EXTENDED RESULTS 1

Hardware-assisted circumvention of self-hashing
software tamper resistance

P.C. van Oorschot, Anil Somayaji, Glenn Wurster

Abstract

Self-hashing has been proposed as a technique for verigifigvare integrity. Appealing aspects of this
approach to software tamper resistance include the proofideeing able to verify the integrity of software
independent of the external support environment, as wethasability to integrate code protection mechanisms
automatically. In this paper, we show that the rich functiity of most modern general-purpose processors
(including UltraSparc, x86, PowerPC, AMD64, Alpha, and ARFcilitate an automated, generic attack which
defeats such self-hashing. We present a general desaoridtthe attack strategy and multiple attack implementation
that exploit different processor features. Each of theg@dementations is generic in that it can defeat self-hashing
employed by any user-space program on a single platforrmetiieg these implementations defeat self-hashing on
most modern general-purpose processors. The generatitgffiniency of our attack suggests that self-hashing is
not a viable strategy for high-security tamper resistantenodern computer systems.

Index Terms

tamper resistance, self-hashing, checksumming, opgragstem kernels, processor design, application security,
software protection

I. INTRODUCTION

Software vendors, developers, administrators, and usersre mechanisms to ensure that their appli-
cations are not modified by unauthorized parties. Most conynthis need is satisfied through the use of
technologies that compute hashes (checksums) of prograe €mr example, cryptographically-secure
hashes are used in signed code systems such as MicrosofitoWs Update [23] to ensure the integrity
and authenticity of downloaded programs and patches. Kdaaigealso used to periodically check on-disk
code integrity in systems such aspwire [18].

While these mechanisms are useful for protecting againsd-garty attackers and some kinds of
malicious software, they are of little use to developers wiigh to protect their applications from modi-
fications by users, administrators, or previously-insthlnalicious software. To prevent circumvention of
copy protection (e.g. Digital Rights Management (DRM) eoément code), or other security mechanisms,
developers need to make their programs resistant to maibiicé.e. software tamper resistant). There
are a number of approaches which have been proposed to peafamare tampering (see Section IV-B,
V). Without the additional support from other resourcesyéeer, we are limited to mechanisms that can
be implemented within the program itself — which is our maous.

One popular tamper-resistance strategy is to have a probeam itself, so that the binary can detect
modifications and respond. Self-hashing is a key part of Auites original proposal for tamper resistant

Manuscript last revised April 4, 2005
Digital Security Group, School of Computer Science, Canétniversity, Canada

EXTENDED RESULTS 2

software [2]; it is also the foundation of the work by Changl #tallah [4] and Horne et al. [12]. Because
the latter two proposals involve little runtime overheadl are easy to add to existing programs, they
appear to be promising tools for protecting software intggunfortunately, as we show in this paper, the
work described in these and other similar papers is basedsimpe, yet flawed assumption that hashed
code is identical to executed code. While this assumptidnues under normal circumstances, it can be
violated through operating system level manipulation afgessor memory management hardware — and
thus, the assumption can be invalidated by attackers.

Our Contributions We present several such implementations of an attack sngaper as our main
result, and abstract the requirements (which are met bynallg all modern general-purpose processors)
which allow the attack. We extend eatrlier results [40], simgwthat our attack can be implemented on
all mainstream processors, not just the UltraSparc and &8@.attack works through the separation of
code and data accesses. This separation is either perfahmoedyh a special translation look-aside buffer
(TLB) load mechanism (e.g. Sections IlI-A and 1lI-B) or by mjgulation of processor-level segments
(see Section I1I-C).

Our attack has the fundamental advantage to the attackiett tieguires no reverse engineering of the
self-hashing code; indeed, the hashing code can simplyrm@ed. The implication of our attack is that
self-hashing cannot be trusted to provide reliable intggniotection on untrusted operating systems when
running on most modern general-purpose processors, ifléhbest environments [29]. In some cases our
attack can be implemented multiple ways on a specific arhite. Even if processor design changed
sufficiently to guard against one variation of the attackeotvariations remain.

