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DISCRETIZED  ESTIMATOR  LEARNING AUTOMATA*

J. Kevin Lanctôt# and B. John Oommen+

ABSTRACT
BOUNDED MEMORY PROBABILISTIC MOVE-TO-FRONT OPERATIONS

The concept of performing probabilistic move operations on an accessed element is not entirely

new. Kan and Ross [9] suggested a probabilistic transposition scheme and showed that no

advantage was obtained by rendering the scheme probabilistic. Their scheme, however, required

that the probability of performing the operation, be time invariant. As opposed to this, we shall

define move operations which are essentially probabilistic, but the probabilities associated with the

move operations are dynamically varied.

Let f(n) be the probability (at time 'n') of any element being moved to the front of the list on being

accessed. Observe that this implies that an element, on being accessed, stays where it is with

probability (1-f(n)). For an initial condition we define,

f(0) = a (2.1)

The probability f(n) is updated every time any record is accessed. The updating scheme is given by

(2.2) below, for 0 < a < 1.

f(n+1) = a  f(n) every time a record is accessed. (2.2)

The quantity 'a' is defined as the updating constant.

Let p1(n) be the expected probability of record Ri succeeding Rj at the nth time instant. Clearly

p2(n) = 1-p1(n), for all n. We shall derive the transient and asymptotic properties of p1(n). To do

this we need the following lemma.

                                               
* Partially supported by the Natural Sciences and Engineering Research Council of Canada.
# Address of the first author : Mitel Corporation, 350 Legget Drive, Kanata, ONT : K2K 1X3, Canada.  Address of
the second author : School of Computer Science, Carleton University, Ottawa : ONT : K1S 5B6, Canada.
+ Senior Member, IEEE.



Discretized Estimator Learning Automata
Page 2

LEMMA I

Let A be any nxn matrix with distinct eigenvalues. Let K be the matrix which diagonalizes

A. Let

B(n) = I + an A

Then, B(n) is diagonalizable by the same matrix K, for all n.

Proof

Since A has distinct eigenvalues, and K diagonalies A,

K-1  A  K = Diag(θ1,...,θN)

where Diag(θ1,...,θN) is the diagonal matrix with the eigenvalues of A on its diagonal. Let B(n) =

I+an A. Then,

K-1  B(n)  K = K-1 (I+an  A) K

 = I + an  K-1  A  K

 = I + an . Diag(θ1,...,θN)

and the lemma is proved.

Using the above lemma and the theory of Markov's  chains we prove the following theorems.

THEORM I

Let p1(n) be the expected probability of Ri succeeding Rj at the nth time instant. Then, p1(n)

and p2(n) obey the following time varying Mark

[insert]









p1(n+1)

p2(n+1)
  = [B(n)]









p1(n)

p2(n)
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where  B(n) = 







1-ansi       a

nsi

ansj 1-ansj

  
T

Proof

Ri succeeds Rj at time instant 'n+1' if and only if

(a) Ri succeeded Rj at time instant 'n' and no list operation was performed, or,

(b) Rj was accessed and it was moved to the front of the list. Observe that Ri cannot succeed Rj

if Ri was accessed and moved to the front.

let p1(n) + Prob[Ri succeeds Rj at time 'n']. Clearly, E[p1(n)] = p1(n). The above leads to the

following recursive definition of p1(n).

p1(n+1) = 0 if Ri accessed and MTF performed

= 1 if Rj accessed and MTF performed

= p1(n) otherwise.

Observe that the probabilities of the events defined above are readily available in terms of the

unknown access probabilities. Further, a MTF operation is performed at 'n' with a probability an.

Thus,

p1(n+1) = 0 w.prob. si.a
n

= 1 w.prob sj a
n

= p1(n) w.prob 1-(si+sj) a
n (2.3)

Taking conditional expectations, we have,

E[p1(n+1)|p1(n)] = an sj+ p1(n) - p1(n).an (si + sj)

Taking expectations again and observing that E[p1(n)]=p1(n), we get,

p1(n+1) = [1-an  (si + sj)] p1(n) + sj . a
n

Since p1(n) + p2(n) = 1, we expand the constant term as
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sj a
n  = sj a

n [p1(n) + p2(n)]

Thus,
 p1(n+1) = [1-an  si] p1(n) + [an sj]  p2(n)

This leads to the following matrix equation









p1(n+1)

p2(n+1)
  = 







1-ansi       a

nsj

ansi 1-ansj

 








p1(n)

p2(n)
 

and the theorem is proved.

THEOREM II

The constant matrix K, where

K = 








1    1

si/sj   -1
 

diagonalizes B(n), for all values of n.

Proof

Observe that B(n) is of the form,

B(n) = I + an A

where

A = 








-si   sj

si    -sj
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Since B(n) is a stochastic matrix, we know that one of its eigenvalues is unity. Further, since the
sum of the eigenvalues is equal to the trace of the matrix, the second eigenvalue is 1-an ( (si+sj).

Using Lemma I, we know that the matrix which diagonalizes B(0) also diagonalizes B(n) for all n.

In this case, it is easy to see that the eigenvectors for B(0) are

(i) [1  si/sj]
T for the eigenvalue unity, and

(ii) [ 1  -1]T for the eigenvalue 1- (si+sj)

Thus, the constant matrix K, where,

K = 








1    1

si/sj   -1
 

diagonalizes B(n) for all n. This proves the theorem.

Remark: By performing elementary operations, it is easy to see that K-1 has the form:

K-1 = 
1

si+sj
 








sj   sj

si   -sj

 (2.4)

One can trivially verify that,

K-1  B(n) K = Diag(1,1-an (si+sj)),

where,

Diag(1,1-an (si+sj)) = 








1   0

0   1-an (si+sj)
 

similarly, K. Diag(1,1-an (si+sj)) . K
-1 is exactly B(n).

THEOREM III

The value of p1(n) for an updating constant 'a' obtained by solving the Markov equation

given by Theorem I, has the form:
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p1(n) = 
sj

si+sj
  Qa,n +  

sj

si+sj
 (1-Qa,n) 

where

Qa,n = 0.5 [
n-1

Π
k=0

 (1-a(si+sj)) ]

Proof

From the results of Theorem I, we can see that









p1(n+1)

p2(n+1)
  = B(n) 









p1(n)

p2(n)
  

Thus, the solution of the matrix difference equation yields,









p1(n)

p2(n)
   = B(n-1) B(n-2)...B(0) 









p1(0)

p2(0)
  = 

n-1

Π
k=0

  B(k) 








p1(0)

p2(0)
 

Rewriting each B(k) in terms of the diagonal matrix Diag(1,1-ak (si+sj)),









p1(n)

p2(n)
   = (

n-1

Π
k=0

  K. [Diag(1,1-ak (si+sj))] . K
-1 ).









p1(0)

p2(0)
  

Since the product of each consecutive pair K.K-1 yields that identity matrix, we write,









p1(n)

p2(n)
   = K. [

n-1

Π
k=0

  Diag(1,1-ak (si+sj))] . K
-1 .









p1(0)

p2(0)
  

     = K. 









1   0

0   
n-1

Π
k=0

 (1-ak (si+sj))
  .K-1. 









p1(0)

p2(0)
  (2.5)
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Let Qa,n = 0.5 
n-1

Π
k=0

 (1-ak (si+sj)) . Since, with no loss of generality, p1(0) = p2(0) = 0.5, we expand

(2.5) above to yield,









p1(n)

p2(n)
   =  

1
si+sj

 







1   1

si

sj
   -1

 








1   0

0   2.Qa,n

 








sj   sj

si   -sj

 






0.5

0.5
 

After considerable simplification this results in









p1(n)

p2(n)
   =  

1
si+sj

 








sj (1-Qa,n) + si     Qa,n

si (1-Qa,n) + sj     Qa,n

  (2.6)

and the theorem is proved.

Remark: Observe that p1(n) = p2(n) = 0.5 if si = sj. This is intuitively satisfying.

To prove the asymptotic value of p1(n) we need the following lemma.

Lemma II

The infinite product:

�
Π

k=1
 (1+bk) (where bk � -1 for all k)

tends to a non-zero finite limit if and only if the infinite sum,

�
�

k=1
  bk

is convergent.

Proof
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The lemma is proved in Titchmarsh [17, pp.13-15].

THEOREM IV

The stochastic bounded memory Move-to-Front Algorithm is asymptotically always less

accurate than the deterministic Move-to-Front Algorithm.

Proof

Consider the term for p1(n) as

p1(n) = 
si

si+sj
 (1-Qa,n)  + 

sj

si+sj
   Qa,n

where Qa,n is defined in Theorem III.

Using Lemma II, it is clear that Qa,n > 0 as 0 < a < 1, but tends to zero as a tends to unity.

