
Range-Aggregate Queries for Geometric Extent Problems

Peter Brass1 Christian Knauer2 Chan-Su Shin3 Michiel Smid4

Ivo Vigan5

1 Department of Computer Science
The City College of New York, New York, NY, 10031, USA.

Email: peter@cs.ccny.cuny.edu

2 Institute of Computer Science
Universität Bayreuth, 95440 Bayreuth, Germany.
Email: christian.knauer@uni-bayreuth.de

3 Department of Digital Information Engineering
Hankuk University of Foreign Studies, Yongin, 449-791, Korea.

Email: cssin@hufs.ac.kr

4 School of Computer Science
Carleton University, Ottawa, Ontario, K1S 5B6, Canada.

Email: michiel@scs.carleton.ca

5 Department of Computer Science
City University of New York, The Graduate Center, New York, NY 10016, USA

Email: ivigan@gc.cuny.edu

Abstract

Let S be a set of n points in the plane. We
present data structures that solve range-aggregate
query problems on three geometric extent measure
problems. Using these data structures, we can re-
port, for any axis-parallel query rectangle Q, the
area/perimeter of the convex hull, the width, and the
radius of the smallest enclosing disk of the points in
S ∩Q.

Keywords: Computational geometry, range-aggregate
query, orthogonal range query, convex hull, width,
smallest enclosing disk.

1 Introduction

In the range searching problem, we have to preprocess
a given set S of geometric objects (such as points)
into a data structure such that, for any query range
Q, counting or reporting S∩Q can be done efficiently.
Various forms in diverse applications have been pro-
posed and extensively studied (see for example Agar-
wal & Erickson (1999)).

A variant of this problem is the range-aggregate
query problem, which can deal with more complex
queries. In its general form, we have a fixed aggre-
gate function f , and the set S gets preprocessed into

The research of the first and fifth author is supported by NSF
grant 1017539. The research of the fourth author is supported
by NSERC. The research of the third author is supported by
NRF grant 2011-0002827.

Copyright c⃝2013, Australian Computer Society, Inc. This pa-
per appeared at the 19th Computing: Australasian Theory
Symposium (CATS 2013), Adelaide, South Australia, January-
February 2013. Conferences in Research and Practice in Infor-
mation Technology (CRPIT), Vol. 141, Anthony Wirth, Ed.
Reproduction for academic, not-for-profit purposes permitted
provided this text is included.

a data structure such that, for any given query range
Q, the value f(S ∩ Q) can be computed efficiently.
Examples of such functions f include algebraic ones
such as “sum”, “minimum”, and “maximum” over
the weights pre-assigned to the objects of S, and ge-
ometric ones, such as “closest pair”, “diameter”, and
“width” of S ∩Q.

These range-aggregate query problems have been
recently studied in the fields of computational geome-
try (Abam et al. 2009, Brodal & Tsakalidis 2011, Das
et al. 2012, Davoodi et al. 2012, Gupta 2006, Gupta
et al. 2009, 2007, Nekrich & Smid 2010, Rahul et al.
2010, 2011, Sharathkumar & Gupta 2007), database
theory (Tao & Papadias 2004), and VLSI layout de-
sign (Sharathkumar & Gupta 2006).

In general, geometric aggregate functions are not
decomposable, i.e., the answer f(S∩Q) cannot be de-
rived efficiently from the answers of the subsets which
form a partition of S ∩ Q. Because of this, different
techniques have to be developed to answer these kind
of queries.

Let S be a set of n points in the plane. For the
case when f is the function “closest pair” and Q is
an axis-parallel rectangle, (Sharathkumar & Gupta
2007) and (Gupta et al. 2009) present data structures
that solve the problem using O(n · polylog(n)) space
and O(polylog(n)) query time. These structures, how-
ever, have Ω(n2) preprocessing time. (Abam et al.
2009) show that variants of these structures can be
constructed in O(n · polylog(n)) time, while preserv-
ing the bounds on the space and query time. (Abam
et al. 2009) also show that closest pair queries in a
halfplane can be answered in close to O(

√
n) time

using O(n · polylog(n)) space.
For the case when f is the function “maximal

points” and Q is an axis-parallel rectangle, (Brodal
& Tsakalidis 2011) and (Das et al. 2012) present data
structures having size O(n·polylog(n)) and query time
O(polylog(n) + k), where k is the size of the output.

Assume that f is the function “diameter” and Q

query type query time preprocessing time preprocessing space reference

convex hull area/perimeter O(log5 n) O(n log3 n) O(n log2 n) Theorem 1

report O(log5 n+ h)

width O(k log4 n+ log5 n) O((n2/k) log7 n) O((n2/k) log5 n) Theorem 2

smallest enclosing disk O(log9 n) O(n log2 n) O(n log2 n) Theorem 3

Table 1: Our contributions; k is a parameter between 1 and n. h is the output size of the convex hull.

is an axis-parallel rectangle. Let k be a parameter
with 1 ≤ k ≤ n. Gupta et al. (2009) present a data
structure of size O((n+ (n/k)2) log2 n) having query
time O(k log5 n). If we aim for O(polylog(n)) query
time, this structure uses close to quadratic space. On
the other hand, using O(n · polylog(n)) space, the
query time will be Ω(

√
n). In fact, (Davoodi et al.

