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Liveness Detection and Automatic Template
Updating using Fusion of ECG and Fingerprint

Majid Komeili, Narges Armanfard, Dimitrios Hatzinakos

Abstract—Fingerprint has been extensively used for biometric
recognition around the world. However, fingerprints are not
secrets and an adversary can synthesis a fake finger to spoof
the biometric system. The mainstream of the current fingerprint
spoof detection methods are basically binary classifier trained on
some real and fake samples. While they perform well on detecting
fake samples created by using the same methods used for training,
their performance degrades when encountering fake samples
created by a novel spoofing method. In this paper, we approach
the problem from a different perspective by incorporating ECG.
Compare with the conventional biometrics, stealing someone’s
ECG is far more difficult if not impossible. Considering that ECG
is a vital signal and motivated by its inherent liveness, we propose
to combine it with a fingerprint liveness detection algorithm.
The combination is natural as both ECG and fingerprint can be
captured from fingertips. In the proposed framework, ECG and
fingerprint are combined not only for authentication purpose but
also for liveness detection. We also examine automatic template
updating using ECG and fingerprint. In addition, we propose
a stopping criterion that reduces the average waiting time for
signal acquisition. We have performed extensive experiments
on LivDet2015 database which is presently the latest available
liveness detection database and compare the proposed method
with six liveness detection methods as well as twelve participants
of LivDet2015 competition. The proposed system has achieved
a liveness detection EER of 4.2% incorporating only 5 seconds
of ECG. By extending the recording time to 30 seconds, liveness
detection EER reduces to 2.6% which is about 4 times better
than the best of six comparison methods. This is also about 2
times better than the best results achieved by participants of
LivDet2015 competition.

Index Terms—Electrocardiogram, Fingerprint, Liveness Detec-
tion, Biometric, template updating.

I. INTRODUCTION

B IOMETRIC systems have been deployed around the

world and have been extensively used in the past decades.

However the potential of fooling or spoofing this technology

is widely admitted. Nowadays biometric spoof detection is

an active research area and there has been a lot of efforts

towards a promising approach to ensure the presence of a real

legitimate user.

There are different attack points in a biometric system.

The first vulnerable point is the sensor used in the biometric

system. Biometric systems and in particular fingerprint can

be spoofed by presenting synthetic samples to the sensor

e.g. gummy fingers that have fingerprint impressions. There
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has been a huge literature on other vulnerabilities that for

example bypass feature extraction or matcher, or manipulate

database or communication channel. However, in such cases,

some information about the system such as feature extraction,

matcher, database and/or physical access to some of those

components is necessary. In contrast, fooling the sensor using

a fake biometric sample does not need any specific information

about internal mechanism of the biometric system. In addition,

sensor level attacks are in analog domain and hence many

solutions such as cryptography and watermarking that are in

digital domain are not useful. This highlights the importance

of developing biometric spoofing countermeasures to classify

an input sample as live or fake that is focus of this study.

Investigating other types of attacks is out of scope of this

study.

Liveness detection has been an active area in the past

decade and numerous approaches have been proposed in

the literature to solve this problem. Considering the results

reported in LivDet2009 [1], LivDet2011 [2], LivDet2013 [3]

and LivDet2015 [4], liveness detection is still an open problem

and performance of the existing approaches does not satisfy re-

quirements of many practical applications [5]. The mainstream

of the current approaches use some training samples artificially

created via certain spoofing process and work well on test

samples created by the same process involved in training, but

their performance on a novel type of spoof is questionable.

In practice, the way that a fake biometric is fabricated is

unknown.

In this study we approach the problem from a different

perspective by incorporating electrocardiogram (ECG). ECG is

among the newer additions to the biometric family and unlike

the conventional biometrics such as fingerprint, iris and face,

ECG is a vital signal and presence of the ECG automatically

ensures the liveness [6]–[12]. In addition, conventional biomet-

rics can be easily stolen from people. For example, fingerprints

may be left behind whenever we touch a glass surface. Even

iris images can be captured from a few meters distance. Not

to mention face images which can be captured from a longer

distance. However, compared to the conventional biometrics,

if not impossible it is far more difficult to steal someone’s

ECG. Beside its advantages, accuracy of ECG is not as good

as some other mature biometrics such as fingerprint [13], [14].

Therefore, we seek to fuse ECG and fingerprint to improve the

recognition rate and more importantly the liveness detection

performance.

Fusion of ECG and fingerprint is not a new idea. In [15]

and [16] it has been suggested to combine ECG with other

biometrics such as face and fingerprint to get a better recog-
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Fig. 1. Block diagram of the proposed method.

nition rate. But, all these works were restricted to analyzing

recognition rate and have failed to consider spoof attacks. The

improved verification rate in the conventional fusion approach

is because when input samples of one trait have poor quality

and hence less informative, the other trait will help the system

to still identify the user. However, this opens up the possibility

of spoofing because such system may accept a fake copy of

an authentic fingerprint even if ECG does not match. This

contradicts the main motivation in utilizing ECG which is

liveness detection. This issue has been overlooked in the

previous works [15], [16].

In this paper, we offer an alternative to the conventional

fusion of ECG and fingerprint by proposing to fuse ECG with

fingerprint for liveness detection. To this end, we combine

ECG recognition score with fingerprint liveness detection

score instead of fingerprint recognition score. This greatly

improves the accuracy of liveness detection task. Figure 1

shows an overview of the proposed framework which will be

explained in detail in section III. In this context, we use terms

“fingerprint liveness detection” and “fingerprint recognition”

to indicate two blocks in the proposed system as shown

in Figure 1. Our ECG signals are collected from fingertips

as shown in Figure 2. Majority of previous works on ECG

recognition have been based on signals collected form chest

area [17]–[21] or lower rib cage [22] and only a few works

have been done based on fingertip ECG signals, e.g. [23], [24].

Fingertip ECG has two advantages: first, it eliminates the need

for user to undress for electrode placement; second, it makes

the fingerprint a natural choice to be fused with ECG. The

main contributions of this paper are as follows:

• In order to get the most out of ECG, we fuse it with a fin-

gerprint liveness detection method for liveness detection

purpose and also fuse it with a fingerprint recognition

method for recognition purpose. Although the latter has

been previously investigated, e.g. in [15] and [16], to the

best of our knowledge, the former has not been explored

in the previous literature.

• In addition, the proposed system is capable of auto-

matically adapting ECG and fingerprint templates to

operational data. Since ECG is a time dependent signal

and its waveform might be affected by factors like diet

and emotion, template updating is crucial to maintain the

performance of the system in long term without requiring

to re-enroll or retrain the system from scratch and to the

best of our knowledge this has not been investigated in

the literature.

• Another shortcoming of the previous works on ECG [7],

[22], [25]–[31] is lack of a proper stopping criterion to

limit the length of recording sessions. Previous works

usually limits the length of sessions by fixing the number

of recorded heartbeats to a predefined threshold. There-

fore, the number of recorded heartbeats is the same for

all subjects which does not consider the fact that some

subjects have a very stable ECG and do not need as many

samples as other subjects with less stable ECG. In this pa-

per, we present an easy-to-compute yet effective criterion

based on local averaging and correlation that measures

heartbeat consistency (HC) in successive heartbeats.

