

Chapter 8

X11 Windows and Graphics

What is in This Chapter ?

This chapter discusses how to create X11 Windows in the Linux environment. These
windows are basic, in that they allow drawing of graphics and event handling, but they do not
contain window components (e.g., buttons, text boxes, lists, menus, scroll bars, etc..). We
begin with a discussion of the basics of getting a window up and then we discuss how to draw
graphics on the window with standard colors. There is a brief discussion of event loops and
simple animation. Finally, we discuss how to do event handling for common events such as
window closing, mouse pointer entering/leaving a window, key presses/releases, mouse
button presses/releases, mouse pointer motion and window resizing. There is way too
much information about the X11 window management system, event handling and graphics to
cover in this course. Feel free to investigate further to do more fancy things.

COMP2401 - Chapter 8 – X11 Windows and Graphics Fall 2020

 - 280 -

 8.1 X11 Windows (i.e., X Window System, version 11)

In Linux/Unix, if we want to create windows and do graphics, a very common framework for
doing so is through the X Window System (also known as X11). It is a windowing system for
bitmap displays. X11 provides basic GUI support by
allowing the creation and manipulation of windows as
well as interaction with the mouse and keyboard. It
also allows basic graphics. The framework has a
main X server that our programs can interact with via
xterms, browsers, etc… even over a network.

The “look” and styling of the windows themselves may
vary greatly from system to system as nobody has
mandated the user interface. So, you cannot be sure
what your application will look like as you port it to
other Linux/Unix systems.

We will discuss just a few basics here of getting some
windows opened and drawing on them. There is
much information to learn, but we will not get into all
the details. Keep in mind that this is a basic
framework that does not have advanced features.
Other libraries and frameworks can be used to
enhance the GUI aspects of your applications in Linux
such as Motif for windowing components and
OpenGL for doing 3D graphics.

You will find that there are many parameters and options in the X window functions. It may be
frustrating at times because some parameters may actually be ignored, depending on certain
configurations.

Let’s see how to create a simple window. To begin, we need to connect to the X server by
using the XOpenDisplay() function which is defined in the <X11/Xlib.h> header file. The
function takes a single parameter representing the display name (this is not the title of the
window). We will leave it blank in our applications by using NULL. This function returns a
Display structure which contains necessary information about the X server in order to
communicate with it. If it cannot connect, then NULL is returned:

Display *display;

// Opens a connection to the X server

display = XOpenDisplay(NULL);

if (display == NULL) {

 printf("Error: Unable to open connection to XServer\n");

 exit(0);

}

COMP2401 - Chapter 8 – X11 Windows and Graphics Fall 2020

 - 281 -

This code does not create a window, it just connects to the X server. To create a window, we
can use the XCreateSimpleWindow() function which will return a Window structure. It has
this format:

XCreateSimpleWindow(<display>, <parent>, <x>, <y>, <width>, <height>, <border_width>,

 <border_color>, <background_color>)

Here, the display is the value returned from XOpenDisplay() and <parent> is the parent
window (which can be used when one window opens another). In our simple examples we will
use just one window, so we will set the parent to the root window of the system. We can do
this by using RootWindow(<display>, 0).

The <x>, <y>, <width>, <height> values specify the position of the top left corner of the window
(with respect to its parent) as well as the width and height of the window in pixels. Since we
won’t have a parent window, we’ll set the <x> and <y> to be 0. The <border_width> specifies
the width (in pixels) of the window’s borders. However, the window will take on this value from
its parent window, so it will be ignored in our examples. Finally, the <border_color> and
<background_color> allows us to specify the border and background color of the window.
Again, the <border_color> will be largely ignored as it is defined by the parent window by
default. These values are unsigned long integers that represent a color. There is a file with
some standard X11 colors defined which is called rgb.txt and is located in our system at
/usr/share/X11/rgb.txt. You can go here as well to find out more:

https://en.wikipedia.org/wiki/X11_color_names

The color names are not defined anywhere, but you can obtain the RGB values and use that:

https://en.wikipedia.org/wiki/X11_color_names

COMP2401 - Chapter 8 – X11 Windows and Graphics Fall 2020

 - 282 -

The XCreateSimpleWindow() function returns a Window structure. Once we have that, we
need to make the window visible. To do this, we need to map it to the display by using
XMapWindow(<display>, <window>). To ensure it has been displayed, we can use the
XFlush(<display>) function. Once we are all done, we can unmap the window, destroy it and
then close the display.

Here is an example of opening a window, which will then wait for the user to press the ENTER
key on the keyboard and then close the window. Be aware though, when we run the program,
the keyboard focus moves to the opened window. To close the window, we would have to go
back to our terminal window to press the ENTER key.

Code from basicWindow.c

#include <stdio.h>

#include <stdlib.h>

#include <X11/Xlib.h>

int main() {

 Display *display;

 Window win;

 // Opens connection to X server

 display = XOpenDisplay(NULL);

 // Create a simple window

 win = XCreateSimpleWindow(display, // our connection to server

 RootWindow(display, 0),// parent window (none in this example)

 0, 0, // x,y (w.r.t. parent ... ignored here)

 300,150, // width, height

 0, // border width

 0x000000, // border color (ignored in this example)

 0xFFDD00); // background color (mustard yellow)

 // Set the title of the window

 XStoreName(display, win, "My First X Window");

 // Make it visible

 XMapWindow(display, win);

 XFlush(display);

 // Wait until user presses a key on keyboard

 getchar();

 // Clean up and close the window

 XUnmapWindow(display, win);

 XDestroyWindow(display, win);

 XCloseDisplay(display);

}

To compile this code, we need to include the X11 library:

student@COMPBase:~$ gcc -o basicWindow basicWindow.c -lX11

student@COMPBase:~$./basicWindow
student@COMPBase:~$

COMP2401 - Chapter 8 – X11 Windows and Graphics Fall 2020

 - 283 -

 8.2 X11 Graphics

Now that we know how to create a window, we’d like to do something useful. Let’s see how to
draw something on the window. In order to draw something, we need to create a graphics
context. This is like getting a “pen” that we can start using to draw with. We do this by using
the XCreateGC() function which has this format:

XCreateGC(<display>, <win>, <value_mask>, <values>)

We will not get into the <value_mask> and <values> in this course. Instead, we’ll set them to
0 and NULL. The function returns a GC structure that represents the graphics context. Once
we have this graphics context, there are many functions that we could use to start drawing:

• XDrawPoint(<display>, <window>, <gc>, <x>, <y>)

• XDrawPoints(<display>, <window>, <gc>, <points>, <num_points>, <mode>)

• XDrawLine(<display>, <window>, <gc>, <x1>, <y1>, <x2>, <y2>)

• XDrawLines(<display>, <window>, <gc>, <points>, <num_points>, <mode>)

• XDrawSegments(<display>, <window>, <gc>, <segments>, <num_segments>)

• XDrawRectangle(<display>, <window>, <gc>, <x>, <y>, <width>, <height>)