2012) present evidence that this trade-off cannot be
improved.

Let f be a function that can be approximated
using coresets; examples are “diameter”, “width”,
and “smallest enclosing disk”. For the case when
Q is an axis-parallel rectangle, an approximation to
f(S ∩Q) can be computed in O(polylog(n)) time us-
ing O(n · polylog(n)) space; see (Gupta et al. 2009,
Nekrich & Smid 2010).

1.1 Our contributions

We present data structures for solving exactly range-
aggregate query problems on sets S of n points in
the plane and axis-parallel query regions Q, for three
geometric extent measures: the area/perimeter of the
convex hull of S∩Q, the width of S∩Q, and the radius
of the smallest enclosing disk of S∩Q. Our results are
summarized in Table 1. These are the first non-trivial
results for solving these queries exactly; previously,
only non-trivial results were known for approximation
versions of these query problems.

2 Preliminaries

Let S be a set of n points in the plane. We assume
that the points in S are in general position. Let Q :=
[ax, bx]× [ay, by] be a query range, where ax ≤ bx and
ay ≤ by.

A standard method to identify S ∩Q is by storing
the points of S in a range tree; see (de Berg et al.
2008). Using this data structure, identifying S ∩ Q
is done in two phases: (1) Find all points of S lying
in the vertical strip of Q defined by the x-interval
[ax, bx]. (2) Select the points in the y-interval [ay, by]
among the points in [ax, bx].

Let T be a primary range tree, i.e., a balanced
binary search tree in which the leaf nodes store
the points in S in non-decreasing order of their x-
coordinates from left to right. For every node u, we
denote by S(u) the canonical set of points in S that
are stored at the leaf nodes of the subtree rooted at
u. It is well-known that a subset of points in the
x-interval [ax, bx] can be represented as the disjoint
union of O(log n) canonical subsets. If S(u) con-
tributes to O(log n) of these canonical subsets, then u
is called a canonical node for the interval. For a given
x-interval, we can identify these canonical nodes in
O(log n) time by traversing T from the root.

We associate each node u in T with a secondary
range tree Ty(u), built on the y-coordinates of the

points in S(u). Then we can identify O(log n) canon-
ical subsets (or nodes) in Ty(u) whose points lie in
[ay, by].

As a result, for a given query range Q, we can
compute, in O(log2 n) time, a sequence of O(log2 n)
canonical nodes v1, . . . , vm in the secondary range
trees, such that

S ∩Q =
m∪
i=1

S(vi).

In addition, we will associate each node in each Ty(·)
with additional preprocessed information depending
on the individual problem.

The width of a point set V is defined to be the
minimum distance between any two parallel lines such
that V is contained in the strip bounded by these
lines. A smallest enclosing disk is a minimum-radius
disk which encloses all points of V .

Let ch(S(u)), width(S(u)), and sed(S(u)) (in
short, ch(u), width(u), and sed(u)) denote the con-
vex hull, the width, and the smallest enclosing disk
for the points of S(u), for any node u in the range
tree. We use |S| and |T | to denote the cardinality of
the set S and the number of nodes in the tree T .

3 Convex hull queries

We consider the problem of computing the area and
perimeter of ch(S ∩Q) for a given axis-parallel query
rectangle Q.

Additional information. We maintain a two-
dimensional range tree mentioned in the previous sec-
tion. At each node v of each secondary range tree
Ty(·), we store three additional pieces of information:

1. ch(v), the convex hull of S(v),

2. area(ch(v)), the area of ch(v), and

3. TA(v), a balanced binary search tree whose leaf
nodes store the points of ch(v) in counterclock-
wise order. Let z be an internal node of TA(v)
with at least three points pi, pi+1, . . . , pj , i < j,
at the leaf nodes of its subtree in TA(v). At each
z, we store the area of ch(v) to the right of pipj ,
i.e., area(ch({pi, . . . , pj})). Once we know this
area, we can easily get the area of ch(v) to the
left of pipj as area(ch(v))−area(ch({pi, . . . , pj})).

Let us check how much space this additional in-
formation requires. For any node v in a fixed sec-
ondary range tree Ty(u) for some u ∈ T , it takes
O(|S(v)| log |S(v)|) time and O(|S(v)|) space to store
both ch(v) and area(ch(v)). Computing the area in-
formation stored in TA(v) is done in a bottom-up fash-
ion, thus it takes a time of O(|S(v)| log |S(v)|) and a

space of O(|S(v)|). For a fixed Ty(u), we need a time
of∑
v∈Ty(u)

O(|S(v)| log |S(v)|) = O(|Ty(u)| log2 |Ty(u)|),

and a space of∑
v∈Ty(u)

O(|S(v)|) = O(|Ty(u)| log |Ty(u)|).

Thus, for the range tree T , we need a time of∑
u∈T

O(|Ty(u)| log2 |Ty(u)|) = O(|T | log3 |T |),

which is O(n log3 n). By a similar analysis, we need
O(n log2 n) space. As a result, the data structure
can be built in O(n log3 n) time and uses O(n log2 n)
space.