The rest of this paper is organized as follows: Section

II briefly reviews the previous works on ECG recognition,

fusion of ECG and fingerprint as well as fingerprint liveness

detection. Section III provides an overview of the proposed

approach. Datasets used in the experiments are described

in section IV. Details of the proposed approach including

ECG recognition, fusion of ECG and fingerprint and template

updating are explained in section V, VI and VII respectively.

Computational costs are discussed in section VIII and section

IX concludes the paper.
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Fig. 2. Recording ECG signals from fingertips.

II. RELATED WORK

A. ECG Recognition

Previous works on ECG biometric can be categorized

in fiducial-based and nonfiducial-based approaches. Fiducial

based approaches rely on some points of a heartbeat such

as onset and end of each wave. This requires P, R and T

waves to be located and features such as peaks, slope, radius

of curvature and area be computed in a region surrounding

each of P, R, and T waves [19]–[21]. Detection of such

characteristic points, however, may not be always possible due

to noise. Therefore, following [25], we do not consider fiducial

dependent approaches.

On the other side, nonfiducial based approaches are holistic

and consider ECG signal as a set of heartbeats or just a

time series without segmenting it to heartbeats. For example,

in [18] signals are segmented in overlapping windows and

autocorrelation features are extracted and linear discriminant

analysis (LDA) is used for dimension reduction. In [22],

short time Fourier transform (STFT) features are extracted

and after a feature selection, log-likelihood ratio is used for

classification. In [17], sparse coefficients of an over-complete

dictionary is used as features. Max-pooling is used for ag-

gregation of samples to construct templates. In the following

section, previous works on fusion of ECG and fingerprint will

be discussed.

B. Fusion of ECG and Fingerprint

While multimodal biometric systems based on conventional

traits such as face and fingerprint have been extensively

investigated in the literature [32], [33], there exist only a

few works about a multimodal biometric system that includes

ECG. In [16] the idea of securing handheld devices and

fingerprint readers with ECG biometrics is pointed out and

a biometric system based on ECG signals collected from

fingertips is investigated but no experimental result on fusion

of ECG and fingerprint was reported. In [15], fusion of face,

fingerprint and ECG is studied. They used an ECG dataset

of 78 subjects acquired from European ST-T Database, MIT-

BIH Normal Sinus Rhythm Database, MIT-BIH Arrhythmia

Database and QT Database of PhysioBank [34]. A fiducial

based method previously presented in [35] were used for ECG

recognition. It involves extracting fiducial features related to

various intervals, amplitude and angles. For fingerprint and

face recognition, match scores provided in NIST-BSSR1 [36]

were used. BSSR1 has match scores for two faces and one

fingerprint matcher. Since ECG signals used in their work

were acquired from chest area, its fusion with fingerprint

is of little value in real-world scenarios because the user

needs to undress for electrode placement. Further, the ECG

recognition method that was used is fiducial-based and, as

suggested in [25], is not appropriate for real-world scenarios

where accurate detection of characteristic points may not be

possible due to noise. Moreover, they performed fusion only to

achieve a better recognition rate. They indeed failed to benefit

from the main advantage of ECG, i.e. its inherent liveness

detection. However, our work does not have aforementioned

limitations. Our ECG signals are collected from fingertips.

More importantly, in addition to fusion of ECG and fingerprint

for human recognition, for the first time, we perform fusion

of ECG and fingerprint for liveness detection. In the following

section, we briefly explain the previous works on fingerprint

liveness detection.

C. Fingerprint Liveness Detection

Liveness detection methods can be divided into two main

categories: hardware or software-based. Hardware-based tech-

niques add some specific components to the capture device

that can look for particular properties such as fingerprint

sweat or blood pressure. In software-based solutions, detection

is performed by processing the obtained image. In [37],

morphology-based and perspiration-based features are jointly

considered. Pore perspiration is investigated in [38]–[40]. In

[41] the difference between quality of fake and real samples is

used to detect fake samples. This is realized through analyzing

25 image quality measures extracted from samples. There are

other works that have successfully applied local descriptors

for liveness detection. Local Binary Pattern (LBP) and its

extensions have been used for liveness detection in [42],

[43]. LBP is a texture descriptor based on intensity difference

between a pixel and its neighboring pixels [44]. In [45],

a method based on Local Phase Quantization (LPQ) was

proposed. Similar to LBP, LPQ works on patches but instead

of gradient it computes phase information by computing short

time Fourier transform. Phase information are then decorre-

lated and uniformly quantized. Another descriptor that has

been used for liveness detection is Weber Local Descriptor

WLD [46]. Binarized Statistical Image Features (BSIF) [47]

was also tested for fingerprint liveness detection. It is based on

binarizing the response to a set of filters. Filters are not fixed

and are learnt using independent component analysis (ICA).

Recently a method known as Local Contrast Phase Descriptor

(LCPD) is presented in [48] that takes into account a spatial-

domain component inspired by WLD and a phase component

inspired by LPQ. There are some other works [49], [50] that

are based on deep neural networks. Such methods learn the

features from training data. To reduce the number of training

data required to train such networks, pre-trained deep networks

have been used in [49] and [50].

To improve the performance of liveness detection, there

has been a few works on fusion of liveness scores with

conventional biometrics such as fingerprint and face [37],

[51]. Since these biometrics are easy to spoof, when involved

in the fusion process, make the security of the resulting
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system questionable. In the 2-dimensional space defined by

liveness and recognition scores, distribution of samples from

different spoofs can greatly vary [51]. Therefore, any decision

boundary in the aforementioned 2-dimensional space may fail

when encountering a novel spoof with a different distribution.

Recently, a method based on 1-median filtering is presented

in [52]. As an alternative to sum rule as a conventional fusion

rules, 1-median filtering is used for a mutibiometric problem

with 5 traits. However, 1-median filtering requires enough

number of traits to determine the median and it cannot be

used in our scenario that has 2 traits, i.e. ECG and fingerprint.

In spite of all efforts in this field, accuracy of current

liveness detection methods does not satisfy the requirement

of many practical applications. All these methods suffer from

significant performance variation when encountering different

spoofs especially when encountering novel spoofs that have

not been seen during training [5]. A detailed survey of liveness

detection approaches can be found in [53] and [54].

III. OVERVIEW OF THE PROPOSED APPROACH

A. ECG Recognition

ECG is a non-stationary signal and factors like diet, emotion

and heart rate affect its waveform. We consider a scenario

such that subjects are enrolled in one recording session and

tested on another session which is at least one week apart.

Under this scenario, while enrollment is restricted to only

one session, we can benefit from an auxiliary dataset of some

generic subjects for which multiple sessions are available. By

looking into multiple sessions of the auxiliary dataset, we

select a subset of features that are more stable across different

sessions. After performing feature selection on the auxiliary

dataset, templates (i.e. classifiers) of biometric system’s users

(i.e. test dataset) are constructed by using only the selected

features. Auxiliary dataset is dedicated to feature selection and

there is no overlap between subjects of auxiliary dataset and

actual biometric system’s users involved in enrollment and

testing.

B. Fusion of ECG and Fingerprint

In general, a fingerprint biometric system has a fingerprint

liveness detection (FpLD) module and a fingerprint recognition

(FpR) module. A desired system should have a good recog-

nition rate as well as a good liveness detection performance.

