
Optimal and Information Theoretic
 Syntactic Pattern Recognition. Page 1

A FORMAL THEORY FOR OPTIMAL AND INFORMATION THEORETIC
SYNTACTIC PATTERN RECOGNITION+

 B. J. OOMMEN1 AND R. L. KASHYAP2

ABSTRACT

In this paper we present a foundational basis for optimal and information theoretic syntactic pattern

recognition. We do this by developing a rigorous model, M*, for channels which permit arbitrarily

distributed substitution, deletion and insertion syntactic errors. More explicitly, if A is any finite alphabet

and A* the set of words over A, we specify a stochastically consistent scheme by which a string U ∈ A*

can be transformed into any Y ∈ A* by means of arbitrarily distributed substitution, deletion and insertion

operations. The scheme is shown to be Functionally Complete and stochastically consistent. Apart from

the synthesis aspects, we also deal with the analysis of such a model and derive a technique by which

Pr[Y|U], the probability of receiving Y given that U was transmitted, can be computed in cubic time using

dynamic programming. One of the salient features of this scheme is that it demonstrates how dynamic

programming can be applied to evaluate quantities involving complex combinatorial expressions and which

also maintain rigid probability consistency constraints. Experimental results which involve dictionaries

with strings of lengths between 7 and 14 with an overall average noise of 39.75 % demonstrate the

superiority of our system over existing methods. Apart from its straightforward applications in string

generation and recognition, we believe that the model also has extensive potential applications in speech,

uni-dimensional signal processing, and computational molecular biology.

Keywords : Syntactic Pattern Recognition, Optimal and Information Theoretic Pattern Recognition,
String Generation, Unigram and Bigram Model, Sequence Generation, Markovian
Sequence Generation.

+ We would like to dedicate this paper to the memory of the late Prof. K. S. Fu who pioneered the field of Syntactic Pattern
Recognition. Both authors remember their friend and colleague with respect. His contributions to the fields of Syntactic and
Statistical Pattern Recognition are monumental. A preliminary version of this paper can be found in the Proceedings of SSPR-
96, the 1996 International Symposium on Syntactic and Structural Pattern Recognition, Leipzig, Germany, August 1996.
1Senior Member IEEE. Address : School of Computer Science, Carleton University, Ottawa ; Canada : K1S 5B6. The work of
this author was supported in part by the Natural Sciences and Engineering Research Council of Canada.
2Fellow IEEE. Address : School of Electrical Engineering, Purdue University, W. Lafayette ; Indiana : 47907. The work of this
author was supported in part by the Office of Naval Research and BMD under Contract ONR N00014-91-J-4126.

Optimal and Information Theoretic
 Syntactic Pattern Recognition. Page 2

I. INTRODUCTION

In the field of statistical Pattern Recognition (PR), the patterns are represented using numerical

features. As opposed to this, in syntactic and structural PR the classifiers are designed to be trained and

tested by representing the patterns symbolically using primitive or elementary symbols. The PR system

essentially models the noisy variations of typical samples of the patterns symbolically, and these models are

utilized in both the training and testing phases. In statistical PR, the noisy samples from a given class are

modeled (either parametrically or non-parametrically) using probability distributions, the class conditional

distributions. It is well known [1,2] that if these distributions are known, information theoretic, minimum

probability of error classifiers can be designed.

In this paper we shall attempt to formally lay the foundation for optimal3 syntactic PR systems which

permit arbitrarily distributed noise4. To achieve this we have, in a novel way, "decoupled" the occurrence

of noisy observations into two distinct modules. The first of these formally describes the module which

accounts for the "dictionary" of ungarbled observations and the second describes the channel which

syntactically corrupts error-free signals. This approach differs significantly from the original traditional

way by which the problem was approached by the pioneer Fu5[3] and his co-authors. The latter represented

the set of possible garbled occurrences of possible patterns using stochastic string grammars from the well-

known Chomsky hierarchy, or by web or tree grammars.

The alternate strategy for designing syntactic PR recognition systems works as follows. The system

has a dictionary6 which is a collection of all the ideal representations of the objects in question. When a

noisy sample has to be processed, the system compares this sample with every element in the dictionary.

This comparison is either done sequentially or using a grammatical parsing mechanism. The question of

comparing patterns reduces to one of comparing their string representations, and this is typically achieved

using three standard edit operations - substitution, insertion and deletion. To achieve this, one usually

assigns a distance for the elementary symbol operations, and the inter-pattern distance is computed as a

function of these elementary symbol edit distances. Recognition using distance criteria is obtained by

essentially evaluating the string in the dictionary which is "closest" to the noisy one as per the metric under

consideration.

The elementary distances can be assigned weights in a variety of ways. If R+ is the set of non-

negative real numbers, the elementary edit distances are typically defined using three elementary functions

ds(.,.), di(.) and de(.) :

3By "optimal" we mean that we can obtain decisions which minimize the probability of error or which minimize the total
expected risk. As we will see later, the conditions required for information theoretic syntactic PR are more stringent.
4In this paper we shall only deal with syntactic PR of patterns which are represented "linearly" as strings. The problem of
developing information theoretic classifiers for PR systems using two-dimensional structures such as trees and webs remains
open. Some initial results for the case of ordered tree representations are currently available.
5Prof. Fu (to whose memory we have dedicated this paper) has authored or co-authored dozens of papers and books in this area.
We recommend [3] as an ideal reference for the entire field as it was studied in its infancy.
6A discussion of the various dictionary models encountered in syntactic PR follows presently.

Optimal and Information Theoretic
 Syntactic Pattern Recognition. Page 3

(i) ds(.,.) is a map from A X A→ R+ and is the Substitution Map. ds(a,b) is the distance associated with

substituting b for a, a,b ∈ A. Although not mandatory, ds(a,a) is generally set to zero.

(ii) di(.) is a map from A → R+ and is called the Insertion Map. The quantity di(a) is the distance

associated with inserting the symbol a ∈ A.

(iii) de(.) is a map from A → R+ and is called the Deletion or Erasure Map. The quantity de(a) is the

distance associated with deleting (or erasing) the symbol a ∈A.

If for all a,b ∈ A these distances are assigned unit values as below :

ds(a, b) = 1 if a ≠ b

= 0 if a =b

di(a) = de(a) = 1 for all a,

the inter-string edit distance is called the Levenshtein distance.

More interesting and novel assignment of the distances are the parametric distances recently

introduced by Bunke et al. [4]. In this case, for all a, b ∈ A the distances are assigned values as :

ds(a, b) = r if a ≠ b

= 0 if a =b

di(a) = de(a) = 1 for all a.

The parametric string distance has some amazingly interesting properties derived in [4]. The assignment of

'r' and the application of the inter-string distance in PR has also been alluded to in [4].

If, however, the elementary symbol edit distances are symbol dependent, the distance is called the

Generalized Levenshtein Distance7. The question of how the elementary symbol edit distances can be

assigned is relatively open; indeed, they can be parametrically assigned as in [4] or can be related to the

inter-symbol confusion probabilities via their negative logarithms as recommended in [5,6]. The explicit

form of the individual edit distances often takes the form :

ds(a, b) = -ln [Pr(a→b) / Pr(a→a)]

de(a) = -ln [Pr(a is deleted) / Pr(a→a)]

di(a) = Ki . de(a)

where Ki is an empirically determined constant.

The fundamental problem that arises from all the above three assignment strategies is that the final

classified string obtained using such edit distances has no probabilistic significance except in some rather

simple cases. Furthermore, if D(X, Y) is the edit distance associated with editing X to Y, the latter has no

explicit relationship to Pr(X → Y) except in a few rather trivial cases.

A little insight into the problem would reveal that the fundamental question which traditional

strategies avoid is one of stochastically modeling the structural behaviour of the patterns. Viewed from a

reverse engineering (black-box) perspective this question is one of specifying how the individual patterns

from the various classes could have been generated, an understanding of which could lead to the designing

7The terminology used in the literature varies. Throughout this paper, we shall categorically use these terms.

Optimal and Information Theoretic
 Syntactic Pattern Recognition. Page 4

of optimal classifiers. This is the central problem studied in this paper. Consequently, we shall endeavour

to present a new model for noisy channels which transfer (or rather, carry) symbolic data, garbling it with

arbitrarily distributed substitution, deletion and insertion errors. To our knowledge, this model, M*, is the

first generalized model of its type8. Indeed, we also show that if we compare our model with all other

channel models which have the same common underlying garbling philosophy - (that transmitted symbols

can only be substituted for or deleted, and received symbols are obtained as either a result of transmitted

symbols being substituted for or as inserted symbols), our model attains the information theoretic upper

bound for the recognition accuracy.

Apart from its straightforward applications in string generation and recognition, we believe that like

its predecessors [7,8,9,10 ,11,12,13,14,15,16], the model also has potential applications in speech, uni-

dimensional signal processing, and in molecular biological comparisons.

I.1 Alphabet and Dictionary Representations

All of text processing involves manipulating the symbols of an alphabet and in almost all cases this

alphabet is finite. For example, the most restricted alphabet is the binary set {0,1}, and the alphabet

encountered for English text is the set of 26 characters {a...z}. To distinguish between the words of a

language, customarily, various punctuation marks have been defined, the most common one being the

delimiter "space". Of course, other punctuation marks such as the comma, semicolon, etc. are not only

needed to distinguish the boundaries of the words, but also to impart a semantic implication to the text. In

speech applications, the individual symbols are the set of phonemes [6,7,9] and in the recognition of noisy

macro-molecules, the individual symbols are the underlying aminoacids [6,8,11,13]. In contour recognition,

the primitive symbols are the vectors of the chain code.

Once the alphabet for a text processing problem (or application) has been defined, the next question

that is of importance is one of understanding the nature of the individual words or strings that will be

processed. We shall briefly catalogue each of the options reported in the literature.

In many real-life applications the dictionary used is finite. This is especially true in the case of

natural languages, telephone directories, and even the vocabulary used by hospitalized handicapped

individuals. Indeed, even in the case of written English text, various studies have been made which indicate

that large proportions of the words used in English form a very small subset of the possible English words.

In fact, Dewey [17] has compiled such a collection and claimed that this collection, consisting of 1023

words, comprises a very large proportion of written English text. Thus, in both string processing and string

recognition it is not uncommon to represent the dictionary as a finite set of words, and using this model,

string correction can be achieved using a suitable similarity metric [3,4,5,6,9,18,19,20,21,22,23,24,25,26].

The advantages of using a finite dictionary in text recognition applications are many. First of all, the

accuracy of the recognition is very high. Secondly, a noisy string is never recognized as a word which is

not in the language, avoiding "meaningless" decisions. Finally, the time complexity of the computation

8Our present paper also gives a formal basis for some of the experimental results which we presented in [21].