Query. To compute ch(S ∩Q) and its area for the
query range Q, we first identify O(log2 n) canonical
nodes v1, . . . , vm in all secondary range trees such that
S ∩ Q = ∪1≤i≤mS(vi). Using ch(vi) stored at each
canonical node vi, we next compute ch(S ∩ Q) =
ch(ch(v1) ∪ . . . ∪ ch(vm)) together with its area in
O(log5 n) time as follows.

To compute ch(S∩Q), we compute two outer tan-
gents between convex hulls ch(vi) and ch(vj), i.e., tan-
gent lines containing two hulls in their same sides, for
all pairs (vi, vj) with i ̸= j. Since any two convex hulls
are disjoint, we can apply the prune-and-search algo-
rithm by Kirkpatrick & Snoeyink (1995) to compute
them in O(log(|S(vi)| + |S(vj)|)) = O(log n) time.

This takes O(log5 n) total time. For each ch(vi),
we now collect the tangents incident to each point
pk ∈ ch(vi) which has at least one tangent. Let e and
e′ be two edges incident to pk on ch(vi) where e ap-
pears before e′ in counterclockwise order. Among the
tangents from pk, we choose the one with the smallest
angle with respect to the line containing e in counter-
clockwise direction. Denote the chosen tangent by tk.
We store such tk for all points pk having at least one
tangent in a list Li in counterclockwise order. Clearly
Li contains O(log2 n) tangents, which can be sorted
angularly in O(log2 n log log n) time. As a result, the
ordered lists Li for all 1 ≤ i ≤ m can be computed in
O(log5 n) time.

We now compute ch(S∩Q) by traversing the com-
puted tangents. The method is similar to the gift-
wrapping convex hull algorithm (O’Rourke 1998). We
start with the southernmost point pk in the south-
ernmost ch(vi). Starting from pk, we want to find
the first point in counterclockwise direction along the
edges of ch(vi) which has some tangent in Li. This
is equivalent to finding two consecutive points in Li
such that pk lies between the two points along the
boundary of ch(vi). This can be done by a binary
search over the indices of the points in Li, which
takes O(log |Li|) = O(log log n) time. Traverse the
found tangent, say tl to reach a point pl in another
convex hull ch(vj). Again we use the list Lj to find
the next point on ch(vj) which has a tangent, and
traverse it. We continue in this way until we return
to ch(vi), and thereby complete the construction of
ch(ch(v1) ∪ · · · ∪ ch(vm)) in O(log2 log log n) time.

As a result, we can compute ch(S∩Q) in O(log5 n)
time, in the sense that if we have to report its edges

explicitly, then we can do it in O(log5 n+ |ch(S∩Q)|)
time.

ch(vi)

pa

pb

TA(vi)

C ′

i

Figure 1: Six canonical nodes for {pa, . . . , pb}. Only
one among them stores the positive area because the
others have less than three points in their subtrees.

ch(S ∩Q)

C′

Figure 2: area(ch(S ∩Q)) is the sum of area(C ′) and
the area of the shaded regions.

Finally we calculate area(ch(S ∩ Q)). Consider
any ch(vi) whose boundary appears on the boundary
of ch(S ∩Q). Then, as shown in Figure 1, we assume
that the boundary of ch(vi) appears on the boundary
ch(S∩Q) from a point pa to a point pb. Let Ci be the
convex polygon with points pa, pa+1, . . . , pb−1, pb. We
now compute area(Ci) as follows. We traverse TA(vi)
to search the leaf nodes storing pa and pb, and obtain
two paths to pa and pb. We collect the positive areas
stored at the canonical nodes “below” both paths in
TA(vi). Since the positive area is defined for three or
more consecutive points in ch(vi), deleting such points
from Ci results in a smaller convex polygon C ′

i ⊂ Ci.
Then C ′

i consists of O(log n) points because there are
O(log n) canonical nodes in TA(vi) and among them
only O(1) canonical nodes have one or two points in
their subtrees. Now area(Ci) is the sum of the areas
stored at the nodes with positive area plus area(C ′

i).
Since area(C ′

i) can be directly computed in O(|C ′
i|) =

O(log n) time, we can compute area(Ci) in O(log n)
time. By the same method, we compute area(Cj) for
all ch(vj) which belong to the boundary of ch(S ∩Q)

in O(log3 n) time.
Let C :=

∪
i Ci and C ′ := ch(S ∩Q) \ C; see Fig-

ure 2. Note that area(C) =
∑

i area(Ci), so it can be

computed in O(log2 n) time. In the worst case, all the
canonical nodes ch(vi) can contribute to the bound-
ary of ch(S ∩ Q), so C ′ can have O(log2 n) points
on its boundary and area(C ′) can be directly com-
puted in the same time. Since area(ch(S ∩ Q)) =

area(C)+area(C ′), area(ch(S∩Q)) can be computed
in O(log3 n) time.

The most time consuming step in the computation
of area(ch(S ∩Q)) is to compute the tangents for all
possible pairs of O(log2 n) canonical nodes in S ∩Q.
Thus we can answer area(ch(S∩Q)) in O(log5 n) time.
The perimeter of ch(S ∩Q) can be obtained in a sim-
ilar way.

