
 

Chapter 5 

Concurrent Computing 
 

 

What is in This Chapter ? 

This chapter will introduce you to the basics of concurrent computing.   We first discuss some 
types of concurrent systems and a few issues/concerns that we must be aware of when 
having more than one task being performed at the same time.   We then discuss process 
management at the unix shell level and then at the programming level, with functions like 
fork(), exec(), wait() and system() calls.   The next section discusses inter-process 
communication (IPC) and the use of signals to inform other processes when tasks are 
complete.   The use of TCP sockets and Datagram sockets are then discussed as they 
pertain to client/server models.  Finally, threads are discussed, along with the need to use 
semaphores & mutexes to facilitate proper resource-sharing. 
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 5.1 Concurrent Systems  

 
When we start out to learn how to program, we find it easiest to focus on one task at a time.   
That is, we imagine our program as being run by a single computer that simply follows the 
instructions that we give it, based on our source code.   It is challenging enough to learn how 
to program well with a single program. 
 
However, the real world is not so simple.   In reality, many things are happening all around us 
at the same time.  In English, the word concurrent means “occurring or operating at the same 
time”.   In computer science, the term concurrency implies that multiple programs (or 
processes) are working together at the same time … hopefully to accomplish some task faster.   
Here is a definition extracted from wikipedia: 
 

Concurrent computing is a form of computing in which several computations are 
executed during overlapping time periods (i.e., concurrently) instead of sequentially  
(i.e., one completing before the next starts). 

 
A large system makes use of concurrent computing when it is (a) multithreaded, (b) has 
multiple processes or (c) is distributed.  Here is a diagram showing all three.   A host computer 
may run multiple processes (i.e., programs) each working together to perform some task in the 
system.   A single process may have multiple threads running at the same time … all working 
together.   Finally, processes running on different machines on a network may be interacting 
together, forming a distributed system.  Usually, the user interacts with just one process. 
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We will examine each of these three forms of concurrency. 
 
Distributed Systems 
 
A distributed system is typically a large program that 
executes over multiple physical host machines.   Usually, 
these machines are in different locations, cities or even 
countries.   The interaction is over a network.   This network 
may be: 
 

• Intranet – a network internal to an organization 
 

• Internet – a public network, external to all organizations 
 

One interesting aspect about distributed computing is that each host machine has different 
resources.   That is, they may have different CPUs, different processing capabilities, different 
file systems, etc..    
 
It sounds a bit complicated (and slower?) to have different types of computers interacting over 
a network.  Why would anyone want to do distributed computing ?  Here are some reasons: 
 

• Speed: A single host may have insufficient processing power to complete a task in a 
reasonable time.   Having other hosts join in on the work … it will hasten task 
completion, as long as the amount of network communication is kept low. 
 

• Necessity: Often clients need to connect to servers which are in different physical 
locations.   Completing the task-at-hand may require connection to various servers to 
obtain database information, to record transactions, etc.. 

 

• Convenience: Users may need to connect to a host that is not in the same location. 
 
 
Multi-Process Systems 
 
A multi-process system is a system where multiple 
processes (i.e., executables) are running at the same time 
and communicating with one another to accomplish a task.   
The executables need not be unique.   There may even be  
multiple copies of the same program running. 
 
Each executable has its own independent control flow and 
virtual memory.  That is, it operates on its own, although it may rely on data and instructions 
from other processes in order to complete its individual task.   The operating system contains 
mechanisms that allow Inter-Process Communication (IPC) to allow processes to 
communicate, usually to have access to shared data. 
 
As with distributed systems, it may seem like we are complicating things by having multiple 
processes communicate through the operating system.   Why would anyone want to implement 
a multi-process system?    
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Here are a couple of reasons: 
 

• Simplifying:  Often there are many different tasks to perform which may be 
independent from one another.   It can be easier to schedule a different process for 
each task. 
 

• Resource Management:  Certain tasks can be “assigned to” a particular resource (e.g., 
client to communicate with user, server to handle requests, process to regulate access 
to database), reducing the need for multiple processes to access the same resources.  
As a result, the system can reduce bottlenecks and operate more efficiently. 

 
 
Multi-Threaded Systems 
 
A multi-threaded system is a single process with multiple 
control flows.  That is … multiple tasks are performed by the 
same CPU but they take turns by sharing the CPU’s 
processing time.   The threads share the same virtual 
memory, address space and resources as they operate in 
the same process.   There is a need at times to synchronize 
different threads in order to avoid race conditions and 
deadlocks. 
 
The idea of a multi-threaded system is similar to a multi-process system in that they are often 
used when different tasks are to be performed.   In the multi-threaded system, however, the 
tasks are usually dependent on each other.   The main advantage of using multiple threads is: 
 

• Simplicity: It is conceptually simpler to think of two tasks being done separately at the 
same time, even though they are sharing the CPU … taking turns to get their task done.     

 
Some situations where multi-threading is often beneficial is: 
 

• Handling user input.   One thread blocks and waits for incoming requests, while 
another thread processes requests that have already come in. 
 

• Quick refresh.   Sometimes it is nice to have a thread responsible for refreshing the 
user interface (e.g., graphics/animation) while the program continues processing. 

 

 
There are a few (potentially serious) issues that may arise when doing concurrency.  As a 
result, it can be more difficult to write software for concurrent systems.   It can also be difficult 
to debug concurrent systems.    
 
Here are some of these issues: 
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1. Shared Resources.   Multiple process (or threads) will at 
times need the same resource.  There needs to be some 
coordination rules so that this sharing takes place decently 
and respectfully.   Typically, shared resources are files and 
variables.   
  

• When accessing a file, it can be “locked” for use by one process/thread so that 
others cannot access it while it is in use.  Of course, a process/thread that “hogs” a 
file resource can be slowing down the system if not careful.   
 

• When accessing a shared variable, a semaphore or mutex can be used: 
 

A mutex (mutual exclusion object) is a program object that is created so that 

multiple program threads can take turns sharing the same resource, such as 
access to a file.  Only the thread that locked or acquired the mutex can unlock it. 
 

A semaphore is a variable used to control access to a common resource by 

multiple processes.    It is a generalization of a mutex.   A thread waiting on a 
semaphore can be signaled by a different thread so that it can have access. 

 
2. Deadlocks.  This is a condition that can occur which is 

similar to the notion of a traffic jam.   It is a condition in which 
multiple threads/processes are blocked … all waiting for a 
condition that will never occur.   It is always due to improper 
handling of semaphores or mutexes.   Careful system design 
will reduce the likelihood of deadlocks occurring, although 
sometimes deadlocks occur due to unforeseen situations 
inherent to the problem at hand.  
 

3. Race Conditions.  This is a timing problem in which the 
correctness of a program depends on one thread reaching a 
point in control flow before another thread.  That is, some 
things have gotten out of order.   You can imagine the 
scenario, for example, of trying to process data before it has 
been completely entered.  Sometimes we have to handle such 
potential problems because the order that things are 
processed in is never guaranteed. 
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 5.2 Process Management  
 
Recall that a process is a running executable (e.g., a running program).   Processes are 
managed by the operating system.  
 

Process Management involves allocating resources to processes, enabling processes to 

share and exchange information, protecting the resources of each process from other 
processes and enabling synchronization among processes. 
 
The operating system is primarily involved with managing the processes, but as software 
system developers, we need to understand a little about how it is done so that we can make 
use of multiple processes when we write our programs.  In particular, we need to know how to 
start (i.e., spawn) a process, how to stop and pause it, and how to modify the behaviors of a 
process using signals. 
 
There are two ways that we can manage processes:  
 

• Using shell commands – manually as a user of a system 

• Using system calls – automatically through other programs/processes 
 
How are processes managed ?   The operating system maintains certain 
information about each process that has been created.   Each process has the 
following: 
 

• Process Identifier (PID) – unique to each process 

• Parent Process Identifier (PPID) – the process that spawned it 

• Address Space and Virtual Memory – code segment, data segment, stack, heap 

• Control Flow(s) – its own order that commands are evaluated in 
 
Let’s look first at how to manage a process.   The simplest way is from a shell.  We can start a 
process in the foreground or in the background.   You have already done this many times.  
Each time you run your code, for example, you are starting a process.  Most of the time, we 
run it in the foreground.   However, you can use the & sign to run a process in the background.   
Recall that the following runs gedit in the foreground (i.e., we cannot use the shell until gedit 
completes): 
 

student@COMPBase:~$ gedit helloWorld.c 

student@COMPBase:~$  

 

And the & allows us to run gedit in the background (i.e., we can continue to use the shell): 
 

student@COMPBase:~$ gedit helloWorld.c& 

student@COMPBase:~$  
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Consider the following program that runs “forever”: 

 

Code from shellProcess.c 

#include <stdio.h> 

#include <unistd.h> 

 

int main() {  
  int i = 1; 

 

  while (1) { 

    printf("The ants go marching %d by %d, hurrah, hurrah.\n", i, i); 

    ++i; 

    sleep(1); 

  } 

} 

 
The code displays a message and counter repeatedly, with a 1 second pause (caused by the 
sleep(1) command which is defined in the unistd.h header) in between the messages. 
 
We can run this program in the background in our shell window by using the & symbol: 
 

student@COMPBase:~$ gcc -o shellProcess shellProcess.c 

student@COMPBase:~$ ./shellProcess & 

[2] 2513 

student@COMPBase:~$ The ants go marching 1 by 1, hurrah, hurrah. 

The ants go marching 1 by 1, hurrah, hurrah. 

The ants go marching 2 by 2, hurrah, hurrah. 

The ants go marching 3 by 3, hurrah, hurrah. 

The ants go marching 4 by 4, hurrah, hurrah. 

The ants go marching 5 by 5, hurrah, hurrah. 

 

 

One thing to notice is that when we run the program, we immediately get the PID which is 
2513 this time it runs.   This number will allow us to stop the process at a later time.    
 
You will also notice that the process continually displays information to the system shell 
window that we are using.   Because of this, it is a little hard to be able to continue to use the 
shell window for other commands as it keeps printing stuff out and scrolling. 
 
At any time, we can use the ps command to get a list of running processes.   Assume that we 
did a ps while the shellProcess command was still running.  Here is what we might see: 
 

student@COMPBase:~$ ps 

  PID TTY          TIME CMD 

 2366 pts/17   00:00:00 bash 

 2495 pts/17   00:00:00 gedit 

 2513 pts/17   00:00:00 shellProcess 

 2527 pts/17   00:00:00 ps 

student@COMPBase:~$ 

 



COMP2401 - Chapter 5 – Concurrent Computing Fall 2020 
 

  - 191 - 

This list above shows the current running processes from this terminal window.   Notice that 
the bash shell is running, which allows us to enter commands.   Also, the gedit editor is 
opened and running (it happens to have the shellProcess.c file opened).   Notice as well that 
the shellProcess program is running.  Also, the ps command that we ran to get this list … it 
itself is a running process.  If we want more detail on the running process, we can use ps -l as 
follows: 
 

student@COMPBase:~$ ps -l 

F S   UID   PID  PPID  C PRI  NI ADDR SZ WCHAN  TTY          TIME CMD 

0 S  1002  2366  2359  0  80   0 -  2034 wait   pts/17   00:00:00 bash 

0 S  1002  2495  2366  0  80   0 - 30417 poll_s pts/17   00:00:00 gedit 

0 S  1002  2513  2366  0  80   0 -   549 hrtime pts/17   00:00:00 shellProcess 

0 R  1002  2543  2366  0  80   0 -  2174 -      pts/17   00:00:00 ps 

student@COMPBase:~$ 

 
You can see some extra information here such as the size (SZ) of the process running (in 
bytes) as well as the PPID that spawned the process and the user ID (UID). 
 
