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Abstract

We introduce a family of directed geometric graphs, whose vertices are points in R
d. The

graphs Gθ

λ
in this family depend on two real parameters λ and θ. For 1

2 < λ < 1 and π

3 < θ < π

2 ,
the graph Gθ

λ
is a strong t-spanner for t = 1

(1−λ) cos θ
. That is, for any two vertices p and q, Gθ

λ

contains a path from p to q of length at most t times the Euclidean distance |pq|, and all edges
on this path have length at most |pq|. The out-degree of any node in the graph Gθ

λ
is O(1/φd−1),

where φ = min(θ, arccos 1
2λ

). We show that routing on Gθ

λ
can be achieved locally. Finally, we

show that all strong t-spanners are also t-spanners of the unit-disk graph.

1 Introduction

A graph G whose vertices are points in R
d and whose edges are line segments weighted by their

Euclidean length is called a geometric graph. Such a graph G is called a t-spanner (for some real

number t ≥ 1) if for any pair p, q of vertices, the weight of the shortest path in G from p to q does

not exceed t|pq|, where |pq| denotes the Euclidean distance between p and q. The smallest t having

this property is called the stretch factor or spanning ratio of the graph G. Any path from p to q in

G whose length does not exceed t|pq| is called a t-spanning path. A t-spanning path from p to q is

called strong if the length of every edge in the path is at most |pq|. The graph G is called a strong

t-spanner if there is a strong t-spanning path from any vertex to any other vertex.

The spanning properties of various geometric graphs have been studied extensively in the lit-

erature (see the book by Narasimhan and Smid [11] for a comprehensive survey on the topic). In

this paper, we are interested in spanners that are defined by some proximity measure or emptiness

criterion (see for example Bose et al. [2], Cardinal et al. [6]). Our work was initiated by Chávez

et al. [7] who introduced a new geometric graph called Half-Space Proximal (HSP). Given a set P
of points in R

2, the geometric graph HSP(P ) with vertex set P is obtained by running the following

algorithm for every point p of P :

1. Let N(p) be the set P \ {p}.

2. Let r be a point in N(p) that is closest to p.

3. Add the directed edge (p, r) to HSP(P ).

∗An extended abstract of this paper appeared in the Proceedings of the 10th Workshop on Algorithms and Data

Structures, 2007. This research was supported in part by NSERC, MITACS, MRI, and HPCVL.
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4. Remove from N(p) all points that are closer to r than to p, i.e., set

N(p)← N(p) \ {q ∈ N(p) : |qr| ≤ |qp|}.

5. If N(p) is not empty, go to 2.

It follows from this algorithm that HSP(P ) contains an edge from a point p to a point q provided

there is no point r in P such that (i) |pr| ≤ |pq|, (ii) HSP(P ) contains an edge from p to r, and (iii)

|qr| ≤ |qp|.
The authors show that this graph has maximum out-degree at most 6; see Theorem 1 in [7].

The authors also present an outline of a proof that HSP(P ) has an upper bound of 2π + 1 on its

stretch factor; see Theorem 2 in [7]. To the best of our knowledge, however, no rigorous proof of

the latter claim has appeared in the literature. Our attempts at finding a complete proof was the

starting point of this work.

In Section 2, we introduce a family of directed geometric graphs. Each graph Gθ
λ in this family

depends on two parameters λ and θ, with 1
2 < λ < 1 and 0 < θ < π

2 . If λ and θ converge to 1
and π/2, respectively, the graph Gθ

λ converges to HSP . On the other hand, if λ converges to 1
2 , the

graph Gθ
λ converges to a variant of Keil and Gutwin’s Θ-graph; see [8]. In fact, for small values of

θ and if λ is close to 1, the graph Gθ
λ is equal to a variant of the Yao graph; see [12].

