

Chapter 6

Streams and File/Device I/O

What is in This Chapter ?

This chapter discusses Streams and how to do Input/Output (i.e., I/O) through these streams.
It mainly focusses on how to open/close/read/write files, although the concepts carry over to
other streams as well, such as reading and writing to various hardware devices. The
difference between binary-based and text-based files is discussed along with examples. The
idea of Random Access files is mentioned, along with a discussion of how to access/modify
binary files quicker than Sequential Access files. There is a discussion of buffers, and how
they relate to I/O in regard to flushing the data. Finally, a discussion of pipes is presented
and how they can be used in the Linux shell to redirect program input and output.

COMP2401 - Chapter 6 – Streams and File/Device I/O Fall 2020

 - 239 -

 6.1 Streams and File I/O

By now, you should know that I/O is short for Input/Output.

Input is the transferring of bytes from a data source (e.g., keyboard, mouse,

game controllers, files, network, other programs) to a program.

Output is the transferring of bytes from a program to a data sink (e.g.,

monitor, files, network, printer, other programs).

In C, I/O operations are supported by standard library functions and system calls as well as
Unix shell functions.

When I/O is described as the transferring of bytes, we tend to use the term

stream. You should all be familiar with streamed data since we see this

often over the internet (e.g., Netflix is used to stream data to your home).

In C, there are standard streams set up already:

• stdin = standard input == 0 (default is keyboard)

• stdout = standard output == 1 (default is display)

• stderr = standard error == 2 (default is display)

Standard streams are defaulted to sources/sinks as shown above, but they can be re-directed
to/from other programs, files, devices, data sources and sinks (more on this later).

Streams can contain data in two types of formats:

1. formatted text data
o stored in ASCII text representation

2. unformatted binary data

o stored in machine representation

There are advantages and disadvantages to both formats …

COMP2401 - Chapter 6 – Streams and File/Device I/O Fall 2020

 - 240 -

Text:
✓ Readable (we can easily read what is stored)
✓ Data can be recovered easily/naturally, no need to remember exact format
✓ High compression ratio (e.g., smaller when zipped)
 Can require more storage space
 Slow to access – sequential access only
 Every field of data must be written, cannot write struct in one shot

Binary:

✓ Fast to access – random access to data
✓ Can require less storage space

✓ Read/write whole structs
 Low compression ratio (e.g., larger when zipped)
 Hard to recover data, need to remember format it was written in

A stream ends with a special marker called an end-of-file (a.k.a. EOF)
marker that follows the last byte of the file. It is similar to the idea of putting
'\0' at the end of a string to identify the end of the string. In C, the end-of-file
marker is pre-defined as EOF and it has a value of -1 in our system (although
this value is OS dependent). Some of the C library functions will return this
end-of-file marker.

What are some of the stream-related library functions? The general stream-related system
calls that we can use are not the same as library functions. They are operating-system-
dependent … which means that if you use them, your code will not be as portable as you might
like. Here they are:

• int open(const char *path, int flags);

• int close(int fileDescriptor);

• ssize_t write(int fileDescriptor, const void *buffer, size_t count);

• ssize_t read(int fileDescriptor, void *buffer, size_t count);

These can be used to read in data from (and send data to) various I/O devices. So, as it turns
out, we can read/write to various hardware devices in a similar manner to reading/writing files
by using these more generalized functions. However, we will not discus these any further in
this course. Instead, we will discus the library functions that relate to file streams … which,
for example, can be used to read/write files to/from your hard drive, USB drive, etc…

Before a stream (file or otherwise) can be used to send data, it must first be opened.
Afterwards it must be closed.

The fopen() function is used to open a stream and it has this format:

FILE * fopen(const char *filename, const char *mode)

The first parameter is used to specify the name of the file to be opened.

COMP2401 - Chapter 6 – Streams and File/Device I/O Fall 2020

 - 241 -

The second parameter specifies the mode, which can be one of the following:

• "r" – for reading the file, which must already exist.

• "w" – for writing to a file. If the file does not yet exist, a new one with the given name is

created. If the file already exists, it is completely overwritten (i.e., old file contents are
erased !!).

• "a" – for appending to a file. If the file does not yet exist, a new one with the given

name is created. If the file already exists, then any new information sent to the file
stream is appended to the end (i.e., old file contents remains intact).

• "r+" – opens a file for reading & writing (file marker begins at start of file).

• "w+" – creates a new file for reading & writing (file marker begins at start of file).

• "a+" – opens a new file for reading & appending (file marker begins at end of file).