Block diagram of the proposed framework is shown in Figure

1.

FpLD is a binary classifier (i.e. live/fake) that computes

liveness score for a test fingerprint sample. ECG recognition

can also be treated as a binary classifier (i.e. genuine/impostor)

that computes an authentication score for a test ECG signal.

ECG can be fused with FpLD to form a Multimodal Liveness

Detection (MmLD) block. The use of ECG for fingerprint

liveness detection is motivated by the assumption that ECG is

hard to spoof compare with the conventional biometrics and

presence of an authentic ECG inherently implies liveness of

the subject. FpR block can also be treated as a binary classifier

(i.e. genuine/impostor) such that given a fingerprint sample,

it provides an authentication score that can be further fused

with ECG score to form a Multimodal Human Recognition

(MmHR) block. While the MmLD block does the liveness

detection task and aims to reject the spoof attempts, the second

block (i.e. MmHR) does the recognition task and aims to reject

impostor attempts.

C. Template Updating

ECG and fingerprint samples that their scores are greater

than some updating thresholds can be added to previously

existing training samples to update the templates. This process

is known as template updating or adaption [55]. The updating

thresholds are usually different than the acceptance thresholds

and are set to zero false acceptance rate point to ensure

that only live and genuine samples are selected for template

updating.

IV. DATASETS

We use ECG database collected in our lab (BioSec) in

University of Toronto [56]. ECG signals were recorded using

Vernier EKG sensor and Go!Link interface [57] with 12-bit

resolution and sampling rate of 200 Hz using three dry AgCl

electrodes from fingertips as shown in Figure 2. There are

82 subjects that have 2 or more ECG recordings in sitting

posture. 46 out of 82 subjects have exactly 5 sessions. Follow-

up sessions are collected over a six-month period. We divide

the database into 2 parts. Aforementioned 46 subjects are

used for enrollment and testing (i.e. testing dataset) and the

remaining 36 subjects are used as an auxiliary dataset for

feature selection that will be described in section V-B.

We use LivDet2015 fingerprint database [4] which in-

cludes 4 datasets corresponding to 4 different scanners: Cross-

Match, DigitalPersona, GreenBit and Biometrika. Among

them, CrossMatch is excluded from our experiments due

to small number of spoof samples per finger that makes

it unsuitable for template updating. Characteristics of these

datasets are shown in Table I.

The three datasets that are considered in this study contain

live and fake samples that are constructed through 6 different

spoofs including Ecoflex, Gelatine, Latex, WoodGlue, Liquid

Ecoflex and RTV. Each dataset originally comes in two sets:

training and testing. The training set is the same as testing set

but does not include Liquid Ecoflex and RTV spoofs. In this

study, to emphasize on the more challenging case of detecting

unknown spoofs, one experiment is performed for every spoof

such that samples of that spoof are omitted from the training

set. Thus, type of spoof is always unknown in all 6 experiments

of each scanner.

A chimeric dataset is constructed by combining the above

ECG and fingerprint datasets. Each subject in ECG dataset is

paired with a subject in the fingerprint dataset in a random

way. In this way, a chimeric dataset of 46 unique subjects

is generated. All experiments are repeated 50 times to cope

with the randomness in constructing the chimeric dataset and

the average results are reported. We consider each finger as a

subject due to the limited number of actual subjects. Note that

not all fingers have fake samples. Also, not all subjects have

samples of all 10 fingers. For each subject 4 live and 3 fake



5

TABLE I. Characteristics of LiveDet2015 [4] datasets used in our experiments.

Scanner Model Resolu. (dpi) Size (px) Format

DigitalPersona U.are.U5160 500 252× 324 PNG
GreenBit DactyScan26 500 500× 500 PNG
Biometrika HiScan-PRO 1000 1000× 1000 BMP

samples are used: 1 live sample for enrollment and 3 live and

3 fake samples for subsequent test sessions. The number of

test sessions, 3, is due to restriction of the number of fake and

live samples that belong to the same subject in LivDet2015

database.

As explained above, the ECG dataset has 5 sessions. But,

the fingerprint datasets have only 4 sessions. We pick the 2nd

session for training and 3rd, 4th and 5th sessions for testing.

We ignore the first session and train on the second session

because the second session is less noisy that makes it a better

choice for enrollment and constructing templates.

V. ECG RECOGNITION

A. Description of Features

Different types of features have been employed in the litera-

ture to represent ECG signals. Unlike many of previous works

that rely on only one type of feature, we concatenate different

types of features and construct a fairly comprehensive feature

vector. We use short-time Fourier transform with Hamming

window of the length 16 with step size of 13 computed over

a 1 second window centered at R peak. Continuous wavelet

transform with 32 scales and Daubechies 5 as mother wavelet

is computed on a 1 second window centered at R peak. Mean

of power, standard deviation of power, maximum amplitude,

standard deviation of amplitude, kurtosis and skewness are

computed on a 2-second window centered at R peak on the

following frequency bands: 8-13Hz, 13-18Hz, 18-25Hz, 25-

30Hz, 30-35Hz, 35-50Hz. The signal’s amplitude itself is also

considered. This gives a total of 7198 features. We use z-

score normalization for every feature, so that features have

zero mean and unit variance after normalization.

B. Feature Selection

Let X = {X1, . . . ,XN} be the auxiliary dataset consisting

of N subjects and assume that there are Mi different sessions

available for the i-th subject i.e. Xi = {Xi,1, . . . ,Xi,Mi},

where Xi,j consists of samples of j-th session of i-th subject.

Weight of l-th feature consists of two terms. The first term

w1(l) encourages class separability and is defined as follows:

w1(l) =
1

N

N∑

i=1

d (f(Xi(l)), f(X (l))) (1)

where d (·) is the symmetric Kullback-Leibler divergence and

f (·) denotes probability density function (pdf). f(Xi(l)) is

pdf of l-th feature computed over all samples of i-th subject

and f(X (l)) is pdf of l-th feature computed over all samples.

We consider normal distribution and use maximum likelihood

estimates, i.e. sample means and variances to estimate the

symmetric Kullback-Leibler divergence as follows:

d(f1, f2) =
σ2
1 + (μ1 − μ2)

2

2σ2
2

+
σ2
2 + (μ1 − μ2)

2

2σ2
1

− 1 (2)

where f1 = N (
μ1, σ

2
1

)
and f2 = N (

μ2, σ
2
2

)
are two distri-

butions whose distance is to be computed. w1 is large when

the overall distribution of every subject is different from the

overall distribution of all subjects. However, w1 only considers

overall class distribution of a subject and disregards the session

distributions of that subject. To address this limitation, we

define the second term, w2, as follows:

w2(l) =
1

∑N
i=1 Mi

N∑

i=1

Mi∑

j=1

d (f(Xi,j(l)), f(Xi(l))) (3)

The first summation is over all subjects and the second sum-

mation is over all sessions and denominator is a normalization

factor. w2 encourages the stability across multiple sessions and

is smaller when a session can represent the actual distribution

of the corresponding subject. Finally, considering both w1 and

w2, weight of the l-th feature, w(l), is defined as follows:

w(l) = λw1(l)− (1− λ)w2(l) (4)

where λ is a parameter that controls the trade-off between

class separability and across session stability. Features can

be selected by comparing their weights with a threshold. We

can also sort features according to their weights and pick top

features. A proper value for λ can be determined using cross

validation. In our experiments, λ and the number of selected

features are set to 0.3 and 400 respectively. The proposed

feature selection method has been presented in our previous

study in [58].