The command ps aux command gives different information and lists more processes.  Here is 
what you may see (although I removed much of the output to reduce space): 
 

student@COMPBase:~$ ps aux 

USER       PID %CPU %MEM    VSZ   RSS TTY      STAT START   TIME COMMAND 

root         1  0.1  0.2  24064  4836 ?        Ss   14:31   0:01 /sbin/init spla 

root         2  0.0  0.0      0     0 ?        S    14:31   0:00 [kthreadd] 

root         3  0.0  0.0      0     0 ?        S    14:31   0:00 [ksoftirqd/0] 

... 

syslog     453  0.0  0.1  30724  3004 ?        Ssl  14:32   0:00 /usr/sbin/rsysl 

root       462  0.0  0.1   4136  3056 ?        Ss   14:32   0:00 /lib/systemd/sy 

avahi      474  0.0  0.1   5916  3116 ?        Ss   14:32   0:00 avahi-daemon: r 

message+   482  0.0  0.2   6856  4488 ?        Ss   14:32   0:00 /usr/bin/dbus-d 

avahi      486  0.0  0.0   5916   288 ?        S    14:32   0:00 avahi-daemon: c 

lp         498  0.0  0.2  11228  5196 ?        S    14:32   0:00 /usr/lib/cups/n 

... 

student   1315  0.0  0.1   6368  4076 ?        Ss   14:33   0:00 /lib/systemd/sy 

student   2411  0.0  0.2   8124  4476 pts/18   Ss+  14:34   0:00 bash 

student   2495  0.0  2.0 121668 41700 pts/17   Sl   14:36   0:00 gedit shellProc 

student   2500  0.0  0.2  12736  5120 ?        S    14:36   0:00 /usr/lib/i386-l 

student   2513  0.0  0.0   2196   560 pts/17   S    14:37   0:00 ./shellProcess 

root      2549  0.0  0.0      0     0 ?        S    14:47   0:00 [kworker/0:0] 

student   2562  0.0  0.1   8972  3224 pts/17   R+   14:52   0:00 ps aux 

student@COMPBase:~$ 

 

There are many parameters to the ps command, but they will not be discussed here. 
To STOP a process, you can use the kill command.   You just need to know the PID: 
 

student@COMPBase:~$ kill 2513 

student@COMPBase:~$ ps 

  PID TTY          TIME CMD 

 2366 pts/17   00:00:00 bash 

 2495 pts/17   00:00:00 gedit 

 2586 pts/17   00:00:00 ps 

[2]+  Terminated              ./shellProcess 

student@COMPBase:~$ 
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After you kill a process, you will get a notification in the terminal window 
when you enter  the next shell command.   Above, you can see that once 
you use ps again, the process has been eliminated from the list of 
running processes.  The kill -stop command is also used to temporarily 
stop/pause/suspend a process.   
 

student@COMPBase:~$ kill -stop 2513 

student@COMPBase:~$ ps -l 

F S   UID   PID  PPID  C PRI  NI ADDR SZ WCHAN  TTY          TIME CMD 

0 S  1002  2366  2359  0  80   0 -  2034 wait   pts/17   00:00:00 bash 

0 S  1002  2495  2366  0  80   0 - 30417 poll_s pts/17   00:00:00 gedit 

0 T  1002  2513  2366  0  80   0 -   549 signal pts/17   00:00:00 shellProcess 

0 R  1002  2543  2366  0  80   0 -  2174 -      pts/17   00:00:00 ps 

student@COMPBase:~$ 

 
To continue the process again, we use kill -cont with the PID: 

 

student@COMPBase:~$ kill -cont 2513 

student@COMPBase:~$ ps -l 

F S   UID   PID  PPID  C PRI  NI ADDR SZ WCHAN  TTY          TIME CMD 

0 S  1002  2366  2359  0  80   0 -  2034 wait   pts/17   00:00:00 bash 

0 S  1002  2495  2366  0  80   0 - 30417 poll_s pts/17   00:00:00 gedit 

0 S  1002  2513  2366  0  80   0 -   549 hrtime pts/17   00:00:00 shellProcess 

0 R  1002  2543  2366  0  80   0 -  2174 -      pts/17   00:00:00 ps 

student@COMPBase:~$ 

 

You can also use other shell commands to manage processes.   For example, the jobs 
command displays a list of all running jobs.  While a process is any running program with its 
own address space, a job is any program you started that is not a daemon (i.e., not a 
background service-handling process). 
 

student@COMPBase:~$ jobs 

[1]   Running                 gedit shellProcess.c & 

[2]+  Stopped                 ./shellProcess 

[3]-  Done                    ./wait 

student@COMPBase:~$ 

 

Notice that the jobs command allows you to see what is running, what is currently stopped (or 
paused) and also what processes have just completed (i.e. done). 
 
At any time, you can suspend the current running foreground process by pressing CTRL-Z.  
You may also kill the current running process by pressing CTRL-C. 
 
You can use the fg command to resume the last suspended job, or you can use fg i to 

resume the job with id i.  So, for example, in the above example, we could resume the 

shellProcess program by typing fg 2 into the shell.    It will run in the foreground.   We could 

resume it to run it in the background if we use bg 2 instead.  

 
At this point, you should understand how to manage processes manually in the command shell 
window in Linux.    
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But in addition to managing processes from the command line, we can also do so within our C 
programs.  There are 4 system calls that are related to process management: 
 

• fork – spawns a clone of the current process 

• exec – replaces executing code of current process with another program 

• wait – pauses execution of a parent until a child process terminates 

• system – runs a specified command as a shell command 
 
We will now examine each of these one at a time… 
 
FORK 
 
Consider first the fork() function in C.   It creates a new process with the current process being 
the parent of the new process.   
 
Consider this example: 
 

Code from fork.c 

 

#include <stdio.h> 

#include <unistd.h> 

 

int main() {  
  int childPID; 

 

  printf("Forking...\n"); 

 

  childPID = fork(); 

 

  if (childPID == 0) { 

    printf("fork() returned 0 ... so this is the spawned/child process\n"); 

    for (int i=1; i<=24; i++) { 

      printf("The ants go marching *%2d* by *%2d*, hurrah, hurrah.\n", i, i); 

      usleep(500000); 

    } 

  } 

  else { 

    printf("fork() returned %d ... so this is the parent process\n", childPID); 

    for (int i=1; i<=24; i++) { 

      printf("The ants go marching  %2d  by  %2d , hurrah, hurrah.\n", i, i); 

      usleep(1000000); 

    } 

  } 

} 

 

 
Notice that the fork() function returns a PID.   It is interesting that the original (i.e., parent) and 
the spawned (i.e., child) processes both continue with the same code.  Hence, there are two 
copies of the same code running.  But after the fork() call, the code branches based on the 
return value of fork().   For the child (i.e., spawned) process, the return value is 0.  For the 
parent, the returned value is the new process’ PID (unless there was an error, then -1 is 
returned).   The IF statement checks this return value and allows one chunk of code to be 
executed by the child and the other by the parent.   

At this point, both processes 
continue simultaneously 
running two copies of the 
remaining code. 
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Here is an example of the output you would see.  The usleep() function sleeps for the 
specified number of microseconds.   
 

Forking... 

fork() returned 3002 ... so this is the parent process 

The ants go marching   1  by   1 , hurrah, hurrah. 

fork() returned 0 ... so this is the spawned process (i.e., child) 

The ants go marching * 1* by * 1*, hurrah, hurrah. 

The ants go marching * 2* by * 2*, hurrah, hurrah. 

The ants go marching   2  by   2 , hurrah, hurrah. 

The ants go marching * 3* by * 3*, hurrah, hurrah. 

The ants go marching * 4* by * 4*, hurrah, hurrah. 

The ants go marching   3  by   3 , hurrah, hurrah. 

The ants go marching * 5* by * 5*, hurrah, hurrah. 

The ants go marching * 6* by * 6*, hurrah, hurrah. 

The ants go marching   4  by   4 , hurrah, hurrah. 

The ants go marching * 7* by * 7*, hurrah, hurrah. 

The ants go marching * 8* by * 8*, hurrah, hurrah. 

The ants go marching   5  by   5 , hurrah, hurrah. 

The ants go marching * 9* by * 9*, hurrah, hurrah. 

The ants go marching *10* by *10*, hurrah, hurrah. 

The ants go marching   6  by   6 , hurrah, hurrah. 

The ants go marching *11* by *11*, hurrah, hurrah. 

The ants go marching *12* by *12*, hurrah, hurrah. 

The ants go marching   7  by   7 , hurrah, hurrah. 

The ants go marching *13* by *13*, hurrah, hurrah. 

The ants go marching *14* by *14*, hurrah, hurrah. 

The ants go marching   8  by   8 , hurrah, hurrah. 

The ants go marching *15* by *15*, hurrah, hurrah. 

The ants go marching *16* by *16*, hurrah, hurrah. 

The ants go marching   9  by   9 , hurrah, hurrah. 

The ants go marching *17* by *17*, hurrah, hurrah. 

The ants go marching *18* by *18*, hurrah, hurrah. 

The ants go marching  10  by  10 , hurrah, hurrah. 

The ants go marching *19* by *19*, hurrah, hurrah. 

The ants go marching *20* by *20*, hurrah, hurrah. 

The ants go marching  11  by  11 , hurrah, hurrah. 

The ants go marching *21* by *21*, hurrah, hurrah. 

The ants go marching *22* by *22*, hurrah, hurrah. 

The ants go marching  12  by  12 , hurrah, hurrah. 

The ants go marching *23* by *23*, hurrah, hurrah. 

The ants go marching *24* by *24*, hurrah, hurrah. 

The ants go marching  13  by  13 , hurrah, hurrah. 

The ants go marching  14  by  14 , hurrah, hurrah. 

The ants go marching  15  by  15 , hurrah, hurrah. 

The ants go marching  16  by  16 , hurrah, hurrah. 

The ants go marching  17  by  17 , hurrah, hurrah. 

The ants go marching  18  by  18 , hurrah, hurrah. 

The ants go marching  19  by  19 , hurrah, hurrah. 

The ants go marching  20  by  20 , hurrah, hurrah. 

The ants go marching  21  by  21 , hurrah, hurrah. 

The ants go marching  22  by  22 , hurrah, hurrah. 

The ants go marching  23  by  23 , hurrah, hurrah. 

The ants go marching  24  by  24 , hurrah, hurrah. 

 

Your code can fork many times.   But remember … each time that the code 
forks, your child code may fork as well (depending on how you structure 
your code).   This could cause forking indefinitely.   There is a limit to how 
many forks the operating system will allow.   It maintains a process table … 

which has a finite capacity.  It may be best not to test that limit      .  

 

Notice how the output 
between the two processes 
is interlaced. 
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A fork bomb is a process that continually replicates itself and depletes available system 
resources.   A rabbit virus uses this strategy as a denial-of-service attack to slow down and 
potentially crash a system.  
 
The following code takes an integer as a command-line-argument and then does a double-fork 
that many times.   If the number is high enough, it can slow down and crash the system. 
 

Code from forkTooMuch.c 

 

#include <stdio.h> 

#include <unistd.h> 

#include <stdlib.h> 

 

int main(int argc, char *argv[]) { 

  int count; 

 

  if (argc < 2) 

    count = 1; 

  else 

    count = atoi(argv[1]);  
 

  printf("Parent:  %d\n", getpid()); 

 

  for (int i=0; i<count; i++) { 

    fork(); 

    fork(); 

  } 

 

  printf("Child %d with parent %d \n", getpid(), getppid()); 

} 

 

 
EXEC 
 
Now let’s look at the exec “family” of functions in C.   It allows different code to be run with the 
same process id.   Basically, the code goes off and runs another program instead of continuing 
with this one.   So, after a call to one of these exec functions, the program does not continue 
to the line of code after the exec call.  The new program will have the same PID as the 
process that called the exec function. 
 
There are different functions that we can use: execl(), execlp(), execle(), execv(), execvp(). 
All of them are similar in that they call another program; but they differ in terms of parameters 
and environment settings.  Recall that when running a program, we can supply command-line 
arguments.   These exec functions allow you to specify the program that you want to run as 
well as the command-line-arguments (as strings) required for it to run. 
 
These functions take the command-line-arguments as an array: 
 

int execv(const char *path, char *const argv[]);  

int execvp(const char *file, char *const argv[]);  

 
 
 

getpid() returns the 

process id of the current 
running process. 

getppid() returns the 

process id of the parent 
process… which may be 
reparented if the parent has 
already completed. 
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These take the command-line-arguments as a list of parameters: 
 

int execl(const char *path, const char *arg, ...);  

int execlp(const char *file, const char *arg, ...);  

 

execv and execl both take a path to the program to run, while execvp and execlp take just 
the filename.     
 
By convention, the first argument should be the name of the file being executed and the list of 
args should always be terminated with a NULL pointer. 
The execvpe and execle both allow an additional array of environment pointers, but we will 
not discuss these in this course. 
 
It is possible that a call to exec may fail.  In that case, the original program simply continues.   
 
Consider this example which calls our userInput program from chapter 1, which simply asks 
for the user’s name and prints it out: 
 

Code from execTest.c 

#include <stdio.h> 

#include <unistd.h>  
#include <string.h> 

 

int main() { 

  char  buffer[80];  

  char *args[2]; 

  int   childPID; 

   

  printf("This program is running.\n"); 

  printf("Now let's run the userInput program ...\n"); 

 

  strcpy(buffer, "./userInput"); 

  args[0] = "userInput"; 

  args[1] = NULL; 

 

  childPID = execvp(buffer, args); 

 

  // This code is never reached, unless the userInput program does not exist. 

  printf("We returned from that program, which ran with PID = %d\n", childPID); 

  printf("It appears, therefore, that the userInput program was not found.\n"); 

} 

 
Here is what happens when we run: 
 

This program is running. 

Now let's run the userInput program ... 

What is your name ?  

Mark 

Hello, Mark 

 

 
 
 

./ is needed here if that is 

how we run our programs in 
the shell. 
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Of course, if the userInput program cannot be found, we would get this output: 
 

This program is running. 

Now let's run the userInput program ... 

We have returned from that program, which ran with PID = -1  

It appears, therefore, that the userInput program was not found. 