Theorem 1 Let S be a set of n points in the plane.
In O(n log3 n) time, we can construct a data struc-
ture of size O(n log2 n), such that for any axis-
parallel query rectangle Q, we can report ch(S ∩ Q)
in O(log5 n + K) time and compute the area or the
perimeter of ch(S ∩ Q) in O(log5 n) time. Here
K = |ch(S ∩Q)|.

4 Width queries

For the diameter query problem, the diameter
diam(S ∩ Q) is determined by exactly two points of
S ∩Q. Each of them belongs to one of the O(log2 n)
canonical subsets S(v1), . . . , S(vm). If i and j are the
indices such that S(vi) and S(vj) contain these two
points (with i = j being possible), then, diam(S ∩
Q) = diam(S(vi) ∪ S(vj)). As a result, diam(S ∩ Q)
is the maximum value of diam(S(vi) ∪ S(vj)) for all
pairs 1 ≤ i, j ≤ m. If we compute in advance a ta-
ble of diam(S(vi) ∪ S(vj)) for all pairs (vi, vj), then
we can simply look up the entries in the table which
correspond to the canonical subset pairs for S ∩Q.

This approach is not applicable to the width prob-
lem: The value of width(S ∩ Q) is determined by
three points of S and we can easily construct an ex-
ample for which width(S ∩ Q) is not in the set of
width(S(vi)∪S(vj)∪S(vk)) over all triples of canon-
ical subsets for S ∩Q. Furthermore, the width prob-
lem is essentially a non-convex optimization problem,
unlike the smallest enclosing circle problem which
can use properties associated with convex program-
ming (Eppstein 1992). This is what makes the width
problem difficult.

A

B

Figure 3: A strip containing S is transformed into a
vertical segment connecting ∂A and ∂B.

Additional information. To store an additional
information, we use data structures that (Chan 2003)
uses to maintain the width of a set of points in a
dynamic way.

The width of S, width(S), is determined by three
points on ch(S). We consider a dual transformation
such that a point (a, b) in the primal plane maps to
the line y = ax + b in the dual plane. Then, in the
dual plane, the set of all lines above the convex hull
of S becomes an unbounded convex polygon A in the
positive y-direction, and the set of all lines below the
convex hull becomes an unbounded convex polygon

B in the negative y-direction; see Figure 3. The strip
containing S is mapped to a vertical segment in the
dual plane which connects either a vertex of ∂A and
a point on ∂B or a point on ∂A and a vertex of ∂B.
So width(S) is attained by the minimum vertical dis-
tance between ∂A and ∂B. If we denote by d(A,B)
the minimum vertical distance between ∂A and ∂B
in the dual plane, then width(S) = d(A,B).

Chan (2003) built two data structures Y (A) and
Z(A,B) for two convex hulls A and B defined above
in the dual plane, which support the following queries:

1. Y (A) can compute d(A, e), for any query line seg-
ment e below A, in O(log2 |A|) time. Y (B) is
defined in a symmetric way.

2. Z(A,B) can compute d(A, γ), for any chain
γ ⊂ ∂B with two arbitrary endpoints on ∂B,
in O(log |B|) time. Z(B,A) is defined similarly.
In fact, Z(A,B) and Z(B,A) are based on Y (A)
and Y (B).

The data structure Y (A) can be built in
O(|A| log2 |A|) time and space, and Z(A,B) in
O(|A| log2 |A| + |B| log2 |B|) time and space (Chan
2003).

For a fixed parameter 1 ≤ k ≤ n, a node v in any
secondary structure Ty(·) (in short, Ty) is said to be
big if |S(v)| ≥ k, otherwise small. In a fixed Ty, there
are O(|Ty|/k) big nodes and the number of levels of
Ty containing big nodes is O(log(|Ty|/k)).

At each “big” node v in any Ty, we maintain the
following three additional pieces of information:

1. A(v) and B(v) as the dual structure for ch(S(v)),

2. Y (A(v)) and Y (B(v)) by Chan (Chan 2003),

3. Z(A(v), B(w)) and Z(B(v), A(w)) for every big
node w in any Ty by Chan (Chan 2003).

Let us check the amount of space needed for these
structures. If Ty has a big node, then Ty has at least
k nodes, so there are only O(|T |/k) = O(n/k) in-
ternal nodes in the primary tree T having such Ty.
Since Ty can have at most |Ty|/k big nodes, the
number of big nodes in all Ty stored at one level in
T is O(

∑
Ty

|Ty|/k) = O(n/k). In total, there are

O((n/k) log(n/k)) big nodes.
For the first additional information, we need

O(|Ty|) space for all big nodes at the same level
in a fixed Ty. Since Ty has O(log(n/k)) lev-
els, we need O(|Ty| log(n/k)) space for Ty. For
Ty stored at the same level of T , the required
space is O(

∑
|Ty| log(n/k)) = O(n log(n/k)). Only

O(log(n/k)) levels in T store Ty which contains big
nodes, so the space amount for the first one is
O(n log2(n/k)).

For the second one, we can similarly check that it
needs O(n log2 n log2(n/k)) space.

For the third one, we first check the space
needed for Z(A(v), ·) and Z(B(v), ·) of a fixed
v. The space associated with w in some Ty is

O(|Ty| log2 n log(n/k)). Summing up over all Ty,

it becomes O(n log2 n log2(n/k)). Since we have
O((n/k) log(n/k)) big nodes v in T , the total space is
O((n2/k) log2 n log3(n/k)).

