

Chapter 7

Program Organization

What is in This Chapter ?

This chapter discusses a couple of things related to keeping our code organized nicely. It
begins with an explanation of scope as it pertains to variables. Variables can be accessed
from other files, and scoping helps us understand what we can and cannot do. The separation
between src and header files is explained a bit. Finally, we discuss how to create our own
libraries.

COMP2401 - Chapter 7 – Program Organization Fall 2020

 - 263 -

 7.1 Variable Details and Scope

You have been using variables for a long time now. This section discusses a little bit of the
finer details in regard to how/where variables are stored as well as how they are accessed and
where they are accessible from (i.e., within our program or outside of it). Here is an example
of a variable declaration:

static const unsigned int myVar = 780;

There are 4 keywords being used here. In general, a variable declaration has this format:

<storage class> <qualifier> <modifier> <data type> <name> [= <initial value>];

Here is what each of these mean:

<data type>

- indicates the number of bytes and bit model to be used
e.g., int, float, char or double

<modifier>

- modifies # of bytes specified by the data type (defines how the bits are used)
e.g., signed, unsigned, short, long

<qualifier>

- specifies information to allow optimized compilation
e.g., const, volatile

<storage class>

- specifies area of memory where variable is to be stored, maybe in another file
e.g., static, extern, register

Although we discussed data types and modifiers already, let us be a bit clearer now on the
options. Here is a complete list of the primitive data type possibilities:

Variable Declaration Minimum Value Maximum Value
int i1;

short int i2;

long int i3;

signed int i4;

signed short int i5;

signed long int i6;

unsigned int i7;

unsigned short int i8;

unsigned long int i9;

char c1;

signed char c2;

unsigned char c3;

float f1;

double d1;

-2,147,483,648
-32,768

-9,223,372,036,854,775,808
-2,147,483,648

-32,768
-9,223,372,036,854,775,808

0
0
0

-128
-128

0
1.175494351e-38

2.2250738585072014e-308

2,147,483,647
32,767

9,223,372,036,854,775,807
2,147,483,647

32,767
9,223,372,036,854,775,807

4,294,967,295
65,535

18,446,744,073,709,551,615
127
127
255

3.402823466e+38
1.7976931348623158e+308

COMP2401 - Chapter 7 – Program Organization Fall 2020

 - 264 -

Notice that it does NOT make sense to have any of the following:

short char signed short char unsigned short char

long char signed long char unsigned long char

short float signed short float unsigned short float

long float signed long float unsigned long float

short double signed short double unsigned short double

long double signed long double unsigned long double

Now what about the qualifiers? These are used by the compiler to improve program
efficiency.

When we use const, we are telling the compiler that the value will not be changed in the
program. Consider the following code:

const int age = 18;

age = 21;

printf("age: %d\n", age);

The above code will not compile since we will not be allowed to assign a value to age. The
compiler will give this error:

error: assignment of read-only variable 'age'

So, we can set the value of age only once, when we declare it. But it cannot be altered for the
remainder of the program. What then is the difference between these two?

 #define AGE 18

const int age = 18;

Well, the #define is a directive that is done before compiling. It simply goes through your
code and replaces the word AGE (wherever it is found) by the number 18. Then the code is
compiled. When using const int age, however, this actually declares and stores the variable
with the value of 18 in your program. This allows you to pass the variable around in your
program and it will be type-checked. So, const variables basically allow for type-checked
constants, whereas #define does not check types. The storage location of const variables will
depend on the compiler.

What about the volatile keyword ?

volatile int counter = 0;

Recall, when we discussed threads, that we should declare a variable as volatile whenever
there is a chance that another thread/process may come along and change it at any time
unexpectedly. It informs the compiler not to do any optimization with this variable. What kind
of optimizations is the compiler trying to do anyway? That is a topic for a compiler construction
course. For now, just know that clever compilers may try to do things such as caching
variables in registers and changing the order that assignments are evaluated in.