 
Here is a variation that allows us to pass command line arguments into a program through a 
call to exevvp().    It makes use of our cmdLineArgs program that we wrote in chapter 3: 
 

Code from execTest2.c 

#include <stdio.h> 

#include <unistd.h> 

#include <string.h> 

 

int main() { 

  char  buffer[80];  

  char *args[4]; 

  int   childPID; 

   

  printf("This program is running.\n"); 

  printf("Now let's run the cmdLineArgs program ...\n"); 

 

  strcpy(buffer, "./cmdLineArgs"); 

  args[0] = "cmdLineArgs"; 

  args[1] = "one"; 

  args[2] = "two"; 

  args[3] = NULL; 

 

  childPID = execvp(buffer, args); 

 

  // This code is never reached, unless the cmdLineArgs program does not exist. 

  printf("We returned from that program, which ran with PID = %d\n", childPID); 

  printf("It appears, therefore, that the cmdLineArgs program was not found.\n"); 

} 

 
Here is the expected output: 
 

This program is running. 

Now let's run the cmdLineArgs program ... 

There are 3 arguments 

Argument 0 is cmdLineArgs  

Argument 1 is one  

Argument 2 is two 

 
 
WAIT 
 
The wait() function in C allows us to put a delay in a parent program so that it waits until one of 
its child processes has completed.  It returns the PID of the child that completes, if successful, 
otherwise it returns -1.   In addition, there is a waitpid() command that allows the parent 
process to delay until a specific child process has completed. 
 
 

We set up the command-line args here, 
making sure to end with NULL. 
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Consider this program which shows a basic use of the wait() function: 
 

Code from wait.c 

#include <stdio.h> 

#include <unistd.h> 

#include <sys/wait.h> 

 

int main() { 

  int status, child; 

 

  printf("I am the parent (PID=%d)\n", getpid()); 

  printf("I am spawning a child  ...\n"); 

  child = fork(); 

 

  if (child == 0) { 

    printf("     I am the child (PID=%d) ... I will sleep for 2sec\n", getpid()); 

    sleep(2); 

    printf("     I am awake!\n");    

  } 

  else { 

    printf("I am now waiting for my child to wake up ...\n"); 

    wait(&status); 

    printf("It looks like my child is awake, so I will quit in 2sec ...\n"); 

    sleep(2); 

  } 

  printf("Process %d terminating.\n", getpid()); 

} 

 
Here is the output: 
 

I am the parent (PID=24439) 

I am spawning a child  ... 

I am now waiting for my child to wake up ... 

     I am the child (PID=24440) ... I will sleep for 2sec 

     I am awake! 

Process 24440 terminating. 

It looks like my child is awake, so I will quit in 2sec ... 

Process 24439 terminating. 

 
The above example had only one child.   The wait() command allows the process to wait for 
ANY child to complete.   The PID of the child that completes will be returned from the wait() 
command.    
 
Here is an example that spawns 5 children, each one sleeping for a random number of 
seconds, then waking up and quitting.   The parent spawns all 5 children and then waits for 
each one to complete.   Note that the order in which the children complete will be different from 
the order that they are spawned in, due to the random sleep time. 
 
Notice that the children each quit by using the exit(0) function.   The parameter to the exit() 
function is arbitrary, but zero usually indicates that all went well and negative numbers or 
positive numbers usually indicate error codes. 
 

  

Child’s output in red. Parent’s output in blue. 
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Code from multiChildWait.c 

#include <stdio.h> 

#include <unistd.h> 

#include <stdlib.h> 

#include <sys/wait.h> 

 

int main() { 

  int status, child, parent, children[5], sleepTimes[5]; 

 

  printf("I am the parent (PID=%d)\n", parent = getpid()); 

 

  // Choose 5 random sleep times 

  for (int i=0; i<5; i++) { 

    sleepTimes[i] = rand()%5 + 5; 

  } 

   

  printf("I am spawning 5 children  ...\n"); 

  for (int i=0; i<5; i++) { 

    if (getpid() == parent) 

      children[i] = fork(); 

    if (children[i] == 0) { 

 printf("     I am a child (PID=%d) ... I will sleep for %dsec\n",  

             getpid(), sleepTimes[i]); 

 sleep(sleepTimes[i]); 

 printf("     I am awake!  Process %d terminating.\n", getpid()); 

 exit(0); 

    } 

  } 

 

  printf("I am now waiting for all of my children to wake up ...\n"); 

  for (int i=0; i<5; i++) { 

    child = wait(&status); 

    printf("It looks like one of my children (PID=%d) has awoken.\n", child); 

  } 

  printf("All children are done. Process %d terminating.\n", getpid()); 

} 

 
Here is some output: 
 

I am the parent (PID=3099) 

I am spawning 5 children  ... 

I am now waiting for all of my children to wake up ... 

     I am a child (PID=3104) ... I will sleep for 8sec 

     I am a child (PID=3103) ... I will sleep for 5sec 

     I am a child (PID=3102) ... I will sleep for 7sec 

     I am a child (PID=3101) ... I will sleep for 6sec 

     I am a child (PID=3100) ... I will sleep for 8sec 

     I am awake!  Process 3103 terminating. 

It looks like one of my children (PID=3103) has awoken. 

     I am awake!  Process 3101 terminating. 

It looks like one of my children (PID=3101) has awoken. 

     I am awake!  Process 3102 terminating. 

It looks like one of my children (PID=3102) has awoken. 

     I am awake!  Process 3104 terminating. 

It looks like one of my children (PID=3104) has awoken. 

     I am awake!  Process 3100 terminating. 

It looks like one of my children (PID=3100) has awoken. 

All children are done, so I will quit now. Process 3099 terminating. 
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The waitpid() function can be used to wait for a particular child to complete.   It returns the 
child PID if successful, otherwise -1 if an error occurred. As an example, we could determine 
the child that would likely take the longest to complete the work and then wait just for that child.  
The sleep times are hardcoded to make it clearer: 
 

Code from waitpid.c 

#include <stdio.h> 

#include <unistd.h> 

#include <stdlib.h> 

#include <sys/wait.h> 

 

int main() { 

  int status, child, parent, children[5]; 

  int sleepTimes[5] = {1, 5, 8, 2, 4}; 

 

  printf("I am the parent (PID=%d)\n", parent = getpid()); 

  printf("I am spawning 5 children  ...\n"); 

  for (int i=0; i<5; i++) { 

    if (getpid() == parent)  
      children[i] = fork(); 

    // Note that for the parent process, children[i] is set to 

    // the pid of the newly-created child process.   However, 

    // for the child process program, all the values of children[i] 

    // will be 0. 

    if (children[i] == 0) { 

 printf("     I am a child (PID=%d) ... I will sleep for %dsec\n",  

             getpid(), sleepTimes[i]); 

 sleep(sleepTimes[i]); 

 printf("     I am awake!  Process %d terminating.\n", getpid()); 

 exit(0); 

    } 

  } 

 

  printf("I am now waiting for child 3 to wake up ...\n"); 

  child = waitpid(children[2], &status, 0); 

  printf("It looks like my slowest child (PID=%d) has awoken.\n", child); 

  printf("All children are done. Process %d terminating.\n", getpid()); 

} 

 
Here is the output: 
 

I am the parent (PID=3303) 

I am spawning 5 children  ... 

I am now waiting for child 3 to wake up ... 

     I am a child (PID=3308) ... I will sleep for 4sec 

     I am a child (PID=3307) ... I will sleep for 2sec 

     I am a child (PID=3306) ... I will sleep for 8sec 

     I am a child (PID=3305) ... I will sleep for 5sec 

     I am a child (PID=3304) ... I will sleep for 1sec 

     I am awake!  Process 3304 terminating. 

     I am awake!  Process 3307 terminating. 

     I am awake!  Process 3308 terminating. 

     I am awake!  Process 3305 terminating. 

     I am awake!  Process 3306 terminating. 

It looks like my slowest child (PID=3306) has awoken. 

All children are done.  Process 3303 terminating. 
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Notice that the waitpid() function takes a third parameter … these are options.   We will not 
discuss the various status results from the function, nor these options.   Please see the man 
pages if you are interested in more details.  
 
 
SYSTEM 
 
The system() function in C allows us to run the specified command (or program) as a shell 
command.   When called, the process blocks until the system call is done and then control 
returns to the program.  The return value from this function call is the value that is returned 
from the system call command, or -1 if an error has occurred. 
 
Here is a simple program that calls a couple of shell commands as well as running another 
program from within it: 
 

Code from systemCall.c 

#include <stdio.h> 

#include <stdlib.h> 

 

int main() { 

  // Show a list of files 

  system("clear"); 

  system("ls"); 

  printf("\n"); 

 

  // Find out who the user is 

  system("who"); 

  printf("\n"); 

 

  // Run the userInput program 

  system("./userInput"); 

} 

 
Here is the output, which of course depends on the directory contents: 
 

cmdLineArgs  execTest.c   forkTooMuch.c     shellProcess.c  wait 

execTest     fork         multiChildWait    systemCall wait.c 

execTest2    fork.c   multiChildWait.c  systemCall.c    waitpid 

execTest2.c  forkTooMuch  shellProcess   userInput       waitpid.c 

 

student  tty7         2018-06-05 10:45 (:0) 

 

What is your name ?  

Mark 

Hello, Mark 
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 5.3 Inter-Process Communication  

 
Now that you have a good understanding of how to create 
multiple processes, you probably realize that this is most useful 
when the processes have the ability to communicate with one 
another as they are running.   This relates to reality since people 
often work as a team, each doing their own task, yet coordinating 
through careful communication.  
 
In computer science, this communication is done through … 
 

Inter-Process Communication (IPC) is the sending 

and receiving of information between processes. 
 
Communication between processes can occur on the same host 
machine or between processes running on different hosts across 
a network. 
 
There are two main approaches to IPC.   The first (and most 
basic) is that of using signals: 
 

A signal is a value (integer) sent from one process to another. 

 
A signal is used as a rudimentary form of communication to do simple things like 
informing processes of an error or telling a process to terminate.   It is a very limited 
kind of communication that can only be used between processes running on the 
same host machine. 
 
In C, there are a fixed set of existing signal values defined in the <signal.h> header file, but 
only two are user-defined: 
 

#define SIGHUP  1 /* Hangup (POSIX).  */ 

#define SIGINT  2 /* Interrupt (ANSI).  */ 

#define SIGQUIT 3 /* Quit (POSIX).  */ 

#define SIGILL  4 /* Illegal instruction (ANSI).  */ 

#define SIGTRAP 5 /* Trace trap (POSIX).  */ 

#define SIGABRT 6 /* Abort (ANSI).  */ 

#define SIGIOT  6 /* IOT trap (4.2 BSD).  */ 

#define SIGBUS  7 /* BUS error (4.2 BSD).  */ 

#define SIGFPE  8 /* Floating-point exception (ANSI).  */ 

#define SIGKILL 9 /* Kill, unblockable (POSIX).  */ 

#define SIGUSR1 10 /* User-defined signal 1 (POSIX).  */ 

#define SIGSEGV 11 /* Segmentation violation (ANSI).  */ 

#define SIGUSR2 12 /* User-defined signal 2 (POSIX).  */ 

#define SIGPIPE 13 /* Broken pipe (POSIX).  */ 

#define SIGALRM 14 /* Alarm clock (POSIX).  */ 

#define SIGTERM 15 /* Termination (ANSI).  */ 

#define SIGSTKFLT 16 /* Stack fault.  */ 

#define SIGCLD  SIGCHLD /* Same as SIGCHLD (System V).  */ 

#define SIGCHLD 17 /* Child status has changed (POSIX).  */ 

#define SIGCONT 18 /* Continue (POSIX).  */ 

#define SIGSTOP 19 /* Stop, unblockable (POSIX).  */ 

#define SIGTSTP 20 /* Keyboard stop (POSIX).  */ 
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#define SIGTTIN 21 /* Background read from tty (POSIX).  */ 

#define SIGTTOU 22 /* Background write to tty (POSIX).  */ 

#define SIGURG  23 /* Urgent condition on socket (4.2 BSD).  */ 

#define SIGXCPU 24 /* CPU limit exceeded (4.2 BSD).  */ 

#define SIGXFSZ 25 /* File size limit exceeded (4.2 BSD).  */ 

#define SIGVTALRM 26 /* Virtual alarm clock (4.2 BSD).  */ 

#define SIGPROF 27 /* Profiling alarm clock (4.2 BSD).  */ 

#define SIGWINCH 28 /* Window size change (4.3 BSD, Sun).  */ 

#define SIGPOLL SIGIO /* Pollable event occurred (System V).  */ 

#define SIGIO  29 /* I/O now possible (4.2 BSD).  */ 

#define SIGPWR  30 /* Power failure restart (System V).  */ 

#define SIGSYS  31 /* Bad system call.  */  
#define SIGUNUSED 31 

 
There are two steps to using signals: (1) install a signal handler, (2) send a signal. 
 
Installing a signal handler is really just a matter of indicating which function will be called when 
the signal is received.   It is similar to setting up an event handler in JAVA.    
 
Every signal should have its own signal handler.   There is a default signal handler for every 
signal … which, by default, will usually terminate the program. 
 
To install our own signal handler, we use the signal() function which takes the signal 
number/code (i.e., SIGUSR1 or SIGUSR2) as its first parameter and the signal-handler function 

name as its second parameter.  The signal handler function must take a single int parameter 
and have a void return type.  Optionally, instead of supplying a signal handler function, we can 
use the constant SIG_IGN to tell the OS to ignore the signal and do nothing … or we can use 

SIG_DFL to tell the OS to use the default signal handler.    