We show that the maximum out-degree of Gθ
λ is bounded from above by a function that depends

only on θ and λ. We also show that, for 1
2 < λ < 1 and π

3 < θ < π
2 , Gθ

λ is a strong t-spanner, where

t depends only on θ and λ. Furthermore, we show that graphs in this family admit local routing

algorithms that find strong t-spanning paths. A routing algorithm is said to be local if the following

holds: For any two vertices p and q, assume that we wish to construct a path from p to q. Also

assume that a partial path from p to, say, x, has already been constructed. Then the next vertex

of the path is obtained by using only the coordinates of the destination q and those points y for

which (x, y) is a (directed) edge. (See [5] for a detailed description of this model). Local routing

schemes are suitable for settings where it is infeasible for every node to know the entire graph or

where the graph is constantly changing. When required to route without knowledge of the whole

graph, routing schemes need to be simple schemes with the limited information available. Typical

examples include: Greedy routing [5] (where a message is forwarded to the neighbor closest to the

destination), Compass routing [9] (where a message is forwarded on the edge forming the smallest

angle with the segment to the destination), Greedy-compass routing [3] (of the two neighbors

straddling the line segment to the destination, the message is forwarded to the one closest to the

destination) or other combinations (see [1] for a survey).

We show in Section 3 that all strong t-spanners are also spanners of the unit-disk graph, which

are often used to model adhoc wireless networks (see the books Barbeau and Kranakis [1] and

Li [10] for surveys of the area). Thus, by intersecting the graph Gθ
λ with the unit-disk graph, we

obtain a spanner of the unit-disk graph.

2 The family of graphs G
θ
λ

In this section, we define the graph Gθ
λ and prove that it is a strong spanner of bounded out-degree.

We first define this graph for point sets in the plane. At the end of this section, we show that the

results are in fact valid for point sets in R
d, for any dimension d ≥ 2. We start by introducing some

notation; see Figure 1.
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Figure 1: The destruction region K(p, r, θ, λ) of r with respect to p.

Definition 2.1 Let p and r be two distinct points in the plane, and let λ and θ be positive real numbers.

1. We define Cone(p, r, θ) to be the cone of angle 2θ with apex p and having the line through p and

r as its bisector.

2. We define HalfPlane(p, r, λ) to be the half-plane containing r and having as its boundary the

line perpendicular to pr and intersecting pr at distance 1
2λ |pr| from p.

3. The destruction region K(p, r, θ, λ) of r with respect to p is defined as

K(p, r, θ, λ) = Cone(p, r, θ) ∩HalfPlane(p, r, λ).

Note that HalfPlane(p, r, 1) is the halfplane containing r that is bounded by the perpendicular

bisector of p and r. Also K(p, r, π/2, 1) is equal to HalfPlane(p, r, 1).
Let P be a finite set of points in the plane, and let λ and θ be real numbers with 1

2 < λ < 1
and 0 < θ < π

2 . The directed graph Gθ
λ(P ) is obtained by running the following algorithm for every

point p in P :

1. Let N(p) be the set P \ {p}.

2. Let r be a point in N(p) that is closest to p.

3. Add the directed edge (p, r) to Gθ
λ(P ).

4. Remove all points q in K(p, r, θ, λ) from N(p), i.e., set

N(p)← N(p) \K(p, r, θ, λ).

5. If N(p) is not empty go to 2.

Notice that the point r in Step 2 is contained in K(p, r, θ, λ) and, hence, will be removed in Step 4.

Therefore, since |N(p)| is finite and at least one point is removed from N(p) every time the algo-

rithms executes steps 2 to 5, the algorithm terminates.

If λ and θ converge to 1 and π/2, respectively, the graph Gθ
λ(P ) converges to HSP(P ). Moreover,

if λ converges to 1
2 , the graph Gθ

λ(P ) converges to a variant of the Θ-graph; see Keil and Gutwin [8].

Finally, if θ is sufficiently small, and λ is close to 1, the graph Gθ
λ(P ) is equal to a variant of the Yao

graph; see [12].

The following observation follows immediately from the algorithm.
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Observation 2.2 Let p and q be two distinct points of P and assume that (p, q) is not an edge in

Gθ
λ(P ). Then there exists a point r in P \ {p, q} such that

1. |pr| ≤ |pq|,

2. (p, r) is an edge in Gθ
λ(P ), and

3. q ∈ K(p, r, θ, λ).

Definition 2.3 Let p and q be two distinct points of P and assume that (p, q) is not an edge in Gθ
λ(P ).

Any point r in P \ {q} that satisfies the three conditions in Observation 2.2 is called a destroyer of the

directed pair (p, q).