COMP2401 - Chapter 7 – Program Organization Fall 2020

 - 265 -

The final variable parameter that needs discussion is the storage class. Recall the C memory
model that is used to store program code, global/local variables and data within allocated
memory:

The storage class parameter allows us to indicate whether the variable is to be stored in the
data segment or the function call stack. If we do not indicate any storage class, the default is
to store the variable on the function call stack. This is the usual case for local variables and
function parameters.

If we use the static keyword, then the variable is stored in the data segment (i.e., global
memory). That means that the variable stays around throughout the entire program. It keeps
its value until the program ends. However, it is only visible within the block of code that it is
declared in. Can you guess what the output will be for this program?

Code from static.c

#include <stdio.h>

void function1() {

 static int i = 0;

 i = i + 2;

 printf("%d ", i);

}

void function2() {

 int i = 0;

 i = i + 2;

 printf("%d ", i);

}

int main() {

 function1();

 function1();

 function1();

 printf("\n");

 function2();

 function2();

 function2();

 printf("\n");

}

COMP2401 - Chapter 7 – Program Organization Fall 2020

 - 266 -

Here it is:

2 4 6

2 2 2

Do you understand why? The only difference between the functions is the static keyword. In
function2, the variable i is initialized each time that the function is called. However, in
function1, the static variable i is NOT initialized each time the function is called. It keeps its
previous value. So, whenever the compiler finds a static variable in the code that is being
initialized, it does not re-evaluate the initialization code again.

When we use the extern keyword, this indicates that a variable is global and actually declared
in another file.

 extern float interestRate;

It is similar to the notion in JAVA where we access static/class variables from other classes:

Bank.InterestRate

BankAccount.LatestAccountNumber

The register keyword allows us to tell the compiler to store the variable in a register.

register float counter;

Registers are inside the CPU. Therefore, when
we perform operations using data within
registers, it is much faster, since we do not have
to first go access the variable from the memory,
which is much slower. When doing assembly
coding, fast code hinges on the proper use of
registers … knowing just when and how long to
keep data in a register. So, doing this can
speed up your program … however … it is often
better to rely on the compiler and assembler to
optimize such things. Some compilers may
actually ignore the request to store the value in a
register as opposed to regular memory.

It is important to fully understand the scope of variables:

The scope of a variable indicates where the variable can be used in the program.

Typically, a variable is declared and used in what is called a block scope. In C, a block is
any sequence of statements between a pair of braces. Consider this code template that
defines 4 variables. Each variable is defined within its own colored block and is therefore only
visible within that block and hence inaccessible outside that block:

COMP2401 - Chapter 7 – Program Organization Fall 2020

 - 267 -

This block scoping should be somewhat intuitive to us all by now. At the closing of a brace } ,
all variables defined in that block no longer exist in the program. So, in the above code, we
could have renamed both variables c and d to b, and there would be no confusion since in
each of the inner blocks, the other two variables do not exist.

It can be a bit tricky sometimes if a variable name is used more than once when dealing with
nested loops. For example, consider this code that defines variable b twice:

int a = 0;

while (a < 2) {

 int b = 8;

 while (a < 2) {

 int b;

 b = a++;

 printf("INNER: a=%d, b=%d\n", a, b);

 }

 printf("OUTER: a=%d, b=%d\n", a, b);

}

The compiler allows b to be defined in the inner while loop as well as the outer. The output is:

INNER: a=1, b=0

INNER: a=2, b=1

OUTER: a=2, b=8

COMP2401 - Chapter 7 – Program Organization Fall 2020

 - 268 -

 Notice that the outer while loop’s variable b is unusable from within the inner while
loop because the redeclaration of b essentially hides the outer declaration. It is not a
good idea to re-use a variable name like this because the code becomes unintuitive.