The function returns a FILE * which is a file handle/descriptor that uniquely identifies the file
stream. It will return 0 (i.e., the NULL pointer) if an error occurred. There could be many
reasons (at least 20) why a file could not be opened. You can see the documentation for
details. Here is how to open a file for writing:

FILE *fd;

fd = fopen("sampleFile.dat", "w");

if (!fd) {

 printf("ERROR: Could not open file\n");

 exit(1);

}

COMP2401 - Chapter 6 – Streams and File/Device I/O Fall 2020

 - 242 -

Here is slightly more compact way to do it:

FILE *fd;

if ((fd = fopen("sampleFile.dat", "w")) == NULL) {

 printf("ERROR: Could not open file\n");

 exit(1);

}

Sometimes we want to check for NULL when opening for reading. This will allow us to inform
the user that the file does not exist and ask if the file should be created.

FILE *fd;

if ((fd = fopen("sampleFile.dat", "r")) == NULL) {

 // file does not exist, maybe ask user if it should be created

}

else {

 // continue with the opened file and read it

}

Once the stream has been opened, it will later need to be closed using the fclose() function:

int fclose(FILE *fd)

The function takes the FILE * file descriptor that was returned from the call to
fopen(). It will close the file. If there were any contents in the buffer waiting to
be sent to the file, it is flushed (i.e., written to the file) before the file is closed. If
there is content in the input buffer that was not read in yet, it is discarded. The
function returns 0 if all went well, and the EOF character if an error occurred (at
least 10 kinds of errors … see documentation). Once closed, the stream can no
longer be used.

Here is how to check for an error upon closing:

if (fclose(fd) == EOF) {

 printf("ERROR: Could not close file\n");

 exit(1);

}

There are some other useful functions that can be used when dealing with file errors as you
read/write from/to a file:

• ferror(FILE *fd) - checks if the error flag is set for the file

• clearerr(FILE *fd) - clears the error flag associated with the file

• feof(FILE *fd) - checks if EOF was reached

For example, after trying to read to a file, we could do this:

if (ferror(fd)) {

 printf("Error reading from file\n");

 clearerr(fd);

}

COMP2401 - Chapter 6 – Streams and File/Device I/O Fall 2020

 - 243 -

 6.2 Binary File I/O

Once the file is opened, we can read or write binary (i.e., non-ASCII) bytes to the file by using
the fread() and fwrite() functions, respectively. Let’s look at the fwrite() function first.

size_t fwrite(const void *dataPtr, size_t size, size_t n, FILE *fd);

Here, fd is the file descriptor that was returned from the fopen() function. The dataPtr pointer
points to the block of memory that contains the data to be written to the file.
The size parameter indicates the number of bytes of each item to be written,
and the n parameter indicates the number of items to be written. If the function
is successful, it returns the count of the number of items that were successfully
written to the file. If an error occurred, then it returns a number less than n. In
most systems, the size_t type is equivalent to an unsigned int.

Here is how we might write out a float value to a file stream:

float f = 100.13;

fwrite(&f, sizeof(float), 1, fd);

Notice how we pass in a pointer to the float and also the size of the float as well as the
number of floats to be written. In addition to simple primitive types, we can output strings,
arrays and structs. Here is a full example that shows this:

Code from fwriteExample.c

#include <stdio.h>

#include <stdlib.h>

#include <string.h>

struct person {

 char name[10];

 int age;

 float weight;

};

int main() {

 FILE *fd;

 // Open a new file for writing only

 fd = fopen("sampleFile.dat", "w");

 if (!fd) {

 printf("ERROR: Could not open file\n");

 exit(1);

 }

 // Write out a float

 float data = 1078.24;

 fwrite(&data, sizeof(float), 1, fd);

 // Write out a string of 30 chars

 char sentence[30] = "This is a sentence.";

 fwrite(sentence, sizeof(char), 30, fd);

 It is important to have a fixed-size
string here because when reading
back in, we need to know how
many bytes belong to the string.
It makes things more difficult if we
have variable-sized strings.

COMP2401 - Chapter 6 – Streams and File/Device I/O Fall 2020

 - 244 -

 // Write out a whole array of ints

 int intArray[5] = {12, 34, 56, 78, 90};

 fwrite(intArray, sizeof(intArray), 1, fd);

 // Write out first three elements of the array

 fwrite(intArray, sizeof(int), 3, fd);

 // Write out an array of structs

 struct person friends[4] = {{"Bobby", 19, 143.57}, {"Jenny", 20, 110.32},

 {"Fredy", 82, 178.29}, {"Marie", 67, 121.32}};

 fwrite(friends, sizeof(friends), 1, fd);

 // Write out a single friend, Bob

 fwrite(friends, sizeof(struct person), 1, fd);

 // All done ... close the file

 fclose(fd);

