access.

2. Deadlocks. This is a condition that can occur which is

similar to the notion of a traffic jam. It is a condition in which
multiple threads/processes are blocked … all waiting for a
condition that will never occur. It is always due to improper
handling of semaphores or mutexes. Careful system design
will reduce the likelihood of deadlocks occurring, although
sometimes deadlocks occur due to unforeseen situations
inherent to the problem at hand.

3. Race Conditions. This is a timing problem in which the
correctness of a program depends on one thread reaching a
point in control flow before another thread. That is, some
things have gotten out of order. You can imagine the
scenario, for example, of trying to process data before it has
been completely entered. Sometimes we have to handle such
potential problems because the order that things are
processed in is never guaranteed.

COMP2401 - Chapter 5 – Concurrent Computing Fall 2020

 - 189 -

 5.2 Process Management

Recall that a process is a running executable (e.g., a running program). Processes are
managed by the operating system.

Process Management involves allocating resources to processes, enabling processes to

share and exchange information, protecting the resources of each process from other
processes and enabling synchronization among processes.

The operating system is primarily involved with managing the processes, but as software
system developers, we need to understand a little about how it is done so that we can make
use of multiple processes when we write our programs. In particular, we need to know how to
start (i.e., spawn) a process, how to stop and pause it, and how to modify the behaviors of a
process using signals.

There are two ways that we can manage processes:

• Using shell commands – manually as a user of a system

• Using system calls – automatically through other programs/processes

How are processes managed ? The operating system maintains certain
information about each process that has been created. Each process has the
following:

• Process Identifier (PID) – unique to each process

• Parent Process Identifier (PPID) – the process that spawned it

• Address Space and Virtual Memory – code segment, data segment, stack, heap

• Control Flow(s) – its own order that commands are evaluated in

Let’s look first at how to manage a process. The simplest way is from a shell. We can start a
process in the foreground or in the background. You have already done this many times.
Each time you run your code, for example, you are starting a process. Most of the time, we
run it in the foreground. However, you can use the & sign to run a process in the background.
Recall that the following runs gedit in the foreground (i.e., we cannot use the shell until gedit
completes):

student@COMPBase:~$ gedit helloWorld.c

student@COMPBase:~$

And the & allows us to run gedit in the background (i.e., we can continue to use the shell):

student@COMPBase:~$ gedit helloWorld.c&

student@COMPBase:~$

COMP2401 - Chapter 5 – Concurrent Computing Fall 2020

 - 190 -

Consider the following program that runs “forever”:

Code from shellProcess.c

#include <stdio.h>

#include <unistd.h>

int main() {
 int i = 1;

 while (1) {

 printf("The ants go marching %d by %d, hurrah, hurrah.\n", i, i);

 ++i;

 sleep(1);

 }

}

The code displays a message and counter repeatedly, with a 1 second pause (caused by the
sleep(1) command which is defined in the unistd.h header) in between the messages.

We can run this program in the background in our shell window by using the & symbol:

student@COMPBase:~$ gcc -o shellProcess shellProcess.c

student@COMPBase:~$./shellProcess &

[2] 2513

student@COMPBase:~$ The ants go marching 1 by 1, hurrah, hurrah.

The ants go marching 1 by 1, hurrah, hurrah.

The ants go marching 2 by 2, hurrah, hurrah.

The ants go marching 3 by 3, hurrah, hurrah.

The ants go marching 4 by 4, hurrah, hurrah.

The ants go marching 5 by 5, hurrah, hurrah.

One thing to notice is that when we run the program, we immediately get the PID which is
2513 this time it runs. This number will allow us to stop the process at a later time.

You will also notice that the process continually displays information to the system shell
window that we are using. Because of this, it is a little hard to be able to continue to use the
shell window for other commands as it keeps printing stuff out and scrolling.

At any time, we can use the ps command to get a list of running processes. Assume that we
did a ps while the shellProcess command was still running. Here is what we might see:

student@COMPBase:~$ ps

 PID TTY TIME CMD

 2366 pts/17 00:00:00 bash

 2495 pts/17 00:00:00 gedit

 2513 pts/17 00:00:00 shellProcess

 2527 pts/17 00:00:00 ps

student@COMPBase:~$

COMP2401 - Chapter 5 – Concurrent Computing Fall 2020

 - 191 -

This list above shows the current running processes from this terminal window. Notice that
the bash shell is running, which allows us to enter commands. Also, the gedit editor is
opened and running (it happens to have the shellProcess.c file opened). Notice as well that
the shellProcess program is running. Also, the ps command that we ran to get this list … it
itself is a running process. If we want more detail on the running process, we can use ps -l as
follows:

student@COMPBase:~$ ps -l

F S UID PID PPID C PRI NI ADDR SZ WCHAN TTY TIME CMD

0 S 1002 2366 2359 0 80 0 - 2034 wait pts/17 00:00:00 bash

0 S 1002 2495 2366 0 80 0 - 30417 poll_s pts/17 00:00:00 gedit

0 S 1002 2513 2366 0 80 0 - 549 hrtime pts/17 00:00:00 shellProcess

0 R 1002 2543 2366 0 80 0 - 2174 - pts/17 00:00:00 ps

student@COMPBase:~$

You can see some extra information here such as the size (SZ) of the process running (in
bytes) as well as the PPID that spawned the process and the user ID (UID).

The command ps aux command gives different information and lists more processes. Here is
what you may see (although I removed much of the output to reduce space):

student@COMPBase:~$ ps aux

USER PID %CPU %MEM VSZ RSS TTY STAT START TIME COMMAND

root 1 0.1 0.2 24064 4836 ? Ss 14:31 0:01 /sbin/init spla

root 2 0.0 0.0 0 0 ? S 14:31 0:00 [kthreadd]

root 3 0.0 0.0 0 0 ? S 14:31 0:00 [ksoftirqd/0]

...

syslog 453 0.0 0.1 30724 3004 ? Ssl 14:32 0:00 /usr/sbin/rsysl

root 462 0.0 0.1 4136 3056 ? Ss 14:32 0:00 /lib/systemd/sy

avahi 474 0.0 0.1 5916 3116 ? Ss 14:32 0:00 avahi-daemon: r

message+ 482 0.0 0.2 6856 4488 ? Ss 14:32 0:00 /usr/bin/dbus-d

avahi 486 0.0 0.0 5916 288 ? S 14:32 0:00 avahi-daemon: c

lp 498 0.0 0.2 11228 5196 ? S 14:32 0:00 /usr/lib/cups/n

...

student 1315 0.0 0.1 6368 4076 ? Ss 14:33 0:00 /lib/systemd/sy

student 2411 0.0 0.2 8124 4476 pts/18 Ss+ 14:34 0:00 bash

student 2495 0.0 2.0 121668 41700 pts/17 Sl 14:36 0:00 gedit shellProc

student 2500 0.0 0.2 12736 5120 ? S 14:36 0:00 /usr/lib/i386-l

student 2513 0.0 0.0 2196 560 pts/17 S 14:37 0:00 ./shellProcess

root 2549 0.0 0.0 0 0 ? S 14:47 0:00 [kworker/0:0]

student 2562 0.0 0.1 8972 3224 pts/17 R+ 14:52 0:00 ps aux

student@COMPBase:~$

There are many parameters to the ps command, but they will not be discussed here.
To STOP a process, you can use the kill command. You just need to know the PID:

student@COMPBase:~$ kill 2513

student@COMPBase:~$ ps

 PID TTY TIME CMD

 2366 pts/17 00:00:00 bash

 2495 pts/17 00:00:00 gedit

 2586 pts/17 00:00:00 ps

[2]+ Terminated ./shellProcess

student@COMPBase:~$

COMP2401 - Chapter 5 – Concurrent Computing Fall 2020

 - 192 -

After you kill a process, you will get a notification in the terminal window
when you enter the next shell command. Above, you can see that once
you use ps again, the process has been eliminated from the list of
running processes. The kill -stop command is also used to temporarily
stop/pause/suspend a process.

student@COMPBase:~$ kill -stop 2513

student@COMPBase:~$ ps -l

F S UID PID PPID C PRI NI ADDR SZ WCHAN TTY TIME CMD

0 S 1002 2366 2359 0 80 0 - 2034 wait pts/17 00:00:00 bash

0 S 1002 2495 2366 0 80 0 - 30417 poll_s pts/17 00:00:00 gedit

0 T 1002 2513 2366 0 80 0 - 549 signal pts/17 00:00:00 shellProcess

0 R 1002 2543 2366 0 80 0 - 2174 - pts/17 00:00:00 ps

student@COMPBase:~$

To continue the process again, we use kill -cont with the PID:

student@COMPBase:~$ kill -cont 2513

student@COMPBase:~$ ps -l

F S UID PID PPID C PRI NI ADDR SZ WCHAN TTY TIME CMD

0 S 1002 2366 2359 0 80 0 - 2034 wait pts/17 00:00:00 bash

0 S 1002 2495 2366 0 80 0 - 30417 poll_s pts/17 00:00:00 gedit

0 S 1002 2513 2366 0 80 0 - 549 hrtime pts/17 00:00:00 shellProcess

0 R 1002 2543 2366 0 80 0 - 2174 - pts/17 00:00:00 ps

student@COMPBase:~$

You can also use other shell commands to manage processes. For example, the jobs
command displays a list of all running jobs. While a process is any running program with its
own address space, a job is any program you started that is not a daemon (i.e., not a
background service-handling process).

student@COMPBase:~$ jobs

[1] Running gedit shellProcess.c &

[2]+ Stopped ./shellProcess

[3]- Done ./wait

student@COMPBase:~$

Notice that the jobs command allows you to see what is running, what is currently stopped (or
paused) and also what processes have just completed (i.e. done).

At any time, you can suspend the current running foreground process by pressing CTRL-Z.
You may also kill the current running process by pressing CTRL-C.

You can use the fg command to resume the last suspended job, or you can use fg i to

resume the job with id i. So, for example, in the above example, we could resume the

shellProcess program by typing fg 2 into the shell. It will run in the foreground. We could

resume it to run it in the background if we use bg 2 instead.

At this point, you should understand how to manage processes manually in the command shell
window in Linux.

COMP2401 - Chapter 5 – Concurrent Computing Fall 2020

 - 193 -

But in addition to managing processes from the command line, we can also do so within our C
programs. There are 4 system calls that are related to process management:

• fork – spawns a clone of the current process

• exec – replaces executing code of current process with another program

• wait – pauses execution of a parent until a child process terminates

• system – runs a specified command as a shell command

We will now examine each of these one at a time…

FORK

Consider first the fork() function in C. It creates a new process with the current process being
the parent of the new process.

Consider this example:

Code from fork.c

#include <stdio.h>

#include <unistd.h>

int main() {
 int childPID;

 printf("Forking...\n");

 childPID = fork();

 if (childPID == 0) {

 printf("fork() returned 0 ... so this is the spawned/child process\n");

 for (int i=1; i<=24; i++) {

 printf("The ants go marching *%2d* by *%2d*, hurrah, hurrah.\n", i, i);

 usleep(500000);

 }

 }

 else {

 printf("fork() returned %d ... so this is the parent process\n", childPID);

 for (int i=1; i<=24; i++) {

 printf("The ants go marching %2d by %2d , hurrah, hurrah.\n", i, i);

 usleep(1000000);

 }

 }

}

Notice that the fork() function returns a PID. It is interesting that the original (i.e., parent) and
the spawned (i.e., child) processes both continue with the same code. Hence, there are two
copies of the same code running. But after the fork() call, the code branches based on the
return value of fork(). For the child (i.e., spawned) process, the return value is 0. For the
parent, the returned value is the new process’ PID (unless there was an error, then -1 is
returned). The IF statement checks this return value and allows one chunk of code to be
executed by the child and the other by the parent.