 
Here is an example of a program that will wait for some incoming signal from another process.   
It does not do anything interesting, but it shows the mechanics of setting up inter-process 
communications between processes. 
 

Code from handler.c 

#include <stdio.h> 

#include <stdlib.h> 

#include <unistd.h> 

#include <signal.h> 

 

void handleSig1(int); 

void handleSig2(int); 

 

int main() { 

  signal(SIGUSR1, handleSig1); 

  signal(SIGUSR2, handleSig2); 

 

  printf("\n  HANDLER: Running (PID=%d)\n", getpid()); 

 

  // Go into an infinite loop 

  while (1) 

    sleep(1); 

 

  printf("This line of code is never reached.\n"); 

} 
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void handleSig1(int i) { 

  printf("  HANDLER: Signal 1 has been received.  Continuing...\n"); 

} 

 

void handleSig2(int i) { 

  printf("  HANDLER: Signal 2 has been received.  Quitting...\n"); 

  exit(SIGUSR2); 

} 

 
Notice that when the program receives signal 1, it prints a message and the program 
continues.   When it receives signal 2, however, it stops running. 
 
We will run this program in the background and then set up another program that allows us to 
send signals to it: 
 

student@COMPBase:~$ gcc -o handler handler.c 

student@COMPBase:~$ ./handler & 

[8] 4018 

student@COMPBase:~$ 

HANDLER: Running (PID=4018) 

 

student@COMPBase:~$ 

 

To send a signal to a process, we need to know the PID and the signal number.  Then we 
make use of the kill() function which takes the PID as its first parameter and the signal number 
as its second parameter.   (I know, it doesn’t make sense to use kill() to send a signal instead of something 

like send(), but often signals are sent to kill a process). The function will return -1 if there was a problem 
(e.g., process does not exist) and 0 otherwise.  Now let us write the sending program: 
 

Code from sender.c 

 

#include <stdio.h> 

#include <stdlib.h> 

#include <signal.h> 

 

int main() { 

  int pid, choice, result; 

 

  printf("SENDER: Enter PID that you want to signal: "); 

  scanf("%d", &pid); 

 

  while (1) { 

    printf("SENDER: Enter signal number (1 or 2), use 0 to quit: "); 

    scanf("%d", &choice); 

    switch(choice) { 

      case 0: exit(0); 

      case 1: result = kill(pid, SIGUSR1); break; 

      case 2: result = kill(pid, SIGUSR2); 

    } 

    if (result == -1) 

      printf("SENDER: *** Error sending signal to Process %d ***\n", pid); 

  } 

} 
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The code allows us to first enter the PID of the process that we want to communicate with.   
Then it goes into an infinite loop allowing us to send repeated signals.   The only two signals 
that we will send are SIGUSR1 and SIGUSR2 which are selected based on the value that the 

user enters.   If the kill() function returns -1, then we know there was a problem (e.g., the 
process may no longer be running). 
 
Assuming that the handler program is already running in the background, on the next page it 
shows what we may see as output from this program.   The values entered by the user in the 
sender program are highlighted as yellow and the output from the handler program is shown 
in orange so that it is easier to see what is happening. 
 

student@COMPBase:~$ gcc -o sender sender.c 

student@COMPBase:~$ ./sender & 

SENDER: Enter PID that you want to signal: 4018 

SENDER: Enter signal number (1 or 2), use 0 to quit: 1 

  HANDLER: Signal 1 has been received.  Continuing... 

SENDER: Enter signal number (1 or 2), use 0 to quit: 1 

  HANDLER: Signal 1 has been received.  Continuing... 

SENDER: Enter signal number (1 or 2), use 0 to quit: 2 

  HANDLER: Signal 2 has been received.  Quitting... 

SENDER: Enter signal number (1 or 2), use 0 to quit: 1 

SENDER: *** Error sending signal to Process 4018 *** 

SENDER: Enter signal number (1 or 2), use 0 to quit: 2 

SENDER: *** Error sending signal to Process 4018 *** 

SENDER: Enter signal number (1 or 2), use 0 to quit: 0 

[8]+  Exit 12                 ./handler 

student@COMPBase:~$ 

 

Here is an example that shows how we can send a “kill” command (SIGKILL) to spawned child 

processes to have them stop right away.   Notice the use of the system("ps").   This will 

allow us to print out the running processes on the terminal that we are using so that we can 
see that the processes are started and stopped: 
 

Code from stopChildren.c 

 

#include <stdio.h> 

#include <stdlib.h> 

#include <unistd.h> 

#include <signal.h> 

 

int main() { 

  int parent, childProcess[5]; 

 

  printf("I am the parent (PID=%d)\n", parent = getpid()); 

  printf("I am spawning 3 children  ...\n"); 

  for (int i=0; i<3; i++) { 

    if (getpid() == parent) 

      childProcess[i] = fork(); 

    if (childProcess[i] == 0) { 

 for (int j=30; j>0; j--) { 

   printf("     Child (PID=%d) sleeping for %d more sec\n", getpid(), j); 

   sleep(1); 

 } 
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 exit(0); 

    } 

  } 

  system("ps"); 

   

  printf("I am now waiting for 3 seconds then will stop all the children ...\n"); 

  sleep(3); 

  for (int i=0; i<3; i++) 

    kill(childProcess[i], SIGKILL); 

 

  system("ps"); 

  printf("I stopped all child processes ... terminating now.\n"); 

} 

 
Here is the output that can be expected: 
 

I am the parent (PID=3318) 

I am spawning 3 children  ... 

     Child (PID=3321) sleeping for 30 more sec 

     Child (PID=3320) sleeping for 30 more sec 

     Child (PID=3319) sleeping for 30 more sec 

  PID TTY          TIME CMD 

 2691 pts/0    00:00:00 bash 

 3318 pts/0    00:00:00 stopChildren 

 3319 pts/0    00:00:00 stopChildren 

 3320 pts/0    00:00:00 stopChildren 

 3321 pts/0    00:00:00 stopChildren 

 3322 pts/0    00:00:00 sh 

 3323 pts/0    00:00:00 ps 

I am now waiting for 3 seconds then will stop all the children ... 

     Child (PID=3321) sleeping for 29 more sec 

     Child (PID=3320) sleeping for 29 more sec 

     Child (PID=3319) sleeping for 29 more sec 

     Child (PID=3320) sleeping for 28 more sec 

     Child (PID=3321) sleeping for 28 more sec 

     Child (PID=3319) sleeping for 28 more sec 

     Child (PID=3321) sleeping for 27 more sec 

     Child (PID=3320) sleeping for 27 more sec 

     Child (PID=3319) sleeping for 27 more sec 

  PID TTY          TIME CMD 

 2691 pts/0    00:00:00 bash 

 3318 pts/0    00:00:00 stopChildren 

 3319 pts/0    00:00:00 stopChildren <defunct> 

 3320 pts/0    00:00:00 stopChildren <defunct> 

 3321 pts/0    00:00:00 stopChildren <defunct> 

 3332 pts/0    00:00:00 sh 

 3333 pts/0    00:00:00 ps 

I stopped all child processes ... terminating now. 

 

Let us try dealing with the SIGINT signal.  This is the signal that occurs when the system tries 

to interrupt the process.  One way that we can generate the signal is to press the CTRL-C 
keys.   By default, this quits the program.   But we can disable this … by ignoring that signal 
(not a good idea usually).   Here is a program that does this.   We’ll first ignore the CTRL-C for 
5 seconds … then we’ll handle it ourselves for 5 seconds by simply printing a message out, 
then finally we’ll spend the last 5 seconds with the restored default, which will allow us to quit 
the program. 
 

Parent is running 

Children are 
running 

Children are 
no longer 
running 
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Code from ignoreInterrupt.c 

 

#include <stdio.h> 

#include <stdlib.h> 

#include <unistd.h> 

#include <signal.h> 

 

void ignoreMessage(int); 

void sleep5(); 

 

int main() { 

  printf("  Process %d running\n", getpid()); 

  printf("  Ignoring the interrupt signal...\n"); 

  signal(SIGINT, SIG_IGN); 

 

  sleep5(); 

 

  printf("\n  Really ignoring the interrupt signal...\n"); 

  signal(SIGINT, ignoreMessage); 

 

  sleep5(); 

 

  printf("\n  Restoring the default handler...\n"); 

  signal(SIGINT, SIG_DFL); 

 

  sleep5(); 

 

  printf("\n  All done!\n"); 

} 

 

void ignoreMessage(int x) { 

  printf("  Stop bugging me.\n"); 

} 

 

void sleep5() { 

  for (int i=1; i<=5; ++i) { 

    sleep(1); 

    printf("  Sleeping %d\n",i); 

  } 

} 

 

 
Here is the output, showing ^C when CTRL-C was pressed: 
 

  Process 4340 running 

  Ignoring the interrupt signal... 

  Sleeping 1 

  Sleeping 2 

^C  Sleeping 3 

  Sleeping 4 

^C  Sleeping 5 

 

  Really ignoring the interrupt signal... 

  Sleeping 1 

  Sleeping 2 

^C  Stop bugging me. 

  Sleeping 3 

  Sleeping 4 
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^C  Stop bugging me. 

  Sleeping 5 

 

  Restoring the default handler... 

  Sleeping 1 

^C 

 
As you can see, simple communication between two processes is not difficult.  However, with 
the signaling approach, there are obvious limitations in that we can only signal another 
process … we cannot really exchange data.    
 
Of course, we can “fake” data exchange by, for example, having one process write data to a 
file and then signal the other process to read the file when it is done.   But this is cumbersome 
and also limited in regard to how many processes can be involved in this type of 
communication.  A better way to do this is by using sockets: 
 

A socket is an endpoint for sending or receiving data between processes. 

 
You can think of two hosts communicating with one another through a 
physical cable (or through wifi these days).   The socket is like the 
connector that we plug the cable into.  Each host has its own socket and 
all communication to other hosts takes place through this socket 
connection.  
 
Since each computer/host on a network has a unique IP address, we will 
need to use this address in order to communicate with that host through the socket.   It 
uniquely identifies a computer at the network layer.  Also, since multiple processes may run on 
the same host machine, they too must be uniquely identifiable 
through a port number which will be unique to all applications 
running on that host.  The port uniquely identifies a process (e.g., 
app) at the transport layer.  Only a specific range of values can be 
used … from 1025 to 65536 … (i.e., 0 through 1024 are reserved).  
Perhaps you can think of putting a note in a friend’s locker at 
school.   The IP address corresponds to the address of the 
particular school … while the port would correspond to the locker 
number in that school. 
 
Communication between the processes occurs through a couple of layers.   The Network 
Layer provides the means of sending packets of data from a source host to a destination host 
over one or more networks.   It is basically like the mailman delivering letters from one building 
in one city to another building in another city. 
 
The Transport Layer is a conceptual layer that indicates how exactly the data is to be 
transferred from the source to the destination.   There are two main strategies for doing this:  
 

(1) Transmission Control Protocol (TCP), and  
 

(2) User Datagram Protocol (UDP). 
 
The following diagram shows how things are organized: 
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There are 3 types of sockets:  
 

1. Stream sockets 

• These are connection-based sockets.    

o Connection must first be established between the 
sender and receiver before any data exchange can take 
place (e.g., like making a phone call). 

o Connection must be closed (i.e., must hang up the 
phone) when communication is finished (i.e., no “call-
waiting” option). 

• Best used for reliable packet delivery … so that the packet is 
correct and in a reliable order. 

• Works with the TCP (Transmission Control Protocol) method of data exchange. 

 

2. Datagram sockets 

• These are connectionless sockets. 

o Don’t need to first establish a connection between sender 
and receiver, data is just sent out when ready (e.g., like 
mailing a package via Canada Post). 

• Best used for faster packet sending (i.e., but not necessarily faster 
receiving).  No need to establish a connection beforehand. 

• Works with the UDP (User Datagram Protocol) method of data 
exchange. 

• Disadvantage is that the packets can be corrupted, received out of 
order, lost altogether or delivered multiple times. 
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3. Raw sockets 

• Bypasses the Transport protocol all together. 

 
The basic idea being socket communications is as follows: 
 

1. Each endpoint (i.e., sender and receiver) opens a socket … and a connection is 
established if using stream sockets. 

2. Packets are sent and received. 
3. Each endpoint closes their socket. 

 

 
Client/Server Model - TCP 
 
In IPC, one commonly used type of architecture is that of the  
client/server model.   In this model, one process acts as a server  
that receives requests from clients and then performs tasks  
accordingly.   There may be more than one client sending  
requests to the server at any time.  
 
Let us look now at an example that uses  
stream sockets to perform connection-based  
communications between two processes.    
We will run two processes on the same  
machine and have data passed back and  
forth between them. 
 
Starting with the server, we need to create a stream socket.    
This can be done with the socket() function which is defined in  
the <sys/socket.h> header.  The function will return an integer  
representing the socket descriptor (i.e., ID), or -1 if the socket  
cannot be opened for any reason.   The function takes three parameters with this template: 
 

socket(<domain>, <type>, <protocol>) 
 
There are many options for these parameters, but just a couple will be mentioned here. 
 