}

When running this program, there is not much to see, as there is no output. However, the
sampleFile.dat file is produced. But it itself contains binary data, so it is mostly unreadable:

student@COMPBase:~$./fwriteExample

student@COMPBase:~$ more sampleFile.dat

�ǆDThis is a sentence.
student@COMPBase:~$

Opening the file in gedit will give an error and show a little bit more, but it will still look weird:

In order to know whether or not everything was saved properly to the file, we will need to read
the information back in to compare. To read a file back in, we use the fread() function which
has this format:

size_t fread(void *dataPtr, size_t size, size_t n, FILE *fd);

The dataPtr is the starting address of the memory block where data will be
stored after reading from the file. The function reads n items from the file where
each item occupies the number of bytes specified by size. On success, it reads
n items from the file and returns n. On error or end of file, it returns a number less than n.
Here is how to read in a float … notice how it is basically the same as writing:

COMP2401 - Chapter 6 – Streams and File/Device I/O Fall 2020

 - 245 -

float f;

fread(&f, sizeof(float), 1, fd);

To read in our sampleFile.dat from the previous fwriteExample.c program, here is a
complete program:

Code from freadExample.c

#include <stdio.h>

#include <stdlib.h>

#include <string.h>

struct person {

 char name[10];

 int age;

 float weight;

};

int main() {

 FILE *fd;

 // Open the file for reading only

 fd = fopen("sampleFile.dat", "r");

 if (!fd) {

 printf("ERROR: Could not open file\n");

 exit(1);

 }

 // Read in a float

 float data;

 fread(&data, sizeof(float), 1, fd);

 printf("Here is the float: %f\n", data);

 // Read in a string of 30 chars

 char sentence[30];

 fread(sentence, sizeof(char), 30, fd);

 printf("Here is the sentence: \"%s\"\n", sentence);

 // Read in a whole array of ints

 int intArray[5];

 fread(intArray, sizeof(intArray), 1, fd);

 printf("\nHere is the array: {");

 for (int i=0; i<5; i++)

 printf("%d,", intArray[i]);

 printf("}\n");

 // Read in first three elements of the array

 fread(intArray, sizeof(int), 3, fd);

 printf("\nHere are the first three elements of the array: {");

 for (int i=0; i<3; i++)

 printf("%d,", intArray[i]);

 printf("}\n");

 // Read in an array of structs

 struct person friends[4];

 fread(friends, sizeof(friends), 1, fd);

 printf("\nHere are the friends:\n");

COMP2401 - Chapter 6 – Streams and File/Device I/O Fall 2020

 - 246 -

txt

 for (int i=0; i<4; i++)

 printf(" Name: %s, Age: %d, Weight: %f\n",

 friends[i].name, friends[i].age, friends[i].weight);

 // Read in a single friend

 struct person friend;

 fread(&friend, sizeof(struct person), 1, fd);

 printf("\nHere is the first friend:\n");

 printf(" Name: %s, Age: %d, Weight: %f\n", friend.name,

 friend.age, friend.weight);

 printf("\n");

 fclose(fd); // All done ... close the file

}

When we run the code, we should see the values that were written to the file:

Here is the float: 1078.239990

Here is the sentence: "This is a sentence."

Here is the array: {12,34,56,78,90,}

Here are the first three elements of the array: {12,34,56,}

Here are the friends:

 Name: Bobby, Age: 19, Weight: 143.570007

 Name: Jenny, Age: 20, Weight: 110.320000

 Name: Fredy, Age: 82, Weight: 178.289993

 Name: Marie, Age: 67, Weight: 121.320000

Here is the first friend:

 Name: Bobby, Age: 19, Weight: 143.570007

 6.3 Text File I/O

There are two functions that can be used to read in formatted text data:

• fprintf()
o writes to file from program variables according to format string

• fscanf()
o reads from file into program variables according to format string

These work very similarly to printf() and scanf() that we have used previously, by
writing/reading things out/in as text, as opposed to binary. Here is how to write/read a float:

float f = 100.13;

float g;

fprintf(fd, "%f", f);

fscanf(fd, "%f", &g);

When using these functions, you need to be careful to make sure that the data is readable
later. For example, if we decide to output three integers like this:

COMP2401 - Chapter 6 – Streams and File/Device I/O Fall 2020

 - 247 -

int x=10, y=4, z=78;

fprintf(fd, "%d%d%d", x, y, z);

then you will have a problem reading them in again since they will all appear as a
single integer (i.e., 10478) when read back in again. If you place a space in
between, then all is ok:

fprintf(fd, "%d %d %d", x, y, z);

A more serious concern is when printing strings, since the size of the string is not known when
reading in again. Consider, for example, if you do this:

char sentence[30] = "This is a sentence.";

fprintf(fd, "%s", sentence);

The string will be properly stored in the file. However, when trying to read this with a simple
string read from the fscanf() function, it will not work:

char sentence[30];

fscanf(fd, "%s", sentence); // reads in only "This"

The problem is that the "%s" format string in fscanf() will only read in characters up to a
space or tab or newline, then it will stop.