Another kind of scoping that we use
regularly is file scope. Any variable that
is declared outside any block is usable
anywhere within the program file. This
kind of scoping is used for global
variables (i.e., accessible from all code in
the file), functions (we want to be able to
call them from anywhere in the code) and
function prototypes/signatures (tells
the compiler that the function is to be
found somewhere in the file). An
example is shown here on the right.

Interestingly, through use of the extern
keyword, these global variables a and b,
as well as the functions func1 and func2,
can be accessed from other files.

Notice, in the above example, that func1 and func2 define some incoming parameters.
These parameters have what is called function prototype scope. That means, the
parameters are essentially just variables that exist for as long as the function is running and
cannot be used outside of the function.

A final type of scoping is that of function scope. Within a function, we can declare labels in
our code. A label identifies a place in the code that we can jump to using the goto statement.
Here is an example that attempts to identify whether or not there is a student who received 3
or more zero grades, in which case they failed. It repeatedly asks for student grades, one
student at a time. A value of -1 is entered to go to the next student. If at any time a student
has been found who has 3 zero grades, then the checking is complete, since we have found a
failed student. The code jumps out of both while loops by using a goto statement to go to the
code specified by the done label.

while (1) {

 int num=0, zeroCount = 0;

 printf("Enter a student's grades:\n");

 while (num != -1) {

 scanf("%d", &num);

 if (num == 0)

 zeroCount++;

 if (zeroCount > 2)

 goto done;

 }

}

done: printf("Found failed student\n");

COMP2401 - Chapter 7 – Program Organization Fall 2020

 - 269 -

The code works. However, the use of goto statements is nearly always a bad idea … unless
somehow you are forced to do it. In the above code, it is simply better to use a stopping flag
as follows:

char stillLooking = 1;

while (stillLooking) {

 int num=0, zeroCount = 0;

 printf("Enter a student's grades:\n");

 while (num != -1) {

 scanf("%d", &num);

 if (num == 0)

 zeroCount++;

 if (zeroCount > 2) {

 stillLooking = 0;

 num = -1;

 }

 }

}

printf("Found failed student\n");

There may be some very tricky cases where simple solutions like this are not
easy to figure out, but that usually means that some poor coding design choices
have been made along the way. Please … do your best to NEVER use labels
and goto statements.

See if you can figure out the result of the following program which is split across two files
called scope.c and util.c:

Code from scope.c

#include <stdio.h>

extern void simpleFunc(int x); // This is defined in "util.c"

int x = 10; // This will be accessed from "util.c"

int main() {

 x = x + 10;

 printf("main: x = %d\n", x);

 int x = 5;

 x = x + 10;

 printf("main: x = %d\n", x);

 {

 int x = 8;

 x = x + 10;

 printf("inner: x = %d\n", x);

 }

 printf("main: x = %d\n", x);

 simpleFunc(x);

 printf("main: x = %d\n", x);

}

COMP2401 - Chapter 7 – Program Organization Fall 2020

 - 270 -

Code from util.c

#include <stdio.h>

extern int x; // This is defined in "scope.c"

void simpleFunc(int z) {

 x = x + 10;

 printf("func: x = %d\n", x);

}

Of course, since there are two files to compile, we will need to include both of them in the gcc
command line. Here is the compiling command and the output (with highlighted results):

student@COMPBase:~$ gcc -o scope scope.c util.c

student@COMPBase:~$./scope
main: x = 20

main: x = 15

inner: x = 18

main: x = 15

func: x = 30

main: x = 15

student@COMPBase:~$

There are a couple of things that you should notice. First, the x defined within the inner block
(defined by braces) of the main function doesn’t alter the x defined earlier in the main function
nor does it affect the global variable. Second, the x used in the simpleFunc() function is the
global x from the scope.c file … not any of the x variables defined in the main function.

This was just an example, but you should not be creating so many variables with
the same name. It is just bad programming practice. Also, it is usually not a very
good idea to be using a lot of global variables defined in other files, as this makes it

hard to understand (and keep track of) code in a large system. Nevertheless, it is sometimes
very convenient to have access to a global variable throughout may program files. But the
convenience comes with a cost of having spaghetti-like code that is not modular.