C. Stopping Criteria

Previous works on ECG recognition [22], [25]–[31] suffer

from being restricted to have a predefined recording length.

Motivated by the fact that some subjects have a very repetitive

ECG and does not need as many heartbeats as some others,

we define heartbeat consistency (HC) as a stopping criterion

as follows:

HC(n) = corr ((bn + bn+1), (bn+2 + bn+3)) (5)

where corr is correlation function and bn is nth heartbeat

amplitude. We keep recording until HC exceeds a predefined

threshold or recording time reaches 30 seconds, whichever

satisfied first. Therefore, a session can take at most 30 seconds.

As shown in Figure 3, increasing HC threshold increases the

average recording time because a larger HC threshold is harder

to satisfy. For example, recording times for different sessions

of the subjects for HC=0.92 are shown in Figure 4. This

is corresponding to an average recording time of about 10

seconds. For each of 46 subjects, recording time of 3 test

sessions are shown with circles. The average length of sessions

are also provided as a solid red line.

The assumption behind HC is that in general recording

more ECG samples in a session improves the accuracy. This
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Fig. 3. Average recording time versus HC.

assumption is experimentally validated in the next section (–

see Figure 5) which is in line with the body of the literature

that have investigated the effect of the number of samples

on accuracy of ECG biometric recognition (e.g. [22], [25]–

[31]). HC makes the system more convenient (in terms of

acquisition time) for majority of the subjects. A more stable

ECG naturally implies a higher degree of redundancy among

heartbeats. If there is diversity in the input signal, HC lets the

system to capture more samples (by extending the recording

time) which usually results in a more reliable decision. For

example, as shown in Figure 4, when the average recording

time is about 10 seconds (i.e. HC=0.92), majority of the cases

(i.e. about 60%) experience a shorter acquisition time of about

5 seconds. That means HC has been able to cut the acquisition

time in half for majority of the subjects.

HC as defined in (5) is based on 4 heartbeats. Increasing the

number of heartbeats involved in computing HC, will increase

the acquisition time for all subjects which is not desired.

Another drawback is that it degrades the local behavior of

HC. For example, assume that we have a stable ECG signal

with a distortion around the 10th heartbeat. If HC is defined

over 4 heartbeats (i.e. correlation between averages of the first

2 heartbeats and the second 2 heartbeats as in (5), it stops as

soon as we get 4 heartbeats. However, if HC be defined over

for example 10 consecutive heartbeats (i.e. correlation between

averages of the first 5 heartbeats and the second 5 heartbeats)

we need to keep recording until 20th heartbeat to get rid

of the effect of 10th heartbeat (i.e. a poor local behavior).

Therefore, increasing the number of heartbeats involved in

computing HC is against the local behavior of HC and is not

desired. On the other side, we need at least 4 heartbeats to

perform averaging and correlation. Averaging is a simple yet

effective and widely used noise reduction method and makes

the correlation results more reliable. Therefore, we consider 4

heartbeats in computing HC as in (5).

Any R peak appeared during the first second of recording

cannot be used because some of the aforementioned features

require a 2-second window centered at R peak. Moreover, by

definition HC needs at least 4 full heartbeats and that limits

the minimum recording time to about 5 seconds.
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Fig. 4. Recording time for different subjects for HC=0.92. For each subjects 3
values corresponding to 3 test sessions are marked with circles. The average
recording time is also shown as a solid red line.

D. Classification

We use linear SVM for classification and since it is a

binary classifier, a one-versus-all strategy is adopted. The score

corresponding to a session (i.e. s) is determined as weighted

sum of its heartbeats scores (i.e. si) as follows:

s =

∑K
i=1 wisi∑K
j=1 wj

(6)

Note that length of sessions are determined by HC and K is

not fixed and above summation is indeed over all heartbeats of

each session. Denominator is just a normalization factor and

weights wi are defined as:

wi =
1

1 + exp(− si−μ
σ )

(7)

where si denotes score of i-th heartbeat and μ and σ are

mean and standard deviation of the scores in the corresponding

session. The final decision for a session can be made by

comparing its score against an acceptance threshold.

Such definition of weights (after normalization) can be

interpreted as probabilities assigned to heartbeats where higher

probabilities are assigned to the heartbeats with larger scores.

This makes the final decision less sensitive to outliers because

outliers are artifacts that do not look like a regular heartbeat

and hence usually do not match templates and their weights

in (6) are small. Heartbeats with a very small HC value are

usually very irregular due to muscle or electrode movements.

Therefore, heartbeats with HC value below 0.5 are considered

as outlier and discarded. Note that this does not require further

computation because HC values for the heartbeats that precede

the stopping point are already computed.

We have also considered the outlier removal methods pre-

sented in [59] (i.e. DMEAN and DBSCAN). DMEAN method

detects outliers based on their distance to mean template (i.e.

mean of all heartbeats) and requires computing some statistics

such as mean, standard deviation, min and max over entire

session. DBSCAN method is based on clustering all samples

of a session and detects samples not belonging to any cluster

as outlier. Since in [59] DMEAN outperformed DBSCAN

in all experiments, we only consider DMEAN method as an

alternative to our outlier removal method based on HC values.
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Fig. 5. ECG recognition performance. EER of ECG recognition using the
proposed stopping criteria HC is compared with ECG recognition without
HC stopping criteria, i.e. same recording length for all sessions.

Note that the results reported in [59] for outlier removal are

based on estimating mean template over 2-minute sessions

but we apply DMEAN only to the portion of the signal

that precedes the stopping point. Nonetheless, both methods

yield similar performance while our method performed slightly

better (i.e. 0.4%) over different recording lengths. This can be

attributed to the fact that even if the outlier removal module

fails to detect a few artifacts, the effect of those artifacts will be

mitigated by the weighting strategy in (6) –i.e. less sensitivity

to outliers.

We force the enrollment session to include a minimum of

22 heartbeats. This sets the minimum length of an enrollment

session to about 20 seconds. Figure 5 shows EER of ECG

versus average length of ECG recording. Different recording

length is achieved through changing the HC threshold as

suggested in Figure 3. It can be seen that increasing the

recording time improves the performance of ECG recognition.

For comparison, EER of the conventional approach that has

a fixed session length is also presented in Figure 5. It can be

seen that the proposed stopping criterion effectively reduces

the recording time needed to achieve a desired EER. As the

recording time approaches 30 seconds, HC criterion is domi-

nated by the 30-second limit and converges to the conventional

approach. Recording time beyond 30 seconds is not considered

in our experiments because it is of little value in a real-world

scenario. However, increasing the maximum recording time

to 1 minute leads to an average EER of 3.8% and further

increasing the maximum recording time to 2 minutes did not

improve the performance anymore. Since not all subjects have

recordings longer than 2 minutes recording, we did not go

beyond 2 minutes. Results in Figure 5 are computed over

46 subjects. Considering that there are 3 test sessions per

subject, the number of positive and negative trials is 46 × 3
and 46× 45× 3 respectively.