• XFillRectangle(<display>, <window>, <gc>, <x>, <y>, <width>, <height>)

• XDrawRectangles(<display>, <window>, <gc>, <rectangles>, <num_rectangles>)

• XFillRectangles(<display>, <window>, <gc>, <rectangles>, <num_rectangles>)

• XDrawArc(<display>, <window>, <gc>, <x>, <y>, <width>, <height>, <angle1>, <angle2>)

• XFillArc(<display>, <window>, <gc>, <x>, <y>, <width>, <height>, <angle1>, <angle2>)

• XDrawArcs(<display>, <window>, <gc>, <arcs>, <num_arcs>)

• XFillArcs(<display>, <window>, <gc>, <arcs>, <num_arcs>)

• XFillPolygon(<display>, <window>, <gc>, <points>, <num_points>, <shape>, <mode>)

• XDrawString(<display>, <window>, <gc>, <x>, <y>, <string>, <length>)

Each function makes use of the <display>, <window> and <gc> that
have described earlier. The XDrawPoint() and XDrawLine()
functions should be straight forward. For the XDrawPoints() and
XDrawLines() functions, the <points> parameter is a pointer to a bunch
of XPoint objects that must already exist in memory. The XPoint
structure is defined as follows:

typedef struct {

 short x, y;

} XPoint;

The <mode> parameter can be either CoordModeOrigin (in which case all points are relative
to the origin) or CoordModePrevious (in which all point coordinates are relative to the
previous point (except for the first point)).

COMP2401 - Chapter 8 – X11 Windows and Graphics Fall 2020

 - 284 -

The XDrawLines() function draws lines to connect successive points,
in a “connect the dot” fashion, where each point (except the first) is
connected to the previous one.

The XDrawSegments() function takes a bunch of XSegment
structures which have this format:

typedef struct {

 short x1, y1, x2, y2;

} XSegment;

It then draws each segment one at a time. Hence the segments are
assumed to be unrelated and disconnected.

The XDrawRectangle() and XFillRectangle() functions both take
<x> and <y> which define the upper-left corner of the rectangle. The
XDrawRectangles() and XFillRectangles() both take a bunch of
XRectangle structures which have this format:

typedef struct {

 short x, y;

 unsigned short width, height;

} XRectangle;

The XDrawArc(), XFillArc(), XDrawArcs() and XFillArcs() functions
take the <x>, <y>, <width> and <height> that define the bounding box of
the rectangle that the arc will be drawn within. angle1 represents the
start of the arc relative to the 3 o’clock position from the center, in units
of degrees*64. angle2 represents the path and extent of the arc
relative to the start. These are defined using the following structure:

typedef struct {

 short x, y;

 unsigned short width, height;

 short angle1, angle2; /* Degrees * 64 */

} XArc;

You can use these functions to draw circles and ovals or opened arcs.

The XFillPolygon() function takes a bunch of XPoint structs just as
with the XDrawLines() function. The <mode> parameter works the
same way as before. The <shape> parameter is either Complex,
Convex or Nonconvex which is used to improve performance. There
is no XDrawPolygon() function because it is the same as
XDrawLines(), as long as the last point in the list is the same as the
first point.

The XDrawString() function takes <x> and <y> which define the
bottom-left corner of the first character. The string is supplied, as well
as the number of characters in the string.

COMP2401 - Chapter 8 – X11 Windows and Graphics Fall 2020

 - 285 -

Just one more thing to mention… to set the color for drawing, we need to use the
XSetForeground() function which has this format:

XSetForeground(<display>, <win>, <color>)

Recall that the color here is in the format 0xRRGGBB where RR, GG and BB are the amounts
of red, green and blue in the color, respectively. These are each hex values from 00 to FF.

Example:

As an example, let us draw the following bird
house onto a window:

How do we determine the color values ?
In my case, I took the electronic image/drawing,
pasted it into MSPaint and the used the color
selector to determine the RGB values. I then
calculated the hex values.

This is shown in the snapshot below.

The following page shows the code that
draws this bird house.

COMP2401 - Chapter 8 – X11 Windows and Graphics Fall 2020

 - 286 -

Code from birdHouse.c

#include <stdio.h>

#include <stdlib.h>

#include <X11/Xlib.h>

#include <unistd.h>

int main() {

 Display *display;
 Window win;

 GC gc;

 XPoint polygon[4];

 // Opens connection to X server

 display = XOpenDisplay(NULL);

 // Create a simple window

 win = XCreateSimpleWindow(display, RootWindow(display, 0), 0, 0,

 210,200, 0, 0x000000, 0xFFFFFF);

 // Set the name of the window

 XStoreName(display, win, "Bird House");

 // Get the graphics context

 gc = XCreateGC(display, win, 0, NULL);

 // Make it visible

 XMapWindow(display, win);

 XFlush(display);

 usleep(20000); // sleep for 20 milliseconds.

 // Draw the main box

 polygon[0].x = 110;

 polygon[0].y = 90;

 polygon[1].x = 130;

 polygon[1].y = 70;

 polygon[2].x = 130;

 polygon[2].y = 170;

 polygon[3].x = 110;

 polygon[3].y = 190;

 XSetForeground(display, gc, 0x7F6000);

 XFillPolygon(display, win, gc, polygon, 4, Convex, CoordModeOrigin);

 XFlush(display);

 XSetForeground(display, gc, 0xFFD966);

 XFillRectangle(display, win, gc, 10, 90, 100, 100);

 XFlush(display);

 // Draw the roof

 XSetForeground(display, gc, 0x92D050);

 polygon[0].x = 10;

 polygon[0].y = 90;

 polygon[1].x = 60;

 polygon[1].y = 10;

 polygon[2].x = 110;

 polygon[2].y = 90;

 XFillPolygon(display, win, gc, polygon, 3, Convex, CoordModeOrigin);

 XFlush(display);

Window size = 170 x 200
with white background.
Window size = 210 x 200
with white background.

Need to sleep a bit until window
is ready for drawing, otherwise
image won’t appear.

COMP2401 - Chapter 8 – X11 Windows and Graphics Fall 2020

 - 287 -

Running this
program could
cause seizures
because it

contains flashing &
spiraling animation.