2.1 Location of Destroyers

According to Observation 2.2, the directed pair (p, q) is not an edge in Gθ
λ(P ), because of the

existence of at least one point r acting as a destroyer. Given two distinct points p and q in P , where

can such a point r lie? In this section, we define a region K(p, q, θ, λ) and show that r must be in

this region.

Definition 2.4 Let p and q be two distinct points in the plane, and let λ and θ be real numbers with
1
2 < λ < 1 and 0 < θ < π

2 .

1. We define R(p, q, λ) to be the intersection of the disk centered at p with radius |pq| and the disk

centered at p + λ(q − p) with radius λ|pq|.

2. We define K(p, q, θ, λ) to be the intersection of R(p, q, λ) and Cone(p, q, θ).

Proposition 2.5 If q ∈ K(p, r, θ, λ) and |pr| ≤ |pq|, then r ∈ R(p, q, λ).

Proof: Let C1 be the disk centered at p with radius |pq|, let c = p + λ(q− p), and let C2 be the disk

centered at c with radius λ|pq|; see Figure 2. We have to show that r ∈ C1 ∩ C2. Since |pr| ≤ |pq|,
r is contained in C1. It remains to show that r is in C2.

p
q

C1

C2r

l

c

s
t

p
q

C1

C2

r

l

c′

s
t

c

Case 1 where q lies on l Case 2 where q does not lie on l

Figure 2: The location of a point r destroying the edge (p, q).
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Let l be the boundary of HalfPlane(p, r, λ), let s be the midpoint of pr, let t be the intersection

of l with pr, and let c′ be the intersection of pq with the bisector of pr. We first consider the case

when q lies on the line l. Since the triangles △ptq and △psc′ are similar, we have

|pc′| = |pq| |ps|
|pt| = |pq| |pr|

2|pt| = |pq|λ|pr|
|pr| = λ|pq| = |pc|.

It follows that c′ = c. Therefore, |cr| = |cp|, which proves that r is on the boundary of C2.

In the case when q does not lie on l, we have |pc′| < |pc| and r lies on the circle centered at c′

going through p. Therefore, r is contained in C2, which completes the proof. �

The following proposition follows immediately from the definition of K(p, r, θ, λ).

Proposition 2.6 If q ∈ K(p, r, θ, λ), then ∠qpr ≤ θ.

The following proposition states that any destroyer r of the directed pair (p, q) is contained in

the region K(p, q, θ, λ).

Proposition 2.7 If q ∈ K(p, r, θ, λ) and |pr| ≤ |pq|, then r ∈ K(p, q, θ, λ).

Proof: The proof follows from Propositions 2.5 and 2.6. �

2.2 The Stretch Factor of G
θ
λ

As observed earlier, for sufficiently small values of θ, the graph Gθ
λ(P ) is equal to a variant of the

Θ-graph or a variant of the Yao-graph, which are well-known to be spanners. Since the motivation

of our work is to approximate HSP(P ), we will only consider the stretch factor of Gθ
λ(P ) for values

of θ which are larger than π
3 . In this section, we will prove the following result:

Theorem 2.8 Let P be a finite set of points in the plane, and let λ and θ be real numbers with
1
2 < λ < 1 and π

3 < θ < π
2 . The directed graph Gθ

λ(P ) is a strong t-spanner for t = 1
(1−λ) cos θ .

Notice that if λ converges to 1 and θ converges to π/2 (in this case Gθ
λ(P ) converges to HSP(P )),

the upper bound on the stretch factor of Gθ
λ(P ) converges to infinity. On the other hand, if λ

converges to 1
2 and θ converges to π

3 , then the upper bound on the stretch factor converges to 4.

In the rest of this section, we will prove Theorem 2.8. For any two distinct points p and q in P ,

let d(p, q) denote the length of a shortest path from p to q in the graph Gθ
λ(P ). We will show by

induction in the sorted list of all pairwise Euclidean distances among points in P that d(p, q) ≤ t|pq|.
For ease of presentation, we assume that all these pairwise distances are distinct.

The base case of the induction is when p and q form the closest pair in P . In this case, the edge

(p, q) is in Gθ
λ(P ). Therefore, we have d(p, q) = |pq| ≤ t|pq|.