As you can guess, the extern keyword can be useful since typically our programs are spread
across multiple files. Typically, a program may have many source files as well as some
header files. It is good to split your code across multiple files because this makes your code
more readable, easier to modify and modular.

Header files do not contain code but typically contain:

• global constant declarations

• global type definitions

• forward declarations of function prototypes

Source files contain:

• function implementations (i.e., our actual code)

• global variable declarations

• constants, types, function prototypes needed only in that file

COMP2401 - Chapter 7 – Program Organization Fall 2020

 - 271 -

Regarding the constants, types and prototypes … if there are few, declare them in the source
file. If there are many, make a separate header file for them.

How do we know what goes into a header file ? Typically, we group together all the
declarations that are needed by multiple source files. If something is only needed by a single
file, then it does not belong in a header file.

How do we know what goes into a single source file ? Typically, we group together all
functions that are related to a purpose of some sort. Here is a list of files that I used when
doing my PhD work on shortest path algorithms. From the comments, notice what kind of
code was in the c source files and what definitions were in the header files.

spmain.c - the main program to start the code
sp.c - code that implements the approximate shortest path algorithm
schemes.c - code to generate approximation schemes
chenhan.c - code pertaining to a particular shortest path algorithm by Chen & Han
spgui.c - code pertaining to the GUI for displaying shortest paths

funnel.c - code for creating and manipulating a funnel data structure
graph.c - code for creating and manipulating a graph data structure
sleeve.c - code for creating and manipulating a sleeve data structure
spheap.c - code for creating and manipulating a heap data structure
tin.c - code for creating and manipulating a tin data structure

graphgen.c - code to generate graphs for testing

vdmhostlib.c - code allowing networked communications to the display manager
easyMotif.c - code for managing GUI windows

chenhan.h - definitions pertaining to the Chen and Han algorithm
colors.h - definitions needed by the GUI for color display purposes
graph.h - definitions needed when using the graph data structure
sp.h - definitions needed when using the shortest path data structure
tin.h - definitions needed when using the tin data structure

vdmlib.h - definitions needed when communicating with the display manager
easyMotif.h - definitions needed to open and manipulate windows

COMP2401 - Chapter 7 – Program Organization Fall 2020

 - 272 -

 7.2 Libraries

When programming, it is often the case that we make use of existing library functions:

A library is simply a set of commonly used functions that are reusable

and can be used by many different programs.

The purpose of a library is to prevent programmers from having to re-write
code that has already been written adequately by someone else. There are
advantages to using them:

• saves time ... no need to “reinvent the wheel”.

• it will also help to keep errors to a minimum since library
functions are usually properly tested and debugged.

• code written by experts who have spent a lot of time on it.

• code usually written painstakingly in order to provide a correct
implementation.

• code optimized for peak performance.

• it promotes reusability and portability.

A library is NOT an executable file. It does NOT contain a main function. So, it is NOT a
program. It consists of header file(s) as well as object files (which are all archived into one file
with a .a extension).

So how do we use a library ?

There will be a header file that corresponds to that library. We should include that in our
program. We have already been doing this to include some standard library functions:

#include <stdio.h>

#include <stdlib.h>

#include <string.h>

These headers, by default, are in the location of /usr/include in the file system. You can
navigate there as shown in this example shell output:

student@COMPBase:~$ cd /home

student@COMPBase:/home$ ls

student

student@COMPBase:/home$ cd ..