Optimal and Information Theoretic
 Syntactic Pattern Recognition. Page 5

involved in the recognition is typically quadratic per word and linear in the size of the dictionary. The

quadratic complexity per word can be often decreased if the dictionary is modelled using a trie [5], and/or

if the alphabet size is decreased [27,28].

When the dictionary is prohibitively large, problem analysts tackle the problem by modelling the

dictionary (the output of the channel) differently. Typically, it is represented using a stochastic string

generation mechanism. The most elementary model is the one in which only the unigram (single character)

probabilities of the dictionary are required [29,30,31,32]. This model is also referred to as the Bernoulli

Model. A word in the dictionary is then modelled as a sequence of characters, where each character is

independently drawn from a distribution referred to as the unigram distribution. Typically, these unigram

probabilities are chosen to be the probabilities of the letters occurring in the original language. A

generalization of this is the Markovian Model [7,16,26,29,30,31,32,33,34,35] where the probability of a

particular symbol occurring depends on the previous symbol. Essentially, this model is identical to the one

which models the dictionary using the bigrams of the language. A word in the dictionary is modelled as a

sequence of symbols where two subsequent symbols xixi+1 occur with the probability with which they

occur in the language. Both the Bernoulli Model and the Markovian Model have been used to analyze

various pattern matching and keyboard optimization algorithms and the associated data structures

encountered, such as suffix trees and their generalizations (See the references listed above).

The problem of modelling the output of the channel can be viewed from an entirely different

perspective, which is one of viewing the language to be the output of a sequence generator whose input is a

string or language itself. Thus, if we permit the system to be running without any input (or in an

"unexcited" mode, as a systems theorist would say) all the above scenarios can be appropriately modelled.

Indeed, a finite dictionary is obtained when the unexcited source generator randomly outputs an element

from a predefined set of strings. Similarly, the Bernoulli model is obtained when the unexcited source

generator generates a sequence characterized by a single probability distribution. Finally, the Markovian

Model is obtained when the unexcited source generator generates a sequence characterized by a probability

distribution (the distribution of the first character) and a finite stochastic matrix which constitutes the "next

character" information.

I.2 Stochastic Channel versus Dictionary Representations

As opposed to the stochastic models given above for dictionaries, in this paper we shall consider the

channel as an excited random string generator. This is quite distinct from the philosophy adopted by Fu

and his co-authors [3] who initially pioneered the field. Explicitly, we shall consider the channel as a

generator whose input is a string U and whose output is the random string Y. The model for the channel is

that Y is obtained by mutating the input string with an arbitrary sequence of string deforming operations.

The operations which we shall consider in this paper are the substitution, deletion and insertion operations

of the individual symbols of the alphabet. In the literature, these operations are the most popular, because

the general string editing problem has been studied using these operations

Optimal and Information Theoretic
 Syntactic Pattern Recognition. Page 6

[3,4,5,6,7,8,9,18,19,20,21,22,23,24,25,26,27,35,36,37,38,39,40,41,42,43], and furthermore, these

operations can also be used to study problems involving subsequences and supersequences [6,27,37,38,39].

Also, since most errors found in text-based systems are substitution, deletion and insertion errors (and even

the common transposition error can be modelled easily as a sequence of a deletion and insertion error)

systems which correct these errors have been designed to recognize noisy strings and substrings (see above

references) and even noisy subsequences [24,25,41,44]. Viewed from the perspective of edit operations,

our model is a "distant" relative of the Viterbi algorithms [12,16,31,35].

I.3 Channels as Hidden Markov Models

Recently, there has been a lot of research involving the use of Hidden Markov Models (HMM) to

solve a variety of modelling and data analysis problems in text, character and texture classification

[8,9,10,11,13,14,15]. Since the problems encountered in using HMMs is analogous (in spirit) to those

which we encounter here, we shall use this brief sub-section to explain to the reader how HMMs operate

and how they differ from the model introduced in this paper. To achieve this, we shall consistently use

notation similar to that of [9].

A Hidden Markov Model is a 5-tuple H = (Φ, Ω, A, B, π) where

Φ = {φ1, ... , φS} is a finite set of states;

Ω = {ω1, ... , ωM} is a finite set of observation symbols;

A = (aij) is a matrix of state transition probabilities, i.e.

aij = Prob[φ(t+1)=φ j | φ(t)=φi] ; i, j =1, ... , N;

B = (bjk) is a matrix of observation symbol probabilities for each state φj and symbol ωk, i.e.,

bjk = Prob[ω(t) =ωk | φ(t)=φj];

π = (πi) is a vector of initial state probabilities, i.e.

πi = Prob[φ(1)=φi].

A HMM can be interpreted as a formal device that generates a sequence Y = y1 ... yM ∈ Ω+ of observation

symbols according to the following algorithm :

Begin

Choose an initial state φi1 according to π;

t = 1

Repeat

 Choose yt = ωk based on B (i.e., according to {bit,k})

 Choose the next state, φ(t+1) based on φ(t) and A

t = t+1

 Until t > M

End

The operation of the HMM is thus quite straightforward. The HMM goes through a sequence of

states φi1 φi2 ... φiM and produces one observation symbol in each state, where the individual state

Optimal and Information Theoretic
 Syntactic Pattern Recognition. Page 7

transitions are governed by the matrix A, and the corresponding output generations are governed by the

matrix B. Typically, it is assumed that the “real outside world” can only observe the sequence of symbols

Y = y1 ... yM, and that the states themselves are concealed or hidden - whence the model derives its name.

Observe that the choice of the initial state, the transitions from one state to the next, and the selection of the

observation symbol are dictated by probability vectors and matrices, and thus the entire set-up describes a

random process. Given a HMM H, an observation sequence Y = y1 ... yM ∈ V+ is generated with a certain

probability Prob[Y|H]. Typically, in the application of HMMs to pattern recognition problems, the

sequence of observed symbols is identical to the input pattern to be recognized; consequently, if there are

K different pattern classes and class ‘i’ is represented by the HMM H i, the system is typically interested in

finding that HMM H * that maximizes the probability of the observation sequence, i.e.

Prob[Y| H *] = Max {Prob [Y| H i] i = 1, ... , K}.

HMMs are very powerful “devices”. They have been used in a variety of applications [8.9,10,11,13,

14,15] and in a problem closely related to the one we study here - in sequence alignment. In spite of all its

advantages, there is one primary drawback encountered when one uses HMMs in stochastic text

comparison. This involves the set of possible distributions which can be used to describe the insertion

operation, as explained below.

Consider an arbitrary HMM which permits the insertion of symbols. The state transition in such a

case is given by the processing of a “null symbol”, or is represented by what is called in the theory of

formal languages, by a ξ-transition9. We now consider two mutually exclusive and exhaustive cases. If

every ξ-transition goes from one state to another and the chain is cycle-free, this HMM will not be able to

account for an arbitrary number of insertions. The second scenario is when the ξ-transition describes a

self-loop. In this case, if β is the probability of the chain staying in that loop, it is clear that the number of

insertions is geometrically distributed with the probability of making I insertions at that juncture being

proportional to (1- β) βI. A similar argument can be given if the HMM has a cycle of length k, in which

case the chain would insert a substring of length k every time it traverses this cycle. Again the probability

of inserting a substring of length k would be geometrically distributed, where the parameter of the

distribution would be the product of the transition probabilities of the individual edges of the path

describing the cycle. Thus, there is no way by which one could describe errors with arbitrary distributions,

for example, those which are Poissonly distributed, which, we believe, is a very relevant distribution for

the number of errors, because it is well known that errors (accidents, component failures) etc. can be well

described by such a distribution.

In our present work the distribution for the number of insertions can be completely arbitrary. Apart

from this, in our present work we do not merely characterize the number of insertions, but also randomly

distribute the positions of the occurrence of these insertions, and thus, we are not merely constrained to

work with traditional “Present-State/Next-State” Transition functions.

9 In formal language theory, this is actually called a λ-transition. However, since we distinguish between the input null symbol,
ξ and the output null symbol, λ, we have opted to call it called a ξ-transition.

Optimal and Information Theoretic
 Syntactic Pattern Recognition. Page 8

This is also the fundamental difference between our present work and the recent excellent work of

Bucher and Hoffmann [8]. The latter results are very powerful and their significance in the comparison of

protein sequences in molecular biology has been well demonstrated on globins and G-protein-coupled

receptors. Furthermore, as will be evident presently, their algorithm for the computation of the probability

of alignment for a pair of sequences is faster than the one we present. However, as opposed to our present

results, the results of [8] ignore the fact that the distribution for the number of insertions can be arbitrary,

and the fact that the possible positions for the insertions can also be randomly distributed.

From the perspective of channel modelling, the model presented in this paper is a generalization of

the classic paper of Bahl et. al. [7]. In addition to the properties of the channel described in [7], ours is

functionally complete even though the number of insertions does not necessarily obey a mixture-of-

geometric distributions.

I.4 Salient Contributions of the Paper

Throughout this paper, for the sake of simplicity, we shall use the terms "model" and "generator"

interchangeably. Using the notation that U is the input to the channel (string generator) and that Y is its

random output, we list below the novel, salient features of our model, M* :

(i) M* is Functionally Complete because it involves all the ways by which U can be mutated into Y

using the three elementary edit operations. We shall show that the number of ways by which U can

be transformed into Y is a combinatorially "explosive" large number. Furthermore, it is a

stochastically consistent scheme, and thus,

 ∑
Y∈A*

 Pr [Y|U] = 1.

(ii) The distributions involved for the various garbling operations in M* can be completely arbitrary.

These constitute the parameters of the generator (model) which are not merely "real numbers", but

arbitrary distributions.

(iii) The model M* even captures the scenarios in which the probability of a particular word U being

transformed into the same word Y repeatedly is arbitrarily small.

(iv) For a given U, the length of Y is a random variable whose distribution does not have to be a mixture

of geometric distributions.

(v) If the input U is itself an element of a dictionary, and the string generator is used to model the noisy

channel, the technique for computing the probability Pr [Y|U] can be utilized in a Bayesian way to

compute the a posteriori probabilities, and thus yield an optimal, minimum probability of error

pattern classification rule. In a non-Bayesian approach this would be a maximum likelihood pattern

classification rule. Also, in both these cases our model actually attains the information theoretic

bound for recognition accuracy when compared with all the other models which have the same

underlying garbling philosophy.

Before we proceed, we shall first formally introduce the notation used.