From now on, we assume that p and q do not form a closest pair in P . Furthermore, we assume

that d(a, b) ≤ t|ab| for any pair a and b of points in P for which |ab| < |pq|. We will show that

d(p, q) ≤ t|pq|.
If the edge (p, q) is in Gθ

λ(P ), then d(p, q) = |pq| ≤ t|pq|. It remains to consider the case when

(p, q) is not an edge in Gθ
λ(P ). Let r be an arbitrary destroyer of the pair (p, q). Notice that r exists

by Observation 2.2. Thus, |pr| < |pq|, (p, r) is an edge in Gθ
λ(P ), and q ∈ K(p, r, θ, λ).
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Let C1 be the disk centered at p with radius |pq|, let c = p + λ(q − p), and let C2 be the disk

centered at c with radius λ|pq|. Recall that

K(p, q, θ, λ) = C1 ∩ C2 ∩ Cone(p, q, θ).

By Proposition 2.7, we have r ∈ K(p, q, θ, λ).
Since r ∈ C2 and C2 is contained in the radius-|pq| disk centered at q, we have |rq| < |pq|. It

follows that d(r, q) ≤ t|rq|.

p q

z

λ|pq|

r

(0, 0)

β θ

Case 2

p q

z

λ|pq|

r

θ

(0, 0)

Case 1.2

p q

z

λ|pq|

r

v

α

(0, 0)

θ

Case 1.1

w

C1

C2

C2

C1

cc
γ

v

Figure 3: The cases for the proof of Theorem 2.8.

In the rest of the proof, we assume, without loss of generality, that c is the origin and both p
and q are on the x-axis with p to the left of q; see Figure 3.

Let z be the intersection above the x-axis between the boundaries of the disks C1 and C2.

We consider two cases, depending on whether or not rx ≤ zx. (The notation ax denotes the x-

coordinate of a point a.)

Case 1: rx ≤ zx.

Let v be the highest point in K(p, q, θ, λ) having the same x-coordinate as r. We have:

d(p, q) ≤ |pr|+ d(r, q) ≤ |pr|+ t|rq| ≤ |pv|+ t|vq|.
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Let α = ∠vpq and observe that α ≤ θ, because v ∈ Cone(p, q, θ).
We consider two subcases, depending on whether v is on the boundary of C2 or on the boundary

of Cone(p, q, θ).

Case 1.1: v is on the boundary of C2.

We will express |pv| and |vq| as functions of cos α. Consider the triangle △(pvc). Observe that

|vc| = |pc|, because both v and p lie on the boundary of C2, which is centered at c. We have

|pv| = 2λ|pq| cos α

and, by the law of cosines,

|vq|2 = |pv|2 + |pq|2 − 2|pv||pq| cos α

= 4λ2|pq|2 cos2 α + |pq|2 − 4λ|pq|2 cos2 α

= |pq|2(4λ2 cos2 α− 4λ cos2 α + 1).

Using d(p, q) ≤ |pv|+ t|vq|, this implies that

d(p, q) ≤ 2λ|pq| cos α + t|pq|
√

4λ2 cos2 α− 4λ cos2 α + 1

= |pq|
(

2λ cos α + t
√

4λ2 cos2 α− 4λ cos2 α + 1
)

.

Thus, it suffices to show that

2λ cos α + t
√

4λ2 cos2 α− 4λ cos2 α + 1 ≤ t,

which can be rewritten as

t ≥ 2λ cos α

1−
√

4λ2 cos2 α− 4λ cos2 α + 1
.

Using the definition of t, it suffices to show that

1

(1− λ) cos θ
≥ 2λ cos α

1−
√

4λ2 cos2 α− 4λ cos2 α + 1
.

Since α ≤ θ < π/2, we have cos θ ≤ cos α. Therefore, it suffices to show that

1

(1− λ) cos α
≥ 2λ cos α

1−
√

4λ2 cos2 α− 4λ cos2 α + 1
.

The latter inequality can be verified by straightforward algebraic manipulation.

Case 1.2: v is on the boundary of Cone(p, q, θ).
In this case, we have α = θ. Let w be the intersection point above the x-axis between

Cone(p, q, θ) and C2, and let γ = ∠pcw. Since |cp| = |cw| = λ|pq|, we have γ = π − 2θ. Ob-

serve that

|pv| ≤ |pw| = 2λ cos θ|pq|.