 XSetForeground(display, gc, 0x385723);

 polygon[0].x = 60;

 polygon[0].y = 10;

 polygon[1].x = 130;

 polygon[1].y = 70;

 polygon[2].x = 110;

 polygon[2].y = 90;

 XFillPolygon(display, win, gc, polygon, 3, Convex, CoordModeOrigin);

 XFlush(display);

 // Draw the hole

 XSetForeground(display, gc, 0x000000);

 XFillArc(display, win, gc, 45, 125, 30, 30, 0, 360*64);

 XFlush(display);

 // Draw the perch

 XSetForeground(display, gc, 0x843C0C);

 polygon[0].x = 58;

 polygon[0].y = 174;

 polygon[1].x = 63;

 polygon[1].y = 177;

 polygon[2].x = 50;

 polygon[2].y = 187;

 polygon[3].x = 45;

 polygon[3].y = 184;

 XFillPolygon(display, win, gc, polygon, 4, Convex, CoordModeOrigin);

 XFlush(display);

 XSetForeground(display, gc, 0xC55A11);

 XFillArc(display, win, gc, 43, 183, 7, 7, 0, 360*64);

 XFlush(display);

 // Wait until the user presses a key on the keyboard

 getchar();

 // Clean up and close the window

 XFreeGC(display, gc);

 XUnmapWindow(display, win);

 XDestroyWindow(display, win);

 XCloseDisplay(display);

}

Example:

Here is a more computational example that displays a spiraling sequence of circles:

Function requires
us to multiply the
degree value by 64.

COMP2401 - Chapter 8 – X11 Windows and Graphics Fall 2020

 - 288 -

Code from spirals.c

#include <stdio.h>

#include <stdlib.h>

#include <X11/Xlib.h>

#include <unistd.h>
#include <math.h>

#define WIN_SIZE 600

int main() {

 Display *display;
 Window win;

 GC gc;

 int radius = 0;

 double angle = 0;

 int grayLevel = 0;

 unsigned int color;

 // Opens connection to X server

 display = XOpenDisplay(NULL);

 // Create a simple window, set the title and get the graphics context then

 // make is visible and get ready to draw

 win = XCreateSimpleWindow(display, RootWindow(display, 0), 0, 0,

 WIN_SIZE, WIN_SIZE, 0, 0x000000, 0xFFFFFF);

 XStoreName(display, win, "Spirals");

 gc = XCreateGC(display, win, 0, NULL);

 // Make it visible

 XMapWindow(display, win);

 XFlush(display);

 usleep(20000); // sleep for 20 milliseconds.

 // Go into infinite loop

 while(1) {

 color = (255-grayLevel)*65536 + (255-grayLevel)*256 + (255-grayLevel);

 XSetForeground(display, gc, color);

 XFillArc(display, win, gc, (int)(cos(angle*M_PI/180)*radius)+WIN_SIZE/2,

 (int)(sin(angle*M_PI/180)*radius)+WIN_SIZE/2,

 10, 10, 0, 360*64);

 angle += 137.51;

 if (angle > 360) angle -= 360;

 radius = (radius + 1)%300;

 if (radius == 0)

 grayLevel = (grayLevel + 5) % 255;

 XFlush(display);

 usleep(500);

 }

 // Clean up and close the window

 XFreeGC(display, gc);

 XUnmapWindow(display, win);

 XDestroyWindow(display, win);

 XCloseDisplay(display);

}

We will need to compile with
-lm so that we link to the

math library.

COMP2401 - Chapter 8 – X11 Windows and Graphics Fall 2020

 - 289 -

There are three variables declared at the top of the program. The radius represents the
distance (from the center) that we are drawing the circles at, while the angle represents the
angle that we are drawing them at. The grayLevel indicates the color that the spirals are
drawn at, which begins with white and gets darker for each round of spirals.
You may notice that the while loop first draws the circle (with appropriate gray-level fill) and
then simply updates the angle and radius for the next time through the loop. The % operator
is the modulus operator that gives the remainer after dividing by a specified number. The
modulus operator is great for ensuring that an integer does not exceed a certain value but that
it begins again at 0. The following two pieces of code do the same thing in our example:

radius = (radius + 1) % 255;

radius = radius + 1;

if (radius == 255)

 radius = 0;

For example, if x was initially 0 and then we did x = (x + 1)%5, here would be the values for x:

0,1,2,3,4,0,1,2,3,4,0,1,2,3,4,0,1,2,3,4,0,1,2 … etc..

The angle of 137.51 is called the golden angle as it is found in nature
as the ideal angle for producing spirals as shown in the design of
seashells, flower petals, etc.. The angle is ideal as it minimizes
overlap during multiple rounds of spiraling.

While this example illustrates the ability to vary the computational
parameters during the processing loop of the simulation, it really does
not serve any particular purpose other than to produce a nice picture.

COMP2401 - Chapter 8 – X11 Windows and Graphics Fall 2020

 - 290 -

 8.3 Simple Animation

For visually-appealing simulations, it is often necessary to show one or more objects moving
on the screen. This is certainly the case in the area of game programming. We will discuss
here some code for doing very simple motion.

Example:

Consider a basic algorithm for moving a car horizontally across the window:

for successive x locations from 0 to WIN_SIZE {
 draw the car at position x
 x ← x + 10
}

To be able to do this, we should create a function that draws a car.

Here are the dimensions:

The code is straight forward since it follows from our knowledge of basic drawing functions:

void drawCar(int x, int y) {

 XPoint polygon[4];

 // Draw the body

 XSetForeground(display, gc, 0x969696);

 XFillRectangle(display, win, gc, x, y-30, 100, 20);

 polygon[0].x = x+20;

 polygon[0].y = y-30;

 polygon[1].x = x+30;

 polygon[1].y = y-45;

 polygon[2].x = x+55;

 polygon[2].y = y-45;

 polygon[3].x = x+70;

 polygon[3].y = y-30;

 XFillPolygon(display, win, gc, polygon, 4, Convex, CoordModeOrigin);

COMP2401 - Chapter 8 – X11 Windows and Graphics Fall 2020

 - 291 -

 XSetForeground(display, gc, 0x000000);

 XDrawRectangle(display, win, gc, x, y-30, 100, 20);

 polygon[0].x = x+20;

 polygon[0].y = y-30;

 polygon[1].x = x+30;

 polygon[1].y = y-45;

 polygon[2].x = x+55;

 polygon[2].y = y-45;

 polygon[3].x = x+70;

 polygon[3].y = y-30;

 XDrawLines(display, win, gc, polygon, 4, CoordModeOrigin);

 // Draw the wheels

 XSetForeground(display, gc, 0x000000); // black

 XFillArc(display, win, gc, x+10, y-20, 20, 20, 0, 360*64);

 XFillArc(display, win, gc, x+70, y-20, 20, 20, 0, 360*64);

 XSetForeground(display, gc, 0xFFFFFF); // white

 XFillArc(display, win, gc, x+15, y-15, 10, 10, 0, 360*64);

 XFillArc(display, win, gc, x+75, y-15, 10, 10, 0, 360*64);

}

To draw this car going across the screen, we could use a simple while loop as before:

while(1) {

 drawCar(x, y);

 x += 10;

 XFlush(display);

 usleep(100000);

}

With this code, the car would simply be re-drawn with the old car position not being erased:

We could fix this by drawing a white rectangle beforehand … inserting the following code
before the drawCar(x, y); function call:

XSetForeground(display, gc, 0xFFFFFF);

XFillRectangle(display, win, gc, 0, 0, WIN_SIZE, WIN_SIZE/2);

The code above, however, does not stop the car at the edge of the screen. In order to stop the
car, we need to stop changing the x value so that the car is redrawn at the same spot once we
reach the edge of the window. We will just need check in the while loop to determine whether
we have reached the end and only update when we are not there yet:

while(1) {

 XSetForeground(display, gc, 0xFFFFFF);

 XFillRectangle(display, win, gc, 0, 0, WIN_SIZE, WIN_SIZE/2);

 drawCar(x, y);

COMP2401 - Chapter 8 – X11 Windows and Graphics Fall 2020

 - 292 -

 if (x+110 < WIN_SIZE)

 x += 10;

 XFlush(display);

 usleep(100000);

}

Notice that we check for the position of the front bumper of the car (i.e., x + 100), not the back
bumper (i.e., x).