Optimal and Information Theoretic
 Syntactic Pattern Recognition. Page 9

II. NOTATION

Let A be a finite alphabet, and A* be the set of strings over A. λ ∉ A is the null symbol. A string X
∈ A* of the form X=x1x2...xN is said to be of length |X| = N. Its prefix of length i will be written as Xi,

where i < N. Upper case symbols represent strings, and lower case symbols, elements of the alphabet under

consideration. The symbol ∪∪ represents the set union operator.

II.1 The Input and Output Null Symbols : ξξ and λλ

Let Y' be any string in (A ∪∪ {λ})*, the set of strings over (A ∪∪ {λ}). Y' is called an output edit

sequence. The operation of transforming a symbol a ∈ A to λ will be used to represent the deletion of the

symbol a. To differentiate between the deletion and insertion operations, the symbol ξ is introduced. Let X'

be any string in (A ∪∪ {ξ})*, the set of strings over (A ∪∪ {ξ}). X' is called an input edit sequence . ξ is

distinct from λ, but is used analogously to denote a symbol insertion. Thus, the operation of transforming a

symbol ξ to b ∈A will be used to represent the insertion of the symbol b.

II.2 The Input and Output Compression Operators : CI and CO
The Output Compression Operator, CO is a mathematical function which maps from (A ∪∪ {λ})* to

A*. CO(Y') is Y' with all the occurrences of the symbol λ removed. Note that CO preserves the order of the

non-λ symbols in Y'. Thus, for example, if Y'=fλoλr, CO(Y')=for.

Analogously, the Input Compression Operator, CI is a function which maps from (A ∪∪ {ξ})* to A*.

CI(X') is X' with all the occurrences of the symbol ξ removed. Again, note that CI preserves the order of

the non-ξ symbols in X'.

II.3 The Set of all Possible Edit Operations : ΓΓ(U,Y)

 For every pair (U,Y), U,Y∈ A*, the finite set Γ(U,Y) is defined by means of the compression
operators CI and CO , as a subset of (A ∪∪ {ξ})* x (A ∪∪ {λ})* as :

Γ(U,Y) = {(U', Y') | (U', Y') ∈ (A ∪∪ {ξ})* x (A ∪∪ {λ})*, and each (U',Y') obeys (i) - (iii)} (1)

(i) CI(U') = U ; CO(Y') = Y

(ii) |U'| = |Y'|
(iii) For all 1 ≤ i ≤ |U'|, it is not the case that u'i = ξ and y'i = λ.

By definition, if (U', Y') ∈ Γ(U,Y), then, Max[|U|, |Y|] ≤ |U'| = |Y'| ≤ |U| + |Y|.

The meaning of the pair (U', Y') ∈ Γ(U,Y) is that it corresponds to one way of editing U into Y,

using the edit operations of substitution, deletion and insertion. The edit operations themselves are specified
for 1 ≤ i ≤ |Y'|, as (u'i,y'i), which represents the transformation of u'i, to y'i as follows :

(i) If u'i ∈ A and y'i ∈ A, it represents the substitution of y'i for u'i.

(ii) If u'i ∈ A and y'i = λ, it represents the deletion of u'i. Between these two cases all the symbols in U

are accounted for.

Optimal and Information Theoretic
 Syntactic Pattern Recognition. Page 10

(iii)If u'i = ξ and y'i ∈ A, it represents the insertion of y'i. Between cases (i) and (iii) all the symbols in Y

are accounted for.

Γ(U,Y) is an exhaustive enumeration of the set of all the ways by which U can be edited to Y using

the edit operations of substitution, insertion and deletion without destroying the order of the occurrence of

the symbols in U and Y. Note that we do not permit the channel to delete a symbol it has once inserted or

substituted.

Lemma O.
The number of elements in the set Γ(U,Y) is given by :

|Γ(U,Y)| = ∑
k=Max(0,|Y|-|U|)

|Y|

(|U|+k)!

(k! (|Y|-k)! (|U|-|Y|+k) !)
 (2)

Proof : First of all note that |Γ(U,Y)| depends only on |U| and |Y|, and not on the actual strings U and Y

themselves. Further, observe that the transformation of a symbol a ∈ A to itself is also considered as an

operation in the arbitrary pair (U', Y') ∈ Γ(U,Y). With this in mind, it is easy to see that if k insertions are

permitted, the number of possible strings U' is #(Possible U'), where,

#(Possible U') = (
|U|+k

k). (3)

For each element U' which represents k insertions, any corresponding element Y' must contain exactly (|U|-

|Y|+k) deletions, and these must be chosen from among the symbols of U. This can be done in #(Possible

Y') ways, where,

#(Possible Y') = (|U|
|U|-|Y|+k).

The product of these two quantities yields the result for every value of k. The lemma follows by summing

the above product for all permissible values of k. ♦♦♦

Remarks

1. Note that the size of Γ(U,Y) increases combinatorially with the lengths of U and Y. Thus, it is

interesting to note that whereas Γ(3,3) has 63 elements, Γ(4,4), Γ(5,5) and Γ(6,6) have 321, 1683 and

8989 elements respectively.

2. The reader must observe that we have chosen to use Γ(U,Y) to represent the set of all ways by

which U can be transformed to Y, and this set represents many duplicate entries in terms of the edit

operations themselves. Thus, consider the case when U = "f" and Y = "go". Then,

Γ(U,Y) = {(fξ, go), (ξf, go), (fξξ, λgo), (ξfξ, gλo), (ξξf, goλ)}.

In particular, the pair (ξf, go) represents the edit operations of inserting the 'g' and replacing the 'f' by an 'o'.

Notice that all the last three pairs represent the deletion of 'f' and the insertion of both 'g' and 'o'. The

difference between the three is the sequence in which these operations are accomplished.

Optimal and Information Theoretic
 Syntactic Pattern Recognition. Page 11

III. MODELLING/SYNTHESIS -- THE STRING GENERATION PROCESS

We now describe the model, M*, by which a string Y is generated given an input string U ∈ A*.

First of all we assume that M* utilizes a probability distribution G over the set of positive integers.

The random variable in this case is referred to as Z and is the number of insertions that are performed in

the mutating process. G is called the Quantified Insertion Distribution, and in the most general case, can

be conditioned on the input string U. The quantity G(z|U) is the probability that the number of insertions is

z given that U is the input word. G has to satisfy the following constraint :

 ∑
z ≥ 0

 G(z|U) = 1. (4)

Examples of the distribution G are the Poisson and the Geometric Distributions whose parameters

depend on the word or the length of the input word. Although, the distributions can be arbitrarily general,

for the sake of simplicity, we shall assume that Z is independent of U.

The second distribution that M* utilizes is the probability distribution Q over the alphabet under

consideration. Q is called the Qualified Insertion Distribution. The quantity Q(a) is the probability that the

symbol a ∈ A will be the inserted symbol conditioned on the fact that an insertion operation is to be

performed. Note that Q has to satisfy the following constraint :

 ∑
a∈A

 Q(a) = 1. (5)

Apart from G and Q, the final distribution which the model, M*, utilizes is a probability distribution S

over A x (A∪{λ}). S is called the Substitution and Deletion Distribution. The quantity S(b|a) is the

conditional probability that the given symbol a ∈ A in the input string is mutated by a stochastic

substitution or deletion -- in which case it will be transformed into a symbol b ∈ (A ∪∪ {λ}). Hence, S(c|a)

is the conditional probability of a ∈ A being substituted for by c ∈ A, and analogously, S(λ|a) is the

conditional probability of a ∈ A being deleted. Observe that S has to satisfy the following constraint for all

a ∈ A :

 ∑
b∈(A∪{λ})

 S(b|a) = 1. (6)

Using the above distributions we now informally describe the string generation process. Let |U| = N.

Using the distribution G, the generator randomly10 determines Z, the number of symbols to be inserted.

Based on the random choice assume that Z takes the value z. The algorithm then determines the position of

10We assume that the system is capable of generating non-uniform random variables having the respective distributions G, Q
and S. An excellent treatise on the subject is the one due to Devroye [45].

Optimal and Information Theoretic
 Syntactic Pattern Recognition. Page 12

the insertions among the individual symbols of U. This is done by randomly generating an input edit

sequence U'∈ (A ∪ ∪ {ξ})* where each of the (N+k
k) possible strings are assumed equally likely.

Note that CI(U') is U and that the positions of the symbol ξ in U' represents the positions where

symbols will be inserted into U. These occurrences of ξ are transformed independently into the individual

symbols of the alphabet using the distribution Q. Finally, the non-inserted symbols in U' are now

substituted for or deleted using the distribution S.

This defines the model, M*, completely.

The process followed by the model is formally given as Algorithm M*_GenerateString below.

Algorithm M*_GenerateString
Input : The word U and the distributions G, Q and S.
Output : A random string Y which garbles U with substitution, insertion and deletion mutations.
Method:
1. Using G randomly determine z, the number of symbols to be inserted in U.
2. Randomly generate an input edit sequence U'∈ (A ∪ ∪ {ξ})* by randomly determining the positions

of the insertions among the individual symbols of U.
3. Randomly independently transform the occurrences of ξ into symbols of A using Q.
4. Randomly independently substitute or delete the non-inserted symbols in U' using S.
END Algorithm M*_GenerateString

A graphical display of the channel model, M*, is shown in Figure I. An example will help clarify the

string generating process.

Example I.

Let U = "uli". Let the number of insertions, dictated by the distribution G, be 2. The positions of the

two insertions is now randomly chosen out of the 10 possible positions. Let us suppose the resultant string

is U'= "uξlξi". The ξ's in U' are now transformed into the symbols of the alphabet A using the distribution

Q. Let us suppose the first ξ gets changed into a 'g' and the second ξ gets transformed into a 'k'. The new

string that is to be operated on is thus U' = "uglki". The non-inserted symbols of U' (the 'u', 'l' and 'i') are

now randomly substituted for or deleted using the distribution S. Let us suppose that 'u' gets transformed to

'u', 'l' gets transformed to 'd' and 'i' is deleted. The new string that is obtained is thus Y'= "ugdkλ". The

resultant string Y, which is the final garbled version of U is obtained by removing the occurrences of λ

from Y', and is thus Y = "ugdk". ♦♦♦

Let |U| = N and |Y| = M. Then, using the above notation, we can prove the following results.

Optimal and Information Theoretic
 Syntactic Pattern Recognition. Page 13

Theorem I

If the edit operations occur independently Pr[Y|U], the probability of receiving Y from M* given that

U is transmitted has the form :

Pr[Y|U] = ∑
z=Max(0,M-N)

M

G(z). (N! z!)