As we have seen before, we have

d(p, q) ≤ |pv|+ t|vq|.
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Thus, it suffices to show that |pv|+ t|vq| ≤ t|pq|, i.e.,

|vq|2 ≤
(

|pq| − |pv|
t

)2

.

By the law of cosines, we have

|vq|2 = |pv|2 + |pq|2 − 2|pv||pq| cos θ,

which implies that it suffices to show that

|pv|2 + |pq|2 − 2|pv||pq| cos θ ≤
(

|pq| − |pv|
t

)2

.

This inequality can be rewritten as
(

1− 1

t2

)

|pv| ≤
(

2 cos θ − 2

t

)

|pq|.

Since |pv| ≤ 2λ cos θ|pq|, it suffices to show that

(

1− 1

t2

)

2λ cos θ ≤ 2 cos θ − 2

t
.

Using the definition of t, we obtain 2 cos θ − 2
t = 2λ cos θ. Therefore, it suffices to show that

(

1− 1

t2

)

2λ cos θ ≤ 2λ cos θ,

which obviously holds.

Case 2: rx > zx.

Let β = ∠zpq. We first compute the value of cos β. From the definitions of C1 and C2, we have

z2
x + z2

y = λ2|pq|2

and

(zx − px)2 + z2
y = |pq|2.

Therefore, since px = −λ|pq|, we have

zx =
|pq|(1− 2λ2)

2λ
,

which implies that

cos β =
λ|pq|+ zx

|pq| = λ +
1− 2λ2

2λ
=

1

2λ
.

Since λ < 1, it follows that cos β > 1
2 , which implies that β < π

3 . Thus, since θ > π
3 , we have β < θ.

We have

d(p, q) ≤ |pr|+ d(r, q) ≤ |pr|+ t|rq| ≤ |pz|+ t|zq| = |pq|+ t|zq|.
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By the law of cosines in △zpq, and using the fact that |pz| = |pq|, we have

|zq|2 =

(

2− 1

λ

)

|pq|2,

which implies that

d(p, q) ≤ |pq|+ t|pq|
√

2− 1

λ
.

Therefore, it suffices to show that

t ≥ 1

1−
√

2− 1
λ

.

Since 0 < β < θ < π/2, we have cos β > cos θ, and thus

t =
1

(1− λ) cos θ

≥ 1

(1− λ) cos β

=
1

(1− λ)(1/2λ)

=
2λ

1− λ

≥ 1

1−
√

2− 1
λ

,

where the last inequality holds because it is equivalent to (1− λ)2 ≥ 0.

This completes the proof of the claim that Gθ
λ(P ) is a t-spanner. In fact, since both |pr| and |rq|

are shorter than |pq|, it follows from this proof that Gθ
λ is in fact a strong t-spanner. Thus, we have

completed the proof of Theorem 2.8.

Observe that our proof of Theorem 2.8 provides a simple local routing algorithm: To find a path

from p to q, if the edge (p, q) is in Gθ
λ(P ), then take the edge. Otherwise, take an arbitrary edge

(p, r) in Gθ
λ(P ) such that r is a destroyer of the pair (p, q). By considering all outgoing edges of p

and using Definition 2.3, a destroyer r can be found solely from the positions of p and q. In other

words, determining which of the outgoing neighbors of p in Gθ
λ(P ) destroyed the pair (p, q) is a

local computation.

2.3 G
θ
λ in R

d

The definition of the graph Gθ
λ extends to R

d for any d > 2 in a natural way. In this case, the cone

in Definition 2.1 is a d-dimensional cone, and the half-plane in Definition 2.1 is a d-dimensional

half-space. Moreover, the statement and the proof of Theorem 2.8 are exactly the same: Let P be

a set of points in R
d, and let p and q be two points in P . If the edge (p, q) is in Gθ

λ, then we are

done. Otherwise, there exists a point r in P that is destroying the directed pair (p, q). Let Π be a

two-dimensional plane that contains p, q, and r. The proof above applies in the plane Π. Therefore,

we have the following corollary:
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Corollary 2.9 Let d ≥ 2, let P be a finite set of points in R
d, and let λ and θ be real numbers with

1
2 < λ < 1 and π

3 < θ < π
2 . The directed graph Gθ

λ(P ) is a strong t-spanner for t = 1
(1−λ) cos θ .