Alternatively, you can read in a fixed number of characters like this:

char sentence[30];

fscanf(fd, "%30c", sentence); // reads in exactly 30 chars

This will read in exactly 30 characters, which would be fine if we outputted 30 characters. We
could force 30 characters to be printed when outputting by adding spaces afterwards by using
-30 as the width like this:

char sentence[30] = "This is a sentence.";

fprintf(fd, "%-30s", sentence);

Then we could read in the 30 characters and all would be good, except that the
String will now have extra spaces after it:

"This is a sentence. "

We could write some code to remove the trailing spaces. Another option would
be simply to indicate, in the file, the number of characters to be read:

char sentence[30] = "This is a sentence.";

fprintf(fd, "%d %s", strlen(sentence), sentence);

Here is what would appear in the file:

19 This is a sentence.

COMP2401 - Chapter 6 – Streams and File/Device I/O Fall 2020

 - 248 -

Then reading would be simpler. We read in the size, then one character at a time like this:

char sentence[30];

int size;

fscanf(fd, "%d ", &size);

for (int i=0; i<size; i++)

 fscanf(fd, "%c", &sentence[i]);

This will do just fine. It would likely be simpler, however, to just use fwrite() and fread() to
write/read strings as their maximum number of chars, even if garbage data follows the ‘\0’:

fwrite(sentence, sizeof(char), 30, fd);

fread(sentence, sizeof(char), 30, fd);

Keep in mind, however, that there can always be problems if you make assumptions. For
example, we might assume that the string does not start with digits. If it does, it could interfere
with things, if for example, we were to write out an integer just before the string:

int d = 76;

fprintf(fd, "%d", d);

char sentence[30] = "52 cards in a deck";

fwrite(sentence, sizeof(char), 30, fd);

This will output as follows:

 7652 cards in a deck

And the problem when reading like this:

int d;

fscanf(fd, "%d",&d);

printf("Here is the int: %d\n", d);

char sentence[30];

fread(sentence, sizeof(char), 30, fd);

printf("Here is the sentence: \"%s\"\n", sentence);

is that we will get this result:

Here is the int: 7652

Here is the sentence: " cards in a deck"

Therefore, it is important to be careful and to not assume certain things about your data. Try to
think of all the things that could go wrong and you’ll save yourself a lot of debugging pain/time.

Here is an adjusted version of our fwriteExample.c code to use fprintf() instead:

COMP2401 - Chapter 6 – Streams and File/Device I/O Fall 2020

 - 249 -

Code from fprintfExample.c

#include <stdio.h>

#include <stdlib.h>

#include <string.h>

struct person {

 char name[10];

 int age;

 float weight;

};

int main() {

 FILE *fd;

 // Open the file for writing only

 fd = fopen("sampleFile.txt", "w");

 if (!fd) {

 printf("ERROR: Could not open file\n");

 exit(1);

 }

 // Write out a float

 float data = 1078.24;

 fprintf(fd, "%f\n", data);

 // Write out a string of 30 chars

 char sentence[30] = "This is a sentence.";

 fprintf(fd, "%-30s\n", sentence);

 // Write out a whole array of ints

 int intArray[5] = {12, 34, 56, 78, 90};

 for (int i=0; i<5; i++)

 fprintf(fd, "%d ", intArray[i]);

 fprintf(fd, "\n");

 // Write out first three elements of the array

 for (int i=0; i<3; i++)

 fprintf(fd, "%d ", intArray[i]);

 fprintf(fd, "\n");

 // Write out an array of structs

 struct person friends[4] = {{"Bobby", 19, 143.57}, {"Jenny", 20, 110.32},

 {"Fredy", 82, 178.29}, {"Marie", 67, 121.32}};

 for (int i=0; i<4; i++)

 fprintf(fd, "%s %d %f\n", friends[i].name,friends[i].age,friends[i].weight);

 // Write out a single friend

 fprintf(fd, "%s %d %f\n", friends[0].name,friends[0].age,friends[0].weight);

 // All done ... close the file

 fclose(fd);

}

The resulting samplefile.txt file would look like this:

txt

COMP2401 - Chapter 6 – Streams and File/Device I/O Fall 2020

 - 250 -

1078.239990

This is a sentence.