((N+z)!)
 ∑

U'

 ∑
Y'

 ∏
i=1

N+z

 p(y'i|u'i) (7)

where, CI(U')=U, CO(Y')=Y, and,

(a) y'i and u'i are the individual symbols of Y' and U' respectively,

(b) p(y'i|u'i) is interpreted as Q(y'i) if u'i is ξ, and,

(c) p(y'i|u'i) is interpreted as S(y'i|u'i) if u'i is not ξ. (8)

Furthermore, the probability framework is both functionally complete and consistent.

Proof : The proof of the theorem is quite involved and is included in Appendix A. ♦♦♦

The reader should observe that the correctness and consistency proof given in the Appendix is not

merely a consequence of normalization. If G permits an arbitrarily large number of insertions, the resulting

summation involves an infinite number of terms (involving probability coefficients and combinatorial

terms), and indeed, it is well known that not every infinite sequence has a finite sum.

We shall now describe how the probability Pr[Y|U] can be computed without explicitly individually

evaluating the contribution of all the elements of Γ(U,Y).

IV. ANALYSIS : COMPUTING P[Y|U] EFFICIENTLY

Now that the "synthesis" aspect of M* has been considered we shall show how the relatively

cumbersome expression given by (7) (i.e., by Theorem I) can be computed efficiently.

Consider the problem of M* transforming U to Y, where |U|=N and |Y|=M. Suppose we edit a prefix

of U into a prefix of Y, using exactly i insertions, e deletions and s substitutions. Since the number of edit
operations are specified, this corresponds to editing Ue+s = u1. . .ue+s, the prefix of U of length e+s, into

Yi+s=y1. . .yi+s, the prefix of Y of length i+s. Let Pr[Yi+s|Ue+s ; Z=i] be the probability of obtaining Yi+s

given that Ue+s was the original string, and that exactly i insertions took place in garbling. Then, by

definition,
Pr[Yi+s|Ue+s ; Z=i] = 1 if i=e=s=0 (9)

To obtain an explicit expression for the above quantity for values of i, e and s which are nonzero, we
have to consider all the possible ways by which Yi+s could have been obtained from Ue+s using exactly i

insertions. Let r=e+s and q=i+s. Let Γi,e,s(U,Y) be the subset of the pairs in Γ(Ur,Yq) in which every pair

corresponds to i insertions, e deletions and s substitutions. Since we shall consistently be using the strings
U and Y, Γi,e,s(U,Y) will be referred to as Γi,e,s. Using (7) and (8),

Optimal and Information Theoretic
 Syntactic Pattern Recognition. Page 14

Pr[Yi+s|Ue+s ; Z=i] =
(s+e)! i!

 (s+e+i)!
 ∑

(U'r,Y'q)

 ∏
j=1

|U'r|

 p(y'qj|u'rj) , if i, e or s > 0 (10)

where, (U'r,Y'q) is the arbitrary element of the set Γi,e,s, with u'rj and y'qj as the jth symbols of U'r and Y'q

respectively.

Let W(. , . , .) be the array whose general element W(i,e,s) is the sum of the product of the
probabilities associated with the general element of Γi,e,s defined as below.

W(i,e,s) = 0, if i,e or s <0,

=
(s+e+i)!

 i! (s+e)!
 Pr[Yi+s |Ue+s ; Z=i]otherwise. (11)

Using the expression for Pr[Yi+s|Ue+s ; Z=i] we obtain the explicit form of W(i,e,s) for all nonnegative

values of i, e and s as in (12).

W(i,e,s) = 1, if i =e =s =0,

= ∑
(U'r,Y'q)

 ∏
j=1

|U'r|

 p(y'qj|u'rj) , if i, e or s > 0. (12)

To obtain bounds on the magnitudes of the variables i, e and s, we observe that they are constrained

by the lengths of the strings X and Y. Thus, if r=e+s, q=i+s and R=Min [M, N], these variables will have

to obey the following obvious constraints :

Max[0,M-N] ≤ i ≤ q ≤ M,

0 ≤ e ≤ r ≤ N,

0 ≤ s ≤ Min[M,N].

Values of triples (i,e,s) which satisfy these constraints are termed as the feasible values of the

variables. Let,
Hi = { j | Max[0,M-N] ≤ j ≤ M},

He= {j | 0 ≤ j ≤ N}, and

Hs = {j | 0 ≤ j ≤ Min [M, N]}. (13)

Hi, He and Hs are called the set of permissible values of i, e and s. Observe that a triple (i,e,s) is

feasible if apart from i ∈ Hi, e ∈ He, and s ∈ Hs, the following is satisfied:

i + s ≤ M, and e + s ≤ N. (14)

The following result specifies the permitted forms of the feasible triples encountered on transforming
Ur, the prefix of U of length r, to Yq, the prefix of Y of length q.

Optimal and Information Theoretic
 Syntactic Pattern Recognition. Page 15

Theorem II
To edit Ur, the prefix of U of length r, to Yq, the prefix of Y of length q, the set of feasible triples is

given by { (i, r-q+i, q-i) | Max [0, q-r] ≤ i ≤ q }.

Proof : Consider the constraints imposed on feasible values of i, e and s. Since we are interested in the
editing of Ur to Yq we have to consider only those triples (i, e, s) in which i+s=r and e+s=q. But the

number of insertions can take any value from Max[0,q-r] to q. For every value of i in this range, the

feasible triple (i,e,s) must have exactly q-i substitutions.

Similarly, since the sum of the number of substitutions and the number of deletions is r, the triple

(i,e,s) must have exactly r-q+i deletions. Hence the result. ♦♦♦

The following theorem states the recursively computable property for the array W(.,.,.).

Theorem III

Let W(i,e,s) be the quantity defined as in (12) for any two strings U and Y. Then, for all nonnegative

i,e and s,
 W(i,e,s) = W(i-1,e,s).p(yi+s|ξ) + W(i,e-1,s).p(λ|ue+s) + W(i,e,s-1).p(yi+s|ue+s) (15)

 where p(b|a) is interpreted as in (8).

Proof : The proof of the theorem is quite detailed. It is given in Appendix B. ♦♦♦

The computation of the probability Pr[Y|U] from the array W(i,e,s) merely involves weighting the

appropriate terms by factors that are dependent only on the number of insertions.

Theorem IV

If h(i)= G(i) .
 N! i!
(N+i)!

 , the quantity Pr[Y|U] can be evaluated from the array W(i,e,s) as :

Pr[Y|U] = ∑
i=Max(0,M-N)

M

 h(i).W(i, N-M+i, M-i). (16)

Proof : Consider the constraints imposed by (13,14) on i, e and s. Since we are interested in the editing of

the entire string U to the entire string Y, we have to consider only those elements of W(i,e,s) in which

i+s=M and e+s=N. But the number of insertions can take any value from Max[O,M-N] to M. For every

value of i in this range, the term in W(i,e,s) that will give a contribution to Pr[Y|U] must have exactly M-i

substitutions. Since the sum of the number of substitutions and the number of deletions is N, the term in

W(i,e,s) that will give a contribution to Pr[Y|U] must have exactly N-M+i deletions. Hence we are only

interested in the terms of the form W(i, N-M+i, M-i) with i varying from Max[0, M-N] to M. The result

follows by noting that h(i) depends only on i. ♦♦♦

Optimal and Information Theoretic
 Syntactic Pattern Recognition. Page 16

To evaluate Pr[Y|U] we make use of the fact that although this quantity does not seem to have any

inherent recursive properties, the index W(.,.,.), which is closely related to it has the interesting properties

proved in Theorem III. The Algorithm EvaluateProbabilities which we now present, evaluates the array

W(.,.,.) for all permissible values of the variables i, e and s subject to the constraints given in (13,14).

Using the array W(i,e,s) it then evaluates Pr[Y|U] by adding up the weighted contributions of the pertinent

elements in W(.,.,.) as specified by Theorem IV.

The evaluation of the array W(.,.,.) has to be done in a systematic manner, so that any quantity

W(i,e,s) must be evaluated before its value is required in any further evaluation. This is easily done by

considering a three-dimensional coordinate system whose axes are i, e and s respectively. Initially, the

contribution associated with the origin, W(0,0,0) is assigned the value unity, and the contributions

associated with the vertices on the axes are evaluated. Thus, W(i,0,0), W(0,e,0) and W(0,0,s) are evaluated

for all permissible values of i, e and s. Subsequently, the i-e, e-s and i-s planes are traversed, and the

contributions associated with the vertices on these planes are calculated using the previous values. Finally,

the contributions corresponding to strictly positive values of the variables are evaluated. To avoid

unnecessary evaluations, at each stage, the variables must be tested for permissibility using the constraints

of (13,14). Finally, the quantity Pr[Y|U] is evaluated by adding the weighted contributions of W(.,.,.)

associated with the points that lie on the three-dimensional line given by the parametric equation :

i = i ; e=N-M+i ; s=M-i

The process (which, obviously, requires cubic time and space respectively) is formally given below.

Optimal and Information Theoretic
 Syntactic Pattern Recognition. Page 17

Algorithm EvaluateProbabilities
Input: The strings U=u1u2. . . uN, Y=y1y2. . .yM, and the distributions G, Q and S.

Let R=Min [M, N].
Output: The array W(i,e,s) for all permissible values of i, e and s and the probability Pr[Y|U]

as defined by (7).
Method :

W(0,0,0)=1
Pr[Y|U] = 0
For i=1 to M Do

W(i,0,0) = W(i-1,0,0). Q(yi)

For e=1 to N Do
W(0,e,0) = W(0,e-1,0).S(λ|ue)

For s=1 to R Do
W(0,0,s) = W(0,0,s-1).S(ys|us)

For i=1 to M Do
For e=1 to N Do

W(i,e,0) = W(i-1,e,0).Q(yi) + W(i,e-1,0).S(λ|ue)

For i=1 to M Do
For s=1 to M-i Do

W(i,0,s) = W(i-1,0,s).Q(yi+s) + W(i,0,s-1).S(yi+s|us)

For e=1 to N Do
For s=1 to N-e Do

W(0,e,s) = W(0,e-1,s).S(λ|us+e) + W(0,e,s-1).S(ys|us+e)

For i=1 to M Do
For e=1 to N Do

For s=1 to Min[(M-i) , (N-e)] Do
W(i,e,s)=W(i-1,e,s).Q(yi+s)+W(i,e-1,s).S(λ|ue+s)+W(i,e,s-1).S(yi+s|ue+s)

For i=Max[0 , M-N] to M Do

 Pr[Y|U] = Pr[Y|U] + G(i) .
 N! i!