As a result, we need O((n2/k) log2 n log3(n/k))
space for the three additional pieces of information.
By a similar analysis, we can show that it takes
O((n2/k) log4 n log3(n/k)) time to prepare them.

Query. Let Q := [ax, bx] × [ay, by], where ax < bx
and ay < by. We first identify the O(log2 n) canonical
nodes for S ∩Q. These canonical nodes (or canonical
subsets) partition Q, as in Figure 4(a), into disjoint
rectangular regions, each of which is associated with
a specific canonical node.

We merge the regions for the “small” canonical
nodes (equivalently, collect the points stored in the
small canonical nodes) such that the merged regions
are still rectangular and are disjoint from each other
as in Figure 4(b). By the definition of small nodes, it
is easy to show that the number of resulting merged
regions is O(log n), and the number of points of S∩Q
lying in each merged region is O(k). We again call a
small node the union of the small canonical nodes in
the region. We denote the small nodes by u1, . . . , ul
and the big nodes by v1, . . . , vm, where l = O(log n)
and m = O(log2 n). Let C be the union of all small
and big canonical nodes for S ∩Q.

ax

ay

bx

by

(a) (b)

Q

Figure 4: (a) The shaded rectangular regions repre-
sent small nodes lying in Q and the white ones repre-
sent big nodes. Before merging the small nodes. (b)
After merging the small nodes.

The width of S∩Q is the width of the points stored
at the canonical nodes of C. For any node pair u, v ∈
C, width(S(u)∪ S(v)) is the width of the convex hull
of S(u)∪S(v). In the dual plane, this is the minimum
vertical distance of A(u)∩A(v) and B(u)∩B(v), i.e.,
width(S(u)∪S(v)) = d(A(u)∩A(v), B(u)∩B(v)). Let
A := ∩v∈CA(v) and B := ∩v∈CB(v). Then width(S ∩
Q) = d(A,B).

Since S(u) and S(v), for any two distinct u, v ∈ C,
are separated either horizontally or vertically, ∂A(u)
and ∂A(v) intersect at most once, and ∂B(u) and
∂B(v) also intersect at most once. Using this prop-
erty, we can compute the intersection points by ap-
plying the dual version of the method that we al-
ready used in Section 3 to compute the convex hull
of the convex hulls of canonical subsets in the primal
plane. This is done in O(log5 n) time. Recall here
that small nodes do not have the data structures for
convex hulls, but we can construct them from scratch
in O(k log k) time for each small node, so it takes
O(k log k log n) total time for O(log n) small nodes.
Thus, in O(k log2 n+log5 n) time, we can know which
portion of which ∂A(v) (resp., ∂B(v)) contributes to
∂A (resp., ∂B).

As in Figure 5, draw the vertical lines at these
intersection points on each of ∂A and ∂B, and com-
pute the intersections of the vertical lines with the
opposite boundary. Since there are O(log2 n) vertical
lines, we can find such intersections in O(log3 n) time
by binary searches. As a result, these lines divide the
plane into O(log2 n) vertical slabs τ , and in a slab τ
only one A(v) (resp., only one B(u)) contributes to

τ

A(v)

∂A(v)

∂B(u)

B(u)

A

B

Figure 5: A, B, and vertical slabs.

A ∩ τ (resp., B ∩ τ). It is clear that width(S ∩Q) is
the minimum of d(A(v), B(u) ∩ τ) over all slabs τ .

Fix τ and assume that ∂A(v) and ∂B(u) have the
chains whose edges in τ coincide with ∂A ∩ τ and
∂B ∩ τ , respectively. We have three cases to find
the distance d(A(v), B(u) ∩ τ). If both v and u are
big nodes, then we ask the distance to Z(A(v), B(u))
and Z(B(u), A(v)) in O(log n) time. If one of them
is small, say u, then we compute d(A(v), e) for each
edge e ∈ ∂B(u) ∩ τ by asking to Y (A(v)), and again
compute d(B(v), e′) for e′ ∈ ∂A(u) ∩ τ by asking to
Y (Bv), which are both done in O(k log2 n) time. If
they are both small, then we compute the distance
directly by two linear scans; one between ∂A(v) ∩ τ
and ∂B(u)∩ τ , and the other between ∂B(v)∩ τ and
∂A(u) ∩ τ in total O(k) time. Then we simply take
the minimum of them as d(A(v), B(u) ∩ τ). As a re-
sult, we can compute d(A(v), B(u) ∩ τ) for a fixed τ
in O(k log2 n) time, thus we can compute d(A,B) in
O(k log4 n) time in total.

Theorem 2 Let S be a set of n points in the
plane, and let 1 ≤ k ≤ n be a parameter. In
O((n2/k) log4 n log3(n/k)) time, we can construct
a data structure of size O((n2/k) log2 n log3(n/k)),
such that for any axis-parallel query rectangle Q, the
width of S∩Q can be computed in O(k log4 n+log5 n)
time.

For example, setting k = nε, we can answer a
query in O(nε log4 n) time using O(n2−ε log5 n) space.