student@COMPBase:/$ ls

bin dev initrd.img lost+found opt run srv usr vmlinuz.old

boot etc initrd.img.old media proc sbin sys var

core home lib mnt root snap tmp vmlinuz

student@COMPBase:/ $ cd usr

student@COMPBase:/usr$ ls

bin games include lib local locale sbin share src

COMP2401 - Chapter 7 – Program Organization Fall 2020

 - 273 -

student@COMPBase:/usr$ cd include

student@COMPBase:/usr/include$ ls

aio.h fcntl.h math.h pwd.h term_entry.h

aliases.h features.h mcheck.h python3.5m term.h

alloca.h fenv.h memory.h rdma termio.h

argp.h fmtmsg.h menu.h re_comp.h termios.h

argz.h fnmatch.h misc regex.h tgmath.h

ar.h form.h mntent.h regexp.h thread_db.h

arpa fstab.h monetary.h reglib tic.h

asm-generic fts.h mqueue.h resolv.h time.h

assert.h ftw.h mtd rpc ttyent.h

autosprintf.h _G_config.h nc_tparm.h rpcsvc uapi

byteswap.h gconv.h ncurses_dll.h sched.h uchar.h

c++ getopt.h ncurses.h scsi ucontext.h

complex.h gettext-po.h net search.h ulimit.h

cpio.h GL netash semaphore.h unctrl.h

crypt.h glob.h netatalk setjmp.h unistd.h

ctype.h gnumake.h netax25 sgtty.h ustat.h

cursesapp.h gnu-versions.h netdb.h shadow.h utime.h

cursesf.h grp.h neteconet signal.h utmp.h

curses.h gshadow.h netinet sound utmpx.h

cursesm.h i386-linux-gnu netipx spawn.h valgrind

cursesp.h iconv.h netiucv stab.h values.h

cursesw.h ifaddrs.h netpacket stdc-predef.h video

cursslk.h inttypes.h netrom stdint.h wait.h

dirent.h langinfo.h netrose stdio_ext.h wchar.h

dlfcn.h lastlog.h nfs stdio.h wctype.h

drm libdrm nl_types.h stdlib.h wordexp.h

elf.h libgen.h nss.h string.h X11

endian.h libintl.h obstack.h strings.h xcb

envz.h libio.h panel.h stropts.h xen

err.h libsync.h paths.h sudo_plugin.h xf86drm.h

errno.h limits.h poll.h syscall.h xf86drmMode.h

error.h link.h printf.h sysexits.h xlocale.h

eti.h linux protocols syslog.h xorg

etip.h locale.h pthread.h tar.h zconf.h

execinfo.h malloc.h pty.h termcap.h zlib.h

student@COMPBase:/usr/include$

As you can see, there are many header files. I have highlighted (in yellow) a few familiar ones
that we have used already.

Once we include the header file in our code, we then need to compile and link to the library.
Where are the libraries located ? Well, it depends on the installation. In our system, it is
installed in /usr/lib/x86_64-linux-gnu. The standard library functions are located in the libc.a
library in that directory. As it turns out, library files have a .a extension.

But we don’t have to link to the standard libraries because this is done by default when we
compile. Recall, however, that we had to include <math.h> when we wanted to use

trigonometry functions and then we had to include the library using -lm when we compiled:

student@COMPBase:~$ gcc -o trig trig.c -lm

student@COMPBase:~$

COMP2401 - Chapter 7 – Program Organization Fall 2020

 - 274 -

The -l (that’s an “L”, not a “1”) here indicates that we want to use some functions that are in a

particular library. In this case, it was the math library, which has the name libm.a and is
located here: /usr/lib/x86_64-linux-gnu.