At this point, both processes
continue simultaneously
running two copies of the
remaining code.

COMP2401 - Chapter 5 – Concurrent Computing Fall 2020

 - 194 -

Here is an example of the output you would see. The usleep() function sleeps for the
specified number of microseconds.

Forking...

fork() returned 3002 ... so this is the parent process

The ants go marching 1 by 1 , hurrah, hurrah.

fork() returned 0 ... so this is the spawned process (i.e., child)

The ants go marching * 1* by * 1*, hurrah, hurrah.

The ants go marching * 2* by * 2*, hurrah, hurrah.

The ants go marching 2 by 2 , hurrah, hurrah.

The ants go marching * 3* by * 3*, hurrah, hurrah.

The ants go marching * 4* by * 4*, hurrah, hurrah.

The ants go marching 3 by 3 , hurrah, hurrah.

The ants go marching * 5* by * 5*, hurrah, hurrah.

The ants go marching * 6* by * 6*, hurrah, hurrah.

The ants go marching 4 by 4 , hurrah, hurrah.

The ants go marching * 7* by * 7*, hurrah, hurrah.

The ants go marching * 8* by * 8*, hurrah, hurrah.

The ants go marching 5 by 5 , hurrah, hurrah.

The ants go marching * 9* by * 9*, hurrah, hurrah.

The ants go marching *10* by *10*, hurrah, hurrah.

The ants go marching 6 by 6 , hurrah, hurrah.

The ants go marching *11* by *11*, hurrah, hurrah.

The ants go marching *12* by *12*, hurrah, hurrah.

The ants go marching 7 by 7 , hurrah, hurrah.

The ants go marching *13* by *13*, hurrah, hurrah.

The ants go marching *14* by *14*, hurrah, hurrah.

The ants go marching 8 by 8 , hurrah, hurrah.

The ants go marching *15* by *15*, hurrah, hurrah.

The ants go marching *16* by *16*, hurrah, hurrah.

The ants go marching 9 by 9 , hurrah, hurrah.

The ants go marching *17* by *17*, hurrah, hurrah.

The ants go marching *18* by *18*, hurrah, hurrah.

The ants go marching 10 by 10 , hurrah, hurrah.

The ants go marching *19* by *19*, hurrah, hurrah.

The ants go marching *20* by *20*, hurrah, hurrah.

The ants go marching 11 by 11 , hurrah, hurrah.

The ants go marching *21* by *21*, hurrah, hurrah.

The ants go marching *22* by *22*, hurrah, hurrah.

The ants go marching 12 by 12 , hurrah, hurrah.

The ants go marching *23* by *23*, hurrah, hurrah.

The ants go marching *24* by *24*, hurrah, hurrah.

The ants go marching 13 by 13 , hurrah, hurrah.

The ants go marching 14 by 14 , hurrah, hurrah.

The ants go marching 15 by 15 , hurrah, hurrah.

The ants go marching 16 by 16 , hurrah, hurrah.

The ants go marching 17 by 17 , hurrah, hurrah.

The ants go marching 18 by 18 , hurrah, hurrah.

The ants go marching 19 by 19 , hurrah, hurrah.

The ants go marching 20 by 20 , hurrah, hurrah.

The ants go marching 21 by 21 , hurrah, hurrah.

The ants go marching 22 by 22 , hurrah, hurrah.

The ants go marching 23 by 23 , hurrah, hurrah.

The ants go marching 24 by 24 , hurrah, hurrah.

Your code can fork many times. But remember … each time that the code
forks, your child code may fork as well (depending on how you structure
your code). This could cause forking indefinitely. There is a limit to how
many forks the operating system will allow. It maintains a process table …

which has a finite capacity. It may be best not to test that limit .

Notice how the output
between the two processes
is interlaced.

COMP2401 - Chapter 5 – Concurrent Computing Fall 2020

 - 195 -

A fork bomb is a process that continually replicates itself and depletes available system
resources. A rabbit virus uses this strategy as a denial-of-service attack to slow down and
potentially crash a system.

The following code takes an integer as a command-line-argument and then does a double-fork
that many times. If the number is high enough, it can slow down and crash the system.

Code from forkTooMuch.c

#include <stdio.h>

#include <unistd.h>

#include <stdlib.h>

int main(int argc, char *argv[]) {

 int count;

 if (argc < 2)

 count = 1;

 else

 count = atoi(argv[1]);

 printf("Parent: %d\n", getpid());

 for (int i=0; i<count; i++) {

 fork();

 fork();

 }

 printf("Child %d with parent %d \n", getpid(), getppid());

}

EXEC

Now let’s look at the exec “family” of functions in C. It allows different code to be run with the
same process id. Basically, the code goes off and runs another program instead of continuing
with this one. So, after a call to one of these exec functions, the program does not continue
to the line of code after the exec call. The new program will have the same PID as the
process that called the exec function.

There are different functions that we can use: execl(), execlp(), execle(), execv(), execvp().
All of them are similar in that they call another program; but they differ in terms of parameters
and environment settings. Recall that when running a program, we can supply command-line
arguments. These exec functions allow you to specify the program that you want to run as
well as the command-line-arguments (as strings) required for it to run.

These functions take the command-line-arguments as an array:

int execv(const char *path, char *const argv[]);

int execvp(const char *file, char *const argv[]);

getpid() returns the

process id of the current
running process.

getppid() returns the

process id of the parent
process… which may be
reparented if the parent has
already completed.

COMP2401 - Chapter 5 – Concurrent Computing Fall 2020

 - 196 -

These take the command-line-arguments as a list of parameters:

int execl(const char *path, const char *arg, ...);

int execlp(const char *file, const char *arg, ...);

execv and execl both take a path to the program to run, while execvp and execlp take just
the filename.

By convention, the first argument should be the name of the file being executed and the list of
args should always be terminated with a NULL pointer.
The execvpe and execle both allow an additional array of environment pointers, but we will
not discuss these in this course.

It is possible that a call to exec may fail. In that case, the original program simply continues.

Consider this example which calls our userInput program from chapter 1, which simply asks
for the user’s name and prints it out:

Code from execTest.c

#include <stdio.h>

#include <unistd.h>
#include <string.h>

int main() {

 char buffer[80];

 char *args[2];

 int childPID;

 printf("This program is running.\n");

 printf("Now let's run the userInput program ...\n");

 strcpy(buffer, "./userInput");

 args[0] = "userInput";

 args[1] = NULL;

 childPID = execvp(buffer, args);

 // This code is never reached, unless the userInput program does not exist.

 printf("We returned from that program, which ran with PID = %d\n", childPID);

 printf("It appears, therefore, that the userInput program was not found.\n");

}

Here is what happens when we run:

This program is running.

Now let's run the userInput program ...

What is your name ?

Mark

Hello, Mark

./ is needed here if that is

how we run our programs in
the shell.

COMP2401 - Chapter 5 – Concurrent Computing Fall 2020

 - 197 -

Of course, if the userInput program cannot be found, we would get this output:

This program is running.

Now let's run the userInput program ...

We have returned from that program, which ran with PID = -1

It appears, therefore, that the userInput program was not found.

Here is a variation that allows us to pass command line arguments into a program through a
call to exevvp(). It makes use of our cmdLineArgs program that we wrote in chapter 3:

Code from execTest2.c

#include <stdio.h>

#include <unistd.h>

#include <string.h>

int main() {

 char buffer[80];

 char *args[4];

 int childPID;

 printf("This program is running.\n");

 printf("Now let's run the cmdLineArgs program ...\n");

 strcpy(buffer, "./cmdLineArgs");

 args[0] = "cmdLineArgs";

 args[1] = "one";

 args[2] = "two";

 args[3] = NULL;

 childPID = execvp(buffer, args);

 // This code is never reached, unless the cmdLineArgs program does not exist.

 printf("We returned from that program, which ran with PID = %d\n", childPID);

 printf("It appears, therefore, that the cmdLineArgs program was not found.\n");

}

Here is the expected output:

This program is running.

Now let's run the cmdLineArgs program ...

There are 3 arguments

Argument 0 is cmdLineArgs

Argument 1 is one

Argument 2 is two

WAIT

The wait() function in C allows us to put a delay in a parent program so that it waits until one of
its child processes has completed. It returns the PID of the child that completes, if successful,
otherwise it returns -1. In addition, there is a waitpid() command that allows the parent
process to delay until a specific child process has completed.

We set up the command-line args here,
making sure to end with NULL.

COMP2401 - Chapter 5 – Concurrent Computing Fall 2020

 - 198 -

Consider this program which shows a basic use of the wait() function:

Code from wait.c

#include <stdio.h>

#include <unistd.h>

#include <sys/wait.h>

int main() {

 int status, child;

 printf("I am the parent (PID=%d)\n", getpid());

 printf("I am spawning a child ...\n");

 child = fork();

 if (child == 0) {

 printf(" I am the child (PID=%d) ... I will sleep for 2sec\n", getpid());

 sleep(2);

 printf(" I am awake!\n");

 }

 else {

 printf("I am now waiting for my child to wake up ...\n");

 wait(&status);

 printf("It looks like my child is awake, so I will quit in 2sec ...\n");

 sleep(2);

 }

 printf("Process %d terminating.\n", getpid());

}

Here is the output:

I am the parent (PID=24439)

I am spawning a child ...

I am now waiting for my child to wake up ...

 I am the child (PID=24440) ... I will sleep for 2sec

 I am awake!

Process 24440 terminating.

It looks like my child is awake, so I will quit in 2sec ...

Process 24439 terminating.

The above example had only one child. The wait() command allows the process to wait for
ANY child to complete. The PID of the child that completes will be returned from the wait()
command.

Here is an example that spawns 5 children, each one sleeping for a random number of
seconds, then waking up and quitting. The parent spawns all 5 children and then waits for
each one to complete. Note that the order in which the children complete will be different from
the order that they are spawned in, due to the random sleep time.

Notice that the children each quit by using the exit(0) function. The parameter to the exit()
function is arbitrary, but zero usually indicates that all went well and negative numbers or
positive numbers usually indicate error codes.

Child’s output in red. Parent’s output in blue.

COMP2401 - Chapter 5 – Concurrent Computing Fall 2020

 - 199 -

Code from multiChildWait.c

#include <stdio.h>

#include <unistd.h>

#include <stdlib.h>

#include <sys/wait.h>

int main() {

 int status, child, parent, children[5], sleepTimes[5];

 printf("I am the parent (PID=%d)\n", parent = getpid());

 // Choose 5 random sleep times

 for (int i=0; i<5; i++) {

 sleepTimes[i] = rand()%5 + 5;

 }

 printf("I am spawning 5 children ...\n");

 for (int i=0; i<5; i++) {

 if (getpid() == parent)

 children[i] = fork();

 if (children[i] == 0) {

 printf(" I am a child (PID=%d) ... I will sleep for %dsec\n",

 getpid(), sleepTimes[i]);

 sleep(sleepTimes[i]);

 printf(" I am awake! Process %d terminating.\n", getpid());

 exit(0);

 }

 }

 printf("I am now waiting for all of my children to wake up ...\n");

 for (int i=0; i<5; i++) {

 child = wait(&status);

 printf("It looks like one of my children (PID=%d) has awoken.\n", child);

 }

 printf("All children are done. Process %d terminating.\n", getpid());

}

Here is some output:

I am the parent (PID=3099)

I am spawning 5 children ...

I am now waiting for all of my children to wake up ...

 I am a child (PID=3104) ... I will sleep for 8sec

 I am a child (PID=3103) ... I will sleep for 5sec

 I am a child (PID=3102) ... I will sleep for 7sec

 I am a child (PID=3101) ... I will sleep for 6sec

 I am a child (PID=3100) ... I will sleep for 8sec

 I am awake! Process 3103 terminating.