5 Smallest enclosing disk queries

A smallest enclosing disk sed(S) for a point set S is
determined by two or three points on its boundary. To
find it, we first lift the points in S onto a paraboloid in
three dimensions, and transform the lifted points, us-
ing the duality transform, to the dual space. Then the
radius of sed(S) becomes the minimum vertical dis-
tance between a convex polyhedron and a paraboloid.
We can compute the distance by adapting the three-
dimensional linear programming algorithm developed
for a semi-dynamic environment by (Eppstein 1992),
which guarantees polylogarithmic query time with a
data structure of subquadratic size.

5.1 The dual problem

The lifting map and duality transform are well ex-
plained in the literature; refer, e.g., to Section 5.7 in
the book by O’Rourke (O’Rourke 1998). For com-
pleteness, we explain these transformations.

The lifting map. We define the lifting map, which
maps a point in R2 to a point on the paraboloid P :
z = x2 + y2 in R3:

p = (x, y) 7→ p↑ = (x, y, x2 + y2).

Let C be a circle in R2 with center (a, b) and radius
r. Let HC be the non-vertical plane defined by

HC : z = 2ax+ 2by + r2 − a2 − b2.

Let p = (x, y) be a point in R2. Then p is on, inside,
or outside C if and only if p↑ is on, below, or above
HC , respectively.

For a set S of n points, define

S↑ = {p↑ | p ∈ S}.

Let C be a circle with center (a, b) and radius r, and
assume that C encloses all points in S. Then all
points of S↑ are on or below the plane HC . Con-
sider a plane H ′

C which is parallel to HC and tangent
to the paraboloid P . Then

H ′
C : z = 2ax+ 2by − a2 − b2.

The vertical distance between HC and H ′
C is equal to

r2. Thus the following observation holds.

Observation 1 The radius of the smallest enclosing
disk of S is the vertical distance between two parallel
planes H and H ′ such that

1. all points of S↑ are on or below H,

2. H contains either a face or an edge of the upper
convex hull of S↑, and

3. H ′ is tangent to the paraboloid P .

The duality transform. We now define the dual-
ity transform, which maps any non-vertical plane in
R3 to a point in R3 as follows:

H : z = ax+ by + c 7→ H∗ = (a/2, b/2, c).

Let S be a set of points in R3 and define

S∗ = {H∗ | H is a non-vertical plane

on or above ch(S)}.

Then the following observation holds:

Observation 2 Let S be a set of n points in R3.
The set S∗ is convex and unbounded in the positive
z-direction.

Using the paraboloid P : z = x2 + y2, we define
the set

P ′ = {H∗ | H is a non-vertical plane

on or below P}.

Let P ∗ denote the boundary of P ′. Then we also have
a similar observation as we did for S∗.

Observation 3 The set P ∗ is convex and unbounded
in the negative z-direction. Furthermore P ∗ is the
paraboloid z = −x2 − y2.

Dual problem. We are now ready to define the
dual problem of the original problem of computing
the radius of sed(S) for a point set S.

We get S↑ by the lifting map, and S∗
↑ by the dual

transform. Then S↑ is the set of points in the pri-
mal space, and S∗

↑ is the set of points in the dual
space. Also we apply the duality transform to map
the paraboloid P with equation z = x2 + y2 to the
paraboloid P ∗ with equation z = −x2 − y2.

Let us define a set B∗ of points in the dual space
as follows:

B∗ = {H∗ | H is a non-vertical plane containing

some face of the upper hull of S↑}.

Let B∗ be the set of all the points, in the dual space,
“on” or “vertically above” the lower convex hull of
B∗. Then B∗ is a convex polyhedron unbounded in
the positive z-direction, which is fully contained in
S∗
↑ . We also easily prove that B∗ and P ∗ are disjoint.

Consider two parallel planes H and H ′ such that
all points of S↑ are on or below H, and H ′ is tan-
gent to the paraboloid P . If the distance between H
and H ′ gives the radius of sed(S), then in the dual
space, the point H∗ is on the boundary of S∗

↑ and the

point (H ′)∗ is on the paraboloid P ∗. Furthermore,
since sed(S) contains either two or three points on its
boundary, H must contain either an edge or a face of
the upper convex hull of S↑, which implies that H∗ is
either an edge or a vertex of the lower convex hull of
B∗, i.e., an edge or a vertex of B∗. Thus we have the
following fact.

Fact 1 Let S be a set of n points in the plane. The
radius of the smallest enclosing disk sed(S) of S is
equal to the minimum vertical distance between B∗

and P ∗.

Let us go back to our query problem. Let
v1, . . . , vm be the canonical nodes in Ty for S ∩ Q.
Then S ∩ Q =

∪m
i=1 S(vi). We want to compute

sed(S ∩ Q). For each vi, we define S↑(vi), S∗
↑(vi),

and B∗(vi) for the canonical subset S(vi) as above.
To guarantee that a disk contains all points in S ∩Q,
its associated plane H in the lifting space must be on
or above all S↑(vi), i.e., on or above ch (

∪
i S↑(vi)).