The remainder of this paper is organized as follows. Sediidmiefly reviews self-hashing software
tamper resistance mechanisms. Section Il summarizestiléiés in modern general-purpose processors
which allow for our attack and details our implementationl aasults. We discuss an UltraSparc imple-
mentation in section IlI-A which leads into a generic impmtation discussed in Section 11I-B. We then
briefly discuss additional implementations based on x8éneeds (Section 111-C), microcode (Section IlI-
D) and performance counters (Section IlI-E). Section I\cdsses noteworthy features and implications
of our attack. Section V briefly discusses related work. i8ac¥I provides concluding remarks.

[l. SELF-HASHING TAMPER RESISTANCE

Software tamper resistance is the art of crafting a prograch shat it cannot be easily modified by
a potentially malicious attacker without the attack beirgedted [2]. In some respects, it is similar to
fault-tolerant computing, in that potentially dangeroimmmges in program state are detected at runtime.
Rather than attempting to detect hardware flaws or softmamgse software tamper resistance attempts
to detect changes in program execution caused by a malieidvesrsary.

More precisely, the standard threat model for software s&mgsistance is thieostile hostmodel [29].
In this model, the challenge is to protect an applicatiomnmig in a malicious environment. The user,
other running programs, the underlying operating system the hardware itself may all be untrustworthy.
Because the attacker controls program execution, he maygeha targeted application’s code or data
in arbitrary ways. Software tamper resistance mechanismsi@signed to detect such modifications at
runtime so that appropriate countermeasures may be invgkgd the application may corrupt ongoing
computations or simply halt).

Note that this model is in contrast with thestile clientmodel which assumes a trusted host and

IAlthough Chang and Atallah document that thgisards can do more than checksumming, their paper focuses exelyson the
checksumming approach.

EXTENDED RESULTS 3

untrusted applications. The hostile client problem appéarbe an easier problem to solve; numerous
solutions have been developed and deployed,sagdboxingsee [29] for further discussion).

There are many proposed methods for protecting softwarastgampering (e.g. see [7], [37]). While
self-hashing tamper resistance is the focus of our disonssither approaches exist which are not
susceptible to hardware-assisted circumvention (sedoBed). The common trend with most of these
approaches, however, is that they rely on either additibaadware or trusted third parties. In contrast, self-
checking tamper resistance mechanisms are distinguishideir ability to run on unmodified commodity
hardware without requiring third parties.

A naive approach to self-hashing tamper resistance is te hasingle hashing routine embedded into
an application, and periodically invoked to compute a hazlues over the application code. The hash
value is computed to a known-good value. This of coursevsatly defeated by an adversary in a hostile
host environment, e.g. by disabling the self-hashing naytpatching around it, or modifying it to always
return the “right” answer.

One of the earliest serious proposals for self-checkingoamesistance was made by Aucsmith [2].
He proposed a method based on runtime decryption and rggaiwer of program code within amtegrity
verification kernel (IVK) The IVK is designed to serve as a small trusted code basaghahbedded
within a large application. To prevent it from being disahléhe IVK will typically incorporate code for
a few key application operations. This IVK, then, protedts integrity of the rest of the application by
periodically verifying digital signatures of applicati@mode. Because such a digital signature verification
involves computing a cryptographic hash of applicationecadd checking its consistency with a known-
good value (the one incorporated into the digital signgtukecsmith’s proposal is a form of self-hashing
software tamper resistance. Because the IVK executes mamputationally expensive operations on
executable code (symmetric encryptions, cryptographshés, and public key operations), it is expensive
to run (and difficult to implement correctly); however, fortd properly protect an application, it must be
frequently invoked. Thus the IVK can significantly impairpgdipation performance.

