

Chapter 9

Shell Scripts

What is in This Chapter ?

This chapter discusses shell scripting. Shell scripts are small interpreted programs that allow
you to examine, manipulate and calculate things at the Linux command level within a Linux
shell. There are many basic examples here that make use of the sh shell scripting
language.

COMP2401 - Chapter 9 – Shell Scripts Fall 2020

 - 312 -

9.1 Scripting

What is a scripting language ? It is a very high-level programming language. Some are
general-purpose, some are domain-specific. The languages are limited in that most do not
have data types or functions. Most are interpreted, not compiled … which means that they
run slower. There are a few different scripting languages out there:

• shell scripting (bash, csh, sh)

• PHP, Perl

• Javascript

• Python

• Ruby

• Lua

Scripting languages are used to do different things, but mainly they are used for:

• performing some kind of one-time task

• automating the execution of other more complex programs

• rapid prototyping

We can use scripting languages to write code that runs in a Linux shell. These are called shell
scripts. Typical operations performed by shell scripts include:

• system administration tasks

• file manipulation and management

• application configuration and setup

• program execution

• printing text

• testing

A script which sets up the environment, runs the program, and does any necessary cleanup,
logging, etc. is called a wrapper.

A shell script is really just a set of commands saved in a file as a program. The commands
will depend of the type of shell used, although they are all similar to one another. Here are
some shell types:

• Bourne shell (sh)

• Bourne-again shell (bash)

• C shell (csh)

• Korn shell (ksh)

We will discuss the Bourne shell (sh), which is a subset of bash. So, all sh commands are
valid in bash. When we write our script files, they will have a .sh file extension.

COMP2401 - Chapter 9 – Shell Scripts Fall 2020

 - 313 -

Here is the Hello World of shell scripting. You can use emacs to write this script and save it
into a file called helloWorld.sh:

#!/bin/sh

#This is a comment

echo Hello World

The # symbol is used to indicate that the text on that line is a comment (single line only). The
echo command is used to tell the interpreter to print out the text that follows to the terminal.
You run the script by using the sh command, followed by the file name:

student@COMPBase:~$ sh helloWorld.sh

Hello World

student@COMPBase:~$

You can get user input (in the form of a string) by using the read command, followed by a
name for the variable that you’d like to store the string in. We can then refer to the value of
that variable anywhere in the script by using the variable name with a $ character in front.
Here is a script that gets the user’s name and then displays it:

#!/bin/sh

#This script asks for the user’s name

echo What is your name?

read NAME

echo $NAME is a cool name

student@COMPBase:~$ sh getName.sh

What is your name?

Mark

Mark is a cool name

student@COMPBase:~$

It is interesting that shell script variables do not need to be declared. Space is allocated the
first time the shell sees a new variable. Notice as well that no data types are specified since
all variables are stored as strings. The variable should be in uppercase letters with
underscores when needed.

We can even hardcode constants, which are treated as variables. However, we need to make
sure that there is no space before the equal sign. Also, the value can be anything, but if we
want to use the values in a numerical expression, they can only be integers (i.e., no floats).

COUNT=5 #no spaces before or after =

COUNT = 5 #this won’t work!!

To calculate a math expression, we need to use the expr command,
which is a little cumbersome to work with. It is actually an external
program that we will run. First of all, the math expression must be
encapsulated with a single backquote character ` … which is not the
usual single straight quote character '. The backquote character
may be hard to find. It is under the ESC key on my keyboard.

Indicates that we should always run this script
using sh rather than bash or some other shell.