Differentiating with respect to a, we obtain,

δi pj(n)

δa
  = (sj-si) . Qa,n  . 

n-1
�

k=1
 

k.ak-1

1-ak(si+sj)
 

Since 0 < a < 1, and 0 < si+sj  < 1, we have,

 0 < 1-ak(si+sj)  < 1 for all k � 1.

Assume that with no loss of generality that si < sj. This tells us that,

δi pj(n)

δa
   > 0 (2.7)

In other words, p1(n) has no stationary point with respect to a in the interval 0 < 1 < 1. Further,

due to (2.7), the largest value of p1(n) occurs when a=1. Since (2.7) is true for finite and infinite
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values of n, the value of p1(�) is maximized at the largest acceptable value of a and the theorem is

proved.

Corollary IV.1

The stochastic bounded memory Move-to-Front Algorithm is expedient independent of the

access distribution of the records.

Proof

Due to the multiplying factor of 0.5, and the previous theorem, it is easy to see that for all a,

0 < Qa,n < 0.5. The result is now obvious since p1(n) is merely a convex combination of  
si

si+sj
   

and  
sj

si+sj
  weighted by 1-Qa,n and Qa,n respectively.

Remark: Throughout this discussion it was assumed that the single memory location that

stores f(n) can contain an arbitrarily small positive real number. In practice, however, all that we

need to store is an index, n, of the time that has lapsed since the file reorganization scheme was

initiated. From this index, f(n) can be computed trivially, since,

f(n) = an

It is also appropriate to observe that the maximum number that this index should attain is

governed by the uniform random number generator accessible to the system. If the smallest
positive number yielded by the random number generator is xmin, then the memory location which

stores n need not store numbers larger than nmax, where,

nmax  = ∪loga (xmin)′

We now proceed to study the linear memory stochastic Move-to-Rear scheme.

Learning automata are stochastic automata interacting with an unknown random environment.

The fundamental problem is that of learning, through feedback, the action which has the highest

probability of being rewarded by the environment.  A class of algorithms known as Estimator

Algorithms are presently among the fastest known. They are characterized by the use of running

estimates of the probabilities of each possible action being rewarded.  This paper investigates the

improvements gained by rendering the various estimator algorithms discrete. This is done by
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restricting the probability of selecting an action to a finite, and hence, discrete subset of [0,1].

This modification is proven to be ε-optimal in all stationary environments.  In the body of the

paper we shall first construct various Discretized Estimator Algorithms (DEAs). Subsequently,

members of the family of DEAs will be shown to be ε-optimal by deriving two sufficient

conditions required for the ε-optimality. Algorithms satisfying these conditions are said to possess

the properties of monotonicity and moderation. We conjecture the necessity of these conditions

for ε-optimality too. Experimental results indicate that the discrete modifications improve the

performance of these algorithms. We believe that these automata constitute the fastest converging

and most accurate learning automata reported to date.
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I.  INTRODUCTION
1.1  Artificial Intelligence and Learning Automata

The concept of a learning automaton (LA) was developed by Tsetlin. His intention was to

model biological learning [32,33].  The learning automaton is an automaton interacting in a

random environment. The LA selects an action from a finite set of possible actions. Feedback

from the environment tells the LA if the chosen action was rewarded or penalized.  The LA uses

this information to decide which action to take next, and the cycle repeat itself. Learning automata

and their applications have been reviewed by Lakshmivarahan [3],  and by Narendra and

Thathachar  [12, 13].

Variable structure stochastic automata (VSSA) were developed by Varshavskii and

Vorontsova.  For these automata, the learning process is generalized so that the state transition

probabilities and the action selecting probabilities evolve with time [12]. The automaton is

simplified in the sense that each state now corresponds uniquely to a particular action.  Hence
while in state qi the automaton always picks action αi, and consequently, the set of actions and

states are identical.  Thus, what remains is the set of actions (or output from the automaton),  the

set of inputs  (one of which serves as the input to the automaton at any time instant) and a

learning algorithm T. The learning algorithm operates on a probability vector  P(t) = (p1(t), p2(t)

, . . .pr(t))  where  pi(t) = Pr {α(t) = αi}, and it is the probability that the automaton will select

action αi at time t.

The probability of choosing an action now becomes a function of time.  In fact, a VSSA is

completely characterized by the method of updating the probability of choosing the actions [3, 5,

12, 13].  This probability distribution over the state of actions is called the probability vector1.  A

single component of this vector will be called an action probability.  Note that the components of

this vector must sum to unity.  The VSSA is in its end state when one of its components is unity .

Definition I.1  A variable structure stochastic automaton  (VSSA ) is a 4-tuple {A, B, T,  P

} where A is a finite set of actions, B  is a set of outputs from the environment and T: [0, 1]r x B

∅ [0, 1]r is a learning algorithm such that T( P(t), β(t) ) = P(t+1). P(t) is the action probability

vector such that P(t) = (p1(t), p2(t) , . . .pr(t)) with pi(t) = Pr {α(t) = αi}.

Wherever there is no ambiguity we shall omit the reference to time with the understanding

that P refers to P(t).

                                               
1In the literature this vector is called the action probability vector.  In this paper, for the sake of simplicity, it will
often be referred to as the probability vector.
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VSSA are analyzed from the point of view that their probability of choosing an action at a

given time represents a discrete Markovian process. The probability that an action may be

rewarded can remain stationary or non-stationary depending on the environment; VSSA have

been developed that are suitable for each situation. Many varieties of VSSA which possess

absorbing barriers have been documented [5, 12, 13, 16, 21].  An absorbing barrier is a state that

has the property that if the automaton enters this state it is locked there for the rest of time.

Ergodic VSSA have also been investigated [12, 13, 19, 21, 32].  Ergodic VSSA can go into and

out of any state an unlimited number of times, and their limiting behaviour is independent of their

initial state.  In non-stationary environments, since the optimal action may change with time, an

ergodic VSSA can follow it. In contrast,  in stationary environments, automata with absorbing

barriers are preferred because they can be made to converge to the optimal action with a

probability as close to unity as desired.

Automata can be designed in three varieties of updating schemes: RI, IP, and RP.  The

letters describe what types of input are required for the probabilities to be updated by the

automaton. Their meanings are explained in Table 1.

Table 1

Varieties of Updating Schemes

Symbol Full Form    Meaning

RI Reward-Inaction Updates probabilities only when automata are rewarded.

Penalty responses are ignored.

IP Inaction-Penalty Updates probabilities only when automata are penalized.

Reward responses are ignored.

RP Reward-Penalty Updates probabilities when automata are either

rewarded or penalized.

______________________________________________________________________________

For this article B = {0,1} where zero represents a reward and one represents a penalty.

Such an environment is called a P-environment in the literature pertaining to learning systems.  If
the model permits B  to be a finite set, {0, b1, b2, ..bn-1, 1}it is called a Q-environment.  Finally,

if B  can be the interval [0,1] it is called is an  S-environment.
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Definition I.2  A stochastic environment will be defined as a 3-tuple of sets, <A, B, D >.
The sets A  and B  are identical to those of the automaton. D  = [d1, d2,…, dr] is the vector of

reward probabilities, where  di(t) = Pr{ β(t) = 0  |   α(t) = αi }.

The vector D characterizes the environment in the sense that its elements represent the

probability that an element of A  will be rewarded.  From the above definition we see that the
components of D are denoted as di(t), where this is the probability that the environment will

reward the automaton given that the automaton has chosen action αi at the instant t.  If the

probability of any action being rewarded  is constant over time, the environment is said to be

stationary. Otherwise it is said to be non-stationary.
This article considers only stationary environments. This means that di(t) is constant for all t

and so the index is dropped and the quantity is denoted as di. Note that the dimension of D  is the

same as that of A  because there is a unique probability of being rewarded for each action in A.  In

order to give the learning automaton a well defined task, it is also assumed that there is a unique
maximum component of the vector D called db where, db = Max1�i�r {di}.  This action αb,

possessing the highest probability of reward is referred to as the Best Action.  The probability of

each action being rewarded is unknown to the automaton, and so its task is to decide which action

is the best.  How the automaton picks the next internal state and the next output is, in essence, the

art and the science of designing learning automata.

1.2 Definitions of learning criteria
Intuitively, in the case of learning automata, the task is to find αb, the Best Action.  Let pb

be the probability that the automaton picks αb.

Definition I.3  A learning automaton is optimal if pb(t) ∅ 1 as t ∅ �, with probability 1.

This definition means that given enough time the learning automaton will eventually discover

the right answer.  But alas, man is yet to invent a learning automaton that has achieved this [12].

This fact motivates the next definition; if the automaton can't pick the best action with probability

unity, then it should be considered good if the probability of picking the best action can be made

arbitrarily close to unity. Informally, an automaton is said to be ε-optimal if given enough time

and given a large enough internal parameter n, the probability of picking the best action almost all

of the time  can be made as close to unity as desired. This is formalized in Definition I.4.