The above code shows our car moving rather quickly across the screen. If we adjusted the
increment from 10 to a smaller value, the car would move much slower. Consider an algorithm
for accelerating the car until it reaches the middle of the window and then decelerating until it
reached the right side of the window again using this pseudocode:

speed ← 0
for x locations from 0 to WIN_SIZE by speed {
 draw the car at position x
 if ((x+50) < (WIN_SIZE /2) // x + 50 is the middle of the car
 speed ← speed + 0.10
 otherwise
 speed ← speed – 0.10
}

We can adjust our code to do this by adding a float speed variable, initially set to 0. Here is
the final code:

Code from carAnimation.c

#include <stdio.h>

#include <stdlib.h>

#include <X11/Xlib.h>

#include <unistd.h>

#define WIN_SIZE 600

// global variables

Display *display;
Window win;

GC gc;

void drawCar(int x, int y) {

 XPoint polygon[4];

 // Draw the body

 XSetForeground(display, gc, 0x969696);

 XFillRectangle(display, win, gc, x, y-30, 100, 20);

 polygon[0].x = x+20;

 polygon[0].y = y-30;

 polygon[1].x = x+30;

 polygon[1].y = y-45;

 polygon[2].x = x+55;

 polygon[2].y = y-45;

 polygon[3].x = x+70;

 polygon[3].y = y-30;

 XFillPolygon(display, win, gc, polygon, 4, Convex, CoordModeOrigin);

COMP2401 - Chapter 8 – X11 Windows and Graphics Fall 2020

 - 293 -

 XSetForeground(display, gc, 0x000000);

 XDrawRectangle(display, win, gc, x, y-30, 100, 20);

 polygon[0].x = x+20;

 polygon[0].y = y-30;

 polygon[1].x = x+30;

 polygon[1].y = y-45;

 polygon[2].x = x+55;

 polygon[2].y = y-45;

 polygon[3].x = x+70;

 polygon[3].y = y-30;

 XDrawLines(display, win, gc, polygon, 4, CoordModeOrigin);

 // Draw the wheels

 XSetForeground(display, gc, 0x000000); // black

 XFillArc(display, win, gc, x+10, y-20, 20, 20, 0, 360*64);

 XFillArc(display, win, gc, x+70, y-20, 20, 20, 0, 360*64);

 XSetForeground(display, gc, 0xFFFFFF); // white

 XFillArc(display, win, gc, x+15, y-15, 10, 10, 0, 360*64);

 XFillArc(display, win, gc, x+75, y-15, 10, 10, 0, 360*64);

}

int main() {

 int x = 0, y = 300;

 float speed = 0;

 // Opens connection to X server

 display = XOpenDisplay(NULL);

 // Create a simple window, set the title and get the graphics context then

 // make is visible and get ready to draw

 win = XCreateSimpleWindow(display, RootWindow(display, 0), 0, 0,

 WIN_SIZE, WIN_SIZE/2, 0, 0x000000, 0xFFFFFF);

 XStoreName(display, win, "Car Animation");

 gc = XCreateGC(display, win, 0, NULL);

 XMapWindow(display, win);

 XFlush(display);

 usleep(20000); // sleep for 20 milliseconds.

 // Go into infinite loop

 while(1) {

 XSetForeground(display, gc, 0xFFFFFF);

 XFillRectangle(display, win, gc, 0, 0, WIN_SIZE, WIN_SIZE/2);

 drawCar(x, y);

 x = (int)(x + speed);

 if (x+100 > WIN_SIZE)

 break;

 if (x+50 < WIN_SIZE/2)

 speed += 0.10;

 else

 speed -= 0.10;

 XFlush(display);

 usleep(100000);

 }

 getchar();

 // Clean up and close the window

 XFreeGC(display, gc);

COMP2401 - Chapter 8 – X11 Windows and Graphics Fall 2020

 - 294 -

 XUnmapWindow(display, win);

 XDestroyWindow(display, win);

 XCloseDisplay(display);

}

Example:

Now what about 2-dimensional motion ? How could we get a ball to bounce around the
window so that it remains within the window borders ? To do this, we must understand the
computational model.

To keep things simpler, let’s assume that the ball is moving at a
constant speed at all times. As the ball moves, we know that both its
x and y locations will change. Also, the direction that the ball is
facing should change. But when does the ball’s direction change ?
We will assume that it only changes direction when it hits the window
borders.

So, we will need to keep track of the ball’s (x,y) location as well as
the direction (i.e., angle).
As with our moving car, we simply need to keep updating the ball’s location and check to see
whether or not it reaches the window borders. Here is the basic idea:

(x, y) ← center of the window
direction ← a random angle from 0 to 2π
repeat {
 draw the ball at position (x, y)
 move ball forward in its current direction
 if ((x, y) is beyond the window border) then
 change the direction accordingly
}

It seems fairly straight forward, but two questions arise:

1) How do we “move the ball forward in its current direction” ?
2) How do we “change the direction accordingly” ?

The first is relatively simple, since it
is just based on trigonometry.
Given that the ball at location (x,y)
travels distance d in direction θ, the

ball moves an amount of d•cos(θ)

horizontally and d•sin(θ) vertically as

shown in the diagram. So, to get
the new location, we simply add the
horizontal component to x and the
vertical component to y to make this
point: (x + dcos(θ) , y + dsin(θ)).

COMP2401 - Chapter 8 – X11 Windows and Graphics Fall 2020

 - 295 -

Line 5 in the above algorithm therefore can be replaced by this more specific code (assuming
that the ball moves at a speed of 10 pixels per iteration):

x ← x + 10 * cos(direction)
y ← y + 10 * sin(direction)

Now what about changing the direction when the ball encounters
a window “wall” ? Well, we would probably like to simulate a
realistic collision. To do this, we must understand what happens
to a real ball when it hits a wall.

You may recall the law of reflection from science/physics class.
It is often used to explain how light reflects off of a mirror. The
law states that the angle of reflection is the same as the angle
of incidence, under ideal conditions. That is, the angle at
which the ball bounces off the wall (i.e., θr in the diagram), will be
the same as the angle at which it hit the wall (i.e., θi in the
diagram).
However, where do we get the angle of incidence from ? Well,
we have the direction of the ball stored in our direction variable.