To overcome these limitations, other researchers haveopegpalternate, lighter-weight self-checking
methods based on fast non-cryptographic hashes, or chaskssince a single checksum is relatively
easy for an attacker to disable, these proposals rely ononletwof inter-connected checksums, all of
which must be disabled to defeat tamper resistance. For @earHorne et al. [12] uséesterswhich
compute a checksum of a specific section of code (see alsfip]), A tester reads the area of memory
occupied by code and read-only data, building up a checkssuitrbased on the data read. A subsequent
section of the code may operate on the checksum result tiafjegrogram stability or correctness in a
negative way if a checksum result is not the same as a knowd-galue pre-computed at compile time.
The sections of code which perform the checksumming omeratmay be further hidden using code
obfuscation techniques to prevent static analysis. To niakere difficult for an attacker to locate the
checksumming code, the effects of a bad checksum resulteoprtigram should be subtle (e.g. it should
cause mysterious failures much later in execution).

Figure 1 [12] gives a simplified view of a typical distributicof checksumming code within an
application. In practise, there may be hundreds of checkisimrks hidden within the main application
code. Each allows verification of the integrity of a predeti@ed section of the code segment. The read-
only data segment may also be similarly checked. The cheukdng code is inserted at compile time
and integrated with regular execution code. The applinascalso made to rely on the correct checksum
result for each block in order to work properly.

There are several aspects of such checksumming which atjbtatacker must keep in mind:

EXTENDED RESULTS 4

Code Segment

Checksum

Checksum

Checksum

Checksum

Y__/¥
|

]
-y

Checksum

Ii

Checksum

Fig. 1. Distribution of checksum blocks within a code segtmen

« Because of the overlapping network of testers, almost esleegksumming block must be disabled
at the same time in order for a tampering attack to be suadessf

« The resulting value from a checksum block must remain theesasnthe original value determined
during compilation (or all uses of the checksum value musiétermined and adjusted accordingly)
if the results of a checksum are used during standard progsatution as in [12].

« The checksum values are only computed for static (i.e. mainvariant) sections of the program.

« Checksumming code is obfuscated, hard to find, and the uskeazksum results is also hidden.

A critical (implicit) assumption of both the hashing in Amegh’s IVK and checksum systems employing
networks is that processors operate such that) = I(x), where D(x) is the bit-string result of a “data
read” from memory address and/(z) is the bit-string result of an “instruction fetch” of corpemnding
length fromz. If I(x) were different fromD(x), then the hashing code would potentially end up verifying
the integrity of code that is never executed while executateds not checked. In what follows we show
that processor memory management hardware can be maetb@atch thatD(z) # I(x) for arbitrary
areas of code loaded into a process’s address space, a@leeiithashing mechanisms to be bypassed
with minimal runtime overhead.

1. HARDWARE-ASSISTED CIRCUMVENTION OF SELF-HASHING

In this section, we present an overview of our attack. Weofolthe overview with several implementa-
tions which together defeat self-hashing tamper resistant the majority of modern general-purpose
processors (including UltraSparc, x86, Alpha, PowerPCMABRNd AMDG64). We first introduce the
UltraSparc implementation (see Section IlI-A), and use inbtivate our generic implementation of section
l1I-B. We then present 3 more alternatives, namely the adter x86 implementation in Section IlI-C, a
microcode implementation of Section IlI-D and a performawcounter implementation of Section IlI-E.
Our x86 implementation exploits the presence of segmemntarfattack while the other implementations
use TLB functionality.

Our attack is based on the following two basic observatidnsiedern computer system design and
implementation.

Observation 1 There does not exist a 1:1 correspondence between vinwlaphysical addresses.

Observation 2 RAM and CPU storage are managed differently depending wgogther they contain
CPU instructions (code) or program data.

By manipulating virtual to physical address mappings sun&t & given virtual address refers to two
different physical addresses, one for code referencesmmtbodata references, we can madker) # 1(x)

EXTENDED RESULTS 5

as required. To explain how we can achieve this goal in magcthis section outlines the specific CPU and
operating system features that form the basis of our attadkdescribes our attack strategy. We explain
(in multiple subsections) how the attack may be implemeptethe majority of modern general-purpose
processors.