Now, let’s see how we can create our own library and link to it from one of our programs …

Consider the following structure that defines a first and last name for a person:

#define MAX_STR 32

typedef struct {

 char first[MAX_STR];

 char last[MAX_STR];

} NameType;

Now consider a function that gets a first and last name from the user:

void enterName(NameType *name) {

 printf("\nEnter a name (e.g., John Doe): ");

 scanf("%s %s", name->first, name->last);

}

This is a useful function that may be nice to have in a library, as there may be many
applications that require the input of people’s names. The name may actually be entered
erroneously … but we won’t check for this. Assume that the name has been entered properly.
However, what if we want to make sure that we have consistency in capitalization for all the
names. If, for example, the application is at a kiosk, then people may enter various forms of
capitalization of the name such as:

mark lanthier (e.g., user ignores capitals)

Mark Lanthier (e.g., this is what we’d like)

MARK LANTHIER (e.g., caps lock is on)

mARK lANTHIER (e.g., user shifts to capitalize, not

 realizing caps lock is on)

How can we make the capitalization consistent and matching
the format of the 2nd input above? We’d have to alter the
characters. Assume that we do one name at a time. How do
we ensure that we get “Mark” regardless of whether they enter
“mark”, “MARK”, “mARK” or any other combination of caps?

Well, recall that chars are just numbers that correspond to
ASCII codes as shown here on the right. Notice that there is a
difference between ASCII codes for ‘A’ and ‘a’ … which is 97 -
65 = 32. This is the same difference between codes for ‘B’ and
‘b’, ‘C’ and ‘c’ … ‘Z’ and ‘z’. So, we can just check to see if
the first character is between ‘a’ and ‘z’ (i.e., between 97 and
122) and then subtract 32 from that value to make it between
(65 and 90). For all other letters, if we find that they are
capitalized, we just add 32.

COMP2401 - Chapter 7 – Program Organization Fall 2020

 - 275 -

Here is a function to do this:

void capFix(char *str) {

 // Check the first letter and capitalize it

 if (str[0] >= 'a' && str[0] <= 'z')

 str[0] = str[0] - 32; // 32 is ASCII diff between 'A' and 'a'

 // Uncapitalize the remaining letters

 for (int i=1; i<strlen(str); i++)

 if (str[i] >= 'A' && str[i] <= 'Z')

 str[i] = str[i] + 32; // 32 is ASCII diff between 'A' and 'a'

}

We will place these two functions into the library that we will create. Of course, when we want
to use this library we will need to include a header file with the function prototypes in it, as well
as the structure definition. So, we will start with this "names.h" header file:

Code from names.h

#define MAX_STR 32

typedef struct {

 char first[MAX_STR];

 char last[MAX_STR];

} NameType;

extern void enterName(NameType *);

extern void capFix(char *);

The library source code will be in the following names.c file:

Code from names.c

#include <stdio.h>

#include <string.h>

#include "names.h" // this is our own header, hence double quotes

// Get a first and last name from stdin

void enterName(NameType *name) {

 printf("\n");

 printf("Enter a name: ");

 scanf("%s %s", name->first, name->last);

}

// Fix name by capitalizing it properly

void capFix(char *str) {

 // Check the first letter and capitalize it

 if (str[0] >= 'a' && str[0] <= 'z')

 str[0] = str[0] - 32; // 32 is ASCII diff between 'A' and 'a'

 // Uncapitalize the remaining letters

 for (int i=1; i<strlen(str); i++)

 if (str[i] >= 'A' && str[i] <= 'Z')

 str[i] = str[i] + 32; // 32 is ASCII diff between 'A' and 'a'

}

COMP2401 - Chapter 7 – Program Organization Fall 2020

 - 276 -

In order to stay organized, we will set up the folder structure
shown here, called myLibrary. It will have some subfolders to
hold the include file(s), lib file and src files(s).

We will begin the library creation by compiling the src file(s). In
our case, we only have one src file and one header file. So,
we can go into the src file folder and compile as shown below.