This direction will always be an angle from 0 to 360° (or
from 0 to 2π radians).

So, our ball’s direction (called α for the purpose of this
discussion) is always defined with respect to 0° being the
horizontal vector facing to the right. 360° is the same as
0°. As the direction changes counter-clockwise, the
angle will increase. If the direction changes clockwise,
the angle decreases. It is also possible that an angle
can become negative. This is ok, since 330° is the
same as -30°.

Now, if you
think back to

the various angle theorems that you encountered
in your math courses, you may remember these
two:

1) the opposite angles of two straight crossing
lines are equal

2) the interior angles of a triangle add up to
180°

So, in the diagram on the right, for example, the 1st
theorem above tells us that opposite angles β2 and
β3 are equal. From the law of reflection, we also
know that β1 and β3 are equal. Finally, α and β3
add up to 90°.

COMP2401 - Chapter 8 – X11 Windows and Graphics Fall 2020

 - 296 -

What does all this mean ? Well, since α is the ball’s direction, then to reflect off the wall, we
simply need to add β1 and β2 to rotate the direction counter-clockwise. And since β1, β2 and
β3 are all equal … and equal to 90° - α, then to have the ball reflect we just need to do this:

direction = direction + (β1 + β2)
 = direction + (90° - α + 90° - α)
 = direction + (180° - 2 x direction)
 = 180° - direction

The vertical bounce reflection is similar.
In the diagram here, it is easy to see that
β1 = 90° - α. To adjust for the collision on the
top of the window, we simply need to subtract
2α from the direction:

direction = direction - 2 x direction)
 = - direction

To summarize then, when the ball reaches the left or right boundaries of the window, we
negate the direction and add 180°, but when it reaches the top or bottom boundaries, we just
negate the direction. Here is how we do it:

x ← windowWidth/2
y ← windowHeight/2
direction ← a random angle from 0 to 2π
repeat {
 draw the ball at position (x, y)
 x ← x + 10 * cos(direction)
 y ← y + 10 * sin(direction)
 if ((x >= windowWidth) OR (x <= 0)) then
 direction = 180° - direction
 if ((y >= windowHeight) OR (y <= 0)) then
 direction = - direction
}

Our calculations made the assumption that the window boundaries are horizontal and vertical.
Similar (yet more complex) formulas can be used for the case where the ball bounces off walls
that are placed at some arbitrary angle. Also, all of our calculations assumed that the ball was
a point. In reality though, the ball has a shape. If, for example, the ball was drawn as a circle
centered at (x,y), then it would only detect a collision when the center of the ball reached the
border.

How could we fix this ? We just need to account for the ball’s radius during our collision
checks:

if (((x+radius) >= windowWidth) OR (x-radius) <= 0)) then
 …
if ((y+radius) >= windowHeight) OR (y-radius) <= 0)) then
 …

COMP2401 - Chapter 8 – X11 Windows and Graphics Fall 2020

 - 297 -

At this point … it is still possible that our ball can get “stuck” in a wall. Why ? Well, look at
the picture below. We detect a collision by checking if the X value (i.e., center of ball) has
gone beyond the boundary (i.e., when (x+radius) >= windowWidth). At this point, the ball is
stuck in the wall. So merely changing the direction may not be successful if the ball is too
deep in the wall. So, it is best to translate the ball in the x direction so that it is outside the
wall. Then we can change the direction as before and the ball will not be stuck in the wall.

There are similar changes for when the ball hits the left, top and bottom boundaries. So we
need to handle them separately as follows:

if ((x+radius) >= windowWidth) then {
 direction = 180° - direction
 x ← windowWidth - radius
} else if ((x-radius) <= 0) then {
 direction = 180° - direction
 x ← radius
}
if ((y+radius) >= windowHeight) then {
 direction = - direction
 y ← windowHeight - radius
} else if ((y-radius) <= 0) then {
 direction = - direction
 y ← radius

Here is the code:

Code from ballBounce.c

#include <stdio.h>

#include <stdlib.h>

#include <X11/Xlib.h>

#include <unistd.h>

#include <math.h>

#include <time.h>

#define WIN_SIZE 600

#define SPEED 10

#define RADIUS 15

#define PI 3.14159

int main() {

COMP2401 - Chapter 8 – X11 Windows and Graphics Fall 2020

 - 298 -

 Display *display;

 Window win;

 GC gc;

 float x = WIN_SIZE/2, y = WIN_SIZE/2;

 float direction;

 // Opens connection to X server

 display = XOpenDisplay(NULL);

 // Create a simple window, set the title and get the graphics context then

 // make is visible and get ready to draw

 win = XCreateSimpleWindow(display, RootWindow(display, 0), 0, 0,

 WIN_SIZE, WIN_SIZE, 0, 0x000000, 0xFFFFFF);

 XStoreName(display, win, "Bouncing Ball");

 gc = XCreateGC(display, win, 0, NULL);

 XMapWindow(display, win);

 XFlush(display);

 usleep(20000); // sleep for 20 milliseconds.

 srand(time(NULL));

 direction = (rand()/(double)(RAND_MAX))*2*PI;

 // Go into infinite loop

 while(1) {

 XSetForeground(display, gc, 0xFFFFFF);

 XFillRectangle(display, win, gc, 0, 0, WIN_SIZE, WIN_SIZE);

 XSetForeground(display, gc, 0x000000); // black

 XFillArc(display, win, gc, x-RADIUS, y-RADIUS,2*RADIUS,2*RADIUS,0, 360*64);

 // Move the ball forward

 x = x + SPEED * cos(direction);

 y = y + SPEED * sin(direction);

 // Check if the ball collides with borders and adjust accordingly

 if (x >= (WIN_SIZE-RADIUS)) {

 direction = PI - direction;

 x = WIN_SIZE-RADIUS;

 }

 else if (x <= RADIUS) {

 direction = PI - direction;

 x = RADIUS;

 }

 if (y >= (WIN_SIZE-RADIUS)) {

 y = WIN_SIZE-RADIUS;

 direction *= -1;

 }

 else if (y <= RADIUS) {

 y = RADIUS;

 direction *= -1;

 }

 XFlush(display);

 usleep(5000);

 }

 // Clean up and close the window

 XFreeGC(display, gc);

 XUnmapWindow(display, win);

 XDestroyWindow(display, win);

 XCloseDisplay(display);

}

COMP2401 - Chapter 8 – X11 Windows and Graphics Fall 2020

 - 299 -

 8.4 Event-Handling

Now that we know how to display graphics and some animation, we need to understand
interaction with the user in terms of event handling. One thing that you may have noticed is
that when we close our X11 windows at the moment by using the X in the top left of the
window, we end up with an error:

XIO: fatal IO error 11 (Resource temporarily unavailable) on X server ":0"

 after 1218 requests (6 known processed) with 0 events remaining.