Definition I.4  A learning automaton is said to be ε-optimal if the probability of choosing αb

can be made as close to unity as desired.  More explicitly, if there is an internal parameter n, such
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that for all ε > 0, δ > 0, there exists no > 0, and a  to < �  such that Pr[ | pb(t) - 1 | < ε] > 1-δ  for

all t � t o and for all n  > no, then the scheme  is ε-optimal [3, 12].2

I.3 Applications of  LA

Learning algorithms are useful whenever complete knowledge about a stochastic

environment is unknown, expensive to obtain or impossible to quantify.  Thus they have found

applications in various fields including game playing [1,3, 4], pattern recognition [13, 24], and

object partitioning [22, 23].  Learning automata are also useful when the environment with which

they interact varies with its implementation and are thus useful in priority assignments in a

queuing system [7, 8], and the routing of telephone calls [14, 15].

II. DISCRETIZED AUTOMATA
The beauty of a discrete learning algorithm is that it does not ignore the limitations of

practical implementations; this is used to an advantage. VSSA evolved from fixed structure

stochastic automata (FSSA) as an attempt to simplify the analysis of the automata's properties

[12]. However, VSSA have a limitation.  Implicit in the definition of VSSA is the fact that the

probability of choosing an action can be any real number in the interval [0,1].  Rendering this

probability space discrete is a general approach for improving VSSA [21, 27]; this is implemented

by restricting the probability of choosing an action to only finitely many values from the interval

[0,1].  Probability changes are made in jumps, not continuously.  In a sense, the discrete VSSA

represent a hybrid of FSSA and VSSA.  Discrete automata consist of finite sets like FSSA, but

they are VSSA because they are characterized by a probability vector which evolves with time.

Discrete algorithms are linear if the probability values are equally spaced in the interval [0,1];

otherwise, they are called non-linear [21, 27].  Existing literature [12, 17, 18, 20, 21, 27] uses the

term 'discretized' in front of the name of a learning automaton to indicate the discrete version of a

continuous VSSA.

 II.1 Existing Discrete Automata

Without considering the discrete estimator algorithms described is this article, so far the

theoretical properties of seven discrete algorithms have been described [6, 17, 18, 22, 27].  Five

of these algorithms are based on the two action linear schemes [3, 12, 13].  All three variants,

                                               
2In the literature there is another common definition for ε-optimality.  A learning automata is said to be  ε-optimal
if  for  all  ε > 0,

l i m
t  →  •

   i n f   p b ( t )  >  1  -  ε

Intuitively both definitions require that the probability of picking the best action is arbitrarily close to unity. The
relationship between the two has not been worked out [21].
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LRI, LIP, and LRP, have been discretized.  The intent of this section is to give a summary of the

properties of these algorithms compared to their continuous counter-parts with a hope that apart

from describing the results that are new, the present treatise will also serve as a catalogue of most

of the known discretized automata.

The first results concerning discretized learning automata were largely experimental [27].  A
discrete version of the two action Linear Reward-Inaction automaton (DLRI) was created and the

rate of convergence was compared with the two action Tsetlin and two action Krinsky automata.
For various environments, the DLRI scheme was more accurate and reached its end state quicker.

Next, Oommen and Hansen proved that the DLRI is ε-optimal [17].  The latter was also

compared to its continuous counterpart [17].  Since the accuracy can be calculated theoretically

for both automata, they were given parameters so that they would have the same lower bound for

accuracy, in the same environment.  The two algorithms were compared to see which would reach
this bound first.  Experimentally the DLRI reached an accuracy of 99 % quicker than the LRI.

Also, for a fixed number of iterations, the DLRI scheme converged to the optimal action more

often.

Oommen and Hansen  continued work on discrete linear schemes, and proved a version of
the Discrete LIP with absorbing barriers to be ε-optimal [17].  This is particularly significant

because it was the first linear Inaction-Penalty scheme to be proven ε−optimal.  Oommen and
Christensen also proved that the Discrete LRP is ε-optimal in certain environments [18].  A

version of the DLRP scheme with absorbing barriers was shown to be ε-optimal in all

environments [18].  These results are significant because their continuous counterparts are not ε-

optimal in any environment!  Discrete automata are also ε-optimal outside the linear family of

schemes.  Oommen proved a non-linear discrete algorithm ε-optimal [21], and Oommen and
Christensen discovered a modified discrete LRP scheme that was both ergodic and always ε-

optimal [18].

The conditions when linear automata are ε-optimal are presented in Table 2.  In the table,

the columns represent the three updating strategies: RI, IP and RP. The rows represent the

various types of probability spaces encountered: continuous, discrete, and discrete with absorbing
barriers.  As mentioned earlier, modifications to the two-action Discrete LIP, and the two-action

Discrete LRP, which have artificial absorbing barriers have also been investigated.  In both these

cases, if a component of the probability vector becomes unity or zero it is locked in this state.  In

this case, the IP and RP schemes are always ε-optimal.
 Both the discrete and continuous  LRI schemes are absorbing.  The key difference between

the two algorithms is that the updating method has been changed from being multiplicative to
additive.  This has subtle effects. For example, consider the case of LRI with λ =0.5 and the DLRI

with n= 4.  Now if, for both automata, action α1 is chosen and subsequently rewarded, and then
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action α2 is chosen and rewarded, the resulting probabilities will be different.  At the end of the

two iterations, the probability vector of the DLRI scheme returns to its original value.  On the

other hand, the LRI scheme gives a higher value to the action that has been rewarded most

recently.  For stationary environments, the DLRI is preferred because, in this sense, it is not

biased.
When considering the two action DLRI and DLIP automata, even though the pair of

automata are set up differently, their actions can be quite similar.   The amazing fact , as seen in
Table 2, is that DLRI is ε-optimal in all stochastic environments and DLIP is not ε-optimal in any !

Since their updating mechanism is similar,  it seems that the fact that the DLRI is absorbing and

DLIP is not accounts for this difference.  Indeed this is true, for if DLIP is made absorbing, it

becomes ε-optimal [17].  A similar observation can be made for the LRP and the absorbing DLRP

[18].  So it seems to be a trade off; to get a desirable convergence property in a stationary

environment, the discrete linear schemes must be made absorbing.

Table 2

A Comparison of The Asymptotic Properties of Some Linear VSSA

Reward-Inaction Inaction Penalty Reward Penalty

______________________________________________________________________________           
Continuous

Algorithm LRI  Algorithm LIP Algorithm LRP

    Always ε-optimal         *****         E[p1] ∅ c2/(c1+ c2)

______________________________________________________________________________

Discrete
Algorithm DLRI  Algorithm DLIP Algorithm DLRP

    Always ε-optimal      E[p1] ∅ c2/(c1+ c2) (i)  ε-optimal if cb < 0.5

 (ii) Always ε-optimal if

       responses are filtered+ .

______________________________________________________________________________

Discrete Absorbing
Algorithm ADLIP Algorithm ADLRP

  Always ε-optimal   Always ε-optimal

                                               
+ In this case the responses of the environment are not directly fed to the automaton. They are first filtered by a
simple coin-tossing experiment. See [18] for the details of this process.
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______________________________________________________________________________

***** Not so easy to characterize.

II.2 Motivation for Discretization

 Probably the biggest limitation of learning automata is their slow rate of convergence

[12, 28]. By limiting the number of assumptions that learning automata have about the

environment, they are a general approach for machine learning.  However, this also means that

there are fewer properties that can be used to speed up the rate of convergence.

 Originally the intent of introducing discrete learning automata was to increase the rate of

convergence and to eliminate the assumption that the random number generator could generate

real numbers with arbitrary precision [21, 27].  Once the optimal action has been determined, and

the probability of selecting that action is close to unity, the discrete automata increase this

probability directly, rather than approach the value unity asymptotically.
If the quantity p1 goes directly from 0.98 to 1.0, this will change the expected probability of

the LA getting a reward from (0.98 d1 + 0.02 d2)   to  d1. In the worst case this corresponds to at

most a 2 % change in the expected probability of being rewarded.  If the jump to the end state

reduces the number of iterations by 50%, the trade-off may be worth while.  By making the

probability space discrete, a minimum step size is obtained.  If the automaton is close to an end

state, the minimum step size forces it to this state with just a few more favourable responses.

The central issue from a theoretical point of view is that the properties  of a Markov process

can change if the probability of choosing an action is restricted to a finite subset of [0,1].  For

example, a continuous space will have recurrent states, but a finite space will only have positive

recurrent states [25].  As well, discrete  Markov processes have properties that are not true for

general Markov processes [25].  Round off error will cause the automaton that approaches its end

point asymptotically to  artificially reach its end point [18, 21].  Also, the proofs of convergence

in continuous spaces may not be applicable to a finite state machine. This point is demonstrated by

the fact that, so far, the existing proofs of convergence for discrete algorithms are significantly

different from the proofs of their continuous counterparts ( compare [17]  and [21] to the

methods  used in [3,5,12] ).