But this means that H∗ is a point on the boundary
of

∩m
i=1 S

∗
↑(vi) in the dual space. More precisely, H∗

is a point on
∩m

i=1 B∗(vi).
As a result, computing the smallest enclosing

disk of S ∩ Q is equivalent to computing the
minimum vertical distance between the paraboloid
P ∗ and the intersection of the convex polyhedra
B∗(v1), . . . ,B∗(vm). Actually, Eppstein (1992) al-
ready explained this dual transformation to maintain
the smallest enclosing disk of points in two dimensions
in a semi-dynamic setting; see Corollary 1 in (Epp-
stein 1992).

5.2 Data structure and algorithm

Let A be a convex polyhedron of n vertices. We repre-
sent A by a hierarchical representation of A, as given
by Dobkin & Kirkpatrick (1990). See also Section
7.10 in the book by O’Rourke (1998) for a detailed
explanation.

A sequence hier(A) = A1, . . . , Ak of convex poly-
hedra is said to be a hierarchial representation of A
if

1. A1 = A and Ak is a tetrahedron,

2. Ai+1 ⊂ Ai for 1 ≤ i < k,

3. V (Ai+1) ⊂ V (Ai) for 1 ≤ i < k, where V (Aj)
denotes the set of vertices of Aj , and

4. the vertices of V (Ai)\V (Ai+1) form an indepen-
dent set in Ai for 1 ≤ i < k.

Dobkin & Kirkpatrick (1990) presented an algo-
rithm to construct hier(A) in O(n) time such that (1)

k = O(log n), (2)
∑k

i=1 |V (Ai)| = O(n), and (3) the
maximum degree of the vertices of V (Ai) \ V (Ai+1)
in Ai is a constant, say at most 8. They also showed
the following crucial lemmas.

Lemma 1 (Dobkin & Kirkpatrick 1990) Given a hi-
erarchical representation hier(A) = A1, . . . , Ak, and
any query plane H such that Ai+1 ⊂ H+ for some i,
then either Ai ⊂ H+ or there exists a unique vertex
v ∈ V (Ai) such that v ∈ H−, where H+ and H− de-
note the half-space above and below H, respectively.
Furthermore, such v can be found in constant time.

Lemma 2 (Dobkin & Kirkpatrick 1990) Given a hi-
erarchical representation hier(A) and any query plane
H that does not intersect A, the minimum verti-
cal distance between A and H can be computed in
O(log |A|) time.

Let d(A,B) be the minimum vertical distance be-
tween disjoint convex sets A and B. The algo-
rithm given in Lemma 2 computes d(A,B) when B
is a plane. We can simply adapt the algorithm in
Lemma 2 to compute d(A,B) for the case when B is
a paraboloid:

Lemma 3 Let A be a convex polyhedron which is
unbounded in the positive z-direction, let P ∗ be the
paraboloid z = −x2 − y2, and assume that A is above
P ∗. If hier(A) = A1(= A), . . . , Ak is given, we can
compute d(A,P ∗) in O(log |A|) time.

Proof. We first compute d(Ak, P
∗) in constant time,

which is possible because Ak is a tetrahedron. We
now update a pair (ai, pi) of points ai ∈ ∂Ai and pi ∈
P ∗, realizing d(Ai, P

∗), as i is decremented from k to
1. Since d(Ai, P

∗) is equal to |aipi|, when we translate
P ∗ in the positive z-direction by d(Ai, P

∗), it first hits
Ai at ai. Let HP∗ be the plane tangent to P ∗ at the
point pi, and let HA be the plane through ai parallel
toHP∗ . Then it follows that Ai is aboveHA and P ∗ is
below HP∗ , i.e., their interiors are separated by both
of HP∗ and HA. We now compute d(Ai−1, P

∗) by
identifying (ai−1, pi−1). Since Ai−1 = (Ai−1 ∩H+

A) ∪
(Ai−1 ∩H−

A),

d(Ai−1, P
∗) = min{d(Ai−1∩H+

A , P ∗), d(Ai−1∩H−
A , P ∗)}.

Clearly, d(Ai−1 ∩ H+
A , P ∗) is attained by (ai, pi).

Thus it suffices to compute d(Ai−1 ∩ H−
A , P ∗). By

Lemma 1, there can be only one vertex v ∈ Ai−1∩H−
A

and it can be identified in constant time. Thus if such
v exists, then Ai−1 ∩ H−

A is of constant complexity
because v has constant degree in Ai−1 by definition of
hier(A). This allows us to compute d(Ai−1∩H−

A , P ∗)
in O(1) time. Therefore, we can update (ai−1, pi−1)
from (ai, pi) in O(1) time. Since k = O(log |A|), the
total time is O(log |A|).

Additional information. At each node v in any
secondary range tree Ty, we maintain only one addi-
tional structure as follows:

1. hier(B∗(v)), a hierarchical representation for the
convex polyhedron B∗(v).

Since hier(A) can be constructed in O(|A|)
time (Dobkin & Kirkpatrick 1990), this information
can be computed in O(n log2 n) time and space.

Query. Let v1, . . . , vm be the canonical nodes for
S ∩ Q. Recall that m = O(log2 n). As mentioned
earlier, we need to compute

d(
m∩
i=1

B∗(vi), P
∗).

Let us consider the elementary case that m = 1,
i.e., computing d(B∗(v1), P

∗). This can be done in
O(log n) time by Lemma 3. Once we can solve this
elementary case in O(log n) time, we can employ the
algorithm by Eppstein (1992) as follows:

Lemma 4 (Eppstein 1992) Given m convex polyhe-
dra represented by their hierarchical representations,
we can optimize any given objective function over
their common intersection in O(γ · m3 log2 n) time,
provided that the elementary problem of optimizing
the function over one convex polyhedron can be done
in O(γ) time.