It looks like one of my children (PID=3103) has awoken.

 I am awake! Process 3101 terminating.

It looks like one of my children (PID=3101) has awoken.

 I am awake! Process 3102 terminating.

It looks like one of my children (PID=3102) has awoken.

 I am awake! Process 3104 terminating.

It looks like one of my children (PID=3104) has awoken.

 I am awake! Process 3100 terminating.

It looks like one of my children (PID=3100) has awoken.

All children are done, so I will quit now. Process 3099 terminating.

COMP2401 - Chapter 5 – Concurrent Computing Fall 2020

 - 200 -

The waitpid() function can be used to wait for a particular child to complete. It returns the
child PID if successful, otherwise -1 if an error occurred. As an example, we could determine
the child that would likely take the longest to complete the work and then wait just for that child.
The sleep times are hardcoded to make it clearer:

Code from waitpid.c

#include <stdio.h>

#include <unistd.h>

#include <stdlib.h>

#include <sys/wait.h>

int main() {

 int status, child, parent, children[5];

 int sleepTimes[5] = {1, 5, 8, 2, 4};

 printf("I am the parent (PID=%d)\n", parent = getpid());

 printf("I am spawning 5 children ...\n");

 for (int i=0; i<5; i++) {

 if (getpid() == parent)
 children[i] = fork();

 // Note that for the parent process, children[i] is set to

 // the pid of the newly-created child process. However,

 // for the child process program, all the values of children[i]

 // will be 0.

 if (children[i] == 0) {

 printf(" I am a child (PID=%d) ... I will sleep for %dsec\n",

 getpid(), sleepTimes[i]);

 sleep(sleepTimes[i]);

 printf(" I am awake! Process %d terminating.\n", getpid());

 exit(0);

 }

 }

 printf("I am now waiting for child 3 to wake up ...\n");

 child = waitpid(children[2], &status, 0);

 printf("It looks like my slowest child (PID=%d) has awoken.\n", child);

 printf("All children are done. Process %d terminating.\n", getpid());

}

Here is the output:

I am the parent (PID=3303)

I am spawning 5 children ...

I am now waiting for child 3 to wake up ...

 I am a child (PID=3308) ... I will sleep for 4sec

 I am a child (PID=3307) ... I will sleep for 2sec

 I am a child (PID=3306) ... I will sleep for 8sec

 I am a child (PID=3305) ... I will sleep for 5sec

 I am a child (PID=3304) ... I will sleep for 1sec

 I am awake! Process 3304 terminating.

 I am awake! Process 3307 terminating.

 I am awake! Process 3308 terminating.

 I am awake! Process 3305 terminating.

 I am awake! Process 3306 terminating.

It looks like my slowest child (PID=3306) has awoken.

All children are done. Process 3303 terminating.

COMP2401 - Chapter 5 – Concurrent Computing Fall 2020

 - 201 -

Notice that the waitpid() function takes a third parameter … these are options. We will not
discuss the various status results from the function, nor these options. Please see the man
pages if you are interested in more details.

SYSTEM

The system() function in C allows us to run the specified command (or program) as a shell
command. When called, the process blocks until the system call is done and then control
returns to the program. The return value from this function call is the value that is returned
from the system call command, or -1 if an error has occurred.

Here is a simple program that calls a couple of shell commands as well as running another
program from within it:

Code from systemCall.c

#include <stdio.h>

#include <stdlib.h>

int main() {

 // Show a list of files

 system("clear");

 system("ls");

 printf("\n");

 // Find out who the user is

 system("who");

 printf("\n");

 // Run the userInput program

 system("./userInput");

}

Here is the output, which of course depends on the directory contents:

cmdLineArgs execTest.c forkTooMuch.c shellProcess.c wait

execTest fork multiChildWait systemCall wait.c

execTest2 fork.c multiChildWait.c systemCall.c waitpid

execTest2.c forkTooMuch shellProcess userInput waitpid.c

student tty7 2018-06-05 10:45 (:0)

What is your name ?

Mark

Hello, Mark

COMP2401 - Chapter 5 – Concurrent Computing Fall 2020

 - 202 -

 5.3 Inter-Process Communication

Now that you have a good understanding of how to create
multiple processes, you probably realize that this is most useful
when the processes have the ability to communicate with one
another as they are running. This relates to reality since people
often work as a team, each doing their own task, yet coordinating
through careful communication.

In computer science, this communication is done through …

Inter-Process Communication (IPC) is the sending

and receiving of information between processes.

Communication between processes can occur on the same host
machine or between processes running on different hosts across
a network.

There are two main approaches to IPC. The first (and most
basic) is that of using signals:

A signal is a value (integer) sent from one process to another.

A signal is used as a rudimentary form of communication to do simple things like
informing processes of an error or telling a process to terminate. It is a very limited
kind of communication that can only be used between processes running on the
same host machine.

In C, there are a fixed set of existing signal values defined in the <signal.h> header file, but
only two are user-defined:

#define SIGHUP 1 /* Hangup (POSIX). */

#define SIGINT 2 /* Interrupt (ANSI). */

#define SIGQUIT 3 /* Quit (POSIX). */

#define SIGILL 4 /* Illegal instruction (ANSI). */

#define SIGTRAP 5 /* Trace trap (POSIX). */

#define SIGABRT 6 /* Abort (ANSI). */

#define SIGIOT 6 /* IOT trap (4.2 BSD). */

#define SIGBUS 7 /* BUS error (4.2 BSD). */

#define SIGFPE 8 /* Floating-point exception (ANSI). */

#define SIGKILL 9 /* Kill, unblockable (POSIX). */

#define SIGUSR1 10 /* User-defined signal 1 (POSIX). */

#define SIGSEGV 11 /* Segmentation violation (ANSI). */

#define SIGUSR2 12 /* User-defined signal 2 (POSIX). */

#define SIGPIPE 13 /* Broken pipe (POSIX). */

#define SIGALRM 14 /* Alarm clock (POSIX). */

#define SIGTERM 15 /* Termination (ANSI). */

#define SIGSTKFLT 16 /* Stack fault. */

#define SIGCLD SIGCHLD /* Same as SIGCHLD (System V). */

#define SIGCHLD 17 /* Child status has changed (POSIX). */

#define SIGCONT 18 /* Continue (POSIX). */

#define SIGSTOP 19 /* Stop, unblockable (POSIX). */

#define SIGTSTP 20 /* Keyboard stop (POSIX). */

COMP2401 - Chapter 5 – Concurrent Computing Fall 2020

 - 203 -

#define SIGTTIN 21 /* Background read from tty (POSIX). */

#define SIGTTOU 22 /* Background write to tty (POSIX). */

#define SIGURG 23 /* Urgent condition on socket (4.2 BSD). */

#define SIGXCPU 24 /* CPU limit exceeded (4.2 BSD). */

#define SIGXFSZ 25 /* File size limit exceeded (4.2 BSD). */

#define SIGVTALRM 26 /* Virtual alarm clock (4.2 BSD). */

#define SIGPROF 27 /* Profiling alarm clock (4.2 BSD). */

#define SIGWINCH 28 /* Window size change (4.3 BSD, Sun). */

#define SIGPOLL SIGIO /* Pollable event occurred (System V). */

#define SIGIO 29 /* I/O now possible (4.2 BSD). */

#define SIGPWR 30 /* Power failure restart (System V). */

#define SIGSYS 31 /* Bad system call. */
#define SIGUNUSED 31

There are two steps to using signals: (1) install a signal handler, (2) send a signal.

Installing a signal handler is really just a matter of indicating which function will be called when
the signal is received. It is similar to setting up an event handler in JAVA.

Every signal should have its own signal handler. There is a default signal handler for every
signal … which, by default, will usually terminate the program.

To install our own signal handler, we use the signal() function which takes the signal
number/code (i.e., SIGUSR1 or SIGUSR2) as its first parameter and the signal-handler function

name as its second parameter. The signal handler function must take a single int parameter
and have a void return type. Optionally, instead of supplying a signal handler function, we can
use the constant SIG_IGN to tell the OS to ignore the signal and do nothing … or we can use

SIG_DFL to tell the OS to use the default signal handler.

Here is an example of a program that will wait for some incoming signal from another process.
It does not do anything interesting, but it shows the mechanics of setting up inter-process
communications between processes.

Code from handler.c

#include <stdio.h>

#include <stdlib.h>

#include <unistd.h>

#include <signal.h>

void handleSig1(int);

void handleSig2(int);

int main() {

 signal(SIGUSR1, handleSig1);

 signal(SIGUSR2, handleSig2);

 printf("\n HANDLER: Running (PID=%d)\n", getpid());

 // Go into an infinite loop

 while (1)

 sleep(1);

 printf("This line of code is never reached.\n");

}

COMP2401 - Chapter 5 – Concurrent Computing Fall 2020

 - 204 -

void handleSig1(int i) {

 printf(" HANDLER: Signal 1 has been received. Continuing...\n");

}

void handleSig2(int i) {

 printf(" HANDLER: Signal 2 has been received. Quitting...\n");

 exit(SIGUSR2);

}

Notice that when the program receives signal 1, it prints a message and the program
continues. When it receives signal 2, however, it stops running.

We will run this program in the background and then set up another program that allows us to
send signals to it:

student@COMPBase:~$ gcc -o handler handler.c

student@COMPBase:~$./handler &

[8] 4018

student@COMPBase:~$

HANDLER: Running (PID=4018)

student@COMPBase:~$

To send a signal to a process, we need to know the PID and the signal number. Then we
make use of the kill() function which takes the PID as its first parameter and the signal number
as its second parameter. (I know, it doesn’t make sense to use kill() to send a signal instead of something

like send(), but often signals are sent to kill a process). The function will return -1 if there was a problem
(e.g., process does not exist) and 0 otherwise. Now let us write the sending program:

Code from sender.c

#include <stdio.h>

#include <stdlib.h>

#include <signal.h>

int main() {

 int pid, choice, result;

 printf("SENDER: Enter PID that you want to signal: ");

 scanf("%d", &pid);

 while (1) {

 printf("SENDER: Enter signal number (1 or 2), use 0 to quit: ");

 scanf("%d", &choice);

 switch(choice) {

 case 0: exit(0);

 case 1: result = kill(pid, SIGUSR1); break;

 case 2: result = kill(pid, SIGUSR2);

 }

 if (result == -1)

 printf("SENDER: *** Error sending signal to Process %d ***\n", pid);

 }

}

COMP2401 - Chapter 5 – Concurrent Computing Fall 2020

 - 205 -

The code allows us to first enter the PID of the process that we want to communicate with.
Then it goes into an infinite loop allowing us to send repeated signals. The only two signals
that we will send are SIGUSR1 and SIGUSR2 which are selected based on the value that the

user enters. If the kill() function returns -1, then we know there was a problem (e.g., the
process may no longer be running).

Assuming that the handler program is already running in the background, on the next page it
shows what we may see as output from this program. The values entered by the user in the
sender program are highlighted as yellow and the output from the handler program is shown
in orange so that it is easier to see what is happening.

student@COMPBase:~$ gcc -o sender sender.c

student@COMPBase:~$./sender &

SENDER: Enter PID that you want to signal: 4018

SENDER: Enter signal number (1 or 2), use 0 to quit: 1

 HANDLER: Signal 1 has been received. Continuing...

SENDER: Enter signal number (1 or 2), use 0 to quit: 1

 HANDLER: Signal 1 has been received. Continuing...

SENDER: Enter signal number (1 or 2), use 0 to quit: 2

 HANDLER: Signal 2 has been received. Quitting...