The <domain> is the address domain family that we want to use: 

• AF_INET  = communication over a network 

• AF_LOCAL = communication on the local host 
 

The <type> is the type of socket that we want to use: 

• SOCK_STREAM = connection-based 

• SOCK_DGRAM = connection-less 
 

The <protocol> is the protocol that we want to use: 

• IPPROTO_TCP = Transmission Control Protocol 

• IPPROTO_UDP = User Datagram Protocol 
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The opening of the socket can fail if: 
 

• The implementation does not support the specified address family. 

• No more file descriptors are available for this process/system. 

• The protocol is not supported by the address family/implementation. 

• The socket type is not supported by the protocol. 

• The process does not have appropriate privileges. 

• Insufficient resources were available in the system to perform the operation. 

• Insufficient memory was available to fulfill the request. 
 
Once the socket has been opened, we then need to assign an IP address to the socket from 
which we will accept messages and we also need to assign a port number to the socket.   We 
do this by using the bind() function which has this format: 
 

bind(<serverSocket>, <address>, <address_Length>) 
 
The <serverSocket> parameter is the socket descriptor (i.e., ID) that 
was returned from the socket() function call.   The <address>, 
however, is a bit more complicated.   It is a struct sockaddr data 
structure and the <address_Length> is the length of the struct 
sockaddr structure supplied as the 2nd parameter.  The function will 
return -1 if an error occurred, otherwise 0 is returned. 
 
What does the struct sockaddr look like ?  Well, this is a protocol-independent structure.   At 
the general level, it is defined like this: 
 

struct sockaddr {  

  unsigned short sa_family;   // address family 

  char     sa_data[14]; // protocol address  

};  

 
The sa_data field is quite general and allows 14 bytes to be adjustable for various types of 
protocols.  We generally set things up for IPv4 (i.e., version 4 of the internet protocol)  by using 
struct sockaddr_in instead, which is defined as follows: 
 

struct sockaddr_in { 

  short   sin_family;  // e.g. AF_INET, AF_LOCAL 

  unsigned short  sin_port;    // port number 

  struct in_addr  sin_addr;    // see below  

  char   sin_zero[8]; // unused  

};  

 

where struct in_addr is defined as follows: 
 

struct in_addr {  

  unsigned int   s_addr;  // set to internet address 

};  

 
You may have noticed that if we add up the bytes required for sin_port, sin_addr and 
sin_zero … they add to the 14 bytes defined in sa_data from the sockaddr struct, since an 
unsigned int is only 4 bytes on the virtual machine that we are using.   So the sin_zero field 
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of the sockaddr struct is just a placeholder to use up the remaining required 14 bytes (that we 
do not need) in order to the sizeof(struct sockaddr_in) to be the same as sizeof(struct 
sockaddr).  This will allow us to typecast (struct sockaddr_in*) to (struct sockaddr*) later. 

 
Now … what should we set sin_family, sin_port and sin_addr to ?  We can set the sin_family to 
AF_INET, or whatever we used to set up the socket.   The sin_port number can be arbitrary 
(e.g., 6000).  The sin_addr can be set to any internet address.  If we just want the server to 
receive requests from the local lost machine …  we would set this to the specific IP address 
inet_addr("127.0.0.1").  However, for servers, we generally want to accept incoming requests 
from any network interface.   In that case, we can set the sin_addr to INADDR_ANY … which 
will allow the server to accept all UDP packets and TCP connection requests made for its port, 
regardless of the network interface on which the requests arrived. 
 
There is one concern though in setting up the struct.   The IP address and 
port number are to be sent over the internet as bytes but interpreted as 
ints and longs.    
 
Recall that some machines use little-endian format and some use big-
endian format.   So, sending out a short or a long from one machine that 
uses one format … might be misinterpreted if read in from a machine that 
uses a different format.  To deal with this, there are some handy 
conversion functions for converting to a common ordering.   As it turns out, 
network protocols assume big-endian format.   The host format can be 
either format.   Here are the functions that we can use to convert from the 
host format to the network format and vice versa: 
 

htons() – convert short from host format to network format. 

htonl() – convert long from host format to network format. 

ntohs() – convert short from network format to host format. 

ntohl() – convert long from network format to host format. 

 
Therefore, this is how we would set the addres information for a server: 
 

#define  SERVER_PORT 6000 

 

struct sockaddr_in address; 

 

memset(&address, 0, sizeof(address)); // zeros the struct 

address.sin_family = AF_INET; 

address.sin_addr.s_addr = htonl(INADDR_ANY); 

address.sin_port = htons((unsigned short) SERVER_PORT); 

 
Once this has been set up, we can call bind() with the address variable: 
 

bind(serverSocket, (struct sockaddr *)address, sizeof(address)); 

 
Notice the typecast of the address.   This is necessary since the function wants something of 
type sockaddr, not sockaddr_in.  After calling this function, we will also need to check to 
make sure that the bind() function did not return -1 before we continue.   
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Once the socket is opened and bound, we are ready to start listening for incoming requests.   
The listen() function is used to set the socket up for listening, which has this format: 
 

listen(<serverSocket>,  <backlog>) 
 

Again, the socket descriptor is used.  The <backlog> is a value that indicates the number of 
pending connections that may be queued (i.e., the number of clients allowed to wait in line 
before being turned away).  This can be set to something small, such as 5 or 10.  For the 
listen() function, a return value of 0 indicates that all went well, otherwise -1 is returned. 
 
Finally, we need to use the accept() function to “wait for” and “accept” an incoming client 
request.  It has the following format: 
 

accept(<serverSocket>,  <clientAddress * >, <clientAddressLength * >) 
 
Once again, the socket descriptor is used.  The <clientAddress * > is a struct sockaddr * just 
as we had used for the server address.  This, however, is a pointer to a variable that will 
contain the client address once the message arrives.  
  
The <clientAddressLength * > should point to an integer that represents the exact size of the 
clientAddress struct.  It is a pointer, because before returning, the function will change this 
integer to represent the size required to represent the address of the connecting socket.  Once 
again, a return value of -1 from accept() is used to indicate that an error has occurred.   When 
all went well, however, the accept() function returns a socket descriptor (i.e., clientSocket) that 
corresponds to the client that just connected to the server. 
 
At this point, we have established a one-on-one connection between the server and the client.   
We can now read in the information that was sent from the client by using the recv() function 
which has this format: 
 

recv(<clientSocket>,  <buffer>, <bufferLength>, <flags>) 
 
Notice that we now use the <clientSocket> as the first parameter … this is NOT the server 
socket.  It is the socket descriptor that is returned from the call to accept(). The <buffer> is a 
pointer to some memory that can take the incoming request.   We can set it up as a char *.   
Finally, the <bufferLength>is the number of bytes that the buffer can hold.  It should not 
exceed the amount of memory reserved for the buffer itself.  We will not discuss the <flags> 
here … but will set them to 0.   The recv() function will return the number of incoming bytes 
that were received. 
 
We can even send information back to the client using the send() function with this format: 
 

send(<clientSocket>,  <buffer>, <bufferLength>, <flags>) 
 
The idea is the same.  We simply set up the buffer that we want to send and then send it. 
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Normally, with a server, we have a kind of 
recv/send sequence in a loop of some sort, so 
that communication between the client and 
server can go back and forth for a while.  We 
will also likely want the server to serve many 
clients, so another loop is normally used to 
keep accepting new clients.    
 
Here, on the right,  is the pseudocode for 
setting up the server → 

Open the socket 

Bind the socket 

Listen on the socket 

while (true) { 

  Accept a socket request 

  while (client has not "hung up" yet) { 

    Receive the buffer from the client 

    Process the request 

    Send a response to the client 

  } 

  Close client socket 

} 

Close server socket 

 
Here is the code for the server in its entirety: 
 

Code from server.c 

#include <stdio.h> 

#include <stdlib.h> 

#include <unistd.h> 

#include <string.h> 

#include <sys/socket.h> 

#include <netinet/in.h> 

 

#define  SERVER_PORT 6000 

 

int main() { 

  int                 serverSocket, clientSocket; 

  struct sockaddr_in  serverAddress, clientAddr; 

  int                 status, addrSize, bytesRcv; 

  char                buffer[30]; 

  char               *response = "OK"; 

   

  // Create the server socket 

  serverSocket = socket(AF_INET, SOCK_STREAM, IPPROTO_TCP); 

  if (serverSocket < 0) { 

    printf("*** SERVER ERROR: Could not open socket.\n"); 

    exit(-1); 

  } 

 

  // Setup the server address 

  memset(&serverAddress, 0, sizeof(serverAddress)); // zeros the struct 

  serverAddress.sin_family = AF_INET; 

  serverAddress.sin_addr.s_addr = htonl(INADDR_ANY); 

  serverAddress.sin_port = htons((unsigned short) SERVER_PORT); 

 

  // Bind the server socket 

  status = bind(serverSocket, (struct sockaddr *)&serverAddress,  

                                                          sizeof(serverAddress)); 

  if (status < 0) { 

    printf("*** SERVER ERROR: Could not bind socket.\n"); 

    exit(-1); 

  } 

 

  //… more on next page 
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  // Set up the line-up to handle up to 5 clients in line  

  status = listen(serverSocket, 5); 

  if (status < 0) { 

    printf("*** SERVER ERROR: Could not listen on socket.\n"); 

    exit(-1); 

  } 

 

  // Wait for clients now 

  while (1) { 

    addrSize = sizeof(clientAddr); 

    clientSocket = accept(serverSocket,(struct sockaddr *)&clientAddr,&addrSize); 

    if (clientSocket < 0) { 

      printf("*** SERVER ERROR: Could accept incoming client connection.\n"); 

      exit(-1); 

    } 

    printf("SERVER: Received client connection.\n"); 

 

    // Go into infinite loop to talk to client 

    while (1) { 

      // Get the message from the client 

      bytesRcv = recv(clientSocket, buffer, sizeof(buffer), 0); 

      buffer[bytesRcv] = 0; // put a 0 at the end so we can display the string 

      printf("SERVER: Received client request: %s\n", buffer); 

 

      // Respond with an "OK" message 

      printf("SERVER: Sending \"%s\" to client\n", response); 

      send(clientSocket, response, strlen(response), 0); 

      if ((strcmp(buffer,"done") == 0) || (strcmp(buffer,"stop") == 0)) 

   break; 

    } 

    printf("SERVER: Closing client connection.\n"); 

    close(clientSocket); // Close this client's socket 

 

    // If the client said to stop, then I'll stop myself 

    if (strcmp(buffer,"stop") == 0) 

      break; 

  } 

 

  // Don't forget to close the sockets! 

  close(serverSocket); 

  printf("SERVER: Shutting down.\n"); 

} 

 

 
Now, what about the client ?   The client is structured very similarly.   The socket is created the 
same way.   Instead of using bind() though, we use connect() … which has the same 
parameters.    
 
For the s_addr of the struct sockaddr_in, however, we will set it to inet_addr(“127.0.0.1”), 
which is the local machine.    
 
Here is the completed client code: 
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Code from client.c 

 

#include <stdio.h> 

#include <stdlib.h> 

#include <unistd.h> 

#include <string.h> 

#include <sys/socket.h> 

#include <netinet/in.h> 

#include <arpa/inet.h> 

 

#define  SERVER_IP   "127.0.0.1" 

#define  SERVER_PORT 6000 

 

int main() { 

  int                 clientSocket; 

  struct sockaddr_in  serverAddress; 

  int                 status, bytesRcv; 

  char                inStr[80];  // stores user input from keyboard 

  char                buffer[80]; // stores user input from keyboard 

 

  // Create the client socket 

  clientSocket = socket(AF_INET, SOCK_STREAM, IPPROTO_TCP); 

 

  if (clientSocket < 0) { 

    printf("*** CLIENT ERROR: Could not open socket.\n"); 

    exit(-1); 

  } 

 

  // Setup address 

  memset(&serverAddress, 0, sizeof(serverAddress)); 

  serverAddress.sin_family = AF_INET; 

  serverAddress.sin_addr.s_addr = inet_addr(SERVER_IP); 

  serverAddress.sin_port = htons((unsigned short) SERVER_PORT); 

 

  // Connect to server 

  status = connect(clientSocket, (struct sockaddr *) &serverAddress,  

                                                          sizeof(serverAddress)); 

  if (status < 0) { 

    printf("*** CLIENT ERROR: Could not connect.\n"); 

    exit(-1); 

  } 

 

  // Go into loop to commuincate with server now 

  while (1) { 

    // Get a command from the user 

    printf("CLIENT: Enter command to send to server ... "); 

    scanf("%s", inStr); 

     

    // Send command string to server 

    strcpy(buffer, inStr); 

    printf("CLIENT: Sending \"%s\" to server.\n", buffer); 

    send(clientSocket, buffer, strlen(buffer), 0); 

 

    // Get response from server, should be "OK" 

    bytesRcv = recv(clientSocket, buffer, 80, 0); 

    buffer[bytesRcv] = 0; // put a 0 at the end so we can display the string 

    printf("CLIENT: Got back response \"%s\" from server.\n", buffer); 
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    if ((strcmp(inStr,"done") == 0) || (strcmp(inStr,"stop") == 0)) 

      break; 

  }  

 

  close(clientSocket);  // Don't forget to close the socket ! 

  printf("CLIENT: Shutting down.\n"); 

} 

 
As a minor detail, scanf() will not allow blanks to be entered.   If you want that to be allowed, 
use this instead of the scanf() line: 
 

fgets(inStr, sizeof(inStr), stdin); 

inStr[strlen(inStr)-1] = 0; 

 
Now once we have these compiled, we can run the server in the background: 
 

student@COMPBase:~$ ./server & 

[5] 4242 

student@COMPBase:~$ 

 

Once the server has been started and stopped a few times in our virtual environment, it is 
sometimes not possible to run it right away.   You may have to wait a bit before running it.  
Once it is running, we can run the client.  Here is an example of some output that you may 
see.   The client code is highlighted in one color, the server in another, and the user-entered 
command in a third color: 
 

student@COMPBase:~$ ./client 

SERVER: Received client connection. 