VI. FUSION OF ECG AND FINGERPRINT

In this section, we first investigate the fusion of ECG and

fingerprint for liveness detection purpose (i.e. MmLD block).

Then, we investigate the fusion of ECG and fingerprint for

human recognition purpose (i.e. MmHR block).

A. Multimodal Liveness Detection (MmLD)

We examine 6 different fingerprint liveness detection al-

gorithms including LCPD1 [48], BSIF2 [47], IQA3 [41],

LBP4 [44], LPQ5 [45] and WLD6 [46]. Performance of these

methods are provided in the right side of Table II, III and

IV corresponding to 3 different scanners. It can be seen that

on average LCPD outperforms the other liveness detection

methods. Therefore, we use it in the subsequent experiments

and fuse it with ECG.

The resulting multimodal liveness detection module, re-

ferred as MmLD, can be realized through different fusion

rules. We consider weighted sum, product and maximum rules.

In the weighted sum rule, weights can be determined by using

an evaluation set. However, a simple approach to determine

the weights is to choose them proportional to the EER of the

individual traits. In our experiments, since EER of ECG is

roughly half of EER of LCPD, we set the weight of ECG and

LCPD to 2/3 and 1/3, respectively. As shown in Table II, III and

IV, the sum rule outperforms the other fusion rules. Therefore,

we use it in the subsequent experiments. It can be seen that

the proposed method (i.e. fusion of ECG and LCPD) performs

significantly better than the comparison methods. Results in

Table II, III and IV are computed over 46 chimeric subjects

for which there are samples for 3 test sessions. Therefore, there

are 46×3 positive trials and 46×3 negative trials (spoof trials)

in each of 50 runs. Note that since there are more subjects in

the fingerprint dataset than ECG dataset, we randomly pick

46 fingerprint subjects in each run and report the average and

standard deviation values computed over 50 runs.

We also compare the performance of the proposed method

with participants of LivDet2015 competition [4]. LivDet2015

test set includes 6 different spoofs, among them LiquidEcoflex

and RTV are not in the training set. Since they have similar

training set we can test on both at the same time. This is

the same as the protocol used in LiveDet2015 competition

for unknown spoofs except that instead of using all test

samples of LiquidEcoflex and RTV (i.e. 500 fake and 1000

live samples) at once, we use 276 spoof and 276 live samples

(i.e. 46 × 3 × 2) in each run. Note that since we repeat the

experiments 50 times, all samples are indeed involved in our

experiments. Table V shows the half total error rate (HTER)

for participants of LivDet2015 competition on aforementioned

unknown spoofs as well as EER of the proposed method

for various ECG lengths. For example ECGFP-5 denotes

the proposed method with 5 seconds of ECG. Results for

LivDet2015 participants in Table V are reported from [4]. It

can be seen that the proposed method (i.e. fusion of the ECG

and LCPD) performs significantly better than the state-of-the-

art methods in LivDet2015 competition.

Note that performance of LCPD used in our method is in the

range of top performers of LivDet2015 competition. If instead

of LCPD, we used a better algorithm, we could perform fusion

1http://www.grip.unina.it/web-download.html
2http://www.ee.oulu.fi/ jkannala/bsif/bsif.html
3Codes for IQA method was obtained directly from the author.
4http://www.cse.oulu.fi/wsgi/CMV/Downloads/LBPSoftware
5http://www.cse.oulu.fi/wsgi/CMV/Downloads/LPQMatlab
6http://www.cse.oulu.fi/wsgi/CMV/Research/
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TABLE II. EER (in percent) of MmLD (fusion of ECG and LCPD) and six comparison methods on DigitalPersona dataset. Standard deviations are in
parentheses.

Fusion of ECG and LCPD No Fusion

Sum product Max LCPD BSIF IQA LBP LPQ WLD

Time (sec) 5 10 30 5 10 30 5 10 30 -

Ecoflex 2.5
(0.9)

2.2
(0.7)

1.9
(0.8)

6.4
(0.9)

4.1
(0.8)

3.6
(0.8)

4.0
(1.1)

3.9
(1.0)

3.9
(1.0)

6.0
(1.1)

15.4
(2.1)

21.7
(2.2)

8.0
(1.3)

10.5
(1.7)

19.2
(2.6)

Gelatine 6.3
(1.3)

4.9
(1.2)

4.1
(1.1)

8.8
(1.1)

5.5
(0.7)

4.1
(0.7)

16.9
(1.9)

16.9
(2.0)

16.1
(1.7)

17.4
(1.7)

23.3
(2.3)

22.0
(2.0)

14.1
(1.6)

16.5
(1.4)

30.3
(2.6)

Latex 2.7
(0.7)

2.3
(0.7)

2.0
(0.9)

4.4
(1.5)

2.9
(0.9)

2.5
(0.6)

3.9
(1.0)

3.9
(1.0)

3.8
(1.0)

4.9
(0.8)

11.9
(1.2)

9.4
(1.7)

6.9
(1.1)

11.4
(1.6)

14.8
(1.9)

LiqEcoflex 7.1
(2.1)

4.9
(1.3)

3.7
(1.1)

8.0
(1.5)

5.6
(1.1)

4.6
(1.1)

15.5
(2.0)

15.6
(2.0)

15.4
(2.0)

16.7
(2.1)

17.8
(1.9)

29.7
(2.7)

22.2
(1.8)

21.0
(2.3)

27.1
(2.5)

RTV 4.0
(0.9)

3.1
(1.2)

2.6
(0.6)

6.6
(0.8)

4.2
(0.7)

3.6
(0.8)

6.1
(1.3)

6.1
(1.5)

6.0
(1.4)

8.0
(1.3)

15.0
(1.7)

21.2
(2.1)

10.3
(1.3)

16.5
(1.8)

19.7
(2.4)

WoodGlue 10
(1.5)

7.0
(1.3)

4.9
(1.0)

10.2
(1.1)

6.7
(1.5)

5.3
(1.4)

25.2
(1.8)

25.3
(1.8)

25.3
(1.8)

27.3
(1.6)

32.4
(2.4)

45.8
(2.4)

27.7
(2.8)

39.2
(2.6)

42.1
(2.8)

Average 5.4
(0.7)

4.1
(0.5)

3.2
(0.4)

7.4
(0.6)

4.8
(0.5)

3.9
(0.5)

11.9
(0.6)

11.9
(0.6)

11.8
(0.7)

13.4
(0.5)

19.3
(0.9)

25.0
(1.2)

14.9
(0.8)

19.2
(1.1)

25.5
(1.4)

TABLE III. EER (in percent) of MmLD (fusion of ECG and LCPD) and six comparison methods on GreenBit dataset. Standard deviations are in parentheses.