To support multiprogramming and simplify applicationééwmemory management, modern processors
include hardware dedicated to accelerating complex opegralstem-level memory management imple-
mentations. The basic idea behind such systems is that usgrams are written (compiled) not to
reside within the variable size, shared physical RAM addligsace of a computer, but rather within a
canonical per-program virtual address space. At runtifme,dperating system instantiates the program
using available physical memory. Virtual address refeeerare translated to appropriate physical address
references by the processor.

In older, simpler systems, programs had to be rewrittenad tone such that code and data references
refer to the physical memory actually allocated to it; on ermdsystems, however, special registers and
caches allow virtual addresses to be translated on-theifly httle loss in performance. Such address
translation hardware works by dividing the virtual and pbgsaddress spaces into separately managed
chunks. The operating system, then, maintains data stasctihat specify on a per-running program
(per-process) basis which area of virtual memory corredpadio which physical memory area. One
consequence of this design is that there is no longer a 1:pimgpetween virtual and physical addresses
(cf. Observation 1 above): a given piece of physical RAM maydferenced by two or more virtual address
ranges, and many virtual addresses correspond to no physéraory at all.

The data structures describing the virtual-to-physicaimmey mapping can become rather large; how-
ever, because every memory reference must be translategl th&ise data structures, translation lookups
must be extremely fast. Fortunately, most programs exlhigh degrees of locality in their memory
reference patterns; thus, processors only need to maiatamall portion of the mapping data structure
in fast cache memory at any given time.

System designers have long known, however, that code ardeadibit different patterns of locality
(e.g. a small code loop may reference a large data strucflmg)revent conflict between these patterns,
memory caches (of both memory contents and of virtual-tgsal address mappings) are frequently
divided between dedicated instruction (code) and datessafach divided caches are referred to as being
split. See [40] for more review on hardware design.

Older systems often performed virtual to physical addreggpings usingegmentationin a segmentation-
based system, memory is divided into variable-sized pi&oesvn assegmentsEach segment is defined
by abase addres§ts starting point in physical memory) andbaund Programs are divided into multiple
segments based upon logical function, e.g. one segmenpfdication code, another for library code, and
another for data. Memory references within a program biaeyin terms okegment offsetat runtime,
these offsets are resolved into physical memory locatignadaing them to the appropriate segment base
address. The operating system controls the base and bowatlbfsegment; by changing these values, it
can control the location and size of segments within physiemory without rewriting the actual program
binary. If the operating system (e.g. serving the purpo$esattacker) can ensure that data accesses to
code-containing segments are redirected to another segnérely, then it can maké(z) # I(z) as
required.

Because it is easy for memory to become fragmented in a sdgtitenbased system, modern virtual
memory systems instead divide virtual address spaces ixed-fized pieces known gsmgesand the
physical address space inftamessuch that exactly one page can fit within each fraRege tablesare
then used to determine which physical frame (if any) holdspghge containing data for a given virtual

EXTENDED RESULTS 6

address. To accelerate address translation, recenttiraappings are stored in a fast, content-addressable
cache known as theanslation lookaside buffer (TLBMost modern general-purpose processors have split
TLBs, as clarified shortly. If the operating system can malaife the TLB such that virtual addressees
have different instruction and data mappings, then it cakenia(x) # I(z) as required.

To instantiate our attack strategy, we assume an attaclemgitation involving the following common
steps (in this paper, the subject of focus is the kernel neodakigned to implement the attaék).

1) The attacker makes a copy of the original program code ¢p.grogran).

2) The attacker modifies the original program code as desired

3) The attacker modifies the kernel on the machine, instpblirkernel module or patch designed to
implement our attacR.