SENDER: Enter signal number (1 or 2), use 0 to quit: 1

SENDER: *** Error sending signal to Process 4018 ***

SENDER: Enter signal number (1 or 2), use 0 to quit: 2

SENDER: *** Error sending signal to Process 4018 ***

SENDER: Enter signal number (1 or 2), use 0 to quit: 0

[8]+ Exit 12 ./handler

student@COMPBase:~$

Here is an example that shows how we can send a “kill” command (SIGKILL) to spawned child

processes to have them stop right away. Notice the use of the system("ps"). This will

allow us to print out the running processes on the terminal that we are using so that we can
see that the processes are started and stopped:

Code from stopChildren.c

#include <stdio.h>

#include <stdlib.h>

#include <unistd.h>

#include <signal.h>

int main() {

 int parent, childProcess[5];

 printf("I am the parent (PID=%d)\n", parent = getpid());

 printf("I am spawning 3 children ...\n");

 for (int i=0; i<3; i++) {

 if (getpid() == parent)

 childProcess[i] = fork();

 if (childProcess[i] == 0) {

 for (int j=30; j>0; j--) {

 printf(" Child (PID=%d) sleeping for %d more sec\n", getpid(), j);

 sleep(1);

 }

COMP2401 - Chapter 5 – Concurrent Computing Fall 2020

 - 206 -

 exit(0);

 }

 }

 system("ps");

 printf("I am now waiting for 3 seconds then will stop all the children ...\n");

 sleep(3);

 for (int i=0; i<3; i++)

 kill(childProcess[i], SIGKILL);

 system("ps");

 printf("I stopped all child processes ... terminating now.\n");

}

Here is the output that can be expected:

I am the parent (PID=3318)

I am spawning 3 children ...

 Child (PID=3321) sleeping for 30 more sec

 Child (PID=3320) sleeping for 30 more sec

 Child (PID=3319) sleeping for 30 more sec

 PID TTY TIME CMD

 2691 pts/0 00:00:00 bash

 3318 pts/0 00:00:00 stopChildren

 3319 pts/0 00:00:00 stopChildren

 3320 pts/0 00:00:00 stopChildren

 3321 pts/0 00:00:00 stopChildren

 3322 pts/0 00:00:00 sh

 3323 pts/0 00:00:00 ps

I am now waiting for 3 seconds then will stop all the children ...

 Child (PID=3321) sleeping for 29 more sec

 Child (PID=3320) sleeping for 29 more sec

 Child (PID=3319) sleeping for 29 more sec

 Child (PID=3320) sleeping for 28 more sec

 Child (PID=3321) sleeping for 28 more sec

 Child (PID=3319) sleeping for 28 more sec

 Child (PID=3321) sleeping for 27 more sec

 Child (PID=3320) sleeping for 27 more sec

 Child (PID=3319) sleeping for 27 more sec

 PID TTY TIME CMD

 2691 pts/0 00:00:00 bash

 3318 pts/0 00:00:00 stopChildren

 3319 pts/0 00:00:00 stopChildren <defunct>

 3320 pts/0 00:00:00 stopChildren <defunct>

 3321 pts/0 00:00:00 stopChildren <defunct>

 3332 pts/0 00:00:00 sh

 3333 pts/0 00:00:00 ps

I stopped all child processes ... terminating now.

Let us try dealing with the SIGINT signal. This is the signal that occurs when the system tries

to interrupt the process. One way that we can generate the signal is to press the CTRL-C
keys. By default, this quits the program. But we can disable this … by ignoring that signal
(not a good idea usually). Here is a program that does this. We’ll first ignore the CTRL-C for
5 seconds … then we’ll handle it ourselves for 5 seconds by simply printing a message out,
then finally we’ll spend the last 5 seconds with the restored default, which will allow us to quit
the program.

Parent is running

Children are
running

Children are
no longer
running

COMP2401 - Chapter 5 – Concurrent Computing Fall 2020

 - 207 -

Code from ignoreInterrupt.c

#include <stdio.h>

#include <stdlib.h>

#include <unistd.h>

#include <signal.h>

void ignoreMessage(int);

void sleep5();

int main() {

 printf(" Process %d running\n", getpid());

 printf(" Ignoring the interrupt signal...\n");

 signal(SIGINT, SIG_IGN);

 sleep5();

 printf("\n Really ignoring the interrupt signal...\n");

 signal(SIGINT, ignoreMessage);

 sleep5();

 printf("\n Restoring the default handler...\n");

 signal(SIGINT, SIG_DFL);

 sleep5();

 printf("\n All done!\n");

}

void ignoreMessage(int x) {

 printf(" Stop bugging me.\n");

}

void sleep5() {

 for (int i=1; i<=5; ++i) {

 sleep(1);

 printf(" Sleeping %d\n",i);

 }

}

Here is the output, showing ^C when CTRL-C was pressed:

 Process 4340 running

 Ignoring the interrupt signal...

 Sleeping 1

 Sleeping 2

^C Sleeping 3

 Sleeping 4

^C Sleeping 5

 Really ignoring the interrupt signal...

 Sleeping 1

 Sleeping 2

^C Stop bugging me.

 Sleeping 3

 Sleeping 4

COMP2401 - Chapter 5 – Concurrent Computing Fall 2020

 - 208 -

^C Stop bugging me.

 Sleeping 5

 Restoring the default handler...

 Sleeping 1

^C

As you can see, simple communication between two processes is not difficult. However, with
the signaling approach, there are obvious limitations in that we can only signal another
process … we cannot really exchange data.

Of course, we can “fake” data exchange by, for example, having one process write data to a
file and then signal the other process to read the file when it is done. But this is cumbersome
and also limited in regard to how many processes can be involved in this type of
communication. A better way to do this is by using sockets:

A socket is an endpoint for sending or receiving data between processes.

You can think of two hosts communicating with one another through a
physical cable (or through wifi these days). The socket is like the
connector that we plug the cable into. Each host has its own socket and
all communication to other hosts takes place through this socket
connection.

Since each computer/host on a network has a unique IP address, we will
need to use this address in order to communicate with that host through the socket. It
uniquely identifies a computer at the network layer. Also, since multiple processes may run on
the same host machine, they too must be uniquely identifiable
through a port number which will be unique to all applications
running on that host. The port uniquely identifies a process (e.g.,
app) at the transport layer. Only a specific range of values can be
used … from 1025 to 65536 … (i.e., 0 through 1024 are reserved).
Perhaps you can think of putting a note in a friend’s locker at
school. The IP address corresponds to the address of the
particular school … while the port would correspond to the locker
number in that school.

Communication between the processes occurs through a couple of layers. The Network
Layer provides the means of sending packets of data from a source host to a destination host
over one or more networks. It is basically like the mailman delivering letters from one building
in one city to another building in another city.

The Transport Layer is a conceptual layer that indicates how exactly the data is to be
transferred from the source to the destination. There are two main strategies for doing this:

(1) Transmission Control Protocol (TCP), and

(2) User Datagram Protocol (UDP).

The following diagram shows how things are organized:

COMP2401 - Chapter 5 – Concurrent Computing Fall 2020

 - 209 -

There are 3 types of sockets:

1. Stream sockets

• These are connection-based sockets.

o Connection must first be established between the
sender and receiver before any data exchange can take
place (e.g., like making a phone call).

o Connection must be closed (i.e., must hang up the
phone) when communication is finished (i.e., no “call-
waiting” option).

• Best used for reliable packet delivery … so that the packet is
correct and in a reliable order.

• Works with the TCP (Transmission Control Protocol) method of data exchange.

2. Datagram sockets

• These are connectionless sockets.

o Don’t need to first establish a connection between sender
and receiver, data is just sent out when ready (e.g., like
mailing a package via Canada Post).

• Best used for faster packet sending (i.e., but not necessarily faster
receiving). No need to establish a connection beforehand.

• Works with the UDP (User Datagram Protocol) method of data
exchange.

• Disadvantage is that the packets can be corrupted, received out of
order, lost altogether or delivered multiple times.

COMP2401 - Chapter 5 – Concurrent Computing Fall 2020

 - 210 -

3. Raw sockets

• Bypasses the Transport protocol all together.

The basic idea being socket communications is as follows:

1. Each endpoint (i.e., sender and receiver) opens a socket … and a connection is
established if using stream sockets.

2. Packets are sent and received.
3. Each endpoint closes their socket.

Client/Server Model - TCP

In IPC, one commonly used type of architecture is that of the
client/server model. In this model, one process acts as a server
that receives requests from clients and then performs tasks
accordingly. There may be more than one client sending
requests to the server at any time.

Let us look now at an example that uses
stream sockets to perform connection-based
communications between two processes.
We will run two processes on the same
machine and have data passed back and
forth between them.

Starting with the server, we need to create a stream socket.
This can be done with the socket() function which is defined in
the <sys/socket.h> header. The function will return an integer
representing the socket descriptor (i.e., ID), or -1 if the socket
cannot be opened for any reason. The function takes three parameters with this template:

socket(<domain>, <type>, <protocol>)

There are many options for these parameters, but just a couple will be mentioned here.

The <domain> is the address domain family that we want to use:

• AF_INET = communication over a network

• AF_LOCAL = communication on the local host

The <type> is the type of socket that we want to use:

• SOCK_STREAM = connection-based

• SOCK_DGRAM = connection-less

The <protocol> is the protocol that we want to use:

• IPPROTO_TCP = Transmission Control Protocol

• IPPROTO_UDP = User Datagram Protocol

COMP2401 - Chapter 5 – Concurrent Computing Fall 2020

 - 211 -

The opening of the socket can fail if:

• The implementation does not support the specified address family.

• No more file descriptors are available for this process/system.

• The protocol is not supported by the address family/implementation.

• The socket type is not supported by the protocol.

• The process does not have appropriate privileges.

• Insufficient resources were available in the system to perform the operation.

• Insufficient memory was available to fulfill the request.

Once the socket has been opened, we then need to assign an IP address to the socket from
which we will accept messages and we also need to assign a port number to the socket. We
do this by using the bind() function which has this format:

bind(<serverSocket>, <address>, <address_Length>)

The <serverSocket> parameter is the socket descriptor (i.e., ID) that
was returned from the socket() function call. The <address>,
however, is a bit more complicated. It is a struct sockaddr data
structure and the <address_Length> is the length of the struct
sockaddr structure supplied as the 2nd parameter. The function will
return -1 if an error occurred, otherwise 0 is returned.

What does the struct sockaddr look like ? Well, this is a protocol-independent structure. At
the general level, it is defined like this:

struct sockaddr {

 unsigned short sa_family; // address family

 char sa_data[14]; // protocol address

};

The sa_data field is quite general and allows 14 bytes to be adjustable for various types of
protocols. We generally set things up for IPv4 (i.e., version 4 of the internet protocol) by using
struct sockaddr_in instead, which is defined as follows:

struct sockaddr_in {

 short sin_family; // e.g. AF_INET, AF_LOCAL

 unsigned short sin_port; // port number

 struct in_addr sin_addr; // see below

 char sin_zero[8]; // unused

};

where struct in_addr is defined as follows:

struct in_addr {

 unsigned int s_addr; // set to internet address

};

You may have noticed that if we add up the bytes required for sin_port, sin_addr and
sin_zero … they add to the 14 bytes defined in sa_data from the sockaddr struct, since an
unsigned int is only 4 bytes on the virtual machine that we are using. So the sin_zero field

COMP2401 - Chapter 5 – Concurrent Computing Fall 2020

 - 212 -

of the sockaddr struct is just a placeholder to use up the remaining required 14 bytes (that we
do not need) in order to the sizeof(struct sockaddr_in) to be the same as sizeof(struct
sockaddr). This will allow us to typecast (struct sockaddr_in*) to (struct sockaddr*) later.