Fusion of ECG and LCPD No Fusion

Sum product Max LCPD BSIF IQA LBP LPQ WLD

Time (sec) 5 10 30 5 10 30 5 10 30 -

Ecoflex 1.5
(1.0)

1.2
(0.8)

0.8
(0.7)

3.7
(1.4)

2.5
(0.8)

2.0
(0.6)

2.1
(0.8)

2.1
(0.9)

2.1
(1.0)

3.7
(0.5)

7.8
(1.3)

5.8
(1.6)

9.7
(1.5)

4.9
(0.8)

11.8
(2.1)

Gelatine 4.1
(1.4)

3.5
(0.9)

3.0
(1.1)

7.5
(1.1)

4.6
(1.0)

3.7
(0.9)

7.9
(1.4)

7.9
(1.3)

7.9
(1.4)

9.3
(1.3)

13.0
(2.1)

17.0
(2.4)

14.7
(2.1)

9.1
(1.2)

19.6
(2.3)

Latex 1.6
(0.8)

1.3
(0.8)

1.0
(0.8)

3.1
(1.4)

2.0
(1.0)

1.6
(0.5)

1.8
(0.7)

1.3
(0.7)

1.2
(0.7)

3.3
(0.7)

6.4
(1.5)

9.0
(1.8)

11.5
(1.8)

9.3
(1.4)

15.4
(1.9)

LiqEcoflex 3.9
(1.2)

3.2
(1.2)

2.7
(1.2)

8.2
(1.1)

4.9
(0.8)

3.8
(0.4)

8.0
(1.3)

8.1
(1.3)

8.0
(1.3)

8.7
(1.4)

13.1
(1.9)

15.8
(2.2)

13.3
(1.9)

10.6
(1.6)

24.2
(2.4)

RTV 1.7
(0.9)

1.3
(0.8)

1.0
(0.8)

5.3
(1.1)

3.2
(0.7)

2.6
(0.5)

2.6
(0.8)

2.4
(0.7)

2.5
(0.7)

4.2
(0.7)

5.9
(1.8)

8.4
(1.5)

11.5
(1.2)

6.1
(1.5)

18.1
(2.5)

WoodGlue 9.1
(1.4)

6.0
(1.7)

3.7
(0.8)

10.3
(0.7)

6.5
(1.3)

4.1
(0.9)

17.6
(2.3)

17.7
(2.3)

17.7
(2.3)

18.9
(2.4)

18.0
(2.3)

22.4
(2.7)

17.6
(2.3)

21.6
(2.0)

35.9
(2.9)

Average 3.7
(0.7)

2.7
(0.6)

2.0
(0.5)

6.4
(0.5)

4.0
(0.5)

3.0
(0.4)

6.7
(0.6)

6.6
(0.6)

6.6
(0.6)

8.0
(0.5)

10.7
(0.9)

13.1
(1.1)

13.1
(0.9)

10.3
(0.7)

20.8
(1.3)

with that algorithm and get even better results. In addition,

although in this study we investigate fusion of ECG and a

software-based liveness detection method, a hardware-based

method can also be used in the same way because the proposed

system performs the fusion on score level. In addition to 12

participants listed in Table V, one complete fingerprint system

is also submitted to LivDet2015 competition. Participants

were provided with three spoof receipts and their submitted

fingerprint system were tested on those spoof types as well as

two unknown spoof materials. HTER of the submitted system

was 8% as reported in [4] which is by far behind the proposed

method.

In addition to the final report of LivDet2015 competition

[4], recently organizers of LivDet series have presented a

summary of LivDet competitions in [60]. They have selected

3 out of 12 algorithms submitted to LivDet2015 competition

and reported rate of misclassified fake fingerprints (ferrfake)

when rate of misclassified live fingerprints (ferrlive) is 1%.

This represents the percent of spoof attacks that have been

able to fool the system when only 1% of live attempts are

mistakenly rejected. These results are reported from [60] in

Table VI. For comparison, ferrfake of the MmLD (fusion of

ECG and LCPD) is also presented. The average ferrfake of

these methods at ferrlive=1% is about 45%. This indicates

the poor performance of the state-of-the-art liveness detection

methods that is also pointed out in [60]. It can be seen that

the performance of the proposed method is by far better than

the participants of the LivDet2015 competition. Positive and

negative trials used in Table VI are the same as Table V

explained before –i.e. 276 positive and 276 negative trials per

experiment.

B. Multimodal Human Recognition (MmHR)
In this section, we investigate fusion of ECG and fingerprint

for human recognition purpose. To this end, we use the

fingerprint recognition software from NIST Biometric Image

Software (NBIS 5.0.0) [61]. NBIS detects minutiae by an al-

gorithm called MINDTCT and computes fingerprint matching
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TABLE IV. EER (in percent) of MmLD (fusion of ECG and LCPD) and six comparison methods on Biometrika dataset. Standard deviations are in parentheses.

Fusion of ECG and LCPD No Fusion

Sum product Max LCPD BSIF IQA LBP LPQ WLD

Time (sec) 5 10 30 5 10 30 5 10 30 -

Ecoflex 2.7
(1.2)

2.3
(1.1)

1.9
(1.1)

6.2
(1.4)

4.2
(1.1)

3.2
(1.1)

4.3
(1.5)

3.7
(1.4)

3.7
(1.0)

5.4
(1.2)

7.1
(1.1)

12.5
(1.8)

3.0
(1.6)

11.7
(2.1)

15.7
(2.1)

Gelatine 5.0
(1.7)

4.5
(1.7)

3.7
(1.4)

8.8
(1.5)

6.2
(1.2)

5.6
(1.0)

9.4
(1.6)

10.0
(1.6)

9.9
(1.5)

10.9
(2.0)

11.8
(1.7)

20.2
(2.2)

11.0
(2.4)

15.3
(1.9)

24.9
(2.4)

Latex 1.9
(1.0)

1.4
(0.8)

1.2
(0.8)

3.2
(1.1)

2.2
(0.8)

1.6
(0.7)

2.5
(0.9)

2.5
(0.9)

2.0
(0.8)

3.1
(1.6)

5.9
(1.3)

16.2
(2.0)

8.4
(1.6)

19.5
(2.3)

16.9
(2.1)

LiqEcoflex 4.3
(1.6)

3.8
(1.4)

3.0
(1.2)

8.3
(1.3)

5.5
(1.3)

4.9
(1.3)

7.6
(1.7)

7.7
(1.9)

7.4
(1.7)

9.5
(1.5)

12.6
(1.8)

25.5
(2.7)

10.9
(1.8)

27.2
(2.5)

28.4
(2.6)

RTV 4.7
(1.7)

4.0
(1.4)

3.3
(1.3)

8.6
(1.4)

5.8
(1.1)

4.8
(1.1)

8.3
(1.3)

8.3
(1.3)

8.2
(1.4)

10.2
(1.3)

8.7
(1.8)

15.6
(2.2)

8.4
(1.2)

24.1
(2.3)

26.7
(2.8)

WoodGlue 8.6
(1.8)

6.4
(1.5)

4.5
(1.4)

10.5
(1.0)

6.9
(1.6)

4.7
(1.3)

17.0
(2.2)

17.0
(2.2)

17.1
(2.2)

15.6
(2.1)

16.0
(1.9)

24.7
(2.3)

19.9
(2.4)

46.9
(2.8)

32.8
(2.6)

Average 4.5
(0.4)

3.7
(0.5)

2.9
(0.5)

7.6
(0.8)

5.1
(0.6)

4.1
(0.6)

8.2
(0.5)

8.2
(0.6)

8.0
(0.5)

9.1
(0.7)

10.3
(0.8)

19.1
(1.1)

10.3
(0.9)

24.1
(0.9)

24.2
(1.3)

TABLE V. Comparison with LivDet2015 competition. HTER (in percent)
is reported for all participants of LivDet2015 competition from [4]. EER
(in percent) for the MmLD (fusion of ECG and LCPD) for different ECG
lengths is also presented. To be consistent with LivDet2015 competition,
only LiquidEcoflex and RTV are considered as unknown spoofs. Standard
deviations are in parentheses.