 (N+i)!
 . W(i,N-M+i,M-i)

END Algorithm EvaluateProbabilities

In the above algorithm, to compute Pr[Y|U], we have made use of the fact that though Pr[Y|U] itself

does not seem to have any recursive properties, the index W(.,.,.), which is closely related to it possesses

the properties stated in Theorem III. However, we shall now present a more efficient11 process to compute

the probability Pr[Y|U]. To do this, we shall take advantage of the following fact. For a particular value of

i, in order to compute W(i,e,s) for all permissible values of e and s, it is sufficient to store only the values

of W(i-1, e, s) for all the corresponding permissible values of e and s. This is true from Theorem IV, since

the computation of any one quantity requires at most three previously computed quantities, namely W(i-1,

e,s), W(i, e-1,s) and W(i, e, s-1). We utilize this fact as follows.

11The next algorithm is more efficient in space. With respect to time the computational complexity of both are the same.
However, for small values of M and N, the earlier algorithm is more efficient, because of the decreased overhead and book-
keeping.

Optimal and Information Theoretic
 Syntactic Pattern Recognition. Page 18

To optimize space we shall successively evaluate the array W in planes parallel to the plane i=0.

Four arrays are maintained, namely, (a) Wie: the plane in which s = 0, (b) Wis: the plane in which e=0,

(c) Wes0 : the plane parallel to i=0, maintained for the previous value of i, and, (d) Wes1 : the plane

parallel to i=1 maintained for the current value of i. The algorithm, given below, merely evaluates these

arrays in a systematic manner. Initially, the quantities associated with the individual axes are evaluated.

The i-e and i-s planes are then computed and stored in the arrays Wie and Wis respectively. The trellis is

then traced plane by plane - always retaining only the current plane parallel to the plane i=0. Thus, prior to

updating Wes0, its pertinent component required in the computation of Pr[Y|U] is used to update it.

The pseudo-code for the optimized algorithm follows.

Algorithm EfficientlyEvaluateProbabilities
Input & Output : Same as in Algorithm EvaluateProbabilities
Method :

Wis (0,0) = Wie (0,0) = Wes0(0,0) = 1
For s = 1 to Min[M,N] Do /* initialize s-axis */

Wis(0,s) = Wes0(0,s) = Wis (0,s-1) .S (ys| us)

For e = 1 to N Do /* initialize e-axis */
Wie (0,e) = Wes0(e,0) = Wie (0,e-1). S(λ|ue)

For i = 1 to M Do /* initialize i-axis */
Wis(i,0) = Wie (i,0) = Wis (i-1,0).Q(yi)

For i = 1 to M Do /* Compute Wie-plane */
For e = 1 to N-M+i Do

Wie (i,e) = Wie(i-1, e).Q (yi+s) + Wie(i,e-1).S(λ| ue)

For e = 1 to N Do /* Compute Wes-plane parallel to i=0 */
For s = 1 to Min[M,N-e] Do

Wes0(e,s) =Wes0 (e-1, s).S(λ| ue+s) + Wes0(e,s-1).S(ys| ue+s)]

Pr [Y | U] = G(0). Wes0(N-M, M) /* Initialize Pr [Y | U] */
For i = 1 to M Do /* Trace planes parallel to i=0 */
Begin

For e = 1 to N-M + i Do /* Update line parallel to s-axis from Wis */
Wes1 (0,s) = Wis (i,s) /* plane */

For s = 1 to Min [N, M-i] Do /* Update line parallel to e-axis from Wie */
Wes1(e,0) = Wie (i,e) /* plane */

For e = 1 to N-M + i Do /* Compute Wes1 using Theorem V */
For s = 1 to Min [N-e,M-i] Do

Wes1(e,s) = Wes1(e,s-1).S(yi+s|ue+s)

+ Wes1(e-1,s).S(λ|ue+s) + Wes0(e,s).Q(yi+s)

 Pr[Y|U] = Pr[Y|U] + G(i) .
 N! i!

 (N+i)!
 . Wes1(N-M+i, M-i)

For e = 1 to N Do /* Update Wes0 from Wes1 */
For s = 1 to N-e Do

Wes0(e,s) = Wes1 (e,s)
End

END Algorithm EfficientlyEvaluateProbabilities

Optimal and Information Theoretic
 Syntactic Pattern Recognition. Page 19

Remarks :

(i) In the above algorithm the updating was performed using arrays. For large values of M and N it is

more efficient to use pointers, in which case the updating of Wes0 from Wes1 is trivial. By using

techniques analogous to those used in the computation of the Normalized Edit Distance [41] it is easy

to do some fine tuning to achieve the computation with a single quadratic array. We omit these details

here in the interest of brevity.

(ii) A note about the modus operandus of the proof of computing Pr[Y|U] is not out of place. The

techniques used here are not merely straightforward dynamic programming principles

[5,6,18,24,25,26,27,37,38,41,42,43,44] applicable to the scenario when the computational operators

are the arithmetic addition and multiplication respectively. First of all, observe that the quantities

computed are probabilities, and hence, at every point, the rigid constraints imposed by the laws of

probability must be satisfied. Consequently, there is a very fine point in which our proof differs from

the proofs currently described in the literature. The fundamental difference is that we have tried to

compute a quantity which has, by itself, no known recursively computable properties. But, by proving

the recursive properties of the related index, W(i,e,s), the quantity Pr[Y|U] can be evaluated. This

makes the proof more interesting and challenging, and is reminiscent of a control system in which

various outputs are computed in terms of the same state variables by just using different "Output

Functions". Thus, one of the salient features of our scheme is that it demonstrates how dynamic

programming can been applied to evaluate quantities involving complex combinatorial expressions and

which simultaneously maintain rigid probability consistency constraints.

IV.1 An Information Theoretic Bound

Using the model M* proposed in the previous sections, it is easy to see how optimal syntactic pattern

recognition can be obtained. Indeed, if the distributions G, Q and S are known12 PR can be achieved by

evaluating the string U* which maximizes the probability Pr[Y|U] over all U in the dictionary. Viewed

from a Bayesian perspective this would be equivalent to computing the a posteriori probabilities if all the

strings are equally likely a priori, and thus yield optimal, minimum probability of error pattern

classification. In a non-Bayesian approach this represents maximum likelihood PR.

We shall now conclude this section by proving that the PR obtained by utilizing M* is not only

optimal; it also attains the information theoretic upper bound. To show this, we shall resort to arguments

analogous to those used in developing bounds for sorting and other computer science operations13. Observe

12The inference (estimation) problem of these distributions from the set of transmitted words and their corresponding noisy
versions remains open.
13In all brevity, we illustrate here how the bound for the complexity of sorting is proven using information theoretic arguments.
To sort K elements with only pair-wise comparison computations, one, first of all, recognizes that the total information that has
to be analyzed is contained in the set of all possible permutations - which is of cardinality K!. Since a sequence of h pair-wise
comparisons can be perceived as a binary tree of height h (with 2h leaves), one argues that Log2K! comparisons is required to

distinguish between the K! permutations. The complexity follows since Log2K! is O(K.Log2K) whenever K > 4.

Optimal and Information Theoretic
 Syntactic Pattern Recognition. Page 20

that this presupposes that we compare M* with all other channel models which have the same common

underlying garbling philosophy.

Theorem V

If transmitted symbols can only be substituted for or deleted, and received symbols are obtained as

either a result of transmitted symbols being substituted for or as inserted symbols, then, for specific

distributions G, Q and S, the garbling model M* attains the information theoretic bound for recognition

accuracies.

Proof : First of all, as stated in the theorem, we assume that all the models among which the comparison is

made, possess the same stochastic garbling distributions, namely, G, Q and S. Let the transmitted string be

U (with |U|=N) and as dictated by G, Q and S, let us assume that i insertions, e deletions and s

substitutions occur in the transmission. Since transmitted symbols can only be substituted for or deleted,

clearly e+s = N.

Now, let Mk be the channel model in which k deletion operations are accomplished before the

insertion operations are effected. Also, let JU,k be the set of possible input edit sequences when the

transmitted string is U and when it is garbled by the channel Mk.

We shall first prove that for all q < r < N, JU,q ⊃ JU,r.

Consider the model Mq. In Mq, since q deletion operations are accomplished before the insertion

operations are effected, the remaining e-q deletions are effected subsequent to the insertions having had

their garbling effect. Since |U| = N, this implies that before any insertions are effected the length of the

string which is effectively transmitted is reduced by q. Thus the length of the resultant string which serves

as the input to the module which introduces insertions is N-q. Now, since i insertions have to be effected,

these can be introduced in any one of the possible positions where a ξ could be positioned in the string U',

and by the arguments used in Lemma O, the number of input edit sequences permissible for the

transformation of U is :

#(Possible U' for Mq) = (N-q+i
 i

) .

Arguing in a similar fashion for model M r, we see that :

#(Possible U' for M r) = (N-r+i
 i

)
A simple counting argument reveals that :

#(Possible U' for Mq) > #(Possible U' for M r) whenever q < r.

Besides this, every element in JU,r is found in JU,q, since any input edit sequence in JU,r yields a

corresponding edit sequence in JU,q by merely inserting additional ξ's in q-r new positions which are the

positions inhibited by M r, and thus, for all q < r < N, JU,q ⊃ JU,r.

Consider now two PR systems developed using models Mq and M r respectively. The system which

uses M r will not be capable of yielding a recognition accuracy which Mq yields, because, it ignores various

edit possibilities which are considered by Mq whenever q < r. Conversely, if the edit operations which

Optimal and Information Theoretic
 Syntactic Pattern Recognition. Page 21

generated the noisy string were due to an edit sequence found in the set difference (JU,q - JU,r), no

algorithm which uses M r will be capable of correctly incorporating it.

The theorem follows since the model which we have introduced, M*, is identical to the model M0 (i.e,

Mk with k=0), since in M* the effect of all the insertion operations are considered before the fate of any of

the transmitted symbols is ascertained. Hence the theorem ! ♦♦♦

V. EXPERIMENTAL RESULTS

To investigate the power of our new model (and its computation) and to demonstrate the accuracy of

our new scheme in the original PR problem various experiments were conducted. The results obtained were

remarkable. The algorithm was compared with PR results obtained with

(i) Algorithm_LD : A PR scheme which used any traditional editing [5,6,22,23,27,37,40,42,43]

algorithm and unit inter-symbol costs.

(ii) Algorithm_GLD : A PR scheme which used any traditional editing [5,6,22,23,27,37,40,42,43]

algorithm using symbol-dependent costs. The symbol-dependent costs are assigned as :

ds(a, b) = -ln [Pr(a→b) / Pr(a→a)]

de(a) = -ln [Pr(a is deleted) / Pr(a→a)]

di(a) = Ki . de(a), where Ki is determined to yield the most conservative distance.

The dictionary consisted of 342 words obtained as a subset of the 1023 most common English words

[17] augmented with words used in computer literature. The length of the words was greater than or equal

to 7 and the average length of a word was approximately 8.3 characters.