COMP2401 - Chapter 9 – Shell Scripts Fall 2020

 - 314 -

The expr command can take in some variables (use the $ in front of the name) as well as
some math operators. You should precede the math operators with a \ character. Here is an
example of how to use it. This script asks for the number of bags of milk and cartons of eggs
to buy and then calculates the integer-based price:

#!/bin/sh

#Calculate price for buying X bags of milk and Y cartons of eggs

MILK=4 #Notice no spaces before or after the = sign

EGGS=2

echo How many bags of milk do you want?

read NUM_MILK

echo How many cartons of eggs do you want?

read NUM_EGGS

PRICE=`expr $NUM_MILK * $MILK \+ $NUM_EGGS * $EGGS`

echo The total price for $NUM_MILK bag\(s\) of milk and $NUM_EGGS

carton\(s\) of eggs is \$$PRICE

student@COMPBase:~$ sh prices.sh

How many bags of milk do you want?

1

How many cartons of eggs do you want?

1

The total price for 1 bag(s) of milk and 1 carton(s) of eggs is $6

student@COMPBase:~$ sh prices.sh

How many bags of milk do you want?

3

How many cartons of eggs do you want?

5

The total price for 3 bag(s) of milk and 5 carton(s) of eggs is $22

student@COMPBase:~$

Notice the use the backslash character in the last echo command line. It is used to display a
special character, which is the parenthesis or dollar sign in this case. We can even supply
values to the script from the command line. We access the command line arguments by using
$1, $2, $3, etc. You can use $0 to get the command itself (i.e., the name of the script file), $#
to get the number of arguments and $$ to get the process ID. Here is a modified program that
uses command line arguments instead of asking the user for the numbers:

#!/bin/sh

#Calculate price for buying X bags of milk and Y cartons of eggs

X and Y are supplied as command line arguments

echo The command is $0

echo There are $# command line arguments

echo The process ID is $$

MILK=4

EGGS=2

PRICE=`expr $1 * $MILK \+ $2 * $EGGS`

echo The total price for $1 bag\(s\) of milk and $2 carton\(s\) of

eggs is \$$PRICE

COMP2401 - Chapter 9 – Shell Scripts Fall 2020

 - 315 -

student@COMPBase:~$ sh cmdLine.sh 1 1

The command is cmdLine.sh

There are 2 command line arguments

The process ID is 3467

The total price for 1 bag(s) of milk and 1 carton(s) of eggs is $6

student@COMPBase:~$ sh cmdLine.sh 3 5

The command is cmdLine.sh

There are 2 command line arguments

The process ID is 3469

The total price for 1 bag(s) of milk and 1 carton(s) of eggs is $22

student@COMPBase:~$

We can also do a FOR loop in which we need to specify a set of strings to loop through:

#!/bin/sh

#This example just shows that we can loop through strings

for i in 1 2 5 A Z temp output

do

 echo file$i.txt #or can use file${i}.txt

done

student@COMPBase:~$ sh forLoop.sh

file1.txt

file2.txt

file5.txt

fileA.txt

fileZ.txt

filetemp.txt

fileoutput.txt

student@COMPBase:~$

Here is an example of a WHILE loop that repeats until the user enters a string other than yes:

#!/bin/sh

#Example showing how to use a while loop

RESPONSE=yes

while [$RESPONSE = yes]

do

 echo Do you want to loop again?

 read RESPONSE

done

echo Goodbye!

student@COMPBase:~$ sh whileLoop.sh

Do you want to loop again?

yes

Do you want to loop again?

yes

Do you want to loop again?

no

Goodbye!

student@COMPBase:~$

Notice how we just list
all strings here.

The spacing is
required here!!

COMP2401 - Chapter 9 – Shell Scripts Fall 2020

 - 316 -

Of course, sooner or later we will need the ability to make decisions. There are if/then/fi and
if/then/else/fi control structures for doing this.