CLIENT: Enter command to send to server ... Hello 

CLIENT: Sending "Hello" to server. 

SERVER: Received client request: Hello 

SERVER: Sending "OK" to client 

CLIENT: Got back response "OK" from server. 

CLIENT: Enter command to send to server ... Fun 

CLIENT: Sending "Fun" to server. 

SERVER: Received client request: Fun 

SERVER: Sending "OK" to client 

CLIENT: Got back response "OK" from server. 

CLIENT: Enter command to send to server ... Bored 

CLIENT: Sending "Bored" to server. 

SERVER: Received client request: Bored 

SERVER: Sending "OK" to client 

CLIENT: Got back response "OK" from server. 

CLIENT: Enter command to send to server ... done 

CLIENT: Sending "done" to server. 

SERVER: Received client request: done 

SERVER: Sending "OK" to client 

SERVER: Closing client connection. 

CLIENT: Got back response "OK" from server. 

CLIENT: Shutting down. 

student@COMPBase:~$ 
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At this point, the client has stopped and the server is still running.   We can run the client again 
and it will work with the server.   Here is an example where we tell the server to stop: 
 

student@COMPBase:~$ ./client 

SERVER: Received client connection. 

CLIENT: Enter command to send to server ... ItsMeAgain 

CLIENT: Sending "ItsMeAgain" to server. 

SERVER: Received client request: ItsMeAgain 

SERVER: Sending "OK" to client 

CLIENT: Got back response "OK" from server. 

CLIENT: Enter command to send to server ... stop 

CLIENT: Sending "stop" to server. 

SERVER: Received client request: stop 

SERVER: Sending "OK" to client 

SERVER: Closing client connection. 

SERVER: Shutting down. 

CLIENT: Got back response "OK" from server. 

CLIENT: Shutting down. 

[5]+  Done                    ./server 

student@COMPBase:~$ 

 
At this point, the server has also shut down. 
 
There is more to learn about client/server communications and socket connections.   Feel free 
to look up more information on your own.   For example, we can add some code to the server 
that will display the IP address of the client as follows: 
 

char *s = inet_ntoa(clientAddr.sin_addr); 

printf("IP address: %s\n", s); 

 
This will display the client’s IP address, which in our example is 127.0.0.1. 
 
 
 

Client Server Model - UDP 
 
Let us now consider the UDP model for client/server communications. 
 
The UDP server’s socket is created in the same way as the TCP server, 
except that we use IPPROTO_UDP in place of IPPROTO_TCP: 
 

serverSocket = socket(AF_INET, SOCK_STREAM, IPPROTO_UDP); 
 
The server socket is then bound to its own IP address and port number in 
the same way by using the bind() function.   There is no need to use the 
listen() function, since we are not setting up a one-to-one communication 
with anyone.   We will simply be accepting whatever packets come in, 
regardless of who they are from. 
 
Similar to TCP, the server should go into an infinite loop to accept incoming requests. 
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When using a UDP server, incoming information from a client socket will make use of what is 
known as a file descriptor:   
 

A file descriptor is an integer ID (i.e., handle) used to access a file or other input/output 

resource, such as a pipe or network socket. 
 
In order to receive an incoming packet, we need to use the select() function, which will allow 
us to be notified when an incoming packet is available, or if a “time out” has occurred if things 
are taking too long.  It allows us to accept packets from more than one socket (i.e., multiple 
clients).   For this reason, we cannot simply just call a read command for a particular socket, 
otherwise our code would lock-up waiting on only one socket channel. 
 
The select() function has this format: 
 

select(<numDescriptors>,  <readFDS>,  <writeFDS>,  <exceptFDS>, <timeout>) 
 
Here, <numDescriptors> is the number of file descriptors (i.e., potential clients) that we’d like to 
check for.  The usual value is FD_SETSIZE … which is the maximum number possible.   
 
The <readFDS> and <writeFDS> are the sets of file descriptors (i.e., sockets) that are ready 
for reading and writing, respectively.   The <exceptFDS> are the file descriptors checked for 
exceptional conditions … we will set this to NULL in our examples.    These are structures of 
type fd_set. 
 

For the <readFDS> and <writeFDS>, we use the  
following macros to clear and set them for the socket.  
Here, we see that the given socket is added to the set 
readfds … meaning we would like to be able to read from 
this socket. → 

int      socket; 

fd_set   readfds; 

 

FD_ZERO(&readfds); 

FD_SET(socket, &readfds); 

 

 
Regarding the <timeout>, this is a struct timeval type.   If set to NULL, the select() function 
will block and wait indefinitely until a client packet comes in.   It is the easiest option to use.  
Otherwise, we can set the <timeout> to {0,0} if we don’t want to wait at all.   We will not discus 
the timeout any further in this course.    
 
The select() function will return 0 if a timeout occurred, -1 if an error occurred … or a positive 
value otherwise.   To read in the client request packet, we use the recvfrom() function which 
has this format: 
 
         recvfrom(<socket>,  <buffer>, <bufLen>, <flags>, <clientAddr * >, <clientAddrLength * >) 
 
The <socket> is the value returned from the socket() function.  As with the TCP example, the 
<buffer> and <bufLen> work the same way.  We will not discuss the <flags> here … but will set 
them to 0.   The <clientAddr * > is the address to a struct sockaddr as with the TCP example 
and the <clientAddrLength * > is the address of an int that holds the sizeof(<clientAddr>).   
The recvfrom() function returns the number of bytes received from the socket.   We can do 
what we want with the buffer data at this point.   
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To send something back to the client, we use the sendto() function which has this format: 
 

sendto(<socket>,  <buffer>, <bufLen>, <flags>, <clientAddr * >, <clientAddrLength>) 
 
The idea is the same … but the clientAddrLength is not a pointer now.  We simply set up the 
buffer that we want to send and send it.   Here is the pseudocode for setting up the server: 
 

Open the socket 

Bind the socket 

while (true) { 

  Select a socket request 

  Receive the buffer from the client 

  Process the request 

  Send a response to the client 

} 

Close server socket 

  
 
Here is the code for the server in its entirety: 
 

Code from udpServer.c 

#include <stdio.h> 

#include <stdlib.h> 

#include <unistd.h> 

#include <string.h> 

#include <sys/socket.h> 

#include <netinet/in.h> 

 

#define  SERVER_PORT 6000 

 

int main() { 

  int                 serverSocket; 

  struct sockaddr_in  serverAddr, clientAddr; 

  int                 status, addrSize, bytesReceived; 

  fd_set              readfds, writefds; 

  char                buffer[30]; 

  char               *response = "OK"; 

 

  // Create the server socket 

  serverSocket = socket(AF_INET, SOCK_DGRAM, IPPROTO_UDP); 

  if (serverSocket < 0) { 

    printf("*** SERVER ERROR: Could not open socket.\n"); 

    exit(-1); 

  } 

 

  // Setup the server address 

  memset(&serverAddr, 0, sizeof(serverAddr)); // zeros the struct 

  serverAddr.sin_family = AF_INET; 

  serverAddr.sin_addr.s_addr = htonl(INADDR_ANY); 

  serverAddr.sin_port = htons((unsigned short) SERVER_PORT); 

 

  // Bind the server socket 

  status = bind(serverSocket,(struct sockaddr *)&serverAddr, sizeof(serverAddr)); 
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  if (status < 0) { 

    printf("*** SERVER ERROR: Could not bind socket.\n"); 

    exit(-1); 

  } 

 

  // Wait for clients now 

  while (1) { 

    FD_ZERO(&readfds); 

    FD_SET(serverSocket, &readfds); 

    FD_ZERO(&writefds); 

    FD_SET(serverSocket, &writefds); 

    status = select(FD_SETSIZE, &readfds, &writefds, NULL, NULL); 

    if (status == 0) {  // Timeout occurred, no client ready 

    } 

    else if (status < 0) { 

      printf("*** SERVER ERROR: Could not select socket.\n"); 

      exit(-1); 

    } 

    else { 

      addrSize = sizeof(clientAddr); 

      bytesReceived = recvfrom(serverSocket, buffer, sizeof(buffer), 

                               0, (struct sockaddr *) &clientAddr, &addrSize); 

      if (bytesReceived > 0) { 

        buffer[bytesReceived] = '\0'; 

        printf("SERVER: Received client request: %s\n", buffer); 

      } 

 

      // Respond with an "OK" message 

      printf("SERVER: Sending \"%s\" to client\n", response); 

      sendto(serverSocket, response, strlen(response), 0, 

        (struct sockaddr *) &clientAddr, addrSize); 

       

      // If the client said to stop, then I'll stop myself 

      if (strcmp(buffer, "stop") == 0) 

   break; 

    } 

  } 

} 

 
Now what about the client ?  The socket is set up in the same way.  The sendto() and 
recvfrom() functions are also used, just as with the server.  Here is the completed code: 
 

Code from udpClient.c 

 

#include <stdio.h> 

#include <stdlib.h> 

#include <unistd.h> 

#include <string.h> 

#include <sys/socket.h> 

#include <netinet/in.h> 

#include <arpa/inet.h> 

 

#define  SERVER_IP   "127.0.0.1" 

#define  SERVER_PORT 6000 

 

 

int main() { 

  int                 clientSocket, addrSize, bytesReceived; 

When select() exits, each of the file descriptor 
sets is modified to indicate which file descriptors 
actually changed status.  So, when using 
select() within a loop, the sets must be 
reinitialized before each call to select(). 
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  struct sockaddr_in  serverAddr; 

  char                inStr[80];    // stores user input from keyboard 

  char                buffer[80];   // stores sent and received data 

 

  // Create socket 

  clientSocket = socket(PF_INET, SOCK_DGRAM, IPPROTO_UDP); 

  if (clientSocket < 0) { 

    printf("*** CLIENT ERROR: Could open socket.\n"); 

    exit(-1); 

  } 

 

  // Setup address  

  memset(&serverAddr, 0, sizeof(serverAddr)); 

  serverAddr.sin_family = AF_INET; 

  serverAddr.sin_addr.s_addr = inet_addr(SERVER_IP); 

  serverAddr.sin_port = htons((unsigned short) SERVER_PORT); 

 

  // Go into loop to commuincate with server now 

  while (1) { 

    addrSize = sizeof(serverAddr); 

 

    // Get a command from the user 

    printf("CLIENT: Enter command to send to server ... "); 

    scanf("%s", inStr); 

 

    // Send command string to server 

    strcpy(buffer, inStr); 

    printf("CLIENT: Sending \"%s\" to server.\n", buffer); 

    sendto(clientSocket, buffer, strlen(buffer), 0, 

           (struct sockaddr *) &serverAddr, addrSize); 

 

    // Get response from server, should be "OK" 

    bytesReceived = recvfrom(clientSocket, buffer, 80, 0, 

                   (struct sockaddr *) &serverAddr, &addrSize); 

    buffer[bytesReceived] = 0; // put a 0 at the end so we can display the string 

    printf("CLIENT: Got back response \"%s\" from server.\n", buffer); 

     

    if ((strcmp(inStr,"done") == 0) || (strcmp(inStr,"stop") == 0)) 

      break; 

  }  

 

  close(clientSocket);  // Don't forget to close the socket ! 

  printf("CLIENT: Shutting down.\n"); 

} 

 
Assuming that the udpServer has been started, the output is as follows: 
 

student@COMPBase:~$ ./udpClient 

CLIENT: Enter command to send to server ... Hello 

CLIENT: Sending "Hello" to server. 

SERVER: Received client request: Hello 

SERVER: Sending "OK" to client 

CLIENT: Got back response "OK" from server. 

CLIENT: Enter command to send to server ... Fun 

CLIENT: Sending "Fun" to server. 

SERVER: Received client request: Fun 

SERVER: Sending "OK" to client 
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CLIENT: Got back response "OK" from server. 

CLIENT: Enter command to send to server ... stop 

CLIENT: Sending "stop" to server. 

SERVER: Received client request: stop 

SERVER: Sending "OK" to client 

SERVER: Shutting down. 

CLIENT: Got back response "OK" from server. 