Another benefit of discretizing the probability of choosing an action is that it reduces the

requirements on the system's random number generators [18, 21]. This is important since VSSA

use a random number generator  in its implementation [27]. In theory, it is assumed that any real

value in [0, 1] can be obtained from the machine; in practice, only a finite number of these values

are available.

Finally, and far from being unimportant are the considerations of implementation and

representation. Discrete versions lead, quite naturally, to the use of integers for keeping track of
how many multiples of 1/n the action probabilities are.  While the above consideration frequently
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increases the rate of convergence measured in terms of the number of iterations, a discrete

algorithm also has the benefit of reducing the time measured in terms of the clock cycles that a

microprocessor would take to do each iteration of the task.  It also reduces the amount of

memory needed.  Typically  addition is quicker than multiplication on a digital computer, and the

amount of memory used for a floating point number is usually more than that required for an

integer.  In the schemes that have been discretized so far, whereas the continuous versions update

their probability vectors via multiplication, the discretized counterparts achieve this with addition

and subtraction. Thus, in terms of both time and space, discrete algorithms seem to be superior.

III.  THE  RATIONALE  BEHIND ESTIMATOR ALGORITHMS
A recent approach to improving the rate of convergence of LA was introduced by the

pioneer, Thathachar, and his student Sastry using the so-called estimator algorithms  [26, 28-31].

Whereas all VSSA have a probability vector, where the ith component represents the probability

of choosing the ith action, Estimator Algorithms are characterized by also having an estimate of

the probability of each action being rewarded.  This will be referred to as the estimate vector.

Typically, non-estimator algorithms update the probability of choosing an action based

directly on the feedback from the environment. Estimator Algorithms are different.  The

probability vector is updated based on both the estimate vector and the current response from the

environment.  Thus, for Estimator Algorithms, even if a particular action was rewarded, it may

happen that the probability of choosing another action is increased !  As Thathachar and Sastry

point out,  this is a novel feature of these algorithms [28].  The extra computational complexity of

having an estimate vector pays off handsomely ; the rate of convergence is greatly increased when
compared to traditional algorithms such as the LRI scheme [26, 28, 31].

III.1 The Pursuit Algorithm

The Pursuit Algorithm is a special case of a general estimator algorithm [11, 29, 31].  This

algorithm is characterized by the fact that it pursues what it reckons to be the optimal action.

This involves three steps [31].  The first step is to pick the action α(t) based on the probability

distribution P(t).  If the automaton is rewarded the second step is to increase the component of

P(t) whose current estimate of reward is maximal.  Finally, the third step updates the running
estimates of the probability of being rewarded. To do this, two more variables are introduced: Zi

is the number of times the ith action has been chosen up to time t; and Wi is the number of times

the ith action has been rewarded up to time t.  Observe that for all i, the ith component of the
estimate vector, d'i(t), equals  Wi / Zi. Explicitly the algorithm is stated as follows:
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ALGORITHM Pursuit
Parameters

λ: the speed of learning parameter where 0 <  λ < 1.
m: index of the maximal component of D'(t),  d'm(t)=Maxi{d'i(t)}.

em: the unit r-vector with 1 in the mth coordinate.

Wi(t): the number of times the ith action has been rewarded up to time t, with 1�i�
r.

Zi(t): the number of times the ith action has been selected up to time t, with 1� i �
r.
Method

Initialize pi(0) = 1/r for 1� i � r
Initialize D'(0) by picking each action a small number of times.
Repeat

    Step 1 : At  time t pick α(t) according to probability distribution P(t).
Step 2 : Update P(t) according to the following:

P(t+1) = P(t)   if β(t) = 1
              = (1 - λ) P(t)   +   λ em if β(t) = 0

    Step 3 : Update D'(t) according to the following:
If α(t) = αj,

Wj (t +1) =  Wj(t) + ( 1 -  β(t) )
Zj(t +1) =  Zj(t) + 1  
d'j(t+1)=  Wj (t+1) / Zj(t +1)

For all i�j
Wi(t+1) =  Wi(t)
Zi(t+1)  =  Zi(t)
d'i(t+1)  =  d'i(t).

EndRepeat
END ALGORITHM Pursuit

The Pursuit Algorithm is similar in design to the LRI algorithm, except that whereas the LRI

algorithm moves P(t) in the direction of the most recently rewarded action, the Pursuit Algorithm

moves P(t) in the direction of the action which possesses the highest estimate of reward. Both

algorithms approach their end points (when P(t) is a unit vector) asymptotically.  This is because

the action probability to which the scheme is converging to is increased by a quantity proportional

to the sum of the remaining action probabilities.

Thathachar and Sastry [31] did experimental tests to compare the two automata. The two

algorithms were compared to determine the number of iterations necessary to achieve the same
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level of accuracy.  The Pursuit  Algorithm was five to seven times faster than the LRI algorithm.

Like the LRI scheme, the Pursuit Algorithm has been shown to be ε-optimal [31].

III.2  The TS Estimator Algorithm3

The TS Estimator (TSE) Algorithm  is a far more complex scheme.  Given that the αi has

just been rewarded, this algorithm treats probability components with a estimate of reward greater
than d'i differently from those with a value lower than d'i. In order to facilitate this, Thathachar

and Sastry use an indicator function Sij(t) which is zero unless d'i  is bigger than d'j, in which case

it is unity.  Basically the probabilities are updated as a function of both the reward estimates D'(t),

and the action probability vector P(t), as seen in (3.1a) and (3.1b).

This algorithm is formally described as below.  The updating of P(t+1) depends indirectly on

the response from the environment. Feedback from the environment changes the value of the

components D'(t).  This in turn affects the value of a user-defined function f(d'i(t) - d'j(t)) and the

value of  Sij(t).  The function Sij(t) determines whether the term λ.f(d'i(t) - d'j(t)) is multiplied by

pi(1-pj)/(r-1) or by pj.

ALGORITHM TSE
Parameters

λ, m, em, Wi(t), Zi(t) are the same as in the Pursuit Algorithm.

Sij(t) : An indicator function, where,
Sij(t) = 1     if d'i(t)  >  d'j(t)  

= 0     if d'i(t) �  d' j(t).

f :  a monotonic, increasing function4, where f:[ 0, 1] ∅ [ 0, 1],  f(0)=0 and f(1)=1.
Method

Initialize pi(0) = 1/r for 1� i � r
Initialize D'(0) by picking each action a small number of times.
Repeat

    Step 1 : At  time t pick α(t) according to probability distribution P(t).
Step 2 : Update P(t) according to the following. Let  α(t) = αi. 

For all j, such that j � i,

pj(t+1) = pj(t) - λ[f(d'i(t)-d'j(t)) ( Sij(t) pj(t) + Sji(t)  
(1-pj(t)) pi(t)

r-1   ) ]
(3.1a)

                                               
3Thathachar and Sastry refer to this algorithm as just an estimator algorithm.  However this paper must distinguish
it from the other estimator algorithms, and so we will call it  the TS Estimator (TSE) algorithm.
4The typical family of functions that are used here are f(x) = xn, where n is one of {. . . 1/4, 1/3, 1/2, 1, 2, 3, 4, .}.
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pi(t+1) = pi(t) + λ∑
j �  i

 

 [f(d'i(t)-d'j(t)) ( Sij(t) pj(t) + Sji(t)  
(1-pj(t)) pi(t)

r-1  )  ]

(3.1b)
Step 3 : Same as in the Pursuit Algorithm.

EndRepeat
END ALGORITHM TSE

In order to describe the TSE Algorithm, the Sij notation will be temporarily dropped. This

breaks down the updating rule into three cases. If the ith action is rewarded, then all actions with

estimates bigger than i will be updated according to the following rule:

pj(t + 1) =  pj(t) + λ [f(d'i(t)-d'j(t)) ( 
(1-pj(t)) pi(t)

r-1   ) ]                    (3.2)

All actions with estimates of reward less than action i will be updated according to the following:

pj(t + 1) =  pj(t) - λ [f(d'i(t)-d'j(t)) ( pj(t))  ]                                    (3.3)

The component that is calculated last is pi( t + 1), which is given the value so that the sum of all

the probabilities in the vector P(t+1) is unity. It is worth noting that if for all x, f(x) = 1  then (3.3)

reduces to the Pursuit  algorithm above.
If d'i(t) is less than  d'j(t) then the value of f{d'i(t) - d'j(t)} is negative  because f is monotonic

and increasing. So the value of pj(t + 1) is bigger than pj(t) in (3.2). In other words, if there are

actions with estimates bigger than the ith action's estimate, their probability of being chosen will

increase.  This is just as Thathachar and Sastry point out [30]: though one action is rewarded,

other actions may increase their probability of being chosen.  As a matter of fact, if the ith action

has the smallest estimate of reward probability, the value of all the other action probabilities will
increase and so the value of pi will actually decrease even though αi was rewarded !    This is the

reason why the pi(t) / (r - 1) term was included in (3.2).  Even if the ith action has the smallest

estimate of being rewarded, the total increase of all the other  pj(t), j � i, will never be bigger than

the value of  pi(t).