Notice that we are using the -I option when compiling. This

allows us to indicate a path to any include/header files that we
want to use. In this case, the include file is in the include folder
which is one level up (i.e., ../) from the src folder that we are

compiling in. Pay careful attention to the spacing, capitalization
and slash characters. We have to get these things just right.

student@COMPBase:~/myLibrary/src$ ls

names.c

student@COMPBase:~/myLibrary/src$ gcc -c names.c -I ../include/

student@COMPBase:~/myLibrary/src$ ls

names.c names.o

student@COMPBase:~/myLibrary/src$

To create the library file that we will link to from our code, we need to use the ar binary utility
for archiving in linux, which is ar. It has many options, but we’ll be using the rs options which
means that we are inserting one or more files into the archive. By default, the libraries that we
create should be named libXXX.a, where XXX is of our choosing. If we want to call the library
names, then we should create a file called libnames.a. After we create the library, we will
move it to the lib folder and remove the .o file. Here are the commands

student@COMPBase:~/myLibrary/src$ ls

names.c names.o

student@COMPBase:~/myLibrary/src$ ar rs libnames.a names.o

ar: creating libnames.a

student@COMPBase:~/myLibrary/src$ ls

libnames.a names.c names.o

student@COMPBase:~/myLibrary/src$ mv libnames.a ../lib/
student@COMPBase:~/myLibrary/src$ rm names.o
student@COMPBase:~/myLibrary/src$ ls

names.c

student@COMPBase:~/myLibrary/src$ cd ../lib

student@COMPBase:~/myLibrary/lib$ ls

libnames.a

student@COMPBase:~/myLibrary/lib$

Now we are ready to try and use the library. We will write a program that will make use of this
newly-created library that will simply ask the user to enter a first and last name, and then print
out the name with proper capitalization. It will do this repeatedly, until a “-1 -1” name has
been entered.

COMP2401 - Chapter 7 – Program Organization Fall 2020

 - 277 -

Here is the code:

Code from capitalize.c

#include <stdio.h>

#include <string.h>

#include "names.h"

int main() {

 NameType newName;

 while(1) {

 enterName(&newName);

 if (strcmp(newName.first,"-1") == 0 && strcmp(newName.last,"-1") == 0)

 break;

 capFix(newName.first);

 capFix(newName.last);

 printf("My name is %s %s\n", newName.first, newName.last);

 }

}

We need to compile and link this code, making use of the header file and including the library
that we created. We will back up from the myLibrary folder:

student@COMPBase:~/myLibrary/lib$ ls

libnames.a

student@COMPBase:~/myLibrary/lib$ cd ..

student@COMPBase:~/myLibrary/$ ls

include lib src

student@COMPBase:~/myLibrary/$ cd ..

student@COMPBase:~$ ls

capitalize.c myLibrary scope scope.c static static.c util.c

student@COMPBase:~$

To compile the program, we will again need to specify the path to the include file by using the
-I option in gcc which allows us to specify the path to include files.

student@COMPBase:~$ ls

capitalize.c myLibrary scope scope.c static static.c util.c

student@COMPBase:~$ gcc -c capitalize.c -I myLibrary/include

student@COMPBase:~$ ls

capitalize.c capitalize.o myLibrary scope scope.c static static.c

util.c

student@COMPBase:~$

Now all we need to do is to link the code with the library in order to create the executable. To
do this, we also need to specify the path to the library using -L. Also, we will use -lnames to

COMP2401 - Chapter 7 – Program Organization Fall 2020

 - 278 -

indicate the library name. Notice that we do NOT say -llibnames.a since the “lib” and “.a”

portions of the filename are implied:

student@COMPBase:~$ ls

capitalize.c myLibrary scope scope.c static static.c util.c

student@COMPBase:~$ gcc -o capitalize capitalize.o -L ./myLibrary/lib/ -lnames

student@COMPBase:~$ ls

capitalize capitalize.o scope static util.c

capitalize.c myLibrary scope.c static.c

student@COMPBase:~$

We can then run the code as a normal program:

student@COMPBase:~$./capitalize

Enter a name: MARK LANTHIER

My name is Mark Lanthier

Enter a name: mark lanthier

My name is Mark Lanthier

Enter a name: mARK lANTHIER

My name is Mark Lanthier

Enter a name: -1 -1

student@COMPBase:~$