Now … what should we set sin_family, sin_port and sin_addr to ? We can set the sin_family to
AF_INET, or whatever we used to set up the socket. The sin_port number can be arbitrary
(e.g., 6000). The sin_addr can be set to any internet address. If we just want the server to
receive requests from the local lost machine … we would set this to the specific IP address
inet_addr("127.0.0.1"). However, for servers, we generally want to accept incoming requests
from any network interface. In that case, we can set the sin_addr to INADDR_ANY … which
will allow the server to accept all UDP packets and TCP connection requests made for its port,
regardless of the network interface on which the requests arrived.

There is one concern though in setting up the struct. The IP address and
port number are to be sent over the internet as bytes but interpreted as
ints and longs.

Recall that some machines use little-endian format and some use big-
endian format. So, sending out a short or a long from one machine that
uses one format … might be misinterpreted if read in from a machine that
uses a different format. To deal with this, there are some handy
conversion functions for converting to a common ordering. As it turns out,
network protocols assume big-endian format. The host format can be
either format. Here are the functions that we can use to convert from the
host format to the network format and vice versa:

htons() – convert short from host format to network format.

htonl() – convert long from host format to network format.

ntohs() – convert short from network format to host format.

ntohl() – convert long from network format to host format.

Therefore, this is how we would set the addres information for a server:

#define SERVER_PORT 6000

struct sockaddr_in address;

memset(&address, 0, sizeof(address)); // zeros the struct

address.sin_family = AF_INET;

address.sin_addr.s_addr = htonl(INADDR_ANY);

address.sin_port = htons((unsigned short) SERVER_PORT);

Once this has been set up, we can call bind() with the address variable:

bind(serverSocket, (struct sockaddr *)address, sizeof(address));

Notice the typecast of the address. This is necessary since the function wants something of
type sockaddr, not sockaddr_in. After calling this function, we will also need to check to
make sure that the bind() function did not return -1 before we continue.

COMP2401 - Chapter 5 – Concurrent Computing Fall 2020

 - 213 -

Once the socket is opened and bound, we are ready to start listening for incoming requests.
The listen() function is used to set the socket up for listening, which has this format:

listen(<serverSocket>, <backlog>)

Again, the socket descriptor is used. The <backlog> is a value that indicates the number of
pending connections that may be queued (i.e., the number of clients allowed to wait in line
before being turned away). This can be set to something small, such as 5 or 10. For the
listen() function, a return value of 0 indicates that all went well, otherwise -1 is returned.

Finally, we need to use the accept() function to “wait for” and “accept” an incoming client
request. It has the following format:

accept(<serverSocket>, <clientAddress * >, <clientAddressLength * >)

Once again, the socket descriptor is used. The <clientAddress * > is a struct sockaddr * just
as we had used for the server address. This, however, is a pointer to a variable that will
contain the client address once the message arrives.

The <clientAddressLength * > should point to an integer that represents the exact size of the
clientAddress struct. It is a pointer, because before returning, the function will change this
integer to represent the size required to represent the address of the connecting socket. Once
again, a return value of -1 from accept() is used to indicate that an error has occurred. When
all went well, however, the accept() function returns a socket descriptor (i.e., clientSocket) that
corresponds to the client that just connected to the server.

At this point, we have established a one-on-one connection between the server and the client.
We can now read in the information that was sent from the client by using the recv() function
which has this format:

recv(<clientSocket>, <buffer>, <bufferLength>, <flags>)

Notice that we now use the <clientSocket> as the first parameter … this is NOT the server
socket. It is the socket descriptor that is returned from the call to accept(). The <buffer> is a
pointer to some memory that can take the incoming request. We can set it up as a char *.
Finally, the <bufferLength>is the number of bytes that the buffer can hold. It should not
exceed the amount of memory reserved for the buffer itself. We will not discuss the <flags>
here … but will set them to 0. The recv() function will return the number of incoming bytes
that were received.

We can even send information back to the client using the send() function with this format:

send(<clientSocket>, <buffer>, <bufferLength>, <flags>)

The idea is the same. We simply set up the buffer that we want to send and then send it.

COMP2401 - Chapter 5 – Concurrent Computing Fall 2020

 - 214 -

Normally, with a server, we have a kind of
recv/send sequence in a loop of some sort, so
that communication between the client and
server can go back and forth for a while. We
will also likely want the server to serve many
clients, so another loop is normally used to
keep accepting new clients.

Here, on the right, is the pseudocode for
setting up the server →

Open the socket

Bind the socket

Listen on the socket

while (true) {

 Accept a socket request

 while (client has not "hung up" yet) {

 Receive the buffer from the client

 Process the request

 Send a response to the client

 }

 Close client socket

}

Close server socket

Here is the code for the server in its entirety:

Code from server.c

#include <stdio.h>

#include <stdlib.h>

#include <unistd.h>

#include <string.h>

#include <sys/socket.h>

#include <netinet/in.h>

#define SERVER_PORT 6000

int main() {

 int serverSocket, clientSocket;

 struct sockaddr_in serverAddress, clientAddr;

 int status, addrSize, bytesRcv;

 char buffer[30];

 char *response = "OK";

 // Create the server socket

 serverSocket = socket(AF_INET, SOCK_STREAM, IPPROTO_TCP);

 if (serverSocket < 0) {

 printf("*** SERVER ERROR: Could not open socket.\n");

 exit(-1);

 }

 // Setup the server address

 memset(&serverAddress, 0, sizeof(serverAddress)); // zeros the struct

 serverAddress.sin_family = AF_INET;

 serverAddress.sin_addr.s_addr = htonl(INADDR_ANY);

 serverAddress.sin_port = htons((unsigned short) SERVER_PORT);

 // Bind the server socket

 status = bind(serverSocket, (struct sockaddr *)&serverAddress,

 sizeof(serverAddress));

 if (status < 0) {

 printf("*** SERVER ERROR: Could not bind socket.\n");

 exit(-1);

 }

 //… more on next page

COMP2401 - Chapter 5 – Concurrent Computing Fall 2020

 - 215 -

 // Set up the line-up to handle up to 5 clients in line

 status = listen(serverSocket, 5);

 if (status < 0) {

 printf("*** SERVER ERROR: Could not listen on socket.\n");

 exit(-1);

 }

 // Wait for clients now

 while (1) {

 addrSize = sizeof(clientAddr);

 clientSocket = accept(serverSocket,(struct sockaddr *)&clientAddr,&addrSize);

 if (clientSocket < 0) {

 printf("*** SERVER ERROR: Could accept incoming client connection.\n");

 exit(-1);

 }

 printf("SERVER: Received client connection.\n");

 // Go into infinite loop to talk to client

 while (1) {

 // Get the message from the client

 bytesRcv = recv(clientSocket, buffer, sizeof(buffer), 0);

 buffer[bytesRcv] = 0; // put a 0 at the end so we can display the string

 printf("SERVER: Received client request: %s\n", buffer);

 // Respond with an "OK" message

 printf("SERVER: Sending \"%s\" to client\n", response);

 send(clientSocket, response, strlen(response), 0);

 if ((strcmp(buffer,"done") == 0) || (strcmp(buffer,"stop") == 0))

 break;

 }

 printf("SERVER: Closing client connection.\n");

 close(clientSocket); // Close this client's socket

 // If the client said to stop, then I'll stop myself

 if (strcmp(buffer,"stop") == 0)

 break;

 }

 // Don't forget to close the sockets!

 close(serverSocket);

 printf("SERVER: Shutting down.\n");

}

Now, what about the client ? The client is structured very similarly. The socket is created the
same way. Instead of using bind() though, we use connect() … which has the same
parameters.

For the s_addr of the struct sockaddr_in, however, we will set it to inet_addr(“127.0.0.1”),
which is the local machine.

Here is the completed client code:

COMP2401 - Chapter 5 – Concurrent Computing Fall 2020

 - 216 -

Code from client.c

#include <stdio.h>

#include <stdlib.h>

#include <unistd.h>

#include <string.h>

#include <sys/socket.h>

#include <netinet/in.h>

#include <arpa/inet.h>

#define SERVER_IP "127.0.0.1"

#define SERVER_PORT 6000

int main() {

 int clientSocket;

 struct sockaddr_in serverAddress;

 int status, bytesRcv;

 char inStr[80]; // stores user input from keyboard

 char buffer[80]; // stores user input from keyboard

 // Create the client socket

 clientSocket = socket(AF_INET, SOCK_STREAM, IPPROTO_TCP);

 if (clientSocket < 0) {

 printf("*** CLIENT ERROR: Could not open socket.\n");

 exit(-1);

 }

 // Setup address

 memset(&serverAddress, 0, sizeof(serverAddress));

 serverAddress.sin_family = AF_INET;

 serverAddress.sin_addr.s_addr = inet_addr(SERVER_IP);

 serverAddress.sin_port = htons((unsigned short) SERVER_PORT);

 // Connect to server

 status = connect(clientSocket, (struct sockaddr *) &serverAddress,

 sizeof(serverAddress));

 if (status < 0) {

 printf("*** CLIENT ERROR: Could not connect.\n");

 exit(-1);

 }

 // Go into loop to commuincate with server now

 while (1) {

 // Get a command from the user

 printf("CLIENT: Enter command to send to server ... ");

 scanf("%s", inStr);

 // Send command string to server

 strcpy(buffer, inStr);

 printf("CLIENT: Sending \"%s\" to server.\n", buffer);

 send(clientSocket, buffer, strlen(buffer), 0);

 // Get response from server, should be "OK"

 bytesRcv = recv(clientSocket, buffer, 80, 0);

 buffer[bytesRcv] = 0; // put a 0 at the end so we can display the string

 printf("CLIENT: Got back response \"%s\" from server.\n", buffer);

COMP2401 - Chapter 5 – Concurrent Computing Fall 2020

 - 217 -

 if ((strcmp(inStr,"done") == 0) || (strcmp(inStr,"stop") == 0))

 break;

 }

 close(clientSocket); // Don't forget to close the socket !

 printf("CLIENT: Shutting down.\n");

}

As a minor detail, scanf() will not allow blanks to be entered. If you want that to be allowed,
use this instead of the scanf() line:

fgets(inStr, sizeof(inStr), stdin);

inStr[strlen(inStr)-1] = 0;

Now once we have these compiled, we can run the server in the background:

student@COMPBase:~$./server &

[5] 4242

student@COMPBase:~$

Once the server has been started and stopped a few times in our virtual environment, it is
sometimes not possible to run it right away. You may have to wait a bit before running it.
Once it is running, we can run the client. Here is an example of some output that you may
see. The client code is highlighted in one color, the server in another, and the user-entered
command in a third color:

student@COMPBase:~$./client

SERVER: Received client connection.

CLIENT: Enter command to send to server ... Hello

CLIENT: Sending "Hello" to server.

SERVER: Received client request: Hello

SERVER: Sending "OK" to client

CLIENT: Got back response "OK" from server.

CLIENT: Enter command to send to server ... Fun

CLIENT: Sending "Fun" to server.

SERVER: Received client request: Fun

SERVER: Sending "OK" to client

CLIENT: Got back response "OK" from server.

CLIENT: Enter command to send to server ... Bored

CLIENT: Sending "Bored" to server.

SERVER: Received client request: Bored

SERVER: Sending "OK" to client

CLIENT: Got back response "OK" from server.

CLIENT: Enter command to send to server ... done

CLIENT: Sending "done" to server.

SERVER: Received client request: done

SERVER: Sending "OK" to client

SERVER: Closing client connection.

CLIENT: Got back response "OK" from server.

CLIENT: Shutting down.

student@COMPBase:~$

COMP2401 - Chapter 5 – Concurrent Computing Fall 2020

 - 218 -

At this point, the client has stopped and the server is still running. We can run the client again
and it will work with the server. Here is an example where we tell the server to stop:

student@COMPBase:~$./client

SERVER: Received client connection.

CLIENT: Enter command to send to server ... ItsMeAgain

CLIENT: Sending "ItsMeAgain" to server.