12 34 56 78 90

12 34 56

Bobby 19 143.570007

Jenny 20 110.320000

Fredy 82 178.289993

Marie 67 121.320000

Bobby 19 143.570007

Here is the text-based version to read it back in using fscanf():

Code from fscanfExample.c

#include <stdio.h>

#include <stdlib.h>

#include <string.h>

struct person {

 char name[10];

 int age;

 float weight;

};

int main() {

 FILE *fd;

 // Open the file for reading only

 fd = fopen("sampleFile.txt", "r");

 if (!fd) {

 printf("ERROR: Could not open file\n");

 exit(1);

 }

 // Read in a float

 float data;

 fscanf(fd, "%f\n", &data);

 printf("Here is the float: %f\n", data);

 // Read in a string of 30 chars

 char sentence[30];

 fscanf(fd, "%30c\n", sentence);

 printf("Here is the sentence: \"%s\"\n", sentence);

 // Read in a whole array of ints

 int intArray[5];

 printf("\nHere is the array: {");

 for (int i=0; i<5; i++) {

 fscanf(fd, "%d", &intArray[i]);

 printf("%d,", intArray[i]);

 }

 printf("}\n");

 fscanf(fd, "\n");

 // Read in first three elements of the array

 printf("\nHere are the first three elements of the array: {");

 for (int i=0; i<3; i++) {

 fscanf(fd, "%d", &intArray[i]);

 printf("%d,", intArray[i]);

txt

COMP2401 - Chapter 6 – Streams and File/Device I/O Fall 2020

 - 251 -

 }

 printf("}\n");

 fscanf(fd, "\n");

 // Read in an array of structs

 struct person friends[4];

 printf("\nHere are the friends:\n");

 for (int i=0; i<4; i++) {

 fscanf(fd, "%s %d %f\n", friends[i].name,&friends[i].age,&friends[i].weight);

 printf(" Name: %s, Age: %d, Weight: %f\n", friends[i].name,

 friends[i].age, friends[i].weight);

 }

 // Read in a single friend

 struct person friend;

 fscanf(fd, "%s %d %f\n", friend.name, &friend.age, &friend.weight);

 printf("\nHere is the first friend:\n");

 printf(" Name: %s, Age: %d, Weight: %f\n", friend.name,

 friend.age, friend.weight);

 printf("\n");

 // All done ... close the file

 fclose(fd);

}

The output is the same as before:

Here is the float: 1078.239990

Here is the sentence: "This is a sentence. "

Here is the array: {12,34,56,78,90,}

Here are the first three elements of the array: {12,34,56,}

Here are the friends:

 Name: Bobby, Age: 19, Weight: 143.570007

 Name: Jenny, Age: 20, Weight: 110.320000

 Name: Fredy, Age: 82, Weight: 178.289993

 Name: Marie, Age: 67, Weight: 121.320000

Here is the first friend:

 Name: Bobby, Age: 19, Weight: 143.570007

COMP2401 - Chapter 6 – Streams and File/Device I/O Fall 2020

 - 252 -

 6.4 File Navigation/Positioning

Suppose there is a large file with a lot of binary data in it. For example,
there may be a large database file with many records. If we wanted to
read/update one of the records, it would be a slow process to always
start at the beginning of a file and traverse through a bunch of records
just to get to the one that we want to read/update. This process is called
sequential access, and it is slow, tedious and annoying. It would be
better to be able to jump to any position in the file and start reading or
updating. The idea of not having to start at the beginning, but to be able
to jump anywhere in the file is called random access.

Random access to data in a binary file is easy. It is similar to simply offsetting an array pointer
by a certain known amount. Recall a previous example that incremented array pointers:

 int intArr[8] = {23, 54, 67, 88, 43, 12, 83, 46};

 printf("First int: %d \n", *intArr); // displays 23

 printf("Second int: %d \n", *(intArr + 1)); // displays 54

 printf("Fourth int: %d \n", *(intArr + 3)); // displays 88

As you can see, we can access the 4th element in the array simply by offsetting the pointer by
3 “ints” (i.e., 12 bytes) from the start of the array in memory.

Each file has a file marker (a.k.a., file pointer) that indicates where in the stream
the next byte is to be read from or written to. It is similar to the idea of using your
index finger to keep track of where you are. Each time we read/write, the file
marker is incremented. You can ask where the file marker is at any time by
using the ftell() function. You can also move the file marker to a particular
location by using the fseek() function. Finally, you can reset the file marker
back to the start of the file by using the rewind() function.