The  next   consideration   is  the  convergence  of  the  algorithm.  The (1 -pj(t)) factor in

(3.2) and the pj(t) factor in (3.3) ensure that the change in these components is proportional to

their original value.  As the values get closer to their end states (zero or unity) the magnitude of
change of the probability vector gets smaller.  Assume that αi has the maximal estimate of reward

probability. Then all the other components, pj(t), j � i,  will be updated according to (3.3).  Since

αi has the maximal estimate for the reward probability, the term [ 1  - λ  f(d'i(t) - d'j(t))] is strictly

less than one.  Thus, if the algorithm has been running for a while, both d'i(t) and d'j(t)  will
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remain approximately constant, and so pj(t) will decrease asymptotically.  As with the Pursuit

algorithm, for practical implementations the scheme will eventually round off to an end state. But

in the case of machines with finite accuracy, if the end state action is penalized enough so that its
estimate of reward probability is no longer maximal, the sign of d'i(t) - d'j(t) will change and the

scheme can move away from that end state.

This algorithm has also been shown to be ε-optimal [30].  Because of the unique possibility

of decreasing an action that has just been rewarded,  the TSE Algorithm has no analogous non-
estimator counterpart.  Simulation comparisons with the LRI were done by Thathachar and Sastry.

The environment and set up of the experiments were identical to those of the Pursuit  algorithm.

For a given level of accuracy the TSE Algorithm converges an order of magnitude quicker [30].

IV. DISCRETE ESTIMATOR ALGORITHMS
IV.1 Motivation

We shall now combine the two previous approaches of catalyzing the convergence of VSSA

to create a class of algorithms called Discrete Estimator Algorithms (DEA).  The probability

vector will be restricted to only finitely many values to reflect the constraints of discrete

algorithms, and estimate vectors will be used to update the probability vector in order to utilize

the benefits of estimator algorithms.  Throughout this chapter, n will be a resolution parameter

and the interval [0,1] is subdivided into a number of intervals proportional to n.

Discrete versions of the Pursuit algorithm5 and the TSE Algorithm will be considered.  Both

algorithms are ε-optimal.  Indeed, we shall present an entire family of DEAs. Members of this

family will be shown to be ε-optimal by deriving two sufficient conditions required for the ε-

optimality. We conjecture that the necessity of these conditions too.

The first property that a DEA must possess is that it must implicitly specify an upper bound

on the amount any action probability can decrease during a single iteration.   Using the notation

that r is the number of actions and n  is  a  resolution   parameter,   this  property,   called  the

Property  of Moderation, is stated as follows:

Property 1: A DEA with r actions and a resolution parameter n is said to possess the

Property of Moderation if the maximum magnitude by which an action probability can  decrease
per  iteration is bounded by 1/r n.

                                               
5The discretized version of the Pursuit Algorithm can be found as an algorithm in its own right in [6,30]. However,
in this paper we would like to emphasize that it is only a member of the family of discretized estimator algorithms
which satisfy the sufficient conditions given in this section.
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The next property is called the Monotone Property. If the estimate of reward of an action,
say αm, remains the maximum estimate subsequent to a certain point of time, then, we say that a

DEA possesses the Monotone Property  if it steadily increases the probability of choosing αm to

unity.

 
Property 2:  Suppose there exists an index m and a time instant to < �, such that d' m(t) >

d'j(t) for all j such that j�m and all t � t o .  A DEA is said to possess the Monotone Property if

there exists an integer no such that for all resolution parameters n > no, pm(t) ∅ 1 with probability

one as t ∅ �.

We now present two DEAs possessing the moderation and monotone properties.

IV.2 The Discrete Pursuit Algorithm

The Discrete Pursuit Algorithm (DPA) mimics the strategy followed by the continuous

Pursuit Algorithm, except that the probability changes are made in discrete steps. Thus terms

involving multiplication by λ are replaced by the addition or subtraction of the smallest step size.

Thus the algorithm works in three steps just like the  continuous Pursuit Algorithm.  The

difference is in the second step.  For the DPA, the components of the probability vector are

increased by integral multiples of the smallest step size ∆, where ∆ = 1/rn.  If the automaton has

been rewarded and has not converged, then all the non-zero action probabilities are decreased by

∆ except the one with the highest estimate of the reward probability. This action probability is

increased by the appropriate amount to keep the sum of the components of the vector equal to

unity.  Explicitly, the algorithm is as described below.

ALGORITHM DPA
Parameters

 m, Wi(t), Zi(t) are the same as in the Pursuit Algorithm.

∆  = 1/ rn is the smallest step size.
Method

Initialize pi(0) = 1/r for 1� i � r
Initialize D'(0) by picking each action a small number of times.
Repeat

    Step 1 : At  time t pick α(t) according to probability distribution P(t).
Step 2:  Let α(t) = αk. Update P(t) based on the components of D'(t).

If β(t) = 0 and pm(t) � 1

pj(t+1)= Max{ pj(t) - ∆, 0 }      for all  j � m

pm(t+1)= 1 - ∑
j �  m

 
 pj(t+1) 
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Else
 pj(t+1)= pj(t)    for all 1 � j � r 

(4.1)
    Step 3 : Same as in the Pursuit Algorithm.

EndRepeat
END ALGORITHM DPA

The fact that this algorithm has the two necessary properties will now be proved.

Lemma 4.1   The DPA possess the moderation property.

Proof:  The result is true since, in the worst case, any component of  P(t) can decrease by at
most ∆=1/rn.                         

Lemma 4.2  The DPA possess the monotone property.
Proof :  Suppose for the DPA, there exists an index m and a time instant to < � such that

d'm(t) > d'j(t) for all j such that j�m and all t � t o. Then we have to prove that there exists an

integer no such that for all resolution parameters n > no,  pm(t) ∅ 1 with probability one as t ∅ �.

Consider the  sequence of random variables {pm(t)}t�t o  satisfying supt�0  E[| pm(t) |] < �.

We shall show that this sequence constitutes a submartingale. If that is the case, we shall make

use of the martingale convergence theorem [2] which states that the sequence converges with

probability one, i.e.

Pr{ 
lim
t ∅�   pm(t) = p

�
m } = 1

We shall first prove that this sequence {pm(t)}t�t o  is a submartingale. For the DPA, we know

that if m satisfies
d'm = Maxi { d'i(k) }

then,  d'm(t) > d'j(t) for all j�m and all t � t o. Therefore, for all t > to,

pm(t+1) =  pm(t) if β(t) = 1  ( that is w.p. 1 - dm )

   = 1 - ∑
j�m

 Max( pj(t) - ∆, 0)   if β(t) = 0 ( that is w.p. dm ).

If  pm(t) = 1 then the absorbing property of the algorithm trivially proves the result.

Of course, there is the possibility that the algorithm has already converged to an action  αj

where  j�m.  To ensure that this has not happened, we assume that the resolution parameter is
large enough so that the algorithm has not converged by the time to.  Assuming the algorithm has

not converged, there exists at least one non-zero component of P(t) beside pm(t),  say pk(t), and

hence we assert that
Max (pk(t) - ∆, 0)  <  pk(t).
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Since  P(t)  is  a  probability  vector   pm(t) = 1 - ∑
j�m

 pj(t)   and  so,

1 - ∑
j�m

 Max( pj(t) - ∆, 0)   > pm(t).

As long as there is at least one non-zero component pk(t) (where k�m), it is clear that we

can decrement pk(t) and hence increment pm(t) by ∆. Hence,

 pm(t+1)  =  pm(t) + χ∆,

where is χ∆ is an integral multiple of ∆,  χ is bounded by 0 and r, and ∆ is the smallest step size.

Therefore we write,

E[pm(t+1)| P(t), D'(t), pm(t) � 1 ]  = d m { pm(t) + χ∆ } + (1- dm ){pm (t)}

                                             = pm (t)  +  dmχ∆

Since the above two terms have an upper bound of unity,

E [ pm (t+1)  | P(t), D'(t), pm(t) � 1] is bounded. Hence

supt�0  E[ | pm (t+1) | P(t), D'(t), pm(t) � 1] < �.  Thus,

E [ pm (t+1) - pm (t) | P(t), D'(t) ] = dmχ∆  � 0 for all t  �  t o,

implying that pm (t) is a submartingale.  By the submartingale convergence theorem [2], {pm (t)}

converges and so as t∅�,

E [ pm (t+1) - pm (t) | P(t), D'(t) ] ∅ 0 w.p. 1

implying that   dmχ∆  ∅ 0 w.p. 1. This in turn implies that χ ∅ 0 w.p. 1, and consequently that

∑
j�m

 Max( pj(t) - ∆, 0)   ∅ 0 w.p. 1.  Hence pm(t) ∅ 1   w.p. 1,  and the result is proved. 