SERVER: Received client request: ItsMeAgain

SERVER: Sending "OK" to client

CLIENT: Got back response "OK" from server.

CLIENT: Enter command to send to server ... stop

CLIENT: Sending "stop" to server.

SERVER: Received client request: stop

SERVER: Sending "OK" to client

SERVER: Closing client connection.

SERVER: Shutting down.

CLIENT: Got back response "OK" from server.

CLIENT: Shutting down.

[5]+ Done ./server

student@COMPBase:~$

At this point, the server has also shut down.

There is more to learn about client/server communications and socket connections. Feel free
to look up more information on your own. For example, we can add some code to the server
that will display the IP address of the client as follows:

char *s = inet_ntoa(clientAddr.sin_addr);

printf("IP address: %s\n", s);

This will display the client’s IP address, which in our example is 127.0.0.1.

Client Server Model - UDP

Let us now consider the UDP model for client/server communications.

The UDP server’s socket is created in the same way as the TCP server,
except that we use IPPROTO_UDP in place of IPPROTO_TCP:

serverSocket = socket(AF_INET, SOCK_STREAM, IPPROTO_UDP);

The server socket is then bound to its own IP address and port number in
the same way by using the bind() function. There is no need to use the
listen() function, since we are not setting up a one-to-one communication
with anyone. We will simply be accepting whatever packets come in,
regardless of who they are from.

Similar to TCP, the server should go into an infinite loop to accept incoming requests.

COMP2401 - Chapter 5 – Concurrent Computing Fall 2020

 - 219 -

When using a UDP server, incoming information from a client socket will make use of what is
known as a file descriptor:

A file descriptor is an integer ID (i.e., handle) used to access a file or other input/output

resource, such as a pipe or network socket.

In order to receive an incoming packet, we need to use the select() function, which will allow
us to be notified when an incoming packet is available, or if a “time out” has occurred if things
are taking too long. It allows us to accept packets from more than one socket (i.e., multiple
clients). For this reason, we cannot simply just call a read command for a particular socket,
otherwise our code would lock-up waiting on only one socket channel.

The select() function has this format:

select(<numDescriptors>, <readFDS>, <writeFDS>, <exceptFDS>, <timeout>)

Here, <numDescriptors> is the number of file descriptors (i.e., potential clients) that we’d like to
check for. The usual value is FD_SETSIZE … which is the maximum number possible.

The <readFDS> and <writeFDS> are the sets of file descriptors (i.e., sockets) that are ready
for reading and writing, respectively. The <exceptFDS> are the file descriptors checked for
exceptional conditions … we will set this to NULL in our examples. These are structures of
type fd_set.

For the <readFDS> and <writeFDS>, we use the
following macros to clear and set them for the socket.
Here, we see that the given socket is added to the set
readfds … meaning we would like to be able to read from
this socket. →

int socket;

fd_set readfds;

FD_ZERO(&readfds);

FD_SET(socket, &readfds);

Regarding the <timeout>, this is a struct timeval type. If set to NULL, the select() function
will block and wait indefinitely until a client packet comes in. It is the easiest option to use.
Otherwise, we can set the <timeout> to {0,0} if we don’t want to wait at all. We will not discus
the timeout any further in this course.

The select() function will return 0 if a timeout occurred, -1 if an error occurred … or a positive
value otherwise. To read in the client request packet, we use the recvfrom() function which
has this format:

 recvfrom(<socket>, <buffer>, <bufLen>, <flags>, <clientAddr * >, <clientAddrLength * >)

The <socket> is the value returned from the socket() function. As with the TCP example, the
<buffer> and <bufLen> work the same way. We will not discuss the <flags> here … but will set
them to 0. The <clientAddr * > is the address to a struct sockaddr as with the TCP example
and the <clientAddrLength * > is the address of an int that holds the sizeof(<clientAddr>).
The recvfrom() function returns the number of bytes received from the socket. We can do
what we want with the buffer data at this point.

COMP2401 - Chapter 5 – Concurrent Computing Fall 2020

 - 220 -

To send something back to the client, we use the sendto() function which has this format:

sendto(<socket>, <buffer>, <bufLen>, <flags>, <clientAddr * >, <clientAddrLength>)

The idea is the same … but the clientAddrLength is not a pointer now. We simply set up the
buffer that we want to send and send it. Here is the pseudocode for setting up the server:

Open the socket

Bind the socket

while (true) {

 Select a socket request

 Receive the buffer from the client

 Process the request

 Send a response to the client

}

Close server socket

Here is the code for the server in its entirety:

Code from udpServer.c

#include <stdio.h>

#include <stdlib.h>

#include <unistd.h>

#include <string.h>

#include <sys/socket.h>

#include <netinet/in.h>

#define SERVER_PORT 6000

int main() {

 int serverSocket;

 struct sockaddr_in serverAddr, clientAddr;

 int status, addrSize, bytesReceived;

 fd_set readfds, writefds;

 char buffer[30];

 char *response = "OK";

 // Create the server socket

 serverSocket = socket(AF_INET, SOCK_DGRAM, IPPROTO_UDP);

 if (serverSocket < 0) {

 printf("*** SERVER ERROR: Could not open socket.\n");

 exit(-1);

 }

 // Setup the server address

 memset(&serverAddr, 0, sizeof(serverAddr)); // zeros the struct

 serverAddr.sin_family = AF_INET;

 serverAddr.sin_addr.s_addr = htonl(INADDR_ANY);

 serverAddr.sin_port = htons((unsigned short) SERVER_PORT);

 // Bind the server socket

 status = bind(serverSocket,(struct sockaddr *)&serverAddr, sizeof(serverAddr));

COMP2401 - Chapter 5 – Concurrent Computing Fall 2020

 - 221 -

 if (status < 0) {

 printf("*** SERVER ERROR: Could not bind socket.\n");

 exit(-1);

 }

 // Wait for clients now

 while (1) {

 FD_ZERO(&readfds);

 FD_SET(serverSocket, &readfds);

 FD_ZERO(&writefds);

 FD_SET(serverSocket, &writefds);

 status = select(FD_SETSIZE, &readfds, &writefds, NULL, NULL);

 if (status == 0) { // Timeout occurred, no client ready

 }

 else if (status < 0) {

 printf("*** SERVER ERROR: Could not select socket.\n");

 exit(-1);

 }

 else {

 addrSize = sizeof(clientAddr);

 bytesReceived = recvfrom(serverSocket, buffer, sizeof(buffer),

 0, (struct sockaddr *) &clientAddr, &addrSize);

 if (bytesReceived > 0) {

 buffer[bytesReceived] = '\0';

 printf("SERVER: Received client request: %s\n", buffer);

 }

 // Respond with an "OK" message

 printf("SERVER: Sending \"%s\" to client\n", response);

 sendto(serverSocket, response, strlen(response), 0,

 (struct sockaddr *) &clientAddr, addrSize);

 // If the client said to stop, then I'll stop myself

 if (strcmp(buffer, "stop") == 0)

 break;

 }

 }

}

Now what about the client ? The socket is set up in the same way. The sendto() and
recvfrom() functions are also used, just as with the server. Here is the completed code:

Code from udpClient.c

#include <stdio.h>

#include <stdlib.h>

#include <unistd.h>

#include <string.h>

#include <sys/socket.h>

#include <netinet/in.h>

#include <arpa/inet.h>

#define SERVER_IP "127.0.0.1"

#define SERVER_PORT 6000

int main() {

 int clientSocket, addrSize, bytesReceived;

When select() exits, each of the file descriptor
sets is modified to indicate which file descriptors
actually changed status. So, when using
select() within a loop, the sets must be
reinitialized before each call to select().

COMP2401 - Chapter 5 – Concurrent Computing Fall 2020

 - 222 -

 struct sockaddr_in serverAddr;

 char inStr[80]; // stores user input from keyboard

 char buffer[80]; // stores sent and received data

 // Create socket

 clientSocket = socket(PF_INET, SOCK_DGRAM, IPPROTO_UDP);

 if (clientSocket < 0) {

 printf("*** CLIENT ERROR: Could open socket.\n");

 exit(-1);

 }

 // Setup address

 memset(&serverAddr, 0, sizeof(serverAddr));

 serverAddr.sin_family = AF_INET;

 serverAddr.sin_addr.s_addr = inet_addr(SERVER_IP);

 serverAddr.sin_port = htons((unsigned short) SERVER_PORT);

 // Go into loop to commuincate with server now

 while (1) {

 addrSize = sizeof(serverAddr);

 // Get a command from the user

 printf("CLIENT: Enter command to send to server ... ");

 scanf("%s", inStr);

 // Send command string to server

 strcpy(buffer, inStr);

 printf("CLIENT: Sending \"%s\" to server.\n", buffer);

 sendto(clientSocket, buffer, strlen(buffer), 0,

 (struct sockaddr *) &serverAddr, addrSize);

 // Get response from server, should be "OK"

 bytesReceived = recvfrom(clientSocket, buffer, 80, 0,

 (struct sockaddr *) &serverAddr, &addrSize);

 buffer[bytesReceived] = 0; // put a 0 at the end so we can display the string

 printf("CLIENT: Got back response \"%s\" from server.\n", buffer);

 if ((strcmp(inStr,"done") == 0) || (strcmp(inStr,"stop") == 0))

 break;

 }

 close(clientSocket); // Don't forget to close the socket !

 printf("CLIENT: Shutting down.\n");

}

Assuming that the udpServer has been started, the output is as follows:

student@COMPBase:~$./udpClient

CLIENT: Enter command to send to server ... Hello

CLIENT: Sending "Hello" to server.

SERVER: Received client request: Hello

SERVER: Sending "OK" to client

CLIENT: Got back response "OK" from server.

CLIENT: Enter command to send to server ... Fun

CLIENT: Sending "Fun" to server.

SERVER: Received client request: Fun

SERVER: Sending "OK" to client

COMP2401 - Chapter 5 – Concurrent Computing Fall 2020

 - 223 -

CLIENT: Got back response "OK" from server.

CLIENT: Enter command to send to server ... stop

CLIENT: Sending "stop" to server.

SERVER: Received client request: stop

SERVER: Sending "OK" to client

SERVER: Shutting down.

CLIENT: Got back response "OK" from server.

CLIENT: Shutting down.

[3]+ Done ./udpServer

student@COMPBase:~$

 5.4 Threads

We have discussed, in detail, the C-language mechanisms that allow two
processes to communicate on the same host or over a network, where
the processes are running simultaneously. There are many issues that
we have not discussed which pertain to distributed computing, as this
course just provides an introduction to systems programming. Likely,
you can perceive by now that the code for handling timing and resource

sharing can get tricky and much
more complicated as more and
more processes are added to
the software framework. A
simpler way to manage
separate tasks is to use
threads:

A thread is a sequence of programmed instructions

that can be managed independently by the operating
system

Threads are similar to processes in that they
“logically” run separate tasks simultaneously. They
are used for smaller tasks, as oposed to larger ones.
Multiple threads can be running within a single
process. However, only one thread’s instructions
can actually be executed at a time by the CPU. The
threads all share the CPU processing time, often in a
round-robin fashion (i.e., everyone gets their turn).
Since the threads each run separately on the CPU,
this greatly simplifies the likelihood of race conditions
and deadlocks occurring, although if we are not
careful, we may still end up with poor code that
causes these situations to occur.

COMP2401 - Chapter 5 – Concurrent Computing Fall 2020

 - 224 -

Similar to the fork() command, which spawns new processes, threads can be created from the
main program thread or from other created threads.

As far as the logic is concerned, the threads can be considered as all running “in parallel” and
are scheduled automatically by the operating system kernel. Switching between threads is
faster than switching between processes.