Consider creating a file with 10 integers stored in it and then reading the integers back in.
Notice the program below which shows the file marker moving as it reads each integer:

Code from fileMarker.c

#include <stdio.h>

#include <stdlib.h>

int main() {

 FILE *fd;

 // Write out 10 random integers

 fd = fopen("integers.dat", "w+"); // read & write

 for (int i=0; i<10; i++) {

 int data = (int)(rand()/(double)RAND_MAX*100);

 fwrite(&data, sizeof(int), 1, fd);

 }

 rewind(fd); // Reset to the beginning so we can read it in

COMP2401 - Chapter 6 – Streams and File/Device I/O Fall 2020

 - 253 -

 // Read in the 10 integers and show the file marker moving

 int data;

 printf("File Marker starts at: %lu\n", ftell(fd));

 while ((fread(&data, sizeof(int), 1, fd)) > 0) {

 printf("Read in value: %d, File Marker moved to: %lu\n", data, ftell(fd));

 }

 printf("fread() returned -1, EOF reached\n");

 fclose(fd);

}

Here is what the file marker would look like after just 4 integers were read in:

The code above would print out this:

File Marker starts at: 0

Read in value: 84, File Marker moved to: 4

Read in value: 39, File Marker moved to: 8

Read in value: 78, File Marker moved to: 12

Read in value: 79, File Marker moved to: 16

Read in value: 91, File Marker moved to: 20

Read in value: 19, File Marker moved to: 24

Read in value: 33, File Marker moved to: 28

Read in value: 76, File Marker moved to: 32

Read in value: 27, File Marker moved to: 36

Read in value: 55, File Marker moved to: 40

fread() returned -1, EOF reached

Now that we understand that the integers are stored in order and that the file marker keeps
track of where we are … let us see how we could alter one of the integers in the file by
adjusting the file marker to that integer’s location in the file (i.e., offset it by the appropriate
amount) and then write to the file again.

In order to jump to any location within a file, we simply add the appropriate offset to the file
marker by using the fseek() function. The key is to know how much to offset by. The fseek()
has this format:

int fseek(FILE *fd, long int offset, int whereFrom);

The offset is the number of bytes to skip over (i.e., offset from, which depends on the
whereFrom value … which can be one of the following values:

SEEK_SET = 0 – the offset is with respect to the beginning of the file
SEEK_CUR = 1 – the offset is with respect to the current position in the file
SEEK_END = 2 – the offset is with respect to the end of the file

COMP2401 - Chapter 6 – Streams and File/Device I/O Fall 2020

 - 254 -

Here are some examples:

fseek(fd, 0, SEEK_SET) moves file marker to beginning of file.
fseek(fd, N, SEEK_SET) moves file marker to byte (N + 1) in file.
fseek(fd, N, SEEK_CUR) moves file marker N bytes forward from current position in file.
fseek(fd, -N, SEEK_CUR) moves file marker N bytes backward from current position in file.
fseek(fd, 0, SEEK_END) moves file marker to end of file.
fseek(fd, -N, SEEK_END) moves file marker N bytes backward from end of file.

Consider our previous example. Assume that we want to alter the 8th integer in the file,
perhaps by increasing it by 10. We would have to position the file marker to the 8th integer
using fseek(), read the value, increase it and re-write it as follows:

Code from randomAccess.c

#include <stdio.h>

#include <stdlib.h>

int main() {

 FILE *fd;

 int data;

 // Read in the file with the 10 integers

 fd = fopen("integers.dat", "r+");

 printf("Original file values:\n");

 while ((fread(&data, sizeof(int), 1, fd)) > 0) {

 printf("%d, ", data);

 }

 // Position the file marker and read in the 8th integer

 fseek(fd, sizeof(int)*7, SEEK_SET); // 7 since first integer starts at 0

 fread(&data, sizeof(int), 1, fd);

 // Increase the value and re-write

 data = data + 10;

 fseek(fd, sizeof(int)*7, SEEK_SET);

 fwrite(&data, sizeof(int), 1, fd);

 // Position back to the start

 fseek(fd, 0, SEEK_SET);

 // Display the values of the file again

 printf("Modified file values:\n");

 while ((fread(&data, sizeof(int), 1, fd)) > 0) {

 printf("%d, ", data);

 }

 fclose(fd);

}

Here is the output, assuming the integers.dat file has already been written:

COMP2401 - Chapter 6 – Streams and File/Device I/O Fall 2020

 - 255 -

student@COMPBase:~$./randomAccess

Original file values:

84, 39, 78, 79, 91, 19, 33, 76, 27, 55,

Modified file values:

84, 39, 78, 79, 91, 19, 33, 86, 27, 55,

student@COMPBase:~$

Of course, running it over and over again will cause the 8th integer to keep increasing:

student@COMPBase:~$./randomAccess

Original file values:

84, 39, 78, 79, 91, 19, 33, 86, 27, 55,

Modified file values:

84, 39, 78, 79, 91, 19, 33, 96, 27, 55,

student@COMPBase:~$./randomAccess

Original file values:

84, 39, 78, 79, 91, 19, 33, 96, 27, 55,

Modified file values:

84, 39, 78, 79, 91, 19, 33, 106, 27, 55,

student@COMPBase:~$./randomAccess

Original file values:

84, 39, 78, 79, 91, 19, 33, 106, 27, 55,

Modified file values:

84, 39, 78, 79, 91, 19, 33, 116, 27, 55,

student@COMPBase:~$

Here are a couple of more useful functions:

remove(char *fileName)
 - deletes the file with the given name. Returns 0 if it was deleted ok.

rename(char *oldFileName, char *newFileName)
 - renames the file to the new name. Returns 0 if no error.

COMP2401 - Chapter 6 – Streams and File/Device I/O Fall 2020

 - 256 -

 6.5 Buffers

When devices do I/O, both input and output data is often buffered.

A Buffer is an area of memory that is used to temporarily store data while it is being

moved from one place to another.

There are two main advantages of using buffering:

1. To regulate the flow of data. This can be handy if the receiver
of the data is not ready. In that case, we can allow the data to
collect (like a lineup forming) until such time as the receiver is
ready to accept the incoming data. It may also be the case that
the data is coming in too fast. In that case, only a little bit can be
read at a time … data is buffered so that the sender is not slowed down needlessly.

2. To optimize the flow of data. Sometimes it is costly to

perform an operation (e.g., there may be overhead in
setting up things to receive some data). It is usually best
to minimize the setup/overhead time by reducing such
costly operations. This is often the case when accessing
storage (e.g., disk drives, dvd drives, etc..), which can be
slow, as mechanics may be involved to move the disk or
disk’s head. The idea is similar to lights at an
intersection. Cars flow in one direction for a certain
amount of time, then stop to allow flow in another direction. While one direction of flow
is stopped, cars come along and are buffered while waiting to flow again.

Data cannot build up in a buffer indefinitely, as there are limits to buffer sizes
(just as there are physical limits to how many cars can line up on a street or
how many people could stand in a lineup. Eventually, the data must be
released (i.e., allowed in/out). We use the term flush to indicate that we are
sending the data out by emptying the buffer of its contents. It is analogous to
the situation in which a traffic officer decides to let the traffic go in one direction
until there is no more lineup.

When doing output, we should always flush a buffer once we are done with it … to ensure that
all of our buffered data gets sent through (or pushed into) the stream so that the buffer is
emptied. When we close a stream, this is done automatically. However, there are times that
we want to flush a file buffer manually. We do so by calling the fflush() function.

We don’t always need to buffer our data. If the data is coming in
slowly then there is no need to have a buffer. We won’t have, for
example, a lineup of customers if a business receives only one brief-
visiting customer every hour. Similarly, when receiving keyboard
input, the keys are pressed so slowly (when compared to the CPU
speed) that there is no need to buffer since we can get such input in
real time. Hence each keystroke is flushed as it is pressed.

COMP2401 - Chapter 6 – Streams and File/Device I/O Fall 2020

 - 257 -

However, the operating system does provide a means of buffering data from the keyboard.

In our programs, we need to decide when to flush. This could be done when our buffer gets
full according to some predetermined limit, in which case it could be automatically flushed.
This is called block buffering. It is good to use when there are large data transfers.

Alternatively, we could use line buffering. In which bytes accumulate until a newline character
is encountered, at which point the buffer is automatically flushed. This is used, for example,
when we enter shell commands in Unix/Linux. Even though the data is buffered, it can be
changed/edited until the newline character is entered.

Here is a simple program it looks at buffering on the system console (i.e., stdout). Hence, the
flushing is done when the ‘\n’ character appears. First, 5 numbers are displayed, but only
after the 5 are collected as a block of data. Second, each number is flushed with a newline
character. Third, the numbers are flushed right away so that they appear on the same line.

 Code from flushExample.c

#include <stdio.h>

#include <unistd.h>

int main() {

 // "Block" buffering

 printf("Here is an example of block buffering:\n");

 for (int i=1; i<=5; i++) {

 printf("%d ", i);

 sleep(1);

 }

 printf("\n");

 // Line buffering

 printf("Here is an example of line buffering:\n");

 for (int i=1; i<=5; i++) {

 printf("%d\n", i);

 sleep(1);

 }

 // No/unblocked buffering

 printf("Here is an example of no/unblocked buffering:\n");

 for (int i=1; i<=5; i++) {

 printf("%d ", i);

 fflush(stdout);

 sleep(1);

 }

 printf("\n");

}

COMP2401 - Chapter 6 – Streams and File/Device I/O Fall 2020

 - 258 -

The output is as follows:

Here is an example of block buffering:

1 2 3 4 5

Here is an example of line buffering:

1

2

3

4

5

Here is an example of no/unblocked buffering:

1 2 3 4 5

To have a better feel for block buffering, we would need a bigger example with many buffered
objects that are flushed at a specific buffer limit.