4) The attacker runs the modified code under the modified kebwring the attack, the attack
code in the kernel will redirect data reads (including thosade by the self-hashing code) to
the corresponding information in the unmodified appliaatio

While we have only implemented two versions of our attackr(ely those of Section IlI-A and 11I-C)
the others appear equally valid, based on our research. fHaglth of implementations possible for our
attack show that a simple modification to the processor desiginlikely to prevent our attack. Modern
implementations of core memory functionality allow ouraalt to succeed. Two categories of memory
which allow our attack to succeed are split TLB’s and segsent

A. Circumvention on the UltraSparc

In this section we focus on the UltraSparc.

On the UltraSparc processor [34]l.LB missegaccesses to a virtual addresses not present in the TLB)
trigger CPU exceptions that allow the operating system tdatg the TLB state as necessary. Because
the UltraSparc has a split TLB, and because its softwaréraibed TLB load mechanism uses different
exceptions for instruction TLB and data TLB misses, the apeg system can easily place different page
table entries into each TLB, each pointing to a differentrfeaof physical memory.

To implement our attack, we modify the operating system’8Tbhad routines such that instruction
fetches are automatically directed to a framehile reads by the program code into the code section are
directed to framep + 1 (see Figure 2). A targeted application’s code is then loadea memory such
that framep + 1 contains an unmodified copy of the original code while the rinedl code is in frame
p. A data read of a code-containing virtual address thus tegsulthe expected value of the unmodified
(original) program code in framg + 1, even though the actual instruction which is executed frbat t
same virtual address is a (potentially) different instiarctcontained in frame. In this discussion and
for our proof of concept implementation, an offset of one gibgl page was chosen for simplicity; other
page offsets may also be used.

We created a proof-of-concept implementation by modifyanginux 2.6.8.1 kernel [21] running on
an UltraSparc-based Sun workstation (a SunBlade 150). fspaee wrapper program was developed to
provide the kernel with the extra information necessaryrplement the attack. The wrapper program tells
the kernel which pages are to have differential processimgta and instruction reads (which pages are to

2See [39] for a more detailed description of all steps invdlire a successful attack.
3This of course assumes an attacker has, or has gained, geificgint privileges on the host machine. However, this iscigely the
standard threat model for software tamper resistance (se&o8 II).

EXTENDED RESULTS 7

Virtual Address

Instruction Fetch

4>(Instruction TLB
Modified Program Code
Data Fetch Original Program Code
Data TLB

Physical Memory

Fig. 2. Separation of virtual addresses for instruction dath fetch

be split) and provides the data from the unmodified version of thearogo be run. The wrapper program
replaces itself (usingxecve) with the modified application binary when it has finishedialization.

The kernel was modified to allocate two adjacent frames irsjghy memory for each modified code
page, with framep holding the modified page and frame+ 1 holding the unmodified page. To keep
track of which pages were split in this fashion, an unusedrbéach page table entry was used to store
a boolean value namedSplit

When a data TLB miss exception is triggered by the procesisermodified exception handler checks
the isSplit bit associated with the requested page and increments thesponding frame number before
loading it into the data TLB. This extra processing requoaly 6 additional assembly instructions. Our
proof of concept implementation was tested with a programpleyng self-hashing of the code section.
We were able to easily change program flow of the original mrogwithout being detected.

B. A Multi-Platform Circumvention Strategy

Although the previously outlined implementation will bygsathe self-hashing code on any application
running on the UltraSparc, it does not work on most moderreg@purpose processors — for example, the
TLB loading process in systems such as PowerPC, AMD64, x8b6A&RM is not software modifiable and
thus the implementation of Section Il1-A will not work. Westead need to explore another implementation
of our attack on these CPUs. In this section, we present ama@p which builds on the UltraSparc
implementation, allowing it to work on most modern processmcluding all of those mentioned in the
previous sentence.