In our case, since γ = O(log n) andm = O(log2 n),
we can compute d(

∩m
i=1 B∗(vi), P

∗) in O(log9 n) time.
Thus, the radius of sed(S∩Q) can be computed within
the same time bound.

Theorem 3 Let S be a set of n points in the plane.
In O(n log2 n) time, we can construct a data struc-
ture of size O(n log2 n), such that for any axis-parallel
query rectangle Q, the radius of the smallest enclosing
disk of S ∩Q can be computed in O(log9 n) time.

6 Concluding remarks

An immediate open question is to construct more ef-
ficient data structures for the three extent measures.
It might be quite possible to reduce a few logarithmic
factors from the current time bounds.

Another interesting question is whether width
queries can be answered in O(polylog(n)) time using
a data structure of size O(n · polylog(n)).

It would be interesting to consider other extent
measures such as the largest empty disk within the
convex hull of S ∩Q, and the minimum annulus con-
taining S ∩ Q. Finally, it would be interesting to
consider different query ranges, such as circles or half-
planes, or to extend to higher dimensions.

References

Abam, M. A., Carmi, P., Farshi, M., & Smid, M.,
(2009), On the power of the semi-separated pair
decomposition, in Proc. of WADS, LNCS Springer,
2009, pp. 1–12.

Agarwal, P.K. & Erickson, J. (1999), Geometric range
searching and its relatives. in B. Chazelle, J. E.
Goodman, and R. Pollcak, editors, Advances in
Discrete and Computational Geometry, Contempo-
rary Mathematics, 23, pp. 1–56, AMS.

de Berg, M., Cheong, O.,van Kreveld, M., & Over-
mars, M. (2008), Computational Geometry: Algo-
rithms and Applications. Springer-Verlag.

Brodal, G. S. & Tsakalidis, K. (2011), Dynamic
planar range maxima queries, in ICALP, LNCS
Springer, pp. 256–267.

Chan, T.M. (2003), A fully dynamic algorithm for
planar width, Discrete and Computational Geome-
try, 30(1), pp. 17–24.

Das, A.S., Gupta, P., & Srinathan, K. (2012), Count-
ing maximal points in a query orthogonal rectangle,
in Proc. of CCCG, pp. 37–42.

Davoodi, P., Smid, M., & van Walderveen, F.,
(2012), Two-dimensional range diameter queries, in
LATIN, LNCS Springer, 2012, pp. 219–230.

Dobkin, D. P. & Kirkpatrick, D. G. (1990), Deter-
mining the separation of preprocessed polyhedra -
a unified approach, in ICALP, LNCS Springer, 443,
pp. 400–413.

Eppstein, D. (1992), Dynamic three-dimensional lin-
ear programming, INFORMS J. on Computing,
4(4), pp. 360–368.

Gupta, P. (2006), Algorithms for Range-Aggregate
Query Problems Involving Geometric Aggregation
Operations, Nordic Journal of Computing, 13(4),
pp. 294–308.

Gupta, P., Janardan, R., Kumar, Y. & Smid, M.
(2009), Data Structures for Range-Aggregate Ex-
tent Queries. in Proc. of CCCG, pp. 7–10.

Gupta, P., Janardan, R. & Smid, M. (2007), Efficient
non-intersection queries on aggregated geometric
data. Int. J. of Computational Geometry and Ap-
plications, 19(6), pp. 479–506.

Kirkpatrick, D. G. & Snoeyink, J., (1995), Comput-
ing common tangents without separating lines, in
Proc. of WADS, LNCS Springer, 1995, pp. 183–193.

Nekrich, Y. & Smid, M. (2010), Approximating
range-aggregate queries using coresets. in Proc. of
CCCG, pp. 253–256.

Overmars, M. & van Leeuwen, J. (1981), Mainte-
nance of configurations in the plane, J. Comput.
Syst. Sci.,, 23, pp. 116–204.

O’Rourke, J. (1998), Computational Geometry in C,
Cambridge University Press, Second Edition.

Rahul, S., Bellam, H., Gupta, P. & Rajan, K. (2010),
Range aggregate structures for colored geometric
objects. in Proc. of CCCG, pp. 249–252.

Rahul, S., Das, A.S., Rajan, K.S. & Srinathan, K.
(2011), Range-Aggregate Queries Involving Geo-
metric Aggregation Operations. in Proc. of WAL-
COM: Algorithms and Computation, 6552, pp. 122–
133.

Sharathkumar, R. & Gupta, P.(2006), Range-
aggregate proximity detection for dsign rule check-
ing in VLSI layouts. in Proc. of CCCG, pp. 151–
154.

Sharathkumar, R. & Gupta, P. (2007), Range-
aggregate proximity queries. Technical Report
IIIT/TR/2007/80, I.I.I.T. Hyderabad.

Tao, Y. & Papadias, D. (2004), Range aggregate
processing in spatial databases. IEEE Trans. on
Knowledge and Data Engineering, 16, pp. 1555–
1570.