From these, two sets (SA and SB respectively) of 1026 noisy strings were generated using the

method described in Section III. Since all the previous models which permit arbitrary insertions require a

mixed geometric number of insertions, we assumed that the number of insertions was geometrically

distributed with parameter β. The conditional probability of inserting any character a ∈ A given that an

insertion occurred was assigned the value 1/26; and the probability of deletion was set to be 1/20. The

table of probabilities for substitution (typically called the confusion matrix) was based on the proximity of

the character keys on a standard QWERTY keyboard and is given in Table I. The statistics associated with

the sets SA and SB are given below in Table II. Notice that the percentage error was intentionally made

large to test the algorithms for non-trivial error conditions. A subset of some of the words in SA is given in

Table III. Some of the words in the dictionary not given in Table III are very similar even before garbling

such as "official" and "officials"; "attention", "station" and "situation". These are words whose noisy

versions can themselves easily be mis-recognized. The average percentage number of errors per word

associated with these two sets was 36 % and 39.75 % respectively.

As opposed to recognition obtained using the above distance criteria, to verify our theoretical results,

as mentioned above, optimal PR was achieved by evaluating the string U* which maximized the probability

Pr[Y|U] over all U in the dictionary, where all the strings U in the dictionary are considered to be equally

Optimal and Information Theoretic
 Syntactic Pattern Recognition. Page 22

likely a priori. In a non-Bayesian approach this represents a maximum likelihood pattern classification

scheme. To achieve this, we undertook four sets of experiments explained below.

In the first, we assumed that the recognition system was aware of the distributions G, Q and S. This,

in effect, is the ideal situation in which the inference (training/learning) problem is ignored. In the next

three scenarios we assumed that the testing system was presented with estimates of the above distributions

in which the estimation errors were 5%, 10% and 15% respectively. Thus, for example, when the errors in

the estimates were 15%, the probability of a deletion occurring and the probability of a symbol being

erroneously transformed were randomly increased or decreased by 15%, and the probability of correct

transmission was assigned the resulting value which rendered S to be a valid distribution. In this case, the

geometric parameter used to describe G, β, was also assumed to be erroneously estimated by 15%. The PR

scheme which was to recognize the strings was now given these incorrect distributions and the noisy

strings, and was to perform the classification.

SA SB
Number of insertions 1872 (1.825) 2142 (2.088)
Number of deletions 418 (0.407) 414 (0.404)
Number of substitutions 769 (0.750) 822 (0.801)
Total number of errors 3059 (2.981) 3378 (3.292)
Percentage error 36.00% 39.75%

Table II: Noise statistics of the sets SA and SB. The figures in brackets
are the average number of errors per word.

The three algorithms, Levenshtein Distance (Algorithm_LD), the Generalized Levenshtein Distance

(Algorithm_GLD) and our algorithm (Algorithm_OPT_PR), were tested with the sets of 1026 noisy words,

SA and SB as described above. The results obtained in terms of the recognition accuracy for the two sets

are tabulated below in Table IV. First of all we would like the reader to observe that the classification

accuracy of our PR scheme deteriorates with the quality of the estimate of the true underlying distributions,

G, Q and S. This, of course, is just what we would have intuitively expected. It also demonstrates the

robustness of the scheme.

But when we compare the performance of our scheme to other methods, we note that in the case

when the distributions are known exactly (which is the case under which Algorithm_LD and

Algorithm_GLD are tested) our scheme far outperforms the traditional string correction algorithm (eg.

97.66 % instead of 94.93 % in SA). It also outperforms the GLD algorithm (eg. 96.49 % instead of 94.35

% in SB). However, our algorithm is superior to the traditional algorithms even for the cases when the

classification is invoked with inexact distributions. Thus when the error in the estimate of the distributions

is 15%, the classification using the current scheme yielded 97.37% and 96.39% accuracies as opposed to

the 94.39% and 93.76% accuracies attained by Algorithm_LD and the 96.00% and 94.35% accuracies

obtained by Algorithm_GLD. Observe too that in the case of the latter, the individual inter-symbol

distances were obtained by utilizing the exact distributions. This shows that the syntactic discriminant

Optimal and Information Theoretic
 Syntactic Pattern Recognition. Page 23

function varies smoothly with the amount of noise, and also that the actual discriminant is not too sensitive

to the error in the estimation process itself – which is, intuitively, very appealing.

The reader should observe that, as in all PR problems, it is much harder to increase the recognition

accuracy at the higher end of the spectrum. The power of our strategy is obvious !!

Algorithm Accuracy (SA) Accuracy (SB)
Algorithm_LD
 (0% Estim.
Error)

94.93% 93.76%

Algorithm_GLD
 (0%
Estim.Error)

96.00% 94.35%

Algorithm_OPT_PR
 (0% Estim.
Error)

97.66% 96.49%

Algorithm_OPT_PR
 (5% Estim.
Error)

97.66% 96.49%

Algorithm_OPT_PR
 (10% Estim.
Error)

97.47% 96.39%

Algorithm_OPT_PR
 (15% Estim.
Error)

97.37% 96.39%

Table IV : The recognition results obtained from the sets SA and SB. The optimal PR algorithm is
invoked with inexact estimates (k% estimated error) of the true underlying distributions.
Note that the recognition deteriorates with the quality of the estimates of the underlying
distributions.

We are currently studying the use of this channel in speech recognition. Observe that with such a

model, the entire question of "time warping" would be subsumed in appropriately modelling the distribution

G. Also, we have only dealt with the concepts of syntactic PR in which the patterns are represented

"linearly" as strings. The problem of developing optimal classifiers for PR systems using two-dimensional

structures such as trees and webs still remains open. We currently have some initial results for the case of

ordered tree representations. Apart from the theory having straightforward applications in string generation

and recognition, we also believe that it has powerful potential applications in molecular biology and uni-

dimensional signal processing.

Optimal and Information Theoretic
 Syntactic Pattern Recognition. Page 24

VI. CONCLUSIONS

In this paper we have presented a formal foundation for designing optimal and informatic theoretic

syntactic pattern recognizers. We have done this by presenting a new model for noisy channels which

permit arbitrarily distributed substitution, deletion and insertion errors. The model is specified in terms of

an excited noisy string generation technique. Given any arbitrary string U ∈ A*, we specify a stochastically

consistent scheme by which this word can be transformed into any Y ∈ A* by causing substitution, deletion

and insertion operations. The scheme has been shown to be Functionally Complete because it involves all

the ways by which U can be mutated into Y using these three operations. The probability distributions for

these respective operations can be completely arbitrary. Apart from presenting a scheme by which all the

possible strings in A* can be potentially generated, we also specify two cubic-time algorithms by which

Pr[Y|U], the probability of receiving Y given that U was transmitted, can be computed. The first of these

requires cubic space, and the second requires only quadratic space. For small values of M and N, the

former is more efficient, because of the decreased overhead and book-keeping. The classification obtained

using this model is not only optimal, but it also attains the information theoretic bound for channels which

substitute or delete its transmitted symbols, and whose received symbols are either inserted or substituted

versions of transmitted symbols.

Since the submission of this paper we have solved the problem of designing optimal and information

theoretic syntactic classifiers for traditional and generalized transposition errors. In both these cases the

estimation (inference) problem remains unsolved. The question of determining how our current model

compares with HMM models in actual applications remains open. Finally, we are currently investigating

how the fundamental results presented here can be extended to “continuous time” symbolic computations.

Acknowledgements : We are very indebted to Richard Loke for helping us prepare the final manuscript

and for assisting us obtain the experimental results. We presented these results at a few seminars and we

are very grateful to the audiences of these seminars for helpful discussions. We would particularly like to

thank Prof. Haralick from the University of Washington for an interesting discussion on the inference

problem. We are also grateful to an anonymous referee for informing us of reference [8], and to Dr.

Hoffmann for FAXing us a copy of the paper. Finally, we are extremely grateful to the referees of the

paper for their appreciative and critical remarks on the original manuscript.

Optimal and Information Theoretic
 Syntactic Pattern Recognition. Page 25

REFERENCES
1. R. O. Duda, P.E. Hart. Pattern Classification and Scene Analysis. Wiley & Sons, 1973.
2. K. Fukunaga. Introduction to Statistical Pattern Recognition. Academic Press, 1972.
3. K. S. Fu, Syntactic Methods in Pattern Recognition, Academic Press, New York, 1974.
4. H. Bunke, and J. Csirik, Parametric string edit distance and its application to pattern Recognition,

IEEE Trans. Systems, Man and Cybern., SMC-25:202-206 (1995).
5. R. L. Kashyap and B. J. Oommen, An effective algorithm for string correction using generalized

edit distances -I. Description of the algorithm and its optimality, Inform. Sci., 23(2):123-142
(1981).

6. D. Sankoff and J. B. Kruskal, Time Warps,String Edits and Macromolecules: The Theory and
practice of Sequence Comparison, Addison-Wesley (1983).

7. R. L. Bahl and F. Jelinek, Decoding with channels with insertions, deletions and substitutions with
applications to speech recognition, IEEE Trans. Information Theory, IT-21:404-411 (1975).

8. P. Bucher and K. Hoffmann, A sequence similarity search algorithm based on a probabilistic
interpretation of an alignment scoring system, Proceedings of the Fourth International Conference
on Intelligent Systems for Molecular Biology, ISMB-96, pp.44-51 (1996).

9. H. Bunke, “Structural and Syntactic Pattern Recognition” in Handbook of Pattern Recognition and
Computer Vision. Edited by C. H. Chen, L. F. Pau and P. S. P. Wang. World Scientific, Singapore,
1993.

10. M. Y. Chen, A. Kundu, S. Srihari Handwritten word recognition using morphological segmentation
and variable duration - hidden Markov model, Proc. CVPR, June 1993.

11. S. Eddy, Multiple alignment using hidden Markov models, Proceedings of the Third International
Conference for Intelligent Systems for Molecular Biology, AAAI Press, pp.114-120 (1995).

12. G.D. Forney, The Viterbi algorithm, Proceedings of the IEEE, Vol. 61. (1973).
13. A. Krogh, M. Brown, I. S. Mian, K. Sjolander and D. Hausler, Hidden Markov models in

computational biology: Applications to protein modeling, Journal of Molecular Biology, 235,
pp.1501-1531 (1994).

14. A. Kundu, Y. He and P. Bahl, Recognition of the handwritten word: First and second order hidden
Markov model based approach, Pattern Recognition, 22: 283-297 (1989).