CLIENT: Shutting down. 

[3]+  Done                    ./udpServer 

student@COMPBase:~$ 

 

 

 

 5.4 Threads  

 
We have discussed, in detail, the C-language mechanisms that allow two 
processes to communicate on the same host or over a network, where 
the processes are running simultaneously.   There are many issues that 
we have not discussed which pertain to distributed computing, as this 
course just provides an introduction to systems programming.   Likely, 
you can perceive by now that the code for handling timing and resource 

sharing can get tricky and much 
more complicated as more and 
more processes are added to 
the software framework.  A 
simpler way to manage 
separate tasks is to use 
threads: 
 

A thread is a sequence of programmed instructions 

that can be managed independently by the operating 
system 
 
Threads are similar to processes in that they 
“logically” run separate tasks simultaneously.   They 
are used for smaller tasks, as oposed to larger ones.   
Multiple threads can be running within a single 
process.   However, only one thread’s instructions 
can actually be executed at a time by the CPU.   The 
threads all share the CPU processing time, often in a 
round-robin fashion (i.e., everyone gets their turn). 
Since the threads each run separately on the CPU, 
this greatly simplifies the likelihood of race conditions 
and deadlocks occurring, although if we are not 
careful, we may still end up with poor code that 
causes these situations to occur.   
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Similar to the fork() command, which spawns new processes, threads can be created from the 
main program thread or from other created threads.  
 
As far as the logic is concerned, the threads can be considered as all running “in parallel” and 
are scheduled automatically by the operating system kernel.   Switching between threads is 
faster than switching between processes. 
 
Each thread runs as a separate program.  They have a unique thread context (i.e., resources) 
that includes: 
 

• Thread ID – a unique ID. 

• Function call stack – keeps track of function call ordering, parameters, and variables. 

• Program counter – keeps track of program instruction that is currently executing. 
 
One very nice feature of threads is that all threads belonging to the same process share: 
 

• Address space 

• Data segment (i.e., global variables and allocated heap memory) 

• Code segment (i.e., program instructions) 
 
That means, the value of a global variable at any point in time is the same across all threads 
and that any thread can access and modify it.  
 
To create a thread, we us the pthread_create() function which is defined in the <pthread.h> 
header file.  It takes these 4 parameters: 
 

1. A pointer to a pthread_t variable, which stores an integer representing the handle (i.e., 
ID) of the newly-created thread (we pass a pointer so that the variable can be set by the function). 
 

2. Some attributes that can de used by the thread (we will use NULL to indicate defaults). 
 

3. A pointer to a start function that will be called to start the thread. 
 

4. A single parameter that can be passed to the start function. 
 
To stop/terminate a thread, pthread_exit(void *status) can be called, where status will end up 
being the return value of the thread.   Alternatively, one thread can wait for the termination of 
another thread by using the pthread_join(pthread_t thread, void **status) function which 
specifies which thread to wait for and also allows a value to be returned in the status pointer, 
although we will use NULL in our examples. 
 
Consider this simple example that creates 3 threads and allows them to run for 4, 8 and 2 
seconds, respectively.  The main program keeps running and waits for thread 1 to complete, 
then for thread 2 to complete and then for thread 3 to complete (which had already completed). 
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Code from thread.c 

#include <stdio.h> 

#include <unistd.h> 

#include <pthread.h> 

 

void *printMsg(void *); 

int  times[] = {4, 8, 2};  // # of seconds for each thread to run 

 

 

int main() { 

  pthread_t    t1, t2, t3; 

   

  pthread_create(&t1, NULL, printMsg, "1"); 

  pthread_create(&t2, NULL, printMsg, "2"); 

  pthread_create(&t3, NULL, printMsg, "3"); 

 

  printf("\nThreads all created. \nWaiting for Thread 1 now ...\n"); 

  pthread_join(t1, NULL); 

  printf("\nThread 1 is back. \nWaiting for Thread 2 now ...\n"); 

  pthread_join(t2, NULL); 

  printf("Thread 2 is back. \nWaiting for Thread 3 now ...\n"); 

  pthread_join(t3, NULL); 

  printf("Thread 3 is back. \nTime to quit.\n"); 

} 

 

// Function called at the start of each thread 

void *printMsg(void *str) { 

  char   threadNum = ((char *)str)[0] – '0'; 

  for (int i=0; i<times[threadNum-1]; i++) { 

    for (int j=0; j<threadNum; j++) // indent a bit for visual clarity 

      printf("  "); 

    printf("Thread %d \n", threadNum); 

    sleep(1); 

  } 

} 

 

 

To compile/link this program we have to include the pthread 
library, so we add -lpthread to the gcc command line as 
follows: 
 

student@COMPBase:~$  

gcc -o thread thread.c -lpthread 

student@COMPBase:~$ 

 

The expected output is show here on the right → 
 
Make sure that you understand the output.    
 
Notice how thread 3 stopped fairly quickly … just after 2 
seconds … and thread 1 just after 4 seconds. 
 

Threads all created.   

Waiting for Thread 1 now ... 

      Thread 3  

    Thread 2  

  Thread 1  

      Thread 3  

    Thread 2  

  Thread 1  

    Thread 2  

  Thread 1  

    Thread 2  

  Thread 1  

    Thread 2  

 

Thread 1 is back.   

Waiting for Thread 2 now ... 

    Thread 2  

    Thread 2  

    Thread 2  

Thread 2 is back.   

Waiting for Thread 3 now ... 

Thread 3 is back.  

Time to quit. 
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Of course, it can be a problem if two threads attempt to modify 
the same data at the same time.  The results will be 
unpredictable because we don’t know which thread will modify it 
first as it depends when the CPU decides to give each thread its 
share of CPU time.   Therefore, if one thread is in the middle of 
updating a variable and another comes along and tries to update 
the variable as well, the update may not work as desired.  
 
Consider a single integer variable, called count with an initial value of 0.    Assume that two 
threads attempt to update the variable by adding one to it as follows:  count = count + 1.   If 
both threads run one after the other, then there is no issue since each will increase the count 
by one and count will have the value of 2.   However, let’s break down the simple line of code.   
In order to increase the count variable, the following must occur: 
 

1. Read the count variable. 
2. Add 1 to its value. 
3. Store the new value back into the count variable. 

 
Since there are three stages to this simple operation, it is not atomic (i.e., smallest level … 
unable to be split any further).   So, there is potential for corruption when multiple 
threads/processes are modifying the variable.   Consider what happens if one thread performs 
step 1 … reading a value of 0 for the count … and then a context switch happens (i.e., the 
thread pauses and the other thread is given CPU control).   What will happen ?  The second 
thread will perform step 1 and read a value of 0 for the count as well.   Then suppose the 
second thread completes its steps 2 and 3, thereby setting the count variable to 1.  Now 
suppose control goes back to the first thread, which will continue on to step 2.   It has already 
read the value of the count variable (from before the context switch) which had a value of 0.  
So it will perform steps 2 and 3 to increase that value to 1 and then store the value of 1 into the 
count variable.   So, the result is that count has the value of 1 despite the fact that both had 
increased the value by 1!    Therefore, the value is 1 instead of 2, which is wrong.   Of course, 
sometimes, the first thread will complete all three steps before a context switch.   So, it is 
possible that the count will be updated to 2 correctly.   But this really is very unpredictable, as 
there is no certainty as to when the context switch will occur. 
 
Here is a diagram showing two threads, each attempting to increase a shared count variable 
by 1 for 5 iterations.   In this instance, the context switch happens nicely (i.e., ideally) after 
each three-line chunk of code.   You can see that the count variable is updated properly the 
whole time such that it reaches the correct count of 10. 
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Now here is the same example with the context switching happening after every 4 lines of 
code.   You will notice that the count variable is not properly updated each time so that the 
count is not 10 at completion.   This is a more realistic example.  However, the context 
switching does not happen at nice clean intervals like this.  It could vary each time.  Therefore, 
it is impossible to predict the final value for count. 
 

 
 
 
 
 
 
 
 
Here is some code that verifies this problem: 
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Code from badThread.c 

#include <stdio.h> 

#include <pthread.h> 

 

void *threadFunc(void *); 

 

int  count = 0;  

 

int main() { 

  int          numInc = 100000000; // count to 100 million 

  pthread_t    t1, t2; 

   

  pthread_create(&t1, NULL, threadFunc, &numInc); 

  pthread_create(&t2, NULL, threadFunc, &numInc); 

  pthread_join(t1, NULL); 

  pthread_join(t2, NULL); 

 

  if (count != (2 * numInc)) 

    printf("Error: Count is %d instead of 200,000,000.\n", count); 

  else 

    printf("Count is %d, which is correct.\n", count); 

 

  return(0); 

} 

 

// Function to increase count variable by amount specified by arg  

void *threadFunc(void *arg) { 

  int inc = *((int *)arg); 

  for (int i=0; i<inc; i++) 

    count++; 

  return(0); 

} 

 

 
Notice that when we run it, we get a different result each time … proving that the result is 
unpredictable: 
 

student@COMPBase:~$ gcc -o badThread badThread.c -lpthread 

student@COMPBase:~$ ./badThread  
Error: Count is 197308945 instead of 200,000,000. 

student@COMPBase:~$ ./badThread  

Error: Count is 190625336 instead of 200,000,000. 

student@COMPBase:~$ ./badThread  

Error: Count is 196187270 instead of 200,000,000. 

student@COMPBase:~$  

 
So, how do we fix the problem ?     
 
A solution is to protect all shared data.   We can also make sure that changes are made at the 
atomic level.  The two mechanisms that we use to protect shared data are (1) the semaphore 
and (2) the mutex … which were both described earlier in this chapter. 
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The semaphore acts as a locking mechanism to prevent other threads from 
accessing or modifying a resource (e.g., variable) at the same time.  While the 
resource is locked, other threads are waiting.   Once unlocked, there is no 
guarantee as to which thread gets to have access next.  In our example, we 
need to use a semaphore to coordinate the sharing of the count variable.   
What we need to do is to “lock” the usage of the count variable by one thread 
until the read+increase+write operations have all completed so that there is no 
interference in between.   
 
The semaphore itself is actually a counter as well.   We typically set it to some non-zero initial 
value.   A thread can have access to the shared resource as long as the value of the 
semaphore is greater than zero.  A mutex is a binary semaphore, with a value of 0 or 1.  Only 
one thread can access it at a time.   In our example, we will use a simple mutex semaphore 
which will have a value of 1 (indicating that the resource is unlocked and available) or 0 
(indicating that the resource is locked and being used). 
 
A semaphore is defined as a sem_t type and we need to include the <semaphore.h> header 
in our code in order to use it.   The first function that we need to call is sem_init() which allows 
us to initialize the semaphore: 
 

sem_t   semaphore; 

  

sem_init(&semaphore, 0, 1); 

 
In the above code, the semaphore is initially given a value of 1 as the third parameter to the 
function.   The second parameter has a value of 0, indicating that the semaphore will just be 
used between threads, as opposed to between multiple processes.  If the function returns a 
negative value, then something went wrong (e.g., the value exceeds SEM_VALUE_MAX, the 
limit on the number of semaphores has been reached, process does not have privileges, etc.). 
 
When a thread is ready to use the shared resource (e.g., the count++ line of code), then it 
must “surround that code” with code beforehand to wait on the semaphore and code 
afterwards to release the semaphore.   
 
The sem_wait(&semaphore) function is used to wait on the semaphore.  That 

is, when we call it, our code waits there until it is this thread’s turn to use the 
shared resource.   The function returns -1 if the wait fails (e.g., semaphore 
already locked, deadlock has been detected, a signal interrupted, or the 
parameter is invalid) … otherwise 0 is returned.  This function decrements the 
value of the semaphore.   If the value of the semaphore is zero, it waits until it is 
non-zero. 
 

The sem_post(&semaphore) function is used to release the lock on a 

semaphore so that others can use the resource.   It fails only if the parameter is 
invalid, in which case -1 is returned … otherwise 0 is returned.  This function 
increments the semaphore’s value. 
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Here is the updated code that will work properly to increase the count via the two threads: 
 

Code from semaphore.c 

#include <stdio.h> 

#include <stdlib.h> 

#include <pthread.h> 

#include <semaphore.h> 

 

void *threadFunc(void *); 

 

volatile int count = 0; 

sem_t   mutex; 

 

 

int main() { 

  int          numInc = 100000000; // count to 100 million 

  pthread_t    t1, t2; 

 

  if (sem_init(&mutex, 0, 1) < 0) { 

    printf("Error: on semaphore init.\n"); 

    exit(1); 

  } 

 

  pthread_create(&t1, NULL, threadFunc, &numInc); 

  pthread_create(&t2, NULL, threadFunc, &numInc); 

  pthread_join(t1, NULL); 

  pthread_join(t2, NULL); 

 

  if (count != (2 * numInc)) 

    printf("Error: Count is %d instead of 200,000,000.\n", count); 

  else 

    printf("Count is %d, which is correct.\n", count); 

} 

 

 

// Function to increase count variable by amount specified by arg 

void *threadFunc(void *arg)  { 

  int inc = *((int *)arg); 

 

  for (int i=0; i<inc; i++) { 

    if (sem_wait(&mutex) < 0) { 

      printf("Error: on semaphore wait.\n"); 

      exit(1); 

    } 

    count++; 

    if (sem_post(&mutex) < 0) { 

      printf("Error: on semaphore post.\n"); 

      exit(1); 

    } 

  } 

  return(0); 

} 

 
Notice how the sem_wait() and sem_post() functions wrap around the count++ statement.  
This is how we lock use of that shared resource.   
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Notice also that the keyword volatile is used in the declaration of the count variable.   This is 
a special keyword in C that indicates that the value of the count variable could change 
unexpectedly.   The volatile keyword should ALWAYS be used when global variables are 
accessed by multiple tasks in a multi-threaded application.    The reason is that the compiler 
needs to know that it will be accessed/modified by multiple threads in order to prevent the 
compiler optimization from introducing unexpected behavior. 
 