We’d like to handle window-closing events properly. To do this, we need to tell the window
manager that we are interested in window deletion events by calling XSetWMProtocols() and
registering a WM_DELETE_WINDOW message with it. Then we'll get a client message from the
window manager when the user tries to close the window. We need to add the following code
any time after making the window:

 Atom WM_DELETE_WINDOW = XInternAtom(display, "WM_DELETE_WINDOW", False);

 XSetWMProtocols(display, win, &WM_DELETE_WINDOW, 1);

Of course, we then need to handle events. To do this, we need an event loop to handle events
one at a time as they come in. The XNextEvent() function waits for an incoming event and
returns an XEvent structure. We can then access the .type field of the structure to determine
what kind of event it was. We put all of this into an endless loop as shown in this diagram:

What are some of the events that we can handle?

• Keyboard key presses and releases

• Mouse button presses and releases

• Mouse motion/movement within a window

• Mouse entering and leaving a window

• Resizing of the window

• Closing of a window … and many more …

COMP2401 - Chapter 8 – X11 Windows and Graphics Fall 2020

 - 300 -

In order to handle events, we must register the event with the window manager by indicating
which events we would like to handle. This is done with the XSelectInput() function, which
takes the display, window and a set of masks that indicate the events to be handled.
Here is an example of how to call this function with many event masks combined using a
bitwise OR (i.e., |) operation:

XSelectInput(display, win,

 KeyPressMask | // When key is pressed on keyboard

 KeyReleaseMask | // When key is released on keyboard

 ButtonPressMask | // When a mouse button is pressed

 ButtonReleaseMask | // When a mouse button is released

 EnterWindowMask | // When mouse enters window

 LeaveWindowMask | // When mouse leaves window

 PointerMotionMask | // When mouse is moved within window

 ExposureMask | // When window is exposed

 StructureNotifyMask // When there is a change in window structure

);

If we do not want to handle any events (or want to disable all temporarily), we use this:

XSelectInput(display, win, NoEventMask);

Once we do this, we just enter an infinite while loop, getting each event and handling it:

XEvent event;

while(1) {

 XNextEvent(display, &event);

 switch(event.type) {

 case ButtonPress:

 …

 break;

 case ButtonRelease:

 …

 break;

 case ConfigureNotify:

 …

 break;

 //... etc ...

 }

}

Example:

Here is an example of a program that you can run to test out various X11 events. It displays
the number and location of any mouse button presses/releases. It also displays keycodes of
keys pressed/released. It indicates when the mouse enters/leaves a window. When the
mouse moves within the window, it displays the current mouse location with respect to the
window’s top/left origin and also the location with respect to the screen’s top/left origin. It
allows the window to be closed by pressing it’s X button or when pressing the ESC key.
Finally, it allows resizing of the window and adjusts things by redrawing the window’s
background with the new window dimensions.

COMP2401 - Chapter 8 – X11 Windows and Graphics Fall 2020

 - 301 -

Code from eventTest.c

#include <stdio.h>

#include <stdlib.h>

#include <X11/Xlib.h>

#include <unistd.h>

int WINDOW_WIDTH = 600;

int WINDOW_HEIGHT = 300;

void quit(Display *display, Window win, GC gc) {

 // Clean up and close the window

 XFreeGC(display, gc);

 XUnmapWindow(display, win);

 XDestroyWindow(display, win);

 XCloseDisplay(display);

 exit(0);

}

void redraw(Display *display, Window win, GC gc) {

 XSetForeground(display, gc, 0xFFFFFF);

 XFillRectangle(display, win, gc, 0, 0, WINDOW_WIDTH, WINDOW_HEIGHT);

 XFlush(display);

}

int main() {

 Display *display;

 Window win;

 GC gc;

 XEvent event;

 int key, button;

 Window window_returned;

 int x, y, screenX, screenY, width, height, borderWidth, depth;

 unsigned int mask_return;

 XConfigureEvent cEvent;

 // Opens connection to X server

 display = XOpenDisplay(NULL);

 // Create a simple window, set the title and get the graphics context then

 // make is visible and get ready to draw

 win = XCreateSimpleWindow(display, RootWindow(display, 0), 0, 0,

 WINDOW_WIDTH, WINDOW_HEIGHT, 0, 0x000000, 0xFFFFFF);

 // Indicate which events we want to handle

 XSelectInput(display, win,

 KeyPressMask | // When key is pressed on keyboard

 KeyReleaseMask | // When key is released on keyboard

 ButtonPressMask | // When Mouse Button is Pressed

 ButtonReleaseMask | // When Mouse Button is Released

 EnterWindowMask | // When Mouse Enters Window

 LeaveWindowMask | // When mouse Leaves Window

 PointerMotionMask | // When mouse is moved within window

 ExposureMask | // When window is exposed

 StructureNotifyMask // When there is a change in window structure

);

These will change when
window is resized.

Call this when all done to
release resources.

This gets called upon start
and then on every resize.

We will handle all these
events in this program.

COMP2401 - Chapter 8 – X11 Windows and Graphics Fall 2020

 - 302 -

 // Create the window and display it

 XStoreName(display, win, "Event Handler");

 gc = XCreateGC(display, win, 0, NULL);

 XMapWindow(display, win);

 XFlush(display);

 // Indicate that we'd like to be able to gracefully handle window closing

 Atom WM_DELETE_WINDOW = XInternAtom(display, "WM_DELETE_WINDOW", False);

 XSetWMProtocols(display, win, &WM_DELETE_WINDOW, 1);

 // Go into infinite loop handling X11 events

 while(1) {

 XNextEvent(display, &event);

 switch(event.type) {

 case EnterNotify:

 printf("Mouse entered window\n");

 break;

 case LeaveNotify:

 printf("Mouse left window\n");

 break;

 case Expose:

 printf("Window has been exposed\n");

 redraw(display, win, gc);

 break;

 case KeyPress:

 key = event.xkey.keycode;

 printf("Key has been pressed with keycode: %d\n", key);

 if (key == 0x09) // Check for ESC key, then quit

 quit(display, win, gc);

 break;

 case KeyRelease:

 key = event.xkey.keycode;

 printf("Key has been released with keycode: %d\n", key);

 break;

 case ButtonPress:

 button = event.xbutton.button;

 XQueryPointer(display, win, &window_returned,

 &window_returned, &screenX, &screenY, &x, &y,

 &mask_return);

 printf("Button %d has been pressed at location (%d, %d)\n", button, x, y);

 break;

 case ButtonRelease:

 button = event.xbutton.button;

 printf("Button %d has been released\n", button);

 break;

 case MotionNotify:

 XQueryPointer(display, win, &window_returned,

 &window_returned, &screenX, &screenY, &x, &y,

 &mask_return);

 printf("Mouse moved to window pos (%d, %d) & screen pos (%d, %d)\n",

 x, y, screenX, screenY);

 break;

Needed to prevent
error upon closing.

Redraw window
each time it has
been exposed.