While most processors may present different interface®éo tnemory management ur{iiMMU), all
modern MMUs operate on the same basic principles. Code aladagaesses are split and corresponding
TLBs perform the translation. Since processors do not kesgk tof when a page table entry is modified
in main memory, the TLB entry is manually cleared by the opegasystem whenever the corresponding
page table entry is modified in main memory. The clearing ef ThB entry will cause a reload of the
modified page table entry into the TLB when information onplage is next required by the processor. A
discrepancy develops if the TLB entry is not cleared whenpidge table entry changes in main memory.
This common design methodology in the interaction betwdenTLB and page table entries in main
memory allows our generic attack on a wide range of moderrerggipurpose processors, as we now
describe.

Our generic attack exploits the ability for a TLB entry to h#edent from the page table entry in main

EXTENDED RESULTS 8

memory. This attack works even in the case of a hardware ThHB (as described in [40]). Regardless of
the TLB load mechanism used, an attacker with kernel-legeéss to the page table and associated data
structures can implement this generic attack. As explalatst, it can be deduced whether an instruction
or data access causes a TLB miss. By forcing a TLB miss to genarcorresponding page fault, we can
ensure the OS to be notified on every TLB miss. By examiningrtftemation related to page table misses
coming from a TLB miss, we can determine which of the insiarcor data TLB will be filled with the
page table entry. Since processors split the TLB internpallyata TLB will not be affected if the memory
access causing the page fault was due to an instruction. fétclidetermine whether an instruction or
data access caused the page fault, we (i.e. our own modifeckd&ternel) need only examine the current
instruction pointer and virtual address which caused tilaré&a

Observation 3 If the instruction pointer is the same as the virtual adslresusing the fault, then an
instruction access caused the fault, otherwise a datasceesed the fault.

To implement the attack, we always mark page table entrieetgresenin the page table (by clearing
the valid flag) for those pages for which we want to distinguietween instruction and data accesses.
When the processor attempts to do a hardware page tabldnsagrage fault will be delivered to the OS.
If the OS determines that an instruction access caused the fpalt, then the page table entry is filled
with appropriate information for the potentially modifiedogram code, otherwise the page table entry
is filled with the information of the unmodified program codeh{ch is what should be read on a data
access). As soon as the instruction execution completesyatid flag on the page table entry is cleared
by the operating system (i.e. the modified kernel) so thasegient TLB miss operations will cause the
operating system to be notified. While resetting the pagke tabtry, the TLB isnot cleared. This allows
the program to operate at full speed as long as the translatitry remains in the TLB. The instruction
completion can be detected with a single step interrupts &ktiack approach is illustrated in Figuré.3.

There is one potential case which requires special atteirithe attack, and that is if the program under
attack branches to an instruction which reads data from dhgespage where the instruction is located.
In this case, the instruction will cause both the data anttunson TLBs (hereafter: DTLB and ITLB)
to be filled in the process of fulfilling the instruction. Tooperly handle this situation, we must ensure
that each TLB is filled separately. The OS needs to ensurdrtHaling the ITLB the DTLB is not also
filled with the same information. One way is through the &tkernel executing a different instruction
(NOPis a good candidate) from the same page beforehand whichriderodify the DTLB. TheNOP
instruction will cause only the ITLB to be loaded. The OS aasert theNOPinstruction anywhere on the
page and after execution replace ti®Pwith the original instruction at that location. Thus we bliy
modify the attack described above so that in all cases,NQIRinstruction is run on every ITLB miss to
ensure proper separate loading of each TLB.

In summary, for processors which have a split memory managemnit including split TLBs, this
generic attack is possible. The attack is possible on a wadge of modern general-purpose processors
since it is common to implement a split TLB for performancasens. The ability of the processor to do
a hardware TLB reload (also callgzhge table walkdoes not affect the feasibility of this generic attack.

C. Circumvention on the x86

The attack approach outlined in the preamble of Sectiondi be implemented on the popular x86
architecture [13] by manipulating two different aspectsnoémory management as described below.