#!/bin/sh

#This script tests out the IF statement based on a command line name

if [$1 = Mark]; then

 echo Hello Mark

else if [$1 = Christie]; then

 echo Hello Christie

 else

 echo I do not know you

 fi

fi

student@COMPBase:~$ sh if.sh Mark

Hello Mark

student@COMPBase:~$ sh if.sh Christie

Hello Christie

student@COMPBase:~$ sh if.sh Bob

I do not know you

student@COMPBase:~$

Within the square brackets, we can do various types of testing of conditionals:

• -z tests if string is empty

• -n tests if string is not empty

• -lt, -le tests whether LHS operand is < or <= RHS operand

• -gt, -ge tests whether LHS operand is > or >= RHS operand

Here is an example showing some nested IF statements that make use of the -n and -lt
conditions by taking in three command-line integers and displaying the smallest one:

#!/bin/sh

#This script tests out conditionals based on 3 command line integers

if [-z $3]; then

 echo ERROR I need three numbers

else

 if [$1 -lt $2]; then

 if [$1 -lt $3]; then

 echo $1 is the smallest number

 else

 echo $3 is the smallest number

 fi

 else

 if [$2 -lt $3]; then

 echo $2 is the smallest number

 else

 echo $3 is the smallest number

 fi

 fi

fi

The spacing is very important here!!

Semicolon required!!

Backwards “if” to end it all

COMP2401 - Chapter 9 – Shell Scripts Fall 2020

 - 317 -

student@COMPBase:~$ sh tests.sh 2 4 6

2 is the smallest number

student@COMPBase:~$ sh tests.sh 7 3 9

3 is the smallest number

student@COMPBase:~$ sh tests.sh 8 5 1

1 is the smallest number

student@COMPBase:~$ sh tests.sh 34 64

ERROR I need three numbers

student@COMPBase:~$ sh tests.sh 34

ERROR I need three numbers

student@COMPBase:~$

Here are some more options for the conditional statements, which are file-related. These are
very handy as many shell scripts are written to manipulate and examine files:

• -f tests whether a file with the given name exists

• -d tests whether a given operand is a directory

• -r, -w, -x tests whether the given file has read/write/execute permissions

Here is a script that looks for a particular file or directory (specified in the command line) and
then indicates whether the file was found and displays its read/write/execute permissions.

#!/bin/sh

#This script checks if a file or directory exists (specified as command

#line argument). It also checks the permissions

if [$# = 0]; then

 echo Error\: Missing Filename

 echo USAGE\: sh fileCheck.sh \<fileName\>

 exit

fi

if [-f $1]; then

 echo FILE \"$1\" exists

 if [-r $1]; then echo FILE is readable

 fi

 if [-w $1]; then echo FILE is writeable

 fi

 if [-x $1]; then echo FILE is executable

 fi

else

 if [-d $1]; then

 echo DIRECTORY \"$1\" exists

 if [-r $1]; then echo DIRECTORY is readable

 fi

 if [-w $1]; then echo DIRECTORY is writeable

 fi

 if [-x $1]; then echo DIRECTORY is executable

 fi

 else

 echo File/Directory \"$1\" not found

 fi

fi

Quit the script

COMP2401 - Chapter 9 – Shell Scripts Fall 2020

 - 318 -

student@COMPBase:~$ ls

aDirectory fileCheck.sh getName.sh helloWorld.sh prices.sh whileLoop.sh

cmdLine.sh forLoop.sh hello if.sh tests.sh

student@COMPBase:~$ sh fileCheck.sh getName.sh

FILE "getName.sh" exists

FILE is readable

FILE is writeable

student@COMPBase:~$ sh fileCheck.sh hello

FILE "hello" exists

FILE is readable

FILE is writeable

FILE is executable

student@COMPBase:~$ sh fileCheck.sh aDirectory

DIRECTORY "aDirectory" exists

DIRECTORY is readable

DIRECTORY is writeable

DIRECTORY is executable

student@COMPBase:~$ sh fileCheck.sh missing

File/Directory "missing" not found

student@COMPBase:~$ sh fileCheck.sh

Error: Missing Filename

USAGE: sh fileCheck.sh <fileName>

student@COMPBase:~$

We have covered the basics of the SH scripting language but there are external shell
programs that we can also invoke. That is, we can use any Unix commands or executable
user programs from within our script. This is where the power really lies in scripting. We have
seen one use of this already with the expr command, which is actually an external program
being run. As with the expr command, all external program calls must be encapsulated with a
single backquote character `.