Dig.Persona GreenBit Biometrika Average

L
iv

D
et

2
0
1
5

C
o
m

p
et

it
io

n
[4

] COPILHA 24.2 30.6 32.7 29.1
CSI 26.2 20.3 17.1 21.2
CSI MM 26.4 14.4 11.2 17.3
hbirkholz 13.7 11.0 7.1 10.6
hectorn 19.3 12.0 15.0 15.4
anonym 18.5 11.4 10.8 13.5
Jinglian 15.1 7.7 5.3 9.3
UFPE I 23.7 28.0 41.6 31.1
UFPE II 24.7 18.6 32.7 25.3
nogueira 7.1 5.5 7.2 6.6
titanz 12.6 10.5 7.6 10.2
unina 18.2 5.3 6.2 9.9

P
ro

p
o
se

d
m

et
h
o
d

ECGFP-5 5.0 (1.5) 2.6 (0.9) 4.9 (1.0) 4.2 (0.7)

ECGFP-7.5 4.2 (1.3) 2.2 (0.9) 4.7 (1.1) 3.7 (0.7)

ECGFP-10 3.4 (1.0) 2.1 (0.8) 4.3 (0.9) 3.3 (0.5)

ECGFP-30 2.6 (0.8) 1.8 (0.8) 3.5 (0.7) 2.6 (0.5)

TABLE VI. ferrfake (in percent) at ferrlive=1%. Results for 3 participants of
LivDet2015 is reported from [60]. ferrfake of the MmLD (fusion of ECG
and LCPD) for different ECG lengths is also presented. To be consistent
with LivDet2015 competition, only LiquidEcoflex and RTV are considered as
unknown spoofs. Standard deviations are in parentheses.

Dig.Persona GreenBit Biometrika Average

L
iv

D
et

2
0

1
5

C
o

m
p

et
it

io
n

[6
0

]

unina 52.2 53.2 19.8 41.7
nogueira 25.3 23.4 20.4 23.0
anonym 84.0 75.9 57.1 72.3

P
ro

p
o
se

d
m

et
h
o
d

ECGFP-5 18.0 (1.1) 11.0 (0.7) 20.7 (1.4) 16.6 (0.6)

ECGFP-7.5 13.9 (1.1) 7.8 (0.9) 18.7 (1.1) 13.4 (0.6)

ECGFP-10 10.3 (1.0) 4.6 (0.9) 14.3 (1.3) 9.7 (0.6)

ECGFP-30 4.5 (0.9) 3.0 (0.7) 5.9 (0.9) 4.5 (0.5)

scores using a matcher called Bozorth3. MINDTCT performs

image binarization, minutiae detection, false minutiae removal,

neighbor ridges counting and minutiae quality assessment,

and generates a list consists of location, orientation, type

and quality of the detected minutiae to be used by Bozorth.

TABLE VII. EER (in percent) of MmHR (fusion of ECG and Bozorth) for
different fusion rules and different values of HC threshold. Standard deviations
are in parentheses.

Sum product Max Bozorth
(no fusion)

Time (sec) 7.5 10 25 7.5 10 25 7.5 10 25

DigitalPersona 4.0
(0.4)

3.4
(0.3)

2.1
(0.3)

6.2
(0.3)

4.3
(0.3)

2.8
(0.2)

4.1
(0.5)

3.8
(0.3)

2.5
(0.2)

8.6
(0.6)

GreenBit 2.6
(0.2)

2.2
(0.2)

1.3
(0.2)

5.3
(0.3)

3.4
(0.2)

2.2
(0.2)

2.9
(0.2)

2.7
(0.2)

1.9
(0.2)

2.7
(0.4)

Biometrika 4.6
(0.4)

3.9
(0.3)

2.6
(0.3)

7.3
(0.3)

5.3
(0.3)

3.8
(0.3)

5.3
(0.4)

4.7
(0.3)

3.3
(0.3)

15.1
(0.7)

Bozorth is a minutiae-based fingerprint matching method in-

variant to rotation and translation. It considers the location and

orientation of the top 150 high quality minutiae and computes

the matching score. EER of Bozorth on 3 different datasets is

shown in the last column of Table VII.

We consider three different rules for fusion of ECG and

fingerprint recognition, i.e. sum, product and maximum rules

and results are presented in Table VII. Since the performance

of Bozorth and ECG recognition modules are on average in the

same range, we use equal weights for both traits in sum rule.

Considering that we have 46 subjects for which there are 3 test

session available, the number of positive and negative (zero-

effort) trials in Table VII is respectively 46×3 and 46× 45×3
for each spoof in each run.

Comparing the results of different scanners in Table VII,

one may observe that while Bozorth gives an EER as good as

2.7% on GreenBit scanner, its performance degrades to 15.1%

on Biometrika scanner. On the other side, performance of the

multimodal system is less sensitive to the scanner, i.e. a better

generalization on different scanners. We use the sum rule for

fusion of ECG and Bozorth in the subsequent experiments due

to its better performance compare with product and max rules.
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VII. AUTOMATIC UPDATING OF ECG AND FINGERPRINT

TEMPLATES

Automatically updating the ECG templates allows to model

the intra-class variation of ECG over different sessions. So

the biometric system can adapt to temporal variations of ECG

signal across different sessions. If the system ensures the

liveness and genuineness in a trial, then the provided ECG and

fingerprint samples can be safely added to the corresponding

templates. To prevent adaption using impostor samples, zero

false acceptance rate for both liveness detection and human

recognition tasks is necessary. This can be achieved in two

different ways. First, the fusion score of MmLD and MmHR

blocks, i.e. SMmLD and SMmHR can be compared against

updating thresholds:

(SMmLD > TU
MmLD)&(SMmHR > TU

MmHR)

where TU
MmLD and TU

MmHR are thresholds corresponding

to zero false acceptance rate operating point of MmLD and

MmHR blocks, respectively and & is logical AND operator.

Those subjects that pass the MmLD block are fed to the

MmHR block and those that pass that block too are selected

for updating.

In the second approach, each of the ECG, FpLD and FpR

blocks are set to zero false acceptance operating point. Con-

sidering that inside MmLD (MmHR) block, ECG and FpLD

(FpR) are in parallel configuration, the following criterion can

be used to achieve the overall zero false acceptance rate:

((SECG > TU
ECG)|(SFpLD > TU

FpLD))&((SECG > TU
ECG)|(SFpR > TU

FpR))

where SECG, SFpLD and SFpR are the scores and TU
ECG,

TU
FpLD and TU

FpR are the updating thresholds corresponding

to zero false acceptance rate operating point of ECG, FpLD

and FpR blocks, respectively and | is logical OR operator.

Both approaches ensure that fake samples as well as impostor

attempts are rejected and will not contribute to template

updating process. We use the second criterion because it is

independent of the fusion rule inside MmLD and MmHR

blocks. Queries that satisfy above criterion are selected for

template updating.