IV.3  The Discrete TSE Algorithm

Like its continuous predecessor, the Discrete TSE (DTSE) Algorithm is a far more complex

scheme.  However it serves to illustrate the power of the general proof of convergence that

follows in the next section.  Its design is merely a compromise between the necessity of having the

algorithm possess the moderation and monotone properties while possessing as many qualities of

the continuous algorithm as possible.

The  discrete scheme is a two parameter system. The smallest step size for this algorithm is

∆ = 1/rnθ.  Here θ represent the largest integer multiple of ∆ that any one component of the

probability vector can decrease by in one iteration.  The continuous updating rule has three

factors:

1) λ 
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2) f(d'i(t)-d'j(t))

3) ( Sij(t) pi(t) + Sji(t)  
(1-pj(t)) pi(t)

r-1   )
The modification to each one will be dealt with in turn. The first term, λ, represents the maximum

that the continuous probability component can change, and so this has been replaced by θ, an

integer.  The f(d'i(t)-d'j(t)) term remains intact  because it is a feature of the TSE  Algorithm to

base the magnitude of the increase on the difference in estimates of reward.  In  the  third  factor

the terms pi(t) and (1-pj(t)) pi(t) have been dropped completely.  This is in the spirit of the

general goal of discrete algorithms which is that of not having the algorithm approach its end

point asymptotically.  So the third term becomes (Sij(t) + Sji(t)  
1

r-1  ).  The way these terms are

brought together is:

θ f(d'i(t)-d'j(t)) ( Sij(t) + Sji(t) 
1

r-1  )
The above term when rounded up, determines  the multiple of ∆ that will be used to update the
probability vector.  Given that αi has just been rewarded, this algorithm treats probability

components with a higher estimate of reward than d'i differently from those with a lower estimate

than d'i.  To facilitate this the indicator function Sij(t) has been used just as in the continuous case.

We now introduce two special functions.  The first is Rnd() which rounds up its parameter
so that its value is always an integer.  The second function is Check. Given three parameters,  pi,

pj, and x, Check(pi, pj, x) calculates the largest integer multiple of ∆, between 1 and x,  that can

be added to pi and subtracted from pj  while simultaneously preserving the fact that pi and pj are

bounded between zero and one.  It is important to note that the first  component that  is updated

is the maximal one, so as to guarantee that  this value will always increase for each iteration. This

is necessary to satisfy the monotone property. As a final note we would like to state that this

scheme is "operationally" different than the traditional estimator and non-estimator schemes
because every single change of pj which is reflected in the magnitude of pi must be explicitly

verified so as to ensure that  P is a probability vector. This is done in (4.2a) and (4.2b). By

comparing these with (3.1a) and (3.1b) we can observe that this verification does not increase the

computational complexity of the scheme. The algorithm is formally described below.

ALGORITHM DTSE
Parameters

m, Sij(t), f, Wi(t), Zi(t) are the same as in the TSE Algorithm.

∆ = 1/rnθ, with θ (an integer) being the maximum any component can change.

             Rnd(x) rounds up x to one of {- θ, -θ+1, -θ+2, ...θ−1,θ}.
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        Check(pi(t), pj(t), x) returns the largest integer less than or equal to x such that

0 �  p i(t)+x∆,  pj(t)-x∆  � 1.
Method

Initialize pi(0) = 1/r for 1� i � r
Initialize D'(0) by picking each action a small number of times.
Repeat

    Step 1 : At  time t pick α(t) according to probability distribution P(t).
Step 2 : Let α(t) = αi. Update P(t) according to the following:

For each action i, starting with m Do

change = Rnd(θ f(d'i(t)-d'j(t)) ( Sij(t) + Sji(t)  
1

r-1  ) )
pj(t+1) = pj(t) - ∆ Check(pi(t), pj(t), change) (4.2a)

pi(t+1) = pi(t) + ∆ Check(pi(t), pj(t), change)                  (4.2b)

EndFor

    Step 3 : Same as in the Pursuit Algorithm.
EndRepeat

END ALGORITHM DTSE

We now prove the properties of the DTSE.

Lemma 4.3 The DTSE Algorithm possesses the moderation property.

Proof :   We need to show that the magnitude by which any action probability can decrease at any

one iteration of the algorithms is bounded by 1/r n.

There are two possible worst cases:
i)  If any pj(t) < pi(t) then it will decrease by

      ∆ Rnd(f(1) θ )=  
1

rnθ  Rnd(θ) =  
1
rn   .

ii) If any pj(t) > pi(t) then it will get decreased r-1 times by the amount

∆ Rnd(f(1)  θ
r-1   ) ) =  

r-1
rnθ  Rnd( θ

r-1  ) =  
1
rn   , and the result is proved.

Lemma 4.4 The DTSE Algorithm  possesses the monotone property.
Proof : Suppose there exists an index m and a time instant to < � such that d' m(t) >

d'j(t) for all j �m and all t � t o. Then we need to show that there exists an integer no such that for

all resolution parameters n > no,  pm(t) ∅ 1 with probability one as t ∅ �.
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As in the case of the DPA consider the  sequence of random variables {pm(t)}t�t o  satisfying

supt�0  E[| pm(t) |] < �. We shall first show that this sequence constitutes a submartingale. For

the DTSE Algorithm, we know that if m satisfies  d'm = Maxi { d'i(k) }, then,

d'm(t) > d'j(t) for all j�m and all t � t o.

Therefore, for all t > to, Smj(t)  = 0, and so

pm(t+1) =  pm(t)                               if β(t) = 1 (that is w.p. 1- dm)

     = 1 - ∆ ∑
j�m

 Rnd(f(d'm(t)-d'j(t)) θ ) if β(t) = 0 (that is w.p. dm).

If  pm(t) = 1 then the absorbing property of the algorithm trivially proves the result.

Of course, there is the possibility that the algorithm has already converged to an action  αj

where  j�m.  To ensure that this has not happened, as in the case of the DPA, we assume that the
resolution parameter is large enough so that the algorithm has not converged by to.  Assuming

that the algorithm has not converged, there exist at least two non-zero components of P(t),   say
pk(t) and pm(t).  By the assumption of the property  d'm(t) > d'k(t), and hence we assert that

pk(t+1) = pk(t) -  
1

rnθ   Rnd(f(d'm(t)-d'k(t)) θ) <  pk(t) - ∆.

Since  P(t)  is  a  probability  vector  if  pk(t) decreases by at least ∆ then  pm(t) must increase by

at least ∆. So,  pm(t+1) > pm(t) + ∆. Therefore,

E [pm(t+1) | P(t), D'(t), pm(t) � 1]   >   d m {pm(t) + ∆}  +  (1- dm) {pm (t)}

      = pm (t)  +  dm∆

Since the above two terms have an upper bound of unity,

E [ pm (t+1)  | P(t), D'(t), pm(t) � 1] is bounded.

Hence supt�0  E [ | pm (t+1) | P(t), D'(t), pm(t) � 1] < �.  Thus,

E [ pm (t+1) - pm (t) | P(t), D'(t) ] = dm∆  � 0 for all t  �  t o,

implying that pm(t) is a submartingale.

By the submartingale convergence theorem [2], {pm (t)} converges and so as t∅�,

E [ pm (t+1) - pm (t) | P(t), D'(t)] ∅ 0 w.p. 1

But any change, while not in an end state is bounded by dm∆. Hence the automaton must

ultimately terminate in an end state.   Hence pm(t) ∅ 1 w.p. 1,  and the lemma is proved.

 We now study the convergence of any scheme possessing the moderation and monotone

properties.

IV.4  Proof  Of  Convergence
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The asymptotic  property of DEAs will now be proved. The proofs of Theorems 4.1 and 4.2

are analogous to that of the TSE Algorithm [30] with the appropriate modifications for the

change from a continuous to a discrete space.  From a broad perspective, there are three

differences of note. The first is trivial.  The continuous pursuit algorithms have a learning

parameter λ, and as λ tends to zero the algorithm takes a longer time to converge. The discrete

version has the integer parameter n which is bounded by one and infinity.  As n approaches infinity

the algorithm takes a longer time to converge.  But, in one sense these two parameters are

interchangeable.  The second difference is that, whereas the parameter of the continuous schemes

vary continuously, the parameter of the discrete scheme varies in a discrete manner. Thus the

limiting arguments have to be used in somewhat different ways.  The final difference is with the

proof of Theorem 4.1.  Unlike [30], this proof is achieved without the erroneous assumption that

the random vectors P(t) and P(t+1) are independent6. With these modifications accounted for,

Theorem 4.2 can be proved using the same method as its continuous counterpart [30].