These all appear at once after 5 sec.

These appear one at a time each sec.

These appear one at a time each sec.

COMP2401 - Chapter 6 – Streams and File/Device I/O Fall 2020

 - 259 -

 6.6 Sources, Sinks and Pipes

As mentioned, files can be a source or a sink. That is, data can be read in from a file, or it
can be sent to a file. Files are essentially just a big one-dimensional array of bytes that
happens to be stored in a non-volatile format (i.e., the data does not disappear when the
power goes off). We can actually re-direct sources and sinks in our programs by using a
pipe:

A pipe is a system call that creates a one way communication link

between two file descriptors (i.e., between alternate sources and/or
sinks).

One of the most common uses of pipelining is for program testing.

By using it, we can:

• redirect input to come into our profram from a file instead of the keyboard

• compare a program’s actual output to an expected output

• store both input and expected output into files

Pipelining is the action of re-directing streams. We do this on the shell command line. We
can actually chain multiple pipes together. Here are the pipelining symbols that we can use:

< - uses a specified file as stdin to the program, instead of the keyboard

> - redirects stdout of the program to a specified file, instead of terminal

| - redirects stdout from one program to stdin of another program

Consider this program that prompts for numbers, and then prints out the maximum:

Code from redirect.c

#include <stdio.h>

#define MAX_NUMS 100

int main() {

 int arr[MAX_NUMS];

 int num, currMax;

 int count = 0;

 while (1) {

 scanf("%d", &num);

 if (num < 0)

 break;

 arr[count++] = num;

 if (count == MAX_NUMS)

 break;

 }

 currMax = 0;

COMP2401 - Chapter 6 – Streams and File/Device I/O Fall 2020

 - 260 -

 for (int i=0; i<count; i++) {

 if (arr[i] > currMax)

 currMax = arr[i];

 }

 printf("Max=%d\n", currMax);

}

If we were to run the program, the output is simple to determine:

student@COMPBase:~$./redirect

23

54

76

63

-1

Max=76

student@COMPBase:~$

Now consider using a stdout pipe redirect (i.e., >) to a file called redirect.out as follows:

student@COMPBase:~$./redirect > results.out

23

54

76

63

-1

student@COMPBase:~$ more results.out

Max=76

student@COMPBase:~$

Notice that a file called results.out was created and it contained the output from the redirect
program. The output for the program did not appear in the shell window, because it was
redirected to the specified file. The input values (entered by the user) still appear, as these
were not printed to stdout using printf(), they were the values echoed from the user as they
were entered from the keyboard.

We can also have the input values brought into the program from a file instead of from the
keyboard, by using the < pipe symbol. Imagine a file called numbers.txt that contains some
integers, with a -1 at the end. We can use this in the program:

student@COMPBase:~$ more numbers.txt

23

54

75

77

98

32

45

61

-1

student@COMPBase:~$./redirect < numbers.txt

Max=98

student@COMPBase:~$

COMP2401 - Chapter 6 – Streams and File/Device I/O Fall 2020

 - 261 -

As you can see, when the program runs, it does not ask the user for numbers, because it gets
them from the file instead, due to the < pipe on stdin.

We can actually combine these to by chaining them together:

student@COMPBase:~$./redirect < numbers.txt > results.out

student@COMPBase:~$ more results.out

Max=98

student@COMPBase:~$

The order of the pipes is not important. Notice how the program just runs and produces output
without the user being involved nor any results being shown.

The | pipe is interesting since it allows us to pass the results of a program to another program.
Recall the userInput program that we wrote a long time ago:

student@COMPBase:~$./userInput

What is your name ?

Mark

Hello, Mark

student@COMPBase:~$

Let us run our redirect program, using the numbers.txt file and then pass the results to the
userInput program instead of sending it to a file:

student@COMPBase:~$./redirect < numbers.txt | ./userInput

What is your name ?

Hello, Max=98

student@COMPBase:~$

Notice that the ./ is required for the userInput program so that the program could be found.
Notice that the Max=98 output is entered into the userInput program as if it was the name
typed in.

This pipelining is very useful when running large files overnight, allowing you to write batch
files with multiple input files and producing multiple output files.