2.4 G
θ
λ is of Bounded Out-Degree

In this section, we prove the following result:

Theorem 2.10 Let P be a finite set of points in the plane, and let λ and θ be real numbers with
1
2 < λ < 1 and 0 < θ < π

2 . The out-degree of any point of P in the graph Gθ
λ(P ) is at most

⌊2π/ min(θ, arccos 1
2λ)⌋.

Proof: Let p be a point of P , and consider two edges (p, r) and (p, s) in the graph Gθ
λ(P ). We may

assume without loss of generality that |pr| ≤ |ps|. Let l be the line perpendicular to pr through

p + 1
2λ(r − p); see Figure 4. Then either ∠spr ≥ θ or s lies on the same side of l as p. In the latter

case, the angle ∠spr is at least arccos 1
2λ . The angle ∠spr is thus at least min(θ, arccos 1

2λ), which

means that p has at most ⌊2π/ min(θ, arccos 1
2λ)⌋ outgoing edges. �

p r

s

arccos
1

2λ
1

2λ
|pr|

|pr|

l

θ

Figure 4: The Gθ
λ graph has bounded out-degree.

Corollary 2.11 If P is a finite set of points in the plane, θ ≥ π/3 and λ > 1
2 cos(2π/7) , then the

out-degree of any point of P in the graph Gθ
λ(P ) is at most six.

In higher dimensions, the maximum out-degree of the graph Gθ
λ depends not only on λ and

θ, but also on the dimension d. The key observation that has to be made is that any two edges

that are outgoing from the same point still form an angle of at least min(θ, arccos 1
2λ). Therefore,

Theorem 2.12 below provides an upper bound on the maximum out-degree of the graph Gθ
λ defined

on points in R
d.
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Theorem 2.12 1 Let d ≥ 2 be an integer constant, let φ be a real number such that 0 < φ < π, and

let S be a set of points in R
d \ {0} such that angle(q, r) > φ for any two distinct points q and r in S.

Then the size of S is O(1/φd−1).

Corollary 2.13 Let P be a finite set of points in R
d, and let λ and θ be real numbers with 1

2 < λ < 1
and 0 < θ < π

2 . The out-degree of any point of P in the graph Gθ
λ(P ) is O(1/φd−1), where φ =

min(θ, arccos 1
2λ).

3 Unit-Disk Graph Spanners

In Section 2, we showed that the graph Gθ
λ(P ), where P is a set of points in R

d, is a strong t-
spanner of the complete graph of these points, for t = 1

(1−λ) cos θ . In this section, we show that

strong t-spanners lead to t-spanners of the unit-disk graph. That is, the length of a shortest path in

the graph resulting from intersecting a strong t-spanner with the unit-disk graph is at most t times

the length of a shortest path between the points in the unit-disk graph. Before proving this claim,

we introduce some notation.

For simplicity of exposition, we will assume that P is a set of points in R
d, such that no two

pairs of points are at equal distance from each other. The complete geometric graph C(P ) is the

graph whose vertex set is P and whose edge set is the set of all unordered pairs of distinct points

in P . Each edge in this graph has a weight equal to the Euclidean distance between its vertices. Let

e1, . . . , e(n

2
) be the edges of C(P ) sorted according to their lengths L1, . . . , L(n

2
). For i = 1, . . . ,

(

n
2

)

,

we denote by Ci(P ) the geometric graph consisting of all edges whose length is no more than Li.

In general, for any graph G whose vertex set is V , we define Gi to be the graph G ∩ Ci(V ). Let

UDG(P ) be the unit-disk graph of P , which is the graph whose vertex set is P and with edges

between pairs of vertices whose distance is not more than one. Note that UDG(P ) = Ci(P ) for

some i.
We now show the relationship between strong t-spanners and unit-disk graphs.

Observation 3.1 If S is a strong t-spanner of C(P ), then for all i = 1, . . . ,
(

n
2

)

and for all j ≤ i, the

graph Si contains a t-spanning path linking the vertices incident to ej .