We shall now prove the convergence of the scheme. Let DEA represent a discrete estimator

algorithm with the moderation and monotone properties. Indeed, in every stationary random

environment, a DEA is ε-optimal.  This will be proved by showing that given ε > 0 and δ > 0,
there exist an no > 0 and a to < � such that for all time t � t o and for any resolution parameter n >

no the following  is true:

     Pr[ | 1 - pb(t) | < ε] > 1 - δ.

 Note that in the above pb  refers to the probability of choosing the best action.  Our proof is

motivated by the fact that the algorithms have been set up so that each action can be sampled an

arbitrary number of times by  suitably choosing the internal parameter n. Thus one can obtain

arbitrarily accurate estimates of the reward probabilities, which in turn can yield sufficient

discrimination among the actions.  We shall first prove that any DEA has this property.

Theorem 4.1
For each action αi, assume pi(0) � 0.  Then for any given constants δ > 0 and M < �, there

exist no < � and t o < �  such that under the DEA, for all learning parameters n > n o  and all time t

> to, the probability Pr{each action chosen more than M times at time t }  � 1 - δ.

Proof :

    Define the random variable  Y 
i
t      as the number of times the i th action was chosen up to time

t.  Then we must prove that

                                               
6We are grateful to Prof. Dixon, from the Department of Mathematics at Carleton University for pointing out that
in general, this assumption is false.
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Pr{Y 
i
t    > M }  � 1 - δ. (4.3)

Clearly (4.3) is equivalent to  Pr { Y 
i
t    � M } <  δ.  (4.4)

 The events {Y 
i
t   = k } and { Y 

i
t    = j } are mutually exclusive for j � k,  and so (4.4)  yields

(4.5).

 ∑
k = 1

M
 Pr  { Y 

i
t    = k }   <  δ. (4.5)

For any  iteration of the algorithm,  Pr {αi is chosen } � 1.  As well, by the moderation

property, during any of the first t iterations of the algorithm :

Pr {αi is not chosen } � (1- p i(0) +t/rn ).

Using these two upper bounds, the probability that action αi is chosen at most M times

among t choices has the following upper bound :

Pr{Y 
i
t    � M} <  ∑

k = 1

M
 C(t,k)( 1 ) k ( 1- pi(0) +t/rn )t-k (4.6)

However, to make a sum of M terms less than δ, is is sufficient to make each element of the sum

less that δ/M.  So we will pick an arbitrary term, say when k = m. It suffices to show that the mth

term is less that δ/M or equivalently that M multiplied by the mth term is less that δ.   Hence we

must show that M C(t,m) ( 1 )m ( 1- pi(0) +t/rn )t-m   can be made to be bounded by  δ.

First of all, C(t,m) � t m. This leads us having to show that :

            M tm  ( 1- pi(0) +t/rn )t-m <  δ.

Now in order to get  the  R.H.S. of this term  less  then δ  as t increases, the ( 1 - pi(0) +t/rn )

term must be strictly less than unity. In order to guarantee this, we bound the value of n with

respect to t in such a way that (1- pi(0) +t/rn ) < 1. We do this by requiring that  n >  
t

rpi(0)  .

Let, n =  
2t

rpi(0)   (4.7)

With this value of n (4.6) simplifies to Pr { Y 
i
t    � M } < M t m  ψt-m,  where  ψ =  1 - 1/2 pi(0)

and 0 <  ψ <  1.

It remains to evaluate,   
lim
t ∅�  M tm ψm-t.  This is equivalent to,

M 
lim
t ∅�     

 tm

(1/ψ)t-m
   with n =  

2t
rpi(0)  (4.8) 
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Now (4.8) is in an indeterminate form. By using l'Hopital's rule m times the following is obtained:

M  
lim
t ∅�    

 m!

(ln1/ψ)m(1/ψ)t-m
   = 0, with n =  

2t
rpi(0)   

This is, (4.8) has a limit of zero as t and n tends towards infinity, when condition (4.7) is satisfied.
Hence by virtue of the fact that the limits exists, for every action αi there is  a t(i) such that for all

t > t(i) (4.6) is less that δ when condition (4.7) is satisfied.  Now set n(i) =  
2t(i)

rpi(0)  .  It remains to

be shown that (4.6) is satisfied for all n > n(i) and for all t > t(i).  This is trivial because as n

increases the L.H.S. of (4.6) is monotonically decreasing, and so the inequality (4.6) is preserved.
Also, for any  t > t(i), no matter how often action αi is chosen in the interval from t(i) to t, by the

properties of probability:   Pr { (Y 
i
t(i)  � M ) and (any other event) } � Pr { (Y 

i
t(i)  � M )}.

Thus in this case too, the inequality (4.6) is preserved.  Thus for any action αi:

Pr { (Y 
i
t(i)  � M  )} <  δ  whenever  t > t(i) and n > n(i).

Since, we can repeat this argument for all the actions, we can define to and  no as follows:  to
= Max1�i�r { t(i) } and no = Max1�i�r { n(i) }. Thus for all   i   we   have   shown   that   for    all

t > to  and  all  n > no,  the  quantity Pr{ Y 
i
t    < M } < δ,  and the theorem is proved.

With this property established we now  prove the central result of this paper.

Theorem 4.2

In every stationary random environment, the family of DEA are  ε-optimal.
Proof : We need to show that given ε > 0 and δ > 0,  there exists a  no > 0 and a to < � such that

for all t  � t o and  n >  no:

Pr[ | pm(t) - 1 | < ε] > 1 - δ
Let h be the difference between the two highest reward probabilities. By assumption db is

unique, and so there exists an h > 0,  such that db -  h � d i for all i � m. By the weak law of large

numbers we know that if {Xj}j=1.. t is a sequence of independent and identically distributed

random variables, each having finite mean, µ, then for any  ε > 0,

Pr{ | 
X1 + X2 + . . . + Xt

t    - µ | > ε } ∅ 0 as t ∅ �.
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Let Xt be the  indicator function such that:

 Xt = 1  if αi was rewarded the  tth time αi  was chosen,

= 0 if αi was penalized the  tth time αi was chosen,

and let Y 
i
t    be defined as in Theorem 4.1.

Hence by the weak law we have that for a given δ > 0 there exists an  Mi < �,  such that if αi is

chosen at least Mi times:

Pr{ | d'i(t) − di | < 
h
2  } > 1- δ.

Let M = Max1�i�r {Mi}. Since h is strictly positive, it is clear that for all j � m and for all t,

if Min1�i�r { Y 
i
t  } > M  then

Pr{ |d'm(t) - dj|  >  h/2} > 1- δ.

By Theorem 4.1 we know that we can define to and  no such that for all i, all t > to and all n

> no

 Pr { Y 
i
t  > M }  � 1 - δ. (4.9)

Thus if all actions are chosen at least M times, each of the d'i will be in an h/2 neighbourhood of

di with an arbitrarily large  probability. But we know that :

     dm -   h/2 > dm -  h                  because h > 0

� d i                          for all i � m.

By the law of total probability , if Bc  is the complement of the event B,

Pr {A} = Pr {A | B} Pr {B} + Pr {A | Bc} (1 -  Pr {B})

Since probability is a continuous set function we have:

lim
t ∅�  Pr{A} =   

lim
t ∅�

 Pr {A|B} 
lim
t ∅�

 Pr {B}

     +    
lim
t ∅�

 Pr {A | Bc} (1- 
lim
t ∅�

 Pr {B}).

But since each term is positive,  the above can  be simplified to

lim
t ∅�  Pr{A} �   

lim
t ∅�

 Pr {A|B} 
lim
t ∅�

 Pr {B}   (4.10)

Let A and B be the following events:

A + | pm - 1 | < ε,  and,
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B + Maxi {| d'i (t) - di |} <  h/2.

Then  clearly,

Pr {A | B}= Pr{ | pm - 1 | < ε | Maxi {| d'i (t) - di | } <  h/2}.

Now using Theorem 4.1 and the monotone property, we know that
lim
t ∅�   Pr{ A|B}  ∅ 1

primarily because  we can select a resolution parameter large enough to satisfy both  the property

and the Theorem 4.1. Furthermore, we know by Theorem 4.1 and  (4.9) that   
lim
t ∅�  Pr{B}∅1-δ.

By (4.10)    
lim
t ∅�   Pr { | pm - 1 | < ε }  � 1- δ  for all  n >  no  and the theorem is proved. 

With the proof complete, the next step is to use simulations of the automata in stochastic

environments to  illustrate some of the advantages of the discrete versions when compared to

their continuous counterparts.