Here is an example of a script that uses the ls Unix command to get the files in the current
directory and then shows them in two ways:

#!/bin/sh

#This script lists all files in two ways

echo Here is the result of executing the \"ls\" command\:

echo

FILES=`ls`

echo $FILES

echo

echo Here are the files one at a time\:

echo

for i in $FILES

do

 echo Filename $i

done

Stores result of “ls” command
in string called FILES.

COMP2401 - Chapter 9 – Shell Scripts Fall 2020

 - 319 -

student@COMPBase:~$ sh listFiles.sh

Here is the result of executing the "ls" command:

aDirectory cmdLine.sh fileCheck.sh forLoop.sh getName.sh hello helloWorld.sh

if.sh listFiles.sh listFiles.sh~ prices.sh tests.sh whileLoop.sh

Here are the files one at a time:

Filename aDirectory

Filename cmdLine.sh

Filename fileCheck.sh

Filename forLoop.sh

Filename getName.sh

Filename hello

Filename helloWorld.sh

Filename if.sh

Filename listFiles.sh

Filename listFiles.sh~

Filename prices.sh

Filename tests.sh

Filename whileLoop.sh

student@COMPBase:~$

This script counts files and directories:

#!/bin/sh

#This script counts the files and directories

FILES=`ls`

FILE_COUNT=0

DIR_COUNT=0

for file in $FILES

do

 if [-f $file]; then

 FILE_COUNT=`expr $FILE_COUNT + 1`

 fi

 if [-d $file]; then

 DIR_COUNT=`expr $DIR_COUNT + 1`

 fi

done

echo There are $FILE_COUNT files and $DIR_COUNT directories

student@COMPBase:~$ ls

aDirectory fileCheck.sh hello listFiles.sh whileLoop.sh

cmdLine.sh forLoop.sh helloWorld.sh prices.sh

countFiles.sh getName.sh if.sh tests.sh

student@COMPBase:~$ sh countFiles.sh

There are 12 files and 1 directories

student@COMPBase:~$

COMP2401 - Chapter 9 – Shell Scripts Fall 2020

 - 320 -

The tr program allows us to replace characters in a string with other characters. We supply
two parameters … the string to look for and the string to replace it with. It takes data from
stdin and outputs to stdout. We can use a pipeline to do the conversion. Here is a simple
example:

#!/bin/sh

#This script does a search and replace for a string

STR="This sentence is about to be modified."

OUT=`echo $STR | tr e o`

echo $OUT

student@COMPBase:~$ sh replace.sh

This sontonco is about to bo modifiod.

student@COMPBase:~$

This can be powerful when we combine it with file searches to rename a bunch of files. Here
is an example of a program that renames all the files in the current directory to uppercase:

#!/bin/sh

#This script renames all files to uppercase

FILES=`ls`

for NAME in $FILES

do

 NEW_NAME=`echo $NAME | tr [:lower:] [:upper:]`

 if [$NEW_NAME != $NAME]; then

 mv $NAME $NEW_NAME

 fi

done

student@COMPBase:~$ ls

rename.sh test01.dat test03.dat test05.dat test07.dat

rename.sh~ test02.dat test04.dat test06.dat test08.dat

student@COMPBase:~$ sh rename.sh

student@COMPBase:~$ ls

RENAME.SH TEST01.DAT TEST03.DAT TEST05.DAT TEST07.DAT

RENAME.SH~ TEST02.DAT TEST04.DAT TEST06.DAT TEST08.DAT

student@COMPBase:~$

The cut program allows us to remove portions of a line of input. We can use the -d option to

indicate a delimiter in the string. This indicates the character (or string) that separates the
tokens (e.g., words) of the string. We may often use " " as the delimiter string.