Each key has a
unique keycode.
You will need to
look them up or
do trial and
error.

Buttons can range from 1 to 9.

Use this to get the
mouse position with
respect to the
window and also
the screen.

These variables
are all set by
function call.

COMP2401 - Chapter 8 – X11 Windows and Graphics Fall 2020

 - 303 -

 case ConfigureNotify:

 cEvent = event.xconfigure;

 // Need to check for window resizing, since this type of event

 // can be generated for other reasons too

 if ((cEvent.width != WINDOW_WIDTH) || (cEvent.height != WINDOW_HEIGHT)) {

 WINDOW_WIDTH = cEvent.width;

 WINDOW_HEIGHT = cEvent.height;

 printf("Window resized to be %d X %d\n", WINDOW_WIDTH, WINDOW_HEIGHT);

 redraw(display, win, gc);

 }

 break;

 case ClientMessage:

 printf("Window closed\n");

 // We really should check here for other client message types,

 // but since the only protocol registered above is WM_DELETE_WINDOW,

 // it is safe to assume that we want the window closing event.

 quit(display, win, gc);

 default:

 printf("Unknown Event\n");

 }

 }

}

Example:

Consider our bouncing ball example that we discussed earlier. How can we adjust the code so
that we can grab the ball with the mouse and throw it around in the window ? That is, if the
user places the mouse cursor over the ball and clicks, then the ball stops moving and appears
to be “stuck” to the mouse cursor until the mouse is released. Then when we let go of the
mouse button, the ball should “fly off” in the direction that we threw it with a speed that varies
according to how “hard” we threw it.

To do this, we should break the problem down into more manageable steps:

1. Add the ability to grab the ball and carry it around
2. Add the ability to throw the ball
3. Adjust the speed of the ball according to how “hard” we threw it.

To grab the ball, we would need to prevent it from moving (i.e., updating its location) while it is
being held. Instead, we would set the ball’s location to be the mouse location.

We can create a boolean to determine whether or not the ball is being held:

grabbed ← False
while(True) {
 …
 if not grabbed then {
 x ← x + speed * cos(direction)
 y ← y + speed * sin(direction)

Detect window resize if width or
height has been changed.

ClientMessage event is generated
when window is closed, among
other things.

Generated when window resized,
among other things.

COMP2401 - Chapter 8 – X11 Windows and Graphics Fall 2020

 - 304 -

 }
 otherwise {
 x ← x position of mouse
 y ← y position of mouse
 }
 …
}

All that would be left to do is to set the grabbed variable accordingly. When the user presses
the mouse button while on the ball, we should set it to true and when the user releases the
mouse button, we should set it to false. So, we need two event handlers:

case ButtonPressed:
 grabbed ← True

case ButtonReleased:
 grabbed ← False

But this will ALWAYS “grab” the ball, even if the mouse cursor was not on it. How can we
determine whether or not the mouse cursor is over the ball ? We can check to see whether or
not the mouse location is within (i.e., ≤) the ball’s radius.

We can compute the distance from the ball’s center (i.e., (x,y)) to the
location of the mouse (mX, mY). If this distance is less than or
equal to the ball’s radius, then we can assume that the user has
“grabbed” the ball. Here is the adjusted code:

case ButtonPressed:
 d ← distance from (x, y) to (mX, mY)
 if (d <= radius) then
 grabbed ← True
}

When the user lets go of the ball, it will continue in the direction that it was in before it was
grabbed. Now how do we adjust the code so that we are able to “throw” the ball in some
particular direction?

Well, upon releasing the mouse, we will need to determine which direction the ball was being
thrown in and then set the direction variable directly. We can determine the direction that the
ball was thrown in by examining the current mouse location (mX, mY) with respect to the
previous mouse location (pX, pY).

COMP2401 - Chapter 8 – X11 Windows and Graphics Fall 2020

 - 305 -

The angle (i.e., θ) at which the ball should be thrown will be the arctangent of the differences
in x and y coordinates as shown here.

However, in the case that we throw vertically, the difference in x coordinates will be zero and
we are not allowed to divide by zero. Fortunately, many computer languages have a function
called atan2(y, x) which allows you to find the angle that a point makes with respect to the
origin (0,0). We can make use of this by assuming that (pX,pY) is the origin and translate
(mX,mY) accordingly as follows: atan2(mY-pY, mX-pX)

So, upon a mouse release, we can do this:

case ButtonReleased:
 if grabbed then {
 direction ← atan2(mY-pY, mX-pX)
 grabbed ← False

 }
}

Notice that we only change the direction when we have already grabbed the ball.

One last feature of the program is to allow the ball to be thrown at various speeds. Likely, we
want the ball to slow down as time goes on. We should add the following to the algorithm’s
main while loop:

speed ← speed – 0.1
if (speed < 0) then
 speed ← 0

Now to determine the speed at which the ball is thrown, we can take notice of how the mouse
location varies according to the speed at which it is moved.

COMP2401 - Chapter 8 – X11 Windows and Graphics Fall 2020

 - 306 -

If the mouse is moved fast, the successive locations of the mouse will be further apart, while
slow mouse movements will have successive locations that are relatively closer together.

So, as a simple strategy, the “strength” of the throw can be computed as a function of the
distance between the current mouse location and the previous mouse location.

We can simply set the speed to this distance in the ButtonReleased handler as follows:

case ButtonReleased:
 if grabbed then {
 direction ← atan2(mY-pY, mX-pX)
 speed ← distance from (pX,pY) to (mX,mY)
 grabbed ← False

 }
}

This “should” work well. However, mouse motion events often occur quickly and it could be
the case that the previous mouse location is very close to the current mouse location. That is,
it could be off by just one x value or one y value. In order to get a better sense of the direction
that the mouse is being moved in and the speed at which it is moving, we would need to look
further back in history than just the previous mouse location. We, we could keep track of the
previous 5 or so locations and then use the location “5 mouse motions ago” to compare.

prevCount ← 0
while (True) {
 pX[prevCount] ← mX
 pY[prevCount] ← mY
 prevCount ← (prevCount + 1) % 5
 …
 case ButtonReleased:
 if grabbed then {
 direction ← atan2(mY-pY[prevCount%5], mX-pX[prevCount%5])
 speed ← distance from (pX[prevCount%5],

 pY[prevCount%5]) to (mX,mY)
 grabbed ← False

 }
 }
}

COMP2401 - Chapter 8 – X11 Windows and Graphics Fall 2020

 - 307 -

Here is the updated code:

Code from interactBall.c

#include <stdio.h>

#include <stdlib.h>

#include <X11/Xlib.h>

#include <unistd.h>

#include <math.h>

#include <sys/time.h>

#include <time.h>

// Constants defined in this program

#define PI 3.14159

#define DECELERATION 0.10 // Rate of deceleration

#define RADIUS 40 // Radius of the ball

#define FPS 100 // frames per second refresh rate

// Window attributes

int WINDOW_WIDTH = 600;

int WINDOW_HEIGHT = 600;