V.  EXPERIMENTAL RESULTS AND DISCUSSIONS
V.1  Rate of Convergence and Accuracy

The problem with performing simulation results can be typified with the following:  no

matter how good an algorithm is, there could always be a single case in which another algorithm

converges quicker and with a better accuracy.  The approach taken to measure the performance

of automata was to compare the DEAs to their continuous counterparts in environments which

have been used as benchmarks by the inventors of their continuous counterparts Thathachar et. al.

[11, 26, 28-31].

When considering these experimental results, the following property of learning automata

should be kept in mind.  If the objective is to pick the best action, an algorithm can generally be

made very accurate if the rate of convergence is slowed down.  Alternately, if accuracy is

sacrificed, the rate of convergence can be quickened.

During the course of our study, simulations were performed to compare the rates of

convergence of the discrete and continuous versions of both the Estimator Algorithms.  To

balance this trade off between speed and accuracy, the schemes were required to achieve a

standard rate of accuracy of making no erroneous convergences in 100 experiments.  The value of

the internal parameter ( λ for continuous, and n for discrete ) was tuned to find the one which

yielded the fastest convergence and which simultaneously satisfied the above stated standard rate

of accuracy.  Thus in the case of the continuous algorithms, the largest value of λ which yielded

no errors during the test was used, and in the case of the discrete algorithms, the smallest value of
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the internal parameter, n, was the value reported. These parameters were then used to check the

rates of convergence of the respective algorithms.

An  algorithm was said to have converged whenever the probability of choosing an action

exceeded 0.99.  If the automaton converged to the best action ( i.e., the one with the highest

probability of being rewarded), it was said to have converged accurately.  Table 3 summarizes the

comparison of Discrete and Continuous Estimator algorithms in a 10 action environment.  These
environments were the same ones used to compare the continuous estimator algorithms to the LRI

scheme [28].  The estimator algorithms sampled all 10 actions, 10 times each, to initialize  the

estimate  vector.  These  extra 100 iterations are also included in the results presented in each

table.

The discrete algorithms always out-performed the corresponding continuous ones; typically

the Continuous Pursuit algorithm is about 40 % slower than the discrete version.  For the

Continuous TSE Algorithm, the range is from 4 to 50 % slower that its discrete counterpart.  For
example, in the environment referred to as EA, the DTSE Algorithm takes 207 iterations to reach

the end state and the TSE Algorithm takes 310.  When the 100 iteration used to initialize the

automaton are not considered, the discrete version takes 107 iterations compared to 210.  This is

a decrease by a factor of  approximately 2.

In the next set of simulations, the automata were placed in various two action environments
similar to the one used to test the discrete version of the LRI scheme [27]. The probability of

reward for one action was fixed at 0.8 for all simulations. The probability of reward for the

second action was increased from 0.2 to 0.775.  Before starting the algorithm, estimates  for  D'

were  obtained  by  selecting  each  action 10 times, as was done by Thathachar and Sastry  [31].

These extra 20 iterations were then included in the total number of iterations. The ensemble

average results are shown in Table 4 and 5.

Table 3

Comparison of the Discrete and Continuous Estimator Algorithms

in Benchmark Ten-Action Environments

Environment Algorithm Continuous Discrete

EA Pursuit 1140 799

TSE 310 207
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EB Pursuit 2570 1770

TSE 583 563

Reward probabilities are:

EA     0.7     0.5     0.3     0.2     0.4    0.5     0.4     0.3     0.5     0.2

EB     0.1     0.45    0.84   0.76   0.2    0.4     0.6     0.7     0.5     0.3

When the difference in the probability of reward is marginal, both the discrete algorithms
converge about twice as fast as their continuous counterparts.  For example, with d1 = 0.8 and

d2 = 0.2 the TSE Algorithm takes an average of 28.8 iterations and the DTSE Algorithm takes 24

iterations.  However, twenty of these iterations are due to the initialization process.  So after the

estimates of reward are initialized, the TSE Algorithm takes 8.8 iterations to converge and the

DTSE Algorithm takes 4 iterations to converge.  For more difficult environments such as the one
in which  d1 = 0.8 and d2 = 0.775, the extra 20 iterations become negligible.  In this case the TSE

Algorithm takes 8,500 iterations for to converge, the DTSE Algorithm requires only 5,600.  The

advantage of discretizing is obvious.

V.2  CPU Factors

Note that apart from the computational gain observed in the mean number of iterations,  the

actual computing effort involved in the discrete scheme  is significantly less because the

probability updates at each iteration are not multiplicative.  To illustrate this, the programs that

were used for all algorithms were rendered identical except for the procedure that updates the

probability vector.  For each algorithm, the amount of CPU time used by the procedure that

updated the probability vectors was monitored. The algorithms were given identical tasks, in the

sense that they were all required to execute approximately the same number of iterations (within 4

%).  The average amount of CPU time per iteration was calculated and the results are presented

in Table 6.

Table 4

The Number of Iterations Until Convergence

in Two-Action Environments for the Pursuit Algorithms

Probability of Reward                  Mean Iterations             

         Action 1       Action 2               Continuous       Discrete

 0.800   0.200 22 22
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0.800   0.400 42 39

 0.800   0.600 148 125

 0.800   0.700 636 357

 0.800   0.750 2980 1290

 0.800   0.775 6190 3300

Table 5

The Number of Iterations Until Convergence

in Two-Action Environments for the TSE Algorithms

Probability of Reward                  Mean Iterations             

         Action 1       Action 2           Continuous       Discrete

 0.800   0.200 28.8 24.0

 0.800   0.400 37. 29.0

 0.800   0.600 115. 76.

 0.800   0.700 400. 380.

 0.800   0.750 2200. 1200.

 0.800   0.775 8500. 5600.

Because the rest of the program was identical for all the four schemes, the probability

vectors used for the discrete algorithms had to be implemented as real numbers as opposed to

integers. Thus the advantage observed in Table 6 reflects a decrease in the complexity of the

discretized scheme.  We believe that this can be attributed to such things as the reduction in the

amount of floating point multiplications that are done.  Thus, even without using the integer

representation, discrete algorithms take from 50 to 75 percent of the time that their continuous

counterparts take.

Table 6

CPU Time Used per Iteration in a Ten-Action Environment

  Algorithm Continuous Discrete
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    Pursuit 2.9 msec 2.3  msec

    TSE 14    msec 7.2  msec

V.3  Adaptive Features

One final set of simulations was run to illustrate a desirable property that the TSE Algorithm

has, which the Pursuit algorithms do not have.  If the internal parameter remains the same, but the

task is made progressively harder, the estimator algorithms adapt by increasing their number of

iterations more than the Pursuit algorithms.

In Tables 7 and 8, the difference in reward probabilities is decreased by a factor of four

between the subsequent environments reported in the tables.  Both TSE algorithms respond by

increasing their number of iterations by roughly the same factor, namely, four.  The number of

iterations increases in a multiplicative fashion, in the sense that this number increases by  a

constant  factor  as  the  difference  between the penalty probabilities is decreased.  The Pursuit

algorithms respond in a less favourable way.  In this case it seems as if the number of iterations

increases in an additive fashion. In the continuous case, approximately 100 more iterations are

required as the task gets progressively harder.  Interestingly enough,  discretizing the probability

space retains this property inasmuch as the DPA responds in an analogous way.
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Table 7

Convergence and Error Rate for a Fixed Parameter for the TSE Algorithms

Probability of Reward             Continuous          Discrete     

Action 1    Action 2 Iterations Errors Iterations Errors

 0.800   0.400 78 0 % 56 0

  0.800   0.700 377 0 % 364 0

  0.800   0.775 1190 20 % 1010 17 %

Table 8

Convergence and Error Rate for a Fixed Parameter for the Pursuit Algorithms

Probability of Reward             Continuous           Discrete     

Action 1    Action 2 Iterations Errors Iterations Errors

 0.800   0.400 526 0 % 383 0 %

  0.800   0.700 616 0 % 437 0 %

  0.800   0.775 765 24 % 625 25 %

VI.  CONCLUSION
As software is becoming increasingly complex there is a desire for general methods that

solve a wide variety of problems.  Consider the example of a computer controlled switching

circuit.  One routine may decide how to handle the routing, a second may optimize the call

processing queues, and a third may deal with the storage of customer files.  Rather that have three

separate approaches to be designed, implemented, debugged, and documented, it would be much

easier if a single algorithm could optimize all of these situations.  VSSA can handle all of these

problems.  Automata are adaptable, and as such, represent a fault tolerant approach.

The rate at which VSSA converge has been a limiting factor in their implementation in the

past. Discretizing provides a general method of improving their performance.

Estimator  Algorithms  are  among  the  quickest  stochastic   learning automata known to

date. In this paper we have considered discretizing them and shown that ε-optimality is preserved

when they are discretized. In fact, in some  environments the discrete versions requires only about

50% of the  number of iterations required for its continuous counterpart. As well the amount of

CPU time used per iteration can be reduce by a factor ranging between 50 % and 75 %.
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