Proof: Let p and q be the vertices incident to ej . Consider a strong t-spanning path in S between p
and q. Each edge on this path has length at most |pq| = Lj ≤ Li. Therefore, each edge is in Si. �

Proposition 3.2 If S is a strong t-spanner of C(P ), then for all i = 1, . . . ,
(

n
2

)

, the graph Si is a

t-spanner of Ci(P ).

Proof: Let a and b be any two points such that the shortest-path distance dCi(P )(a, b) is finite. We

need to show that there exists a path in Si between a and b whose length is at most t · dCi(P )(a, b).
Let a = p1, p2, . . . , pk = b be a shortest path in Ci(P ) between a and b, so that

dCi(P )(a, b) =
k−1
∑

j=1

|pjpj+1|.

1Theorem 5.3.1 of [11], where 0 is the origin and angle(q, r) is the angle between q and r with the origin as apex.
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By Observation 3.1, for each edge (pj , pj+1) there is a path in Si between pj and pj+1 whose length

is at most t · |pjpj+1|. It follows that

dSi(P )(a, b) ≤
k−1
∑

j=1

t · |pjpj+1| = t

k−1
∑

j=1

|pjpj+1| = t · dCi(P )(a, b).

�

Corollary 3.3 If S is a strong t-spanner of C(P ), then S∩UDG(P ) is a strong t-spanner of UDG(P ).

Proof: The proof follows from Proposition 3.2 and the observation that UDG = Ci for some i. �

Thus, we have shown a sufficient condition for a graph to be a spanner of the unit-disk graph.

We now show that this condition is also necessary.

Proposition 3.4 If S is a subgraph of C(P ) such that for all i = 1, . . . ,
(

n
2

)

, the graph Si is a t-spanner

of Ci(P ), then S is a strong t-spanner of C(P ).

Proof: Let a, b be any pair of points in P . We have to show that in S, there is a path between a and

b such that (i) the length of this path is at most t · |ab| and (ii) every edge on this path has length at

most |ab|.
Let i be the index such that ei = (a, b). We know that Si is a t-spanner of Ci(P ). Since Ci(P )

contains ei, we have dCi(P )(a, b) = |ab|. Hence, there is a path in Si (and therefore in S) whose

length is at most t · dCi(P )(a, b) = t|ab|. Also, since this path is in Si, all of its edges have length at

most Li = |ab|. �

The two last results allow us to determine whether or not given families of geometric graphs

give rise to spanners of the unit-disk graph. Below, we give some examples. We have seen that the

graph Gθ
λ(P ) is a strong t-spanner. Therefore, the intersection of Gθ

λ(P ) with the unit-disk graph

UDG(P ) is a spanner of UDG(P ). In Bose et al. [4], it is shown that both the Yao graph (see [12])

and the Delaunay triangulation are strong t-spanners for some constant t. Therefore, by intersecting

any of these graphs with UDG(P ), we obtain spanners of UDG(P ). Finally, the intersection of the

directed Θ-graph (see [8]) with UDG(P ) is not necessarily a spanner of UDG(P ). This claim

follows from the fact that, in some cone, the edge that is chosen may not be the shortest edge.

Hence, the path from a point p to a point q may contain edges whose lengths are larger than |pq|.
An example is given in Figure 5. In this example, |pq| ≤ 1, whereas |pr| > 1. The directed Θ-graph

contains the directed edge (p, r), which is not an edge in the unit-disk graph. Thus, the intersection

between the directed Θ-graph with UDG may not even be strongly connected.

4 Open Problems

We have introduced a new family of directed geometric graphs. Each graph Gθ
λ in this family has

bounded out-degree and, for 1
2 < λ < 1 and π

3 < θ < π
2 , is a strong t-spanner for t = 1

(1−λ) cos θ . We

leave it as an open problem to determine the smallest t for which Gθ
λ is a t-spanner. We also leave

12



p q

r

θ

Figure 5: The Θ-graph is not a strong t-spanner.

open the problem of designing an efficient algorithm for computing the graph Gθ
λ. In particular,

can this graph be computed in close to linear time?

We have shown that a t-spanning path in Gθ
λ can be computed by a local algorithm. We have

also shown that the intersection of Gθ
λ with the unit-disk graph UDG is a t-spanner of UDG . We

leave it as an open problem to design a local routing algorithm for the intersection of Gθ
λ with

UDG .
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