Updating a multimodal template includes updating a fin-

gerprint template and an ECG template. In order to update

an ECG template, we add the new ECG samples to the

previously existing training samples of that subject and re-train

the SVM model. In order to update a fingerprint template,

we add the new fingerprint sample to the set of previously

existing samples of that subject. Since Bozorth is a matcher,

if a fingerprint template contains more than one sample, we

compute the match scores against each of the samples in the

template and consider the average score as the matching score

assigned to that trial.

Note that automatic template updating using a single bio-

metric may not be effective because it tends to add only those

samples that are very similar to the existing samples (i.e. lack

of diversity). However, in the proposed system it makes sense

to perform template updating because a multimodal system

can potentially add more diverse samples to the templates.

For example, if with high confidence fingerprint is live and

matches the corresponding template, we can update both ECG

and fingerprint templates. This implies that more diverse ECG
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Fig. 6. EER of ECG and fingerprint recognition with and without template
updating: (a) 2nd test session. (b) 3rd test session. Results are averaged over
3 datasets. Results with (without) template updating are shown with solid
(dashed) lines. Bars represent standard deviations. In the 2nd test session,
standard deviation for fingerprint recognition with (without) template updating
is 0.4 (0.6). Likewise, in the 3rd test session, standard deviation for fingerprint
recognition with (without) template updating is 0.5 (0.7).

samples can be added to the ECG template and the resulting

ECG samples can better reflect the within class variations of

the corresponding subject. Likewise, if with high confidence

ECG matches the corresponding template, both ECG and the

fingerprint templates are updated. This implies that the new

fingerprint sample can potentially improve the diversity for the

corresponding fingerprint template to better reflect the within

class variations. We set the minimum length of the first test

session to 12 heartbeats, i.e. about 10 seconds. This allows a

more effective template updating specially when HC threshold

is set to a small value. However, the length of the subsequent

test sessions, i.e. second and third sessions, are determined

solely by HC criterion and the 30-second upper limit.

We consider 2 types of attack: zero-effort attack and spoof

attack. In the zero-effort attack, intruder provides his own

fingerprint sample but claims to be someone else, hence the

term zero-effort. In the spoof attack, intruder provides a fake

fingerprint sample of the claimed identity. In both cases, ECG

signal is also recorded. For each of 46 chimeric subjects there

are 3 fake and 3 live samples corresponding to 3 rounds

of testing. Therefore, in each testing round there are 46

positive, 46 spoof and 46 × 45 zero-effort trials. However,

for computational simplicity we only consider 500 zero-effort



11

5 10 15 20 25 30
Time (sec)

5

10

15

20

25
EE

R
 (%

)

Proposed
LCPD
BSIF
IQA
LBP
LPQ
WLD

Fig. 7. EER of the MmLD (fusion of ECG and LCPD) with template updating
is compared with conventional liveness detection methods in the 3rd test
session. Bars represent standard deviations. Standard deviations of LCPD,
BSIF, IQA, LBP, LPQ and WLD are respectively 0.5, 0.4, 0.6, 0.7, 0.5 and
0.8.

trials.

At the end of the first test session, on average about 79% of

chimeric subjects are selected for template updating. Likewise,

at the end of the second test session about 76% are selected.

In Figure 6, the effect of template updating on ECG and

fingerprint recognition is shown for 2nd and 3rd test sessions.

It can be seen that the performance of both ECG recognition

and fingerprint recognition using Bozorth improves due to

template updating. The recognition rates reported in Figure

6 are based on 46 positive and 500 negative (zero-effort)

trials for each type of spoof in each dataset. The results for

different types of spoofs and datasets are averaged and the

entire process is repeated 50 times. The average and standard

deviation are reported.

Figure 7 shows EER of the MmLD block in the third

test session after performing automatic temple updating in

the first and second test sessions. For comparison, EER of

other methods are also shown as horizontal lines. It can

be seen that the proposed approach performs significantly

better than comparison methods for a wide range of ECG

lengths. In computing the liveness detection results in Figure

7, 46 positive and 46 negative (i.e. spoof) trials have been

used for each type of spoof in each dataset. The results for

different types of spoofs and datasets are averaged and the

entire process is repeated 50 times and average and standard

deviation are reported.

Figure 8 compares the recognition rate of the proposed

system with Bozorth in the third test session. It can be seen

that the proposed method performs significantly better than

Bozorth. In computing the recognition rates in Figure 8, 46

positive and 500 negative (i.e. zero-effort) trials has been

used for each type of spoof in each dataset. The results

for different types of spoofs and datasets are averaged and

the entire process is repeated 50 times as explained before

and average and standard deviation are reported. Note that

the main focus of this study is liveness detection rather

than recognition rate. We do not emphasis on fingerprint

recognition performance and use Bozorth only as an average

commercial fingerprint recognition system. If we had a more
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Fig. 8. EER of MmHR (fusion of ECG and Bozorth) with template updating
is compared with Bozorth in the 3rd test session. Bars represent standard
deviations. Standard deviation of Bozorth is 0.5.

accurate and complicated fingerprint recognition algorithm, the

results after fusion with ECG could be even better. Therefore,

we have considered a more challenging case. This is important

because it demonstrates that two average low cost commercial

fingerprint and ECG biometric systems with mediocre indi-

vidual performances can be combined to provide significantly

better performance. Note that our ECG signals are recorded

using Vernier [57] which is a low cost nonprofessional com-

mercially available hardware designed for educational use.

Nevertheless, we have demonstrated promising results under

such practical setup. One may get even better results by using

a more complicated fingerprint recognition method or more

sophisticated ECG acquisition hardware. But for the sake

better generalization on real-world scenarios, we did not seek

that direction.

VIII. COMPUTATIONAL COSTS

Experiments are performed in MATLAB on a desktop with

an Intel core i7-3770 CPU and 16GB RAM. CPU-time for

computing the match score between two fingerprints is about

380 msec. The CPU time for feature extraction with HC

threshold of 0.92 (i.e. 10 seconds of ECG on average) is about

630 msec. Extracting LCPD features takes about 5 seconds

per image. The time for testing against an SVM model is

very small and can be neglected. Training one SVM for ECG

recognition (HC threshold of 0.92) takes about 300 msec.

Training one SVM for fingerprint liveness detection takes

about 6 seconds. The feature selection part is very fast and

takes less than a second.

IX. CONCLUSION

ECG can be recorded from fingertips. Therefore, fingerprint

is the natural choice to be fused with ECG. On the other side

fingerprint is vulnerable to spoof attacks and ECG has inherent

liveness detection. This paper presented a unified approach

for fusion of fingerprint and ECG that fills the gap between

these two sides. To get the most out of ECG, the proposed

system fuses ECG with a conventional fingerprint liveness

detection method for a better liveness detection performance,

and also fuses it with a fingerprint recognition method for a
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better recognition rate. Extensive experiments on LiVDet2015

database with 6 different spoofs, 3 different scanners, 6 live-

ness detection algorithms and 3 different fusion methods have

demonstrated that ECG significantly improves the performance

in both tasks, i.e. liveness detection and human recognition. In

addition, the proposed system automatically performs template

updating, so that the performance of biometric system can

be maintained in long term without manual re-training or re-

enrollment. We also compared the proposed system with the

results reported in LivDet2015 competition which is the latest

competition in this field and demonstrated that it outperforms

all participants of that competition.
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