15. L. R. Rabiner and B-H. Juang, An introduction to hidden Markov models, IEEE Acc. Sound and
Sig. Proc., pp.4-16 (1986)

16. A. J. Viterbi, Error bounds for convolutional codes and an asymptotically optimal decoding
algorithm, IEEE Trans. on Information Theory, 260-26 (1967).

17. G. Dewey, Relative Frequency of English Speech Sounds, Cambridge, MA, Harvard Univ. Press,
(1923).

18. P. A. V. Hall and G.R. Dowling, Approximate string matching, Comput. Surveys, 12:381-402
(1980).

19. R. L. Kashyap and B. J. Oommen, A common basis for similarity and dissimilarity measures
involving two strings, Internat. J. Comput. Math., 13:17-40 (1983).

20. R. L. Kashyap and B. J. Oommen, The noisy substring matching problem, IEEE Trans. Software
Engg., SE-9:365-370 (1983).

21. R. L. Kashyap, and B. J. Oommen, String correction using probabilistic methods, Pattern
Recognition Letters, 147-154 (1984).

22. S. B. Needleman and C. D. Wunsch, A general method applicable to the search for similarities in
the amino acid sequence of two proteins, J. Mol. Biol., 443-453 (1970).

23. T. Okuda, E. Tanaka, and T. Kasai, A method of correction of garbled words based on the
Levenshtein metric, IEEE Trans. Comput., C-25:172-177 (1976).

24. B. J. Oommen, Recognition of noisy subsequences using constrained edit distances, IEEE Trans. on
Pattern Anal. and Mach. Intel., PAMI-9:676-685 (1987).

25. Oommen, B.J., Constrained string editing, Information Sciences, 40: 267-284 (1987).

Optimal and Information Theoretic
 Syntactic Pattern Recognition. Page 26

26. S. Srihari, Computer Text Recognition and Error Correction, IEEE Computer Society Press,
(1984).

27. W. J. Masek and M. S. Paterson, A faster algorithm computing string edit distances, J. Comput.
System Sci., 20:18-31 (1980).

28. C. K. Wong and A. K. Chandra, Bounds for the string editing problem, J. Assoc. Comput. Mach.,
23:13-16 (1976).

29. L. Devroye, W. Szpankowski and B. Rais, A note on the height of suffix trees, SIAM J. of
Computing, 21:48-54, (1992).

30. P. Jacquet and W. Szpankowski, Analysis of digital tries with Markovian dependencies, IEEE
Trans. Information Theory, IT-37:1470-1475 (1991).

31. D. L. Neuhoff, The Viterbi algorithm as an aid in text recognition, IEEE Trans. Information
Theory, 222-226 (1975).

32. W. Szpankowski, Probabilistic analysis of generalized suffix trees, Proceedings of CPM-92, The
Third Annual Symposium on Combinatorial Pattern Matching, 1-14 (1992).

33. S. H.Levine, S. H., S. L. Minneman, C.O. Getschow, and C. Goodenough-Trepagnier, Computer
disambiguation of multi-character text entry : An adaptive design approach, Proc. of the IEEE
Internat. Conference on Systems, Man and Cybernetics, 298-301 (1986).

34. S. L. Minneman, Keyboard optimization technique to improve output rate of disabled individuals,
Proc. of the 9th. Annual RESNA Conference, Minneapolis, 402-404 (1986).

35. R. Shinghal, and G. T. Toussaint, Experiments in text recognition with the modified Viterbi
algorithm, IEEE Trans on Pat. Anal. and Mach. Intel., 184-192 (1979).

36. J. Golic and M. Mihaljevic, A noisy clock-controlled shift register cryptanalysis concept based on
sequence comparison approach, Proceedings of EUROCRYPT 90, Aarhus, Denmark, 487-491
(1990).

37. D. S. Hirschberg, Algorithms for longest common subsequence problem, J. Assoc. Comput. Mach.,
24:664-675 (1977).

38. D. S. Hirschberg, A linear space algorithm for computing maximal common subsequences, Comm.
Assoc. Comput. Mach., 18:341-343 (1975).

39. J. W. Hunt and T. G. Szymanski, A fast algorithm for computing longest common subsequences,
Comm. Assoc. Comput. Mach., 20:350-353 (1977).

40. A. Levenshtein, Binary codes capable of correcting deletions, insertions and reversals, Soviet Phys.
Dokl., 10:707-710 (1966).

41. B. J. Oommen and K. Zhang, The normalized string editing problem revisited, IEEE Transactions
on Pattern Analysis and Machine Intelligence, Vol.PAMI-18:669-672 (1996).

42. J. L. Peterson, Computer programs for detecting and correcting spelling errors, Comm. Assoc.
Comput. Mach., 23:676-687 (1980).

43. R. A. Wagner and M. J. Fisher, The string to string correction problem, J. Assoc. Comput. Mach.,
21:168-173 (1974).

44. D. Sankoff, Matching sequences under deletion/insertion constraints, Proc. Nat. Acad. Sci. U.S.A.,
69:4-6 (1972).

45. L. Devroye, Non-Uniform Random Variate Generation, Springer-Verlag, (1986).
46. R. Lowrance and R. A. Wagner, An extension of the string to string correction problem, J. Assoc.

Comput. Mach., 22:177-183 (1975).
47. M. Regnier, A language approach to string searching evaluation, Proceedings of CPM-92, The

Third Annual Symposium on Combinatorial Pattern Matching, 15-26 (1992).

Optimal and Information Theoretic
 Syntactic Pattern Recognition. Page 27

APPENDIX A
Theorem I

If the edit operations occur independently Pr[Y|U], the probability of receiving Y from M* given that

U is transmitted has the form :

Pr[Y|U] = ∑
z=Max(0,M-N)

M

G(z). (N! z!)

((N+z)!)
 ∑

U'

 ∑
Y'

 ∏
i=1

N+z

 p(y'i|u'i) . (7)

where, CI(U')=U, CO(Y')=Y, and,

(a) y'i and u'i are the individual symbols of Y' and U' respectively,

(b) p(y'i|u'i) is interpreted as Q(y'i) if u'i is ξ, and,

(c) p(y'i|u'i) is interpreted as S(y'i|u'i) if u'i is not ξ. (8)

Furthermore, the probability framework is both functionally complete and consistent.

Proof : Using the notation above, and based on the assumption of independence of edit errors, we can

express the probability of a given input edit sequence U' yielding the output edit sequence Y' as :

Pr[Y'|U'] = ∏
i=1

N+z

 p(y'i|u'i) ,

where U' contains exactly z occurrences of ξ.

To compute the probability of Y occurring from a particular U' we have to, clearly, sum the above
quantity over all values of Y' which when operated on by CO yield CO(Y')=Y. Thus,

Pr[Y|U'] = ∑
 Y' s.t. Co(Y')=Y

 ∏
i=1

N+z

 p(y'i|u'i) .

Term (7) follows from the fact that the total probability is computed from the conditional probability by

multiplying Pr[Y|U'] with the probability of U' being the input edit sequence and summing over all

permissible values of z. The multiplying factor is exactly the product of G(z) and
 (N! z!)
((N+z)!)

 since the

former is the probability of z insertions occurring in U', and the latter is the probability of any one edit

sequence with z insertions occurring if all the (N+z
z) possible strings are equally likely.

The functional completeness of M* follows from the expression for Pr[Y|U]. It essentially involves

computing the product of the probabilities of the individual elements of every single pair in Γ(U,Y). Thus,

for every element (U', Y') the product of the individual probabilities is its contribution to Pr[Y|U].

The consistency involves proving that the value of the infinite summation :

∑
Y∈A*

 Pr[Y|U]

Optimal and Information Theoretic
 Syntactic Pattern Recognition. Page 28

is exactly unity. This may be an elementary exercise for an experienced probabilist, since, in one sense it

follows from the basic laws of probability. However, it is definitely not obvious.

To prove the theorem formally, we shall first go through the mechanics of explicitly writing down the

expression for the probability Pr[Y|U]. This is done by exhaustively summing up all the probability

contributions of the various ways by which U could have been transformed to Y. Notice that the

information about this set of ways is contained in Γ(U,Y). Let τ be the summation of this quantity over all

the possible values of Y. We intend to prove that τ is exactly unity.

We shall prove this by successively considering the case when Z = z. Consider the set of strings that

can be obtained by having z insertions occur in the mutation. Indeed, since inserted symbols cannot be

subsequently deleted, whenever z insertions occur, the set of all strings that can be obtained is the union of

the sets Aj, where j takes the value from z to N+z. Let zHN+z be this set and let τz be :

τz = ∑
 zHN+z

 (N! z!)

 ((N+z)!)
 Pr[Y|U ; Z=z]. (A1)

Indeed, if, with no loss of generality, we assume that z can be any non-negative integer, we have :

τ = ∑
 Z=0

 ∞

 G(z) τz. (A2)

Notice that for every Y ∈ zHN+z the number of insertions is bounded by Max(0,|Y|-N) and |Y|. Thus,

∑
 Y∈zHN+z

 Pr[Y|U ; Z=z] = ∑
 Y∈zHN+z

 ∑
U'

 ∑
Y'

 ∏
i=1

N+z

 p(y'i|u'i) , (A3)

= ∑
 Y∈zHN+z

 ∑
(U',Y') ∈ (ΓU,Y)

 ∏
i=1

N+z

 p(y'i|u'i)). (A4)

But for each U', the last product is over all the letters of the finite alphabet as in (8). Hence,
(i) p(y'i|u'i) is Q(y'i) if u'i is ξ, and, summed over all y'i this quantity is unity, and,

(ii) p(y'i|u'i) is interpreted as S(y'i|u'i) if u'i is not ξ, and, summed over all u'i this is unity.

Hence, for every element U' this sums to unity, and since, for each z, there are (N+z
z) elements of U', (A4)

has the value
 (N+z)!

 N! z!
 . Hence, τz has the value unity. Consequently, τ itself is unity because G is a valid

distribution in itself. Hence the theorem ! ♦♦♦

Optimal and Information Theoretic
 Syntactic Pattern Recognition. Page 29

APPENDIX B
Theorem III

Let W(i,e,s) be the quantity defined as in (12) for any two strings U and Y. Then, for all nonnegative

i,e and s,
 W(i,e,s) = W(i-1,e,s).p(yi+s|ξ) + W(i,e-1,s).p(λ|ue+s) + W(i,e,s-1).p(yi+s|ue+s) (15)

 where p(b|a) is interpreted as in (8).

Proof : The proof of the result is divided into three main divisions, Cases (a)-(c) respectively.

Case (a) : Any two of the three variables i, e and s are zero.

Case (b) : Any one of the three variables i, e and s is zero.

Case (c) : None of the variables i, e and s are zero.