// Ball attributes

float x = 300, y = 300; // location of the ball on the window

char grabbed = False; // Indicates if ball is being currently held

float direction; // Direction of ball movement (radians)

float speed = 4; // Current ball speed

// Clean up and close the window

void quit(Display *display, Window win, GC gc) {

 XFreeGC(display, gc);

 XUnmapWindow(display, win);

 XDestroyWindow(display, win);

 XCloseDisplay(display);

 exit(0);

}

// Redraw everything

void redraw(Display *display, Window win, GC gc, int x, int y) {

 XSetForeground(display, gc, 0xFFFFFF); // white background

 XFillRectangle(display, win, gc, 0, 0, WINDOW_WIDTH, WINDOW_HEIGHT);

 XSetForeground(display, gc, 0x000000); // black ball

 XFillArc(display, win, gc, x-RADIUS, y-RADIUS, 2*RADIUS, 2*RADIUS, 0, 360*64);

 XFlush(display);

}

// Get the current time in microseconds

long getTimeInMicroseconds(){

 struct timeval currentTime;

 gettimeofday(¤tTime, NULL);

 return currentTime.tv_sec * (int)1e6 + currentTime.tv_usec;

}

int main() {

 Display *display;

 Window win;

 GC gc;

 XEvent event;

COMP2401 - Chapter 8 – X11 Windows and Graphics Fall 2020

 - 308 -

 int button;

 Window window_returned;

 int sx, sy, width, height, borderWidth, depth;

 float d;

 unsigned int mask_return;

 XConfigureEvent cEvent;

 int mouseX, mouseY;

 int prevX[5], prevY[5], prevCount=0; // 5 prev mouse locations

 // Opens connection to X server

 display = XOpenDisplay(NULL);

 // Create a simple window, set the title and get the graphics context then

 // make is visible and get ready to draw

 win = XCreateSimpleWindow(display, RootWindow(display, 0), 0, 0,

 WINDOW_WIDTH, WINDOW_HEIGHT, 0, 0x000000, 0xFFFFFF);

 // Indicate which events we want to handle

 XSelectInput(display, win,

 ButtonPressMask | // When Mouse Button is Pressed

 ButtonReleaseMask | // When Mouse Button is Released

 PointerMotionMask | // When mouse is moved within window

 ExposureMask | // When the window is exposed

 StructureNotifyMask // When there is a change in window structure

);

 XStoreName(display, win, "Throwable Ball");

 gc = XCreateGC(display, win, 0, NULL);

 XMapWindow(display, win);

 XFlush(display);

 // Indicate that we'd like to be able to gracefully handle window closing

 Atom WM_DELETE_WINDOW = XInternAtom(display, "WM_DELETE_WINDOW", False);

 XSetWMProtocols(display, win, &WM_DELETE_WINDOW, 1);

 // Set the direction to be random

 srand(time(NULL));

 direction = (rand()/(double)(RAND_MAX))*2*PI;

 // Go into infinite loop, updating the animation at FPS rate

 unsigned long lastRepaint = getTimeInMicroseconds(); // time in microseconds

 while(1) {

 // Keep updating the mouse location. We remember the last 5 locations so that

 // we can get a sense of what direction the ball has been thrown as well as

 // how fast it was thrown. We will be comparing the current mouse reading

 // with one 5 moves ago.

 prevX[prevCount] = mouseX;

 prevY[prevCount] = mouseY;

 prevCount = (prevCount + 1) % 5;

 XQueryPointer(display, win, &window_returned,&window_returned,

 &sx, &sy, &mouseX, &mouseY, &mask_return);

 // Handle any pending events, and then we'll deal with redrawing

 if (XPending(display) > 0) {

 XNextEvent(display, &event);

 switch(event.type) {

 case Expose:

 redraw(display, win, gc, x, y);

 break;

COMP2401 - Chapter 8 – X11 Windows and Graphics Fall 2020

 - 309 -

 case ButtonPress:

 // Check if the mouse was clicked within the ball's radius

 d = sqrt((mouseX - x)*(mouseX - x) + (mouseY - y)*(mouseY - y));

 if (d < RADIUS)

 grabbed = True;

 break;

 case ButtonRelease:

 if (grabbed == True) {

 // Compare the difference between current mouse location and the one 5

 // mouse motions ago. Use this to compute the new direction and speed.

 int px = prevX[(prevCount+1)%5];

 int py = prevY[(prevCount+1)%5];

 direction = atan2(mouseY - py, mouseX - px);

 speed = (int)(sqrt((mouseX - px)*(mouseX - px) +

 (mouseY - py)*(mouseY - py)))/2;

 if (speed > 50) // Limit to something reasonable

 speed = 50;

 }

 grabbed = False; // Let go of the ball if we were holding it

 break;

 case MotionNotify:

 if (grabbed == True) // Refresh screen if we are carrying ball around

 redraw(display, win, gc, x, y);

 break;

 case ConfigureNotify:

 cEvent = event.xconfigure;

 // Need to check for window resizing, since this type of event can be

 // generated for other reasons too

 if ((cEvent.width != WINDOW_WIDTH) || (cEvent.height != WINDOW_HEIGHT)) {

 WINDOW_WIDTH = cEvent.width;

 WINDOW_HEIGHT = cEvent.height;

 redraw(display, win, gc, x, y);

 }

 break;

 case ClientMessage:

 quit(display, win, gc);

 }

 }

 // Get the time in microseconds and store it

 unsigned long end = getTimeInMicroseconds();

 // If it has been long enough, animate and redraw everything

 if (end - lastRepaint > 1000000/FPS) {

 // Draw the ball

 redraw(display, win, gc, x, y);

 // Move the ball forward

 if (grabbed == False) {

 x = x + (int)(speed*cos(direction));

 y = y + (int)(speed*sin(direction));

 }

 else {

 x = mouseX;

 y = mouseY;

 }

COMP2401 - Chapter 8 – X11 Windows and Graphics Fall 2020

 - 310 -

 // Slow the ball down

 speed = speed - DECELERATION;

 if (speed < 0)

 speed = 0;

 // Check if the ball collides with borders and adjust accordingly

 if (x >= (WINDOW_WIDTH-RADIUS)) {

 direction = PI - direction;

 x = WINDOW_WIDTH-RADIUS;

 }

 else if (x <= RADIUS) {

 direction = PI - direction;

 x = RADIUS;

 }

 if (y >= (WINDOW_HEIGHT-RADIUS)) {

 y = WINDOW_HEIGHT-RADIUS;

 direction *= -1;

 }

 else if (y <= RADIUS) {

 y = RADIUS;

 direction *= -1;

 }

 lastRepaint = getTimeInMicroseconds(); // Remember last repaint

 }

 // IMPORTANT: sleep for a bit to let other processes work

 if (XPending(display) == 0) {

 usleep (1000000 / FPS - (end - lastRepaint));

 }

 }

}