We can use the -f n option (where n is a number) to indicate that the nth token (i.e., word) of

each line should be retained. We can list some tokens by using a comma between the token
numbers that we want like this -f n1,n2,n3.

Pipe the string as input to the tr program

Can use [:upper:] or [:lower:] to indicate
an uppercase or lowercase character

COMP2401 - Chapter 9 – Shell Scripts Fall 2020

 - 321 -

Here is an example that keeps the 2nd and 5th word from each sentence:

#!/bin/sh

#This script maintains the 2nd and 5th word from each sentence

STR="The cat climbed the tree\nThe dog chased the stick\nThe turtle

took a nap"

OUT=`echo $STR | cut -d " " -f 2,5`

echo $OUT

student@COMPBase:~$ sh cut.sh

cat tree dog stick turtle nap

student@COMPBase:~$

Another useful option is the -b option. It allows you to extract a range of characters from a
string based on the number of the character in the string. So, we could use this, for example,
along with the ls -l Unix command to get the total of all file sizes in a directory:

#!/bin/sh

#This script uses ls -l and the examines the

#output to calculate the total files sizes

SIZES=`ls -l | cut -b 30-34`

TOTAL=0

for SIZE in $SIZES

do

 TOTAL=`expr $TOTAL + $SIZE`

done

echo Total of all file sizes = $TOTAL bytes

student@COMPBase:~$ ls -l

total 72

drwxrwxr-x 2 student student 4096 Jul 26 12:50 aDirectory

-rw-rw-r-- 1 student student 354 Jul 24 15:18 cmdLine.sh

-rw-rw-r-- 1 student student 318 Jul 26 11:50 countFiles.sh

-rw-rw-r-- 1 student student 198 Jul 26 13:01 cut.sh

-rw-rw-r-- 1 student student 234 Jul 26 13:08 cutSizes.sh

-rw-rw-r-- 1 student student 740 Jul 26 11:13 fileCheck.sh

-rw-rw-r-- 1 student student 163 Jul 24 15:36 forLoop.sh

-rw-rw-r-- 1 student student 110 Jul 24 15:18 getName.sh

-rwxrwxr-x 1 student student 7348 Jul 26 11:18 hello

-rw-rw-r-- 1 student student 52 Jul 24 15:19 helloWorld.sh

-rw-rw-r-- 1 student student 223 Jul 24 16:27 if.sh

-rw-rw-r-- 1 student student 232 Jul 26 11:42 listFiles.sh

-rw-rw-r-- 1 student student 404 Jul 24 15:19 prices.sh

-rw-rw-r-- 1 student student 213 Jul 26 12:52 rename.sh

-rw-rw-r-- 1 student student 147 Jul 26 12:00 replace.sh

-rw-rw-r-- 1 student student 413 Jul 24 16:57 tests.sh

-rw-rw-r-- 1 student student 164 Jul 24 15:39 whileLoop.sh

student@COMPBase:~$ sh cutSizes.sh

Total of all file sizes = 15409 bytes

student@COMPBase:~$

You can use cut –-help in the shell window to see all the options.

COMP2401 - Chapter 9 – Shell Scripts Fall 2020

 - 322 -

There are even more sophisticated string processing programs and Linux utilities:

• awk – provides powerful formatting capabilities similar to printf().

• basename – strips the directory and (optionally) suffix from a filename.

• find – finds files in and below directories according to their name, age, size, etc..

• grep – searches text for matching lines based on regular expressions.

• sed – an advanced version of tr which can be used for search and replace.

• sort – can be used to sort strings in various ways.

• test – check existence of a file and its permissions; or compare numbers and strings.

• wc – counts words, lines and characters.

Check out the man pages on these. You can do some really amazing things. Remember …
through pipelining, you can join/merge many programs together to produce a very
sophisticated shell script.