The most involved of these cases is Case (c). Cases (a) and (b) are merely one and two parameter

cases respectively of Case (c). To avoid repetition, we shall prove only Case (c). Thus, for the rest of the

proof, we encounter only strictly positive values for the variables, i, e and s.
Let r=e+s, q=i+s, Ur=u1. . .ur, and Yq=y1. . .yq. Then, by definition,

W(i,e,s) = ∑
(U'r,Y'q)

 ∏
j=1

|U'r|

 p(y'qj|u'rj) , (B1)

where (U'r,Y'q) is the arbitrary element of the set Γi,e,s with u'rj and y'qj as the jth symbols of U'r and Y'q

respectively. In the above expression and in all the expressions used in this proof, we shall assume that

p(b|a) is interpreted as defined by (8).
Let the lengths of the strings U'r and Y'q in the arbitrary element of Γi,e,s be L. Then the last symbols

of U'r and Y'q are u'rL and y'rL respectively. We partition the set Γi,e,s into three mutually exclusive and

exhaustive subsets.
Γ1

i,e,s = { (U'r,Y'q) | (U'r,Y'q) ∈ Γi,e,s, u'rL = ur, y'qL = yq } (B2)

Γ2
i,e,s = { (U'r,Y'q) | (U'r,Y'q) ∈ Γi,e,s, u'rL = ur, y'qL = λ } (B3)

Γ3
i,e,s = { (U'r,Y'q) | (U'r,Y'q) ∈ Γi,e,s, u'rL = ξ, y'qL = yq }. (B4)

By their definitions, we see that the above three sets are mutually exclusive. Further, since u'rL and y'qL

cannot be ξ and λ respectively simultaneously, every pair in Γi,e,s must be in one of the above sets. Hence

these three sets partition Γi,e,s. Rewriting (B1) we obtain,

W(i,e,s) = [∑
(U'r,Y'q)∈(Γ1

i,e,s)

 S'] + ∑
(U'r,Y'q)∈(Γ2

i,e,s)

 S'] + [∑
(U'r,Y'q)∈(Γ3

i,e,s)

 S'] (B5)

 where, S' = ∏
j=1

|U'r|

 p(y'qj|u'rj) .
(B6)

Consider each term in (B5) individually. In every pair in Γ1
i,e,s , u'rL = ur and y'qL = yq. Hence,

Optimal and Information Theoretic
 Syntactic Pattern Recognition. Page 30

∑
(U'r,Y'q)∈(Γ1

i,e,s)

 ∏
j=1

|U'r|

 p(y'qj|u'rj)

= [∑
(U'r,Y'q)∈(Γ1

i,e,s)

 ∏
j=1

|U'r|-1

 p(y'qj|u'rj)].p(yq|ur). (B7)

For every element in Γ1
i,e,s there is a unique element in Γi,e,s-1 and vice versa. Hence, the first term in the

above expression is exactly W(i,e,s-1). Since r=e+s and q=i+s,

∑
(U'r,Y'q)∈(Γ1

i,e,s)

 ∏
j=1

|U'r|

 p(y'qj|u'rj)
= W(i,e,s-1).p(yi+s|ue+s). (B8)

Consider the second term in (B5). In every pair in Γ2
i,e,s , u'rL = ur and y'qL = λ. Hence,

∑
(U'r,Y'q)∈(Γ2

i,e,s)

 ∏
j=1

|U'r|

 p(y'qj|u'rj)

= [∑
(U'r,Y'q) ∈ (Γ2

i,e,s)

 ∏
j=1

|U'r|-1

 p(y'qj|u'rj)].p(λ|ur). (B9)

For every element in Γ2
i,e,s there is a unique element in Γi,e-1,s and vice versa. Hence, the first term

in the above expression is exactly W(i,e-1,s). Thus,

∑
(U'r,Y'q) ∈ (Γ2

i,e,s)

 ∏
j=1

|U'r|

 p(y'qj|u'rj)
= W(i,e-1,s).p(λ|ue+s). (B10)

Consider the third term in (B5). In every pair in Γ3
i,e,s , u'rL = ξ and y'qL = yq. Hence,

∑
(U'r,Y'q) ∈ (Γ3

i,e,s)

 ∏
j=1

|U'r|

 p(y'qj|u'rj)

= [∑
(U'r,Y'q) ∈ (Γ3

i,e,s)

 ∏
j=1

|U'r|-1

 p(y'qj|u'rj)].p(yq|ξ). (B11)

Optimal and Information Theoretic
 Syntactic Pattern Recognition. Page 31

For every element in Γ3
i,e,s there is a unique element in Γi-1,e,s and vice versa. Hence, the first term in the

above expression is exactly W(i-1,e,s). As in the above cases,

∑
(U'r,Y'q) ∈ (Γ3

i,e,s)

 ∏
j=1

|U'r|

 p(y'qj|u'rj)
= W(i-1,e,s).p(yi+s|ξ). (B12)

Resubstituting (B8), (B10) and (B12) into (B5) proves the result. ♦♦♦

Optimal and Information Theoretic
 Syntactic Pattern Recognition. Page 32

Original word
(dictionary)

Noisy word Total number of errors

Accomplishments accoplsuments 3
Administration sdmlnistratib 5
advance ewafawdvxsance 7
advantage taodbivawafxe 8
affairs kafruvkfnixsrs 9
artillery vuaegrdtuilllordiery 11
beginning ssbehsimgjninmmg 10
children cnuhialren 4
citizens ciylzens 2
communicated commuivated 2
community cmmunrieztd 6
concept concdxept 2
concepts concewpts 1
control fodvntopl 5
cooperation coeopewryaueipxn 8
decreased drcfreased 2
defender cefenrded 3
developed cdexsvfesulohned 9
development dbvelrlpmenr 4
efficiency efsfickiepncy 3
election elecqtbibobn 4
employed frmmpwuoycemac 10
enclosed dnclbosed 2
excellent excellejt 1
executive yslxvkrcutivoe 7
existence eaxidstenfe 3
facilities fbacmwlifipeab 8
followed zdslfdxllwkedekuid 14
judgment juzdgseynyt 4
justice jusbtipxe 3
necessity jwscessitc 4
neither either 1
reached rlepdached 3
reasons crezastons 3
simulated ksimrujtated 4
sitting psxruttoing 6
strength mzeckieeotrenxsbth 13
striking yvysatqrickinwet 10
telling kmtelsling 3
terminal teerlmnl 4
themselves themslvs 2
victory vbtctlavrdy 7
village evvillagr 3
without xvwigobuhnout 8
working wrqkng 3
yourself myorself 2

Table III : A subset of the dictionary, some noisy strings and their error characteristics.

Optimal and Information Theoretic
 Syntactic Pattern Recognition. Page 33

U A∈ ∗

Using G : randomly
 decide on z - number

of insertions

Using U and z, randomly decide on

U' ∈ (A ∪ { ξ })*

for positions of insertions

Using S, randomly
substitute or delete

every non-inserted character in U.

Using Q, randomly transform
characters in U' by changing ξ

to symbols in A

Y ∈ Α∗

U (A)∈ ∗

z ≥ 0

U' ∈ (A ∪ { ξ })*

Figure I : A pictorial representation for the model for the channel. The input to the channel is the string
U, and the output is the random string Y.

Optimal and Information Theoretic
 Syntactic Pattern Recognition. Page 34

 a b c d e f g h i j k l m n o p q r s t u v w x y z
a 867 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 14 1 20 1 1 1 10 5 1 14
b 1 861 1 1 1 1 14 14 1 1 1 1 1 20 1 1 1 1 1 1 1 20 1 1 1 1
c 1 1 861 14 1 14 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 20 1 20 1 1
d 1 1 14 835 14 20 1 1 1 1 1 1 1 1 1 1 1 10 20 1 1 1 5 14 1 1
e 1 1 1 14 857 5 1 1 1 1 1 1 1 1 1 1 1 20 14 1 1 1 20 1 1 1
f 1 1 14 20 10 824 20 1 1 1 1 1 1 1 1 1 1 20 1 10 1 14 1 1 1 1
g 1 14 1 1 1 20 835 20 1 1 1 1 1 1 1 1 1 5 1 14 1 14 1 1 10 1
h 1 14 1 1 1 1 20 835 1 20 1 1 1 14 1 1 1 1 1 5 10 1 1 1 14 1
i 1 1 1 1 1 1 1 1 861 10 14 5 1 1 20 1 1 1 1 1 20 1 1 1 1 1
j 1 1 1 1 1 1 1 20 10 835 20 1 14 14 1 1 1 1 1 1 14 1 1 1 5 1
k 1 1 1 1 1 1 1 1 14 20 848 20 14 1 10 1 1 1 1 1 5 1 1 1 1 1
l 1 1 1 1 1 1 1 1 5 1 20 876 1 1 14 14 1 1 1 1 1 1 1 1 1 1
m 1 1 1 1 1 1 1 5 1 14 14 1 876 20 1 1 1 1 1 1 1 1 1 1 1 1
n 1 20 1 1 1 1 5 14 1 14 1 1 20 857 1 1 1 1 1 1 1 1 1 1 1 1
o 1 1 1 1 1 1 1 1 20 1 14 14 1 1 861 20 1 1 1 1 1 1 1 1 1 1
p 1 1 1 1 1 1 1 1 1 1 1 14 1 1 20 893 1 1 1 1 1 1 1 1 1 1
q 14 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 892 1 5 1 1 1 17 1 1 1
r 1 1 1 14 17 14 5 1 1 1 1 1 1 1 1 1 1 863 1 17 1 1 1 1 1 1
s 17 1 1 17 10 1 1 1 1 1 1 1 1 1 1 1 5 1 841 1 1 1 14 14 1 14
t 1 1 1 1 1 14 14 10 1 1 1 1 1 1 1 1 1 17 1 858 1 1 1 1 17 1
u 1 1 1 1 1 1 1 14 17 14 10 1 1 1 1 1 1 1 1 1 858 1 1 1 17 1
v 1 17 17 5 1 14 14 1 1 1 1 1 1 1 1 1 1 1 1 1 1 863 1 1 1 1
w 10 1 1 5 17 1 1 1 1 1 1 1 1 1 1 1 17 1 14 1 1 1 867 1 1 1
x 5 1 17 14 1 1 1 1 1 1 1 1 1 1 1 1 1 1 14 1 1 1 1 863 1 17
y 1 1 1 1 1 1 14 14 1 5 1 1 1 1 1 1 1 1 1 17 17 1 1 1 863 1
z 14 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 14 1 1 1 1 17 1 883

Table I: The "confusion matrix" with the probabilities of substituting a character with another character. The figures in the table are to be multiplied by a

factor of 10-3.