What is the result when we run the code ?   It runs slower (because there is a lot of 
locking/waiting going on by the threads.   However, the code produces the correct result: 
 

student@COMPBase:~$ gcc -o semaphore semaphore.c -lpthread 

student@COMPBase:~$ ./semaphore  
Count is 200000000, which is correct. 

student@COMPBase:~$  

 
 

A Client/Server Example 
 
Just for fun … let us see if we can create a client/server example similar to what we did before 
… but by using threads instead of processes.   To do this, we will create a server thread and 
also three client threads.   So our main function will look as follows: 
 

void *runClient(void *num);     // We will write this 

void *runServer(void *notUsed); // We will write this 

 

int main() { 

  pthread_t    serverThread; 

  pthread_t    client[3]; 

 

  // Start the server 

  pthread_create(&serverThread, NULL, runServer, NULL); 

   

  // Start up 3 client threads 

  pthread_create(&client[0], NULL, runClient, "1"); 

  pthread_create(&client[1], NULL, runClient, "2"); 

  pthread_create(&client[2], NULL, runClient, "3"); 

 

  // Wait for the server to come back 

  pthread_join(serverThread, NULL); 

} 

 
Notice that it will start a runServer thread and then each runClient thread with it’s own 
number as a parameter passed in.   It looks very similar to our previous code.   The join 
function at the end will make sure that the main function does not complete until the 
runServer has completed and rejoined the main thread. 
 
So then, what do the server and client do ?  Well, in our previous example, we had the client 
send commands based on what the user entered through the keyboard.   This time, we will 
have the clients send 4 fixed command strings and then quit.   We will set it up so that the 
clients connect to the server, exchange data, and then rest for a bit (i.e., sleep for some 
random amount of time) in order to let other clients get in on the action. 
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But since we are not using sockets or official connections … how does the server 
communicate with the clients?   Well, because they are all threads running in the same 
process and share the same address space … we can have them share the same data 
buffers.   We will set up one buffer for sending and another for receiving: 
 

#define  BUFFER_SIZE    30 

 

char    requestBuffer[BUFFER_SIZE];   // data from client to server 

char    responseBuffer[BUFFER_SIZE];  // data from server to client 

 
The clients will fill in the requestBuffer and the server will read it.   The server will then fill in 
the responseBuffer and the client will read that one.   We will likely want to have a way of 
telling the server that we have finished filling in the requestBuffer.   A simple way to do this is 
to make a binary flag.   We can use another one for the server to inform the client that the 
responseBuffer is ready.  We will add these for that purpose: 
 

char  requestReady = 0;  // flag to tell server that request is ready 

char  responseReady = 0; // flag to tell client that response is ready 

 
Now, we are ready to write the server.   It should run forever, or at least until told to STOP.  
Notice how logical the code below is: 
 

void *runServer(void *notUsed) { 

  while (1) { 

    // Wait for an incoming client request 

    while (requestReady == 0); // wait for a request 

 

    // Get/Receive the message from the client into the char buffer 

    requestReady = 0; // reset for next time 

    printf("SERVER: Received client request: %s\n", requestBuffer); 

 

    // Respond with an "OK" message 

    responseBuffer[0] = requestBuffer[0]; 

    strcpy(responseBuffer+1, "ok\0"); 

    printf("SERVER: Sending \"%s\" to client\n", responseBuffer); 

    responseReady = 1; 

 

    // Quit if someone sent a STOP command 

    if (strcmp(&requestBuffer[1], "STOP") == 0) 

      break; 

  } 

  printf("SERVER: Shutting down.\n"); 

} 

 
First of all, the code loops (i.e., server thread runs) until a STOP message has been received.  
Inside the loop, we first wait for a client request by examining the requestReady flag.   As 
soon as it becomes 1, we know that the client has set up his/her message in the 
requestBuffer.  We reset it back to 0 right away (so that we don’t forget) for the next request.  
Then the request is printed and a response is set up.   We will assume that the first character 
of the client request is the single-digit client id (for our example only).  We will copy this into our 
response so that client 1 gets a response of “1ok”, client 2 gets “2ok” etc…   Once the 
response is ready to go, we set the responseReady flag to tell the client. 
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So now just the runClient remains to be written.   We need to make sure that only one client is 
using the buffers at a time.   So what we will do, is set up a simple mutex semaphore that 
allows only one client to communicate with the server at a time: 
 

sem_t   serverBusyIndicator; 

 
This, of course, needs to be initialized in our main function: 
 

sem_init(&serverBusyIndicator, 0, 1); 

 
Now we can write the runClient function.   Let us write it without the semaphore first.  We will 
set the following global variable up to store the commands to be sent: 
 
    #define  NUM_COMMANDS   4 

 

    char *clientCommands[NUM_COMMANDS] = {"Hello ","Funny","Stuff","STOP"}; 

 
Then we will set the client up to send all 4 commands in a loop: 
 

void *runClient(void *num) { 

  int  command = 0; 

   

  while (command < NUM_COMMANDS) { 

    // Send command string to server 

    requestBuffer[0] = ((char *)num)[0]; 

    strcpy(requestBuffer+1, clientCommands[command++]); 

    printf("CLIENT: Sending \"%s\" to server.\n", requestBuffer); 

    requestReady = 1; 

     

    // Get response from server, should be "OK" 

    while (responseReady == 0); // wait for a response 

     

    printf("CLIENT: Got back response \"%s\" from server.\n\n",  

       responseBuffer); 

    responseReady = 0; 

     

    // Sleep from 0 to 4 seconds randomly 

    sleep((int)(rand()/(double)RAND_MAX*5)); 

  } 

} 

 
The code is straight forward, isn’t it?   Notice that we are using the first character in the 
incoming function parameter and appending it to the start of the requestBuffer so that the 
server knows which client this is.   The buffers and flags are used the same way as with the 
server.   After a send and receive is done, the client waits for a random number of seconds 
before sending the next command. 
 
Now what do we do with the semaphore?   Well, the client should only try to access the 
requestBuffer when no other clients are using it … when the semaphore is free.   So we need 
to wrap this code up using semaphore wait and post calls as follows:  
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void *runClient(void *num) { 

  int  command = 0; 

   

  while (command < NUM_COMMANDS) { 

    // Wait for the server 

    sem_wait(&serverBusyIndicator); 

 

    // Send command string to server 

    requestBuffer[0] = ((char *)num)[0]; 

    strcpy(requestBuffer+1, clientCommands[command++]); 

    printf("CLIENT: Sending \"%s\" to server.\n", requestBuffer); 

    requestReady = 1; 

     

    // Get response from server, should be "OK" 

    while (responseReady == 0); // wait for a response 

     

    printf("CLIENT: Got back response \"%s\" from server.\n\n",  

       responseBuffer); 

    responseReady = 0; 

     

    // Tell the server we are done 

    sem_post(&serverBusyIndicator); 

 

    // Sleep from 0 to 4 seconds randomly 

    sleep((int)(rand()/(double)RAND_MAX*5)); 

  } 

} 

 
That is it!   We are done.   Here is the completed code: 
 

Code from csThreadExample.c 

 

#include <stdio.h> 

#include <stdlib.h> 

#include <unistd.h> 

#include <string.h> 

#include <pthread.h> 

#include <time.h> 

#include <semaphore.h> 

 

#define NUM_COMMANDS   4 

#define BUFFER_SIZE    30 

 

// This will be used to ensure that only one client communicates with 

// the server at a time, so that the variables below are used properly 

sem_t   serverBusyIndicator; 

 

 

// These are the variables used to pass data between threads 

char    requestBuffer[BUFFER_SIZE];   // data from client to server 

char    responseBuffer[BUFFER_SIZE];  // data from server to client 

char    requestReady = 0;    // flag to tell server that request is ready 

char    responseReady = 0;   // flag to tell client that response is ready 
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// These are the commands sent from each client 

char   *clientCommands[NUM_COMMANDS] = {"Hello ", "Funny", "Stuff", "STOP"}; 

 

// Set up the client so that it sends 4 commands 

void *runClient(void *num) { 

  int  command = 0; 

   

  // Go into infinite loop to communicate with server now 

  while (command < NUM_COMMANDS) { 

    // Wait for the server 

    sem_wait(&serverBusyIndicator); 

     

    // Send command string to server 

    requestBuffer[0] = ((char *)num)[0]; 

    strcpy(requestBuffer+1, clientCommands[command++]); 

    printf("CLIENT: Sending \"%s\" to server.\n", requestBuffer); 

    requestReady = 1; 

     

    // Get response from server, should be "OK" 

    while (responseReady == 0); // wait for a response 

     

    printf("CLIENT: Got back response \"%s\" from server.\n\n", responseBuffer); 

    responseReady = 0; 

     

    // Tell the server we are done 

    sem_post(&serverBusyIndicator); 

 

    // Sleep from 0 to 4 seconds randomly 

    sleep((int)(rand()/(double)RAND_MAX*5)); 

  } 

} 

 

void *runServer(void *notUsed) { 

  // repeat forever 

  while (1) { 

    // Wait for an incoming client request 

    while (requestReady == 0); // wait for a request 

 

    // Get/Receive the message from the client into the char buffer 

    requestReady = 0; // reset for next time 

    printf("SERVER: Received client request: %s\n", requestBuffer); 

 

    // Respond with an "OK" message 

    responseBuffer[0] = requestBuffer[0]; 

    strcpy(responseBuffer+1, "OK\0"); 

    printf("SERVER: Sending \"%s\" to client\n", responseBuffer); 

    responseReady = 1; 

 

    // Quit if someone sent a STOP command 

    if (strcmp(&requestBuffer[1], "STOP") == 0) 

      break; 

  } 

   

  printf("SERVER: Shutting down.\n"); 

} 
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// This main function starts a server and then three clients. 

int main() { 

  pthread_t    serverThread; 

  pthread_t    client[3]; 

 

  srand(time(NULL)); 

   

  // Initialize semaphore 

  sem_init(&serverBusyIndicator, 0, 1); 

   

  // Start the server 

  pthread_create(&serverThread, NULL, runServer, NULL); 

   

  // Start up 3 client threads 

  pthread_create(&client[0], NULL, runClient, "1"); 

  pthread_create(&client[1], NULL, runClient, "2"); 

  pthread_create(&client[2], NULL, runClient, "3"); 

 

  // Wait for the server to come back 

  pthread_join(serverThread, NULL); 

} 

 

Remember to include the -lpthread library 
when compiling. 
 
The output (although it will vary due to the 
randomness) is as shown here on the right → 
 
Notice that in this particular run, the first client 
did not get to send all his/her requests 
because client 2 stopped the server. 

CLIENT: Sending "3Hello " to server. 

SERVER: Received client request: 3Hello  

SERVER: Sending "3OK" to client 

CLIENT: Got back response "3OK" from server. 

 

CLIENT: Sending "2Hello " to server. 

SERVER: Received client request: 2Hello  

SERVER: Sending "2OK" to client 

CLIENT: Got back response "2OK" from server. 

 

CLIENT: Sending "1Hello " to server. 

SERVER: Received client request: 1Hello  

SERVER: Sending "1OK" to client 

CLIENT: Got back response "1OK" from server. 

 

CLIENT: Sending "2Funny" to server. 

SERVER: Received client request: 2Funny 

SERVER: Sending "2OK" to client 

CLIENT: Got back response "2OK" from server. 

 

CLIENT: Sending "2Stuff" to server. 

SERVER: Received client request: 2Stuff 

SERVER: Sending "2OK" to client 

CLIENT: Got back response "2OK" from server. 

 

CLIENT: Sending "3Funny" to server. 

SERVER: Received client request: 3Funny 

SERVER: Sending "3OK" to client 

CLIENT: Got back response "3OK" from server. 

 

CLIENT: Sending "3Stuff" to server. 

SERVER: Received client request: 3Stuff 

SERVER: Sending "3OK" to client 

CLIENT: Got back response "3OK" from server. 

 

CLIENT: Sending "1Funny" to server. 

SERVER: Received client request: 1Funny 

SERVER: Sending "1OK" to client 

CLIENT: Got back response "1OK" from server. 

 

CLIENT: Sending "2STOP" to server. 

SERVER: Received client request: 2STOP 

SERVER: Sending "2OK" to client 

SERVER: Shutting down. 

 