Each thread runs as a separate program. They have a unique thread context (i.e., resources)
that includes:

• Thread ID – a unique ID.

• Function call stack – keeps track of function call ordering, parameters, and variables.

• Program counter – keeps track of program instruction that is currently executing.

One very nice feature of threads is that all threads belonging to the same process share:

• Address space

• Data segment (i.e., global variables and allocated heap memory)

• Code segment (i.e., program instructions)

That means, the value of a global variable at any point in time is the same across all threads
and that any thread can access and modify it.

To create a thread, we us the pthread_create() function which is defined in the <pthread.h>
header file. It takes these 4 parameters:

1. A pointer to a pthread_t variable, which stores an integer representing the handle (i.e.,
ID) of the newly-created thread (we pass a pointer so that the variable can be set by the function).

2. Some attributes that can de used by the thread (we will use NULL to indicate defaults).

3. A pointer to a start function that will be called to start the thread.

4. A single parameter that can be passed to the start function.

To stop/terminate a thread, pthread_exit(void *status) can be called, where status will end up
being the return value of the thread. Alternatively, one thread can wait for the termination of
another thread by using the pthread_join(pthread_t thread, void **status) function which
specifies which thread to wait for and also allows a value to be returned in the status pointer,
although we will use NULL in our examples.

Consider this simple example that creates 3 threads and allows them to run for 4, 8 and 2
seconds, respectively. The main program keeps running and waits for thread 1 to complete,
then for thread 2 to complete and then for thread 3 to complete (which had already completed).

COMP2401 - Chapter 5 – Concurrent Computing Fall 2020

 - 225 -

Code from thread.c

#include <stdio.h>

#include <unistd.h>

#include <pthread.h>

void *printMsg(void *);

int times[] = {4, 8, 2}; // # of seconds for each thread to run

int main() {

 pthread_t t1, t2, t3;

 pthread_create(&t1, NULL, printMsg, "1");

 pthread_create(&t2, NULL, printMsg, "2");

 pthread_create(&t3, NULL, printMsg, "3");

 printf("\nThreads all created. \nWaiting for Thread 1 now ...\n");

 pthread_join(t1, NULL);

 printf("\nThread 1 is back. \nWaiting for Thread 2 now ...\n");

 pthread_join(t2, NULL);

 printf("Thread 2 is back. \nWaiting for Thread 3 now ...\n");

 pthread_join(t3, NULL);

 printf("Thread 3 is back. \nTime to quit.\n");

}

// Function called at the start of each thread

void *printMsg(void *str) {

 char threadNum = ((char *)str)[0] – '0';

 for (int i=0; i<times[threadNum-1]; i++) {

 for (int j=0; j<threadNum; j++) // indent a bit for visual clarity

 printf(" ");

 printf("Thread %d \n", threadNum);

 sleep(1);

 }

}

To compile/link this program we have to include the pthread
library, so we add -lpthread to the gcc command line as
follows:

student@COMPBase:~$

gcc -o thread thread.c -lpthread

student@COMPBase:~$

The expected output is show here on the right →

Make sure that you understand the output.

Notice how thread 3 stopped fairly quickly … just after 2
seconds … and thread 1 just after 4 seconds.

Threads all created.

Waiting for Thread 1 now ...

 Thread 3

 Thread 2

 Thread 1

 Thread 3

 Thread 2

 Thread 1

 Thread 2

 Thread 1

 Thread 2

 Thread 1

 Thread 2

Thread 1 is back.

Waiting for Thread 2 now ...

 Thread 2

 Thread 2

 Thread 2

Thread 2 is back.

Waiting for Thread 3 now ...

Thread 3 is back.

Time to quit.

COMP2401 - Chapter 5 – Concurrent Computing Fall 2020

 - 226 -

Of course, it can be a problem if two threads attempt to modify
the same data at the same time. The results will be
unpredictable because we don’t know which thread will modify it
first as it depends when the CPU decides to give each thread its
share of CPU time. Therefore, if one thread is in the middle of
updating a variable and another comes along and tries to update
the variable as well, the update may not work as desired.

Consider a single integer variable, called count with an initial value of 0. Assume that two
threads attempt to update the variable by adding one to it as follows: count = count + 1. If
both threads run one after the other, then there is no issue since each will increase the count
by one and count will have the value of 2. However, let’s break down the simple line of code.
In order to increase the count variable, the following must occur:

1. Read the count variable.
2. Add 1 to its value.
3. Store the new value back into the count variable.

Since there are three stages to this simple operation, it is not atomic (i.e., smallest level …
unable to be split any further). So, there is potential for corruption when multiple
threads/processes are modifying the variable. Consider what happens if one thread performs
step 1 … reading a value of 0 for the count … and then a context switch happens (i.e., the
thread pauses and the other thread is given CPU control). What will happen ? The second
thread will perform step 1 and read a value of 0 for the count as well. Then suppose the
second thread completes its steps 2 and 3, thereby setting the count variable to 1. Now
suppose control goes back to the first thread, which will continue on to step 2. It has already
read the value of the count variable (from before the context switch) which had a value of 0.
So it will perform steps 2 and 3 to increase that value to 1 and then store the value of 1 into the
count variable. So, the result is that count has the value of 1 despite the fact that both had
increased the value by 1! Therefore, the value is 1 instead of 2, which is wrong. Of course,
sometimes, the first thread will complete all three steps before a context switch. So, it is
possible that the count will be updated to 2 correctly. But this really is very unpredictable, as
there is no certainty as to when the context switch will occur.

Here is a diagram showing two threads, each attempting to increase a shared count variable
by 1 for 5 iterations. In this instance, the context switch happens nicely (i.e., ideally) after
each three-line chunk of code. You can see that the count variable is updated properly the
whole time such that it reaches the correct count of 10.

COMP2401 - Chapter 5 – Concurrent Computing Fall 2020

 - 227 -

COMP2401 - Chapter 5 – Concurrent Computing Fall 2020

 - 228 -

Now here is the same example with the context switching happening after every 4 lines of
code. You will notice that the count variable is not properly updated each time so that the
count is not 10 at completion. This is a more realistic example. However, the context
switching does not happen at nice clean intervals like this. It could vary each time. Therefore,
it is impossible to predict the final value for count.

Here is some code that verifies this problem:

COMP2401 - Chapter 5 – Concurrent Computing Fall 2020

 - 229 -

Code from badThread.c

#include <stdio.h>

#include <pthread.h>

void *threadFunc(void *);

int count = 0;

int main() {

 int numInc = 100000000; // count to 100 million

 pthread_t t1, t2;

 pthread_create(&t1, NULL, threadFunc, &numInc);

 pthread_create(&t2, NULL, threadFunc, &numInc);

 pthread_join(t1, NULL);

 pthread_join(t2, NULL);

 if (count != (2 * numInc))

 printf("Error: Count is %d instead of 200,000,000.\n", count);

 else

 printf("Count is %d, which is correct.\n", count);

 return(0);

}

// Function to increase count variable by amount specified by arg

void *threadFunc(void *arg) {

 int inc = *((int *)arg);

 for (int i=0; i<inc; i++)

 count++;

 return(0);

}

Notice that when we run it, we get a different result each time … proving that the result is
unpredictable:

student@COMPBase:~$ gcc -o badThread badThread.c -lpthread

student@COMPBase:~$./badThread
Error: Count is 197308945 instead of 200,000,000.

student@COMPBase:~$./badThread

Error: Count is 190625336 instead of 200,000,000.

student@COMPBase:~$./badThread

Error: Count is 196187270 instead of 200,000,000.

student@COMPBase:~$

So, how do we fix the problem ?

A solution is to protect all shared data. We can also make sure that changes are made at the
atomic level. The two mechanisms that we use to protect shared data are (1) the semaphore
and (2) the mutex … which were both described earlier in this chapter.

COMP2401 - Chapter 5 – Concurrent Computing Fall 2020

 - 230 -

The semaphore acts as a locking mechanism to prevent other threads from
accessing or modifying a resource (e.g., variable) at the same time. While the
resource is locked, other threads are waiting. Once unlocked, there is no
guarantee as to which thread gets to have access next. In our example, we
need to use a semaphore to coordinate the sharing of the count variable.
What we need to do is to “lock” the usage of the count variable by one thread
until the read+increase+write operations have all completed so that there is no
interference in between.

The semaphore itself is actually a counter as well. We typically set it to some non-zero initial
value. A thread can have access to the shared resource as long as the value of the
semaphore is greater than zero. A mutex is a binary semaphore, with a value of 0 or 1. Only
one thread can access it at a time. In our example, we will use a simple mutex semaphore
which will have a value of 1 (indicating that the resource is unlocked and available) or 0
(indicating that the resource is locked and being used).

A semaphore is defined as a sem_t type and we need to include the <semaphore.h> header
in our code in order to use it. The first function that we need to call is sem_init() which allows
us to initialize the semaphore:

sem_t semaphore;

sem_init(&semaphore, 0, 1);

In the above code, the semaphore is initially given a value of 1 as the third parameter to the
function. The second parameter has a value of 0, indicating that the semaphore will just be
used between threads, as opposed to between multiple processes. If the function returns a
negative value, then something went wrong (e.g., the value exceeds SEM_VALUE_MAX, the
limit on the number of semaphores has been reached, process does not have privileges, etc.).

When a thread is ready to use the shared resource (e.g., the count++ line of code), then it
must “surround that code” with code beforehand to wait on the semaphore and code
afterwards to release the semaphore.

The sem_wait(&semaphore) function is used to wait on the semaphore. That

is, when we call it, our code waits there until it is this thread’s turn to use the
shared resource. The function returns -1 if the wait fails (e.g., semaphore
already locked, deadlock has been detected, a signal interrupted, or the
parameter is invalid) … otherwise 0 is returned. This function decrements the
value of the semaphore. If the value of the semaphore is zero, it waits until it is
non-zero.

The sem_post(&semaphore) function is used to release the lock on a

semaphore so that others can use the resource. It fails only if the parameter is
invalid, in which case -1 is returned … otherwise 0 is returned. This function
increments the semaphore’s value.

COMP2401 - Chapter 5 – Concurrent Computing Fall 2020

 - 231 -

Here is the updated code that will work properly to increase the count via the two threads:

Code from semaphore.c

#include <stdio.h>

#include <stdlib.h>

#include <pthread.h>

#include <semaphore.h>

void *threadFunc(void *);

volatile int count = 0;

sem_t mutex;

int main() {

 int numInc = 100000000; // count to 100 million

 pthread_t t1, t2;

 if (sem_init(&mutex, 0, 1) < 0) {

 printf("Error: on semaphore init.\n");

 exit(1);

 }

 pthread_create(&t1, NULL, threadFunc, &numInc);

 pthread_create(&t2, NULL, threadFunc, &numInc);

 pthread_join(t1, NULL);

 pthread_join(t2, NULL);

 if (count != (2 * numInc))

 printf("Error: Count is %d instead of 200,000,000.\n", count);

 else

 printf("Count is %d, which is correct.\n", count);

}

// Function to increase count variable by amount specified by arg

void *threadFunc(void *arg) {

 int inc = *((int *)arg);

 for (int i=0; i<inc; i++) {

 if (sem_wait(&mutex) < 0) {

 printf("Error: on semaphore wait.\n");

 exit(1);

 }

 count++;

 if (sem_post(&mutex) < 0) {

 printf("Error: on semaphore post.\n");

 exit(1);

 }

 }

 return(0);

}

Notice how the sem_wait() and sem_post() functions wrap around the count++ statement.
This is how we lock use of that shared resource.

COMP2401 - Chapter 5 – Concurrent Computing Fall 2020

 - 232 -

Notice also that the keyword volatile is used in the declaration of the count variable. This is
a special keyword in C that indicates that the value of the count variable could change
unexpectedly. The volatile keyword should ALWAYS be used when global variables are
accessed by multiple tasks in a multi-threaded application. The reason is that the compiler
needs to know that it will be accessed/modified by multiple threads in order to prevent the
compiler optimization from introducing unexpected behavior.

What is the result when we run the code ? It runs slower (because there is a lot of
locking/waiting going on by the threads. However, the code produces the correct result:

student@COMPBase:~$ gcc -o semaphore semaphore.c -lpthread

student@COMPBase:~$./semaphore
Count is 200000000, which is correct.

student@COMPBase:~$

A Client/Server Example

Just for fun … let us see if we can create a client/server example similar to what we did before
… but by using threads instead of processes. To do this, we will create a server thread and
also three client threads. So our main function will look as follows:

void *runClient(void *num); // We will write this

void *runServer(void *notUsed); // We will write this

int main() {

 pthread_t serverThread;

 pthread_t client[3];

 // Start the server

 pthread_create(&serverThread, NULL, runServer, NULL);

 // Start up 3 client threads

 pthread_create(&client[0], NULL, runClient, "1");

 pthread_create(&client[1], NULL, runClient, "2");

 pthread_create(&client[2], NULL, runClient, "3");

 // Wait for the server to come back

 pthread_join(serverThread, NULL);

}

Notice that it will start a runServer thread and then each runClient thread with it’s own
number as a parameter passed in. It looks very similar to our previous code. The join
function at the end will make sure that the main function does not complete until the
runServer has completed and rejoined the main thread.

So then, what do the server and client do ? Well, in our previous example, we had the client
send commands based on what the user entered through the keyboard. This time, we will
have the clients send 4 fixed command strings and then quit. We will set it up so that the
clients connect to the server, exchange data, and then rest for a bit (i.e., sleep for some
random amount of time) in order to let other clients get in on the action.

COMP2401 - Chapter 5 – Concurrent Computing Fall 2020

 - 233 -

But since we are not using sockets or official connections … how does the server
communicate with the clients? Well, because they are all threads running in the same
process and share the same address space … we can have them share the same data
buffers. We will set up one buffer for sending and another for receiving:

#define BUFFER_SIZE 30

char requestBuffer[BUFFER_SIZE]; // data from client to server

char responseBuffer[BUFFER_SIZE]; // data from server to client

The clients will fill in the requestBuffer and the server will read it. The server will then fill in
the responseBuffer and the client will read that one. We will likely want to have a way of
telling the server that we have finished filling in the requestBuffer. A simple way to do this is
to make a binary flag. We can use another one for the server to inform the client that the
responseBuffer is ready. We will add these for that purpose:

char requestReady = 0; // flag to tell server that request is ready

char responseReady = 0; // flag to tell client that response is ready

Now, we are ready to write the server. It should run forever, or at least until told to STOP.
Notice how logical the code below is:

void *runServer(void *notUsed) {

 while (1) {

 // Wait for an incoming client request

 while (requestReady == 0); // wait for a request

 // Get/Receive the message from the client into the char buffer

 requestReady = 0; // reset for next time

 printf("SERVER: Received client request: %s\n", requestBuffer);

 // Respond with an "OK" message

 responseBuffer[0] = requestBuffer[0];

 strcpy(responseBuffer+1, "ok\0");

 printf("SERVER: Sending \"%s\" to client\n", responseBuffer);

 responseReady = 1;

 // Quit if someone sent a STOP command

 if (strcmp(&requestBuffer[1], "STOP") == 0)

 break;

 }

 printf("SERVER: Shutting down.\n");

}

First of all, the code loops (i.e., server thread runs) until a STOP message has been received.
Inside the loop, we first wait for a client request by examining the requestReady flag. As
soon as it becomes 1, we know that the client has set up his/her message in the
requestBuffer. We reset it back to 0 right away (so that we don’t forget) for the next request.
Then the request is printed and a response is set up. We will assume that the first character
of the client request is the single-digit client id (for our example only). We will copy this into our
response so that client 1 gets a response of “1ok”, client 2 gets “2ok” etc… Once the
response is ready to go, we set the responseReady flag to tell the client.

COMP2401 - Chapter 5 – Concurrent Computing Fall 2020

 - 234 -

So now just the runClient remains to be written. We need to make sure that only one client is
using the buffers at a time. So what we will do, is set up a simple mutex semaphore that
allows only one client to communicate with the server at a time:

sem_t serverBusyIndicator;

This, of course, needs to be initialized in our main function:

sem_init(&serverBusyIndicator, 0, 1);

Now we can write the runClient function. Let us write it without the semaphore first. We will
set the following global variable up to store the commands to be sent:

 #define NUM_COMMANDS 4

 char *clientCommands[NUM_COMMANDS] = {"Hello ","Funny","Stuff","STOP"};

Then we will set the client up to send all 4 commands in a loop:

void *runClient(void *num) {

 int command = 0;

 while (command < NUM_COMMANDS) {

 // Send command string to server

 requestBuffer[0] = ((char *)num)[0];

 strcpy(requestBuffer+1, clientCommands[command++]);

 printf("CLIENT: Sending \"%s\" to server.\n", requestBuffer);

 requestReady = 1;

 // Get response from server, should be "OK"

 while (responseReady == 0); // wait for a response

 printf("CLIENT: Got back response \"%s\" from server.\n\n",

 responseBuffer);

 responseReady = 0;

 // Sleep from 0 to 4 seconds randomly

 sleep((int)(rand()/(double)RAND_MAX*5));

 }

}

The code is straight forward, isn’t it? Notice that we are using the first character in the
incoming function parameter and appending it to the start of the requestBuffer so that the
server knows which client this is. The buffers and flags are used the same way as with the
server. After a send and receive is done, the client waits for a random number of seconds
before sending the next command.

Now what do we do with the semaphore? Well, the client should only try to access the
requestBuffer when no other clients are using it … when the semaphore is free. So we need
to wrap this code up using semaphore wait and post calls as follows:

COMP2401 - Chapter 5 – Concurrent Computing Fall 2020

 - 235 -

void *runClient(void *num) {

 int command = 0;

 while (command < NUM_COMMANDS) {

 // Wait for the server

 sem_wait(&serverBusyIndicator);

 // Send command string to server

 requestBuffer[0] = ((char *)num)[0];

 strcpy(requestBuffer+1, clientCommands[command++]);

 printf("CLIENT: Sending \"%s\" to server.\n", requestBuffer);

 requestReady = 1;

 // Get response from server, should be "OK"

 while (responseReady == 0); // wait for a response

 printf("CLIENT: Got back response \"%s\" from server.\n\n",

 responseBuffer);

 responseReady = 0;

 // Tell the server we are done

 sem_post(&serverBusyIndicator);

 // Sleep from 0 to 4 seconds randomly

 sleep((int)(rand()/(double)RAND_MAX*5));

 }

}

That is it! We are done. Here is the completed code:

Code from csThreadExample.c

#include <stdio.h>

#include <stdlib.h>

#include <unistd.h>

#include <string.h>

#include <pthread.h>

#include <time.h>

#include <semaphore.h>

#define NUM_COMMANDS 4

#define BUFFER_SIZE 30

// This will be used to ensure that only one client communicates with

// the server at a time, so that the variables below are used properly

sem_t serverBusyIndicator;

// These are the variables used to pass data between threads

char requestBuffer[BUFFER_SIZE]; // data from client to server

char responseBuffer[BUFFER_SIZE]; // data from server to client

char requestReady = 0; // flag to tell server that request is ready

char responseReady = 0; // flag to tell client that response is ready

COMP2401 - Chapter 5 – Concurrent Computing Fall 2020

 - 236 -

// These are the commands sent from each client

char *clientCommands[NUM_COMMANDS] = {"Hello ", "Funny", "Stuff", "STOP"};

// Set up the client so that it sends 4 commands

void *runClient(void *num) {

 int command = 0;

 // Go into infinite loop to communicate with server now

 while (command < NUM_COMMANDS) {

 // Wait for the server

 sem_wait(&serverBusyIndicator);

 // Send command string to server

 requestBuffer[0] = ((char *)num)[0];

 strcpy(requestBuffer+1, clientCommands[command++]);

 printf("CLIENT: Sending \"%s\" to server.\n", requestBuffer);

 requestReady = 1;

 // Get response from server, should be "OK"

 while (responseReady == 0); // wait for a response

 printf("CLIENT: Got back response \"%s\" from server.\n\n", responseBuffer);

 responseReady = 0;

 // Tell the server we are done

 sem_post(&serverBusyIndicator);

 // Sleep from 0 to 4 seconds randomly

 sleep((int)(rand()/(double)RAND_MAX*5));

 }

}

void *runServer(void *notUsed) {

 // repeat forever

 while (1) {

 // Wait for an incoming client request

 while (requestReady == 0); // wait for a request

 // Get/Receive the message from the client into the char buffer

 requestReady = 0; // reset for next time

 printf("SERVER: Received client request: %s\n", requestBuffer);

 // Respond with an "OK" message

 responseBuffer[0] = requestBuffer[0];

 strcpy(responseBuffer+1, "OK\0");

 printf("SERVER: Sending \"%s\" to client\n", responseBuffer);

 responseReady = 1;

 // Quit if someone sent a STOP command

 if (strcmp(&requestBuffer[1], "STOP") == 0)

 break;

 }

 printf("SERVER: Shutting down.\n");

}

COMP2401 - Chapter 5 – Concurrent Computing Fall 2020

 - 237 -

// This main function starts a server and then three clients.

int main() {

 pthread_t serverThread;

 pthread_t client[3];

 srand(time(NULL));

 // Initialize semaphore

 sem_init(&serverBusyIndicator, 0, 1);

 // Start the server

 pthread_create(&serverThread, NULL, runServer, NULL);

 // Start up 3 client threads

 pthread_create(&client[0], NULL, runClient, "1");

 pthread_create(&client[1], NULL, runClient, "2");

 pthread_create(&client[2], NULL, runClient, "3");

 // Wait for the server to come back

 pthread_join(serverThread, NULL);

}

Remember to include the -lpthread library
when compiling.

The output (although it will vary due to the
randomness) is as shown here on the right →

Notice that in this particular run, the first client
did not get to send all his/her requests
because client 2 stopped the server.

CLIENT: Sending "3Hello " to server.

SERVER: Received client request: 3Hello

SERVER: Sending "3OK" to client

CLIENT: Got back response "3OK" from server.

CLIENT: Sending "2Hello " to server.

SERVER: Received client request: 2Hello

SERVER: Sending "2OK" to client

CLIENT: Got back response "2OK" from server.

CLIENT: Sending "1Hello " to server.

SERVER: Received client request: 1Hello

SERVER: Sending "1OK" to client

CLIENT: Got back response "1OK" from server.

CLIENT: Sending "2Funny" to server.

SERVER: Received client request: 2Funny

SERVER: Sending "2OK" to client

CLIENT: Got back response "2OK" from server.

CLIENT: Sending "2Stuff" to server.

SERVER: Received client request: 2Stuff

SERVER: Sending "2OK" to client

CLIENT: Got back response "2OK" from server.

CLIENT: Sending "3Funny" to server.

SERVER: Received client request: 3Funny

SERVER: Sending "3OK" to client

CLIENT: Got back response "3OK" from server.

CLIENT: Sending "3Stuff" to server.

SERVER: Received client request: 3Stuff

SERVER: Sending "3OK" to client

CLIENT: Got back response "3OK" from server.

CLIENT: Sending "1Funny" to server.

SERVER: Received client request: 1Funny

SERVER: Sending "1OK" to client

CLIENT: Got back response "1OK" from server.

CLIENT: Sending "2STOP" to server.

SERVER: Received client request: 2STOP

SERVER: Sending "2OK" to client

SERVER: Shutting down.