“A more complex but faster alternate method involves the édedlirectly loading the page table entry into the correspundLB; See
[39]

EXTENDED RESULTS

Processor Hardware

PR L L L L L L L L L -

Data Access Instruction Access

DTLB Search ITLB Search

DTLB Hit ITLB Hit

DTLB ITLB
DTLB Entries | | ITLB Entries

A A

Update DTLB Update ITLB

Hardware Page Table Search

DTLB Mi i
—ib(Search Page Table): oM

e g —

Page Table Entry

Page Table Lookup [
{ valid = 0

Page Fault Interrupt
4 N\

I

15| If IP = Address Causing Fault)
, Fill the ITLB using NOP
i | Else

! Fill the PTE with information for DTLB
i | End If

t | Set Clear_Valid Flag

Page Fault Interrupt

\4

Set Single_Step Flag
Valid =1

. J

Return from Interrupt

Single Step Interrupt
-

Single Step Interrupt

15| If (Clear_Valid Flag is Set)

Clear Clear_Valid Flag

Clear Single_Step Flag

Set Valid =0
End If

Process Single Step if Appropriate
|

Return from Interrupt

Fig. 3. Implementing a generic attack on processors witkvaare TLB load.

S

[S S e

EXTENDED RESULTS 10

Although separate code and data TLBs exist on the x86, thadihg process is not software modifiable
and thus the specific implementation of the attack in SeciibA can not be used. Instead, here we
exploit the processor segmentation features of the x8& iffplementation is included for completeness
(since the attack implementation of Section IlI-B does whmkthe x86), showing the range of different

possible implementations.

In addition to supporting memory pages, the x86 can also gemaemory in variable sized chunks
known assegmentsAssociated with each segment is a base address, size,spems, and other meta-
data. Together this information formssagment descriptoifo use a given segment descriptor, its value
is loaded into one of the segment registers. Other than segiescriptor numbers, the contents of these
registers are inaccessible to all software. In order to tgpdasegment register, the corresponding segment
descriptor must be modified in kernel memory and then reldani® the segment register.

Logical Address | Segment Number || Segment Offset |

Segment
e
Translation Algorithm

Linear Address | Page Data | Page Offset |

Page Table
Translation Algorithm
A 4

Physical Address | Frame Number | Frame Offset

Fig. 4. Translation from virtual to physical addresses o *xB6

A logical addressconsists of a segment register specifier and offset. To elexiinear address a
segment register's segment base (hamed by the segmentiespdasi added to the segment offset. An
illustration of the complete translation mechanism for 86 architecture is shown in Figure 4. Code
reads are always relative to the code segment (CS) regwghdle normally, if no segment register is
specified data reads use the data segment (DS) registeugfhsegment overrides a data read can use
any segment register including CS. After obtaining a lire@dress, normal page table translation is done
as shown in Figure 4 and Figure 5.

Unlike pages on the x86, segments can be set to only allowutigin readséxecute-only Data reads
and writes to arexecute-onlysegment will generate an exception. Tleecute-onlypermission can be
used to detect when an application attempts to read memiatyveeto CS. As soon as the exception is
delivered to an OS modified for our attack, the OS can autaalatimodify the memory map (similar
to as in Section IlI-A but see Figure 6) to make it appear abef itnmodified data was present at that
memory page.

Most operating systems for x86, however, now implemeflaamemory modelThis means that the
base value for the CS and DS registers are equal; an appficaged not use the CS register to read
its code. A flat memory model will ensure that both linear addes are the same, resulting in the same
physical address (as denoted by the dash-dot-dot line r&i§).

On the surface, it appears that our attack, based on this§ipgict — the execute-only feature — would be
thwarted by the flat memory model. However, although mod@erating systems present a flat memory
model to the application, an OS modified to contain attackecogled not obey the flat memory model.
It may “appear” to present a flat memory model, even thougimsedation is being used (see Figure 6).

To implement the attack, store two copies of the programenalyical address space. L@&bdecontain
the original unmodified program code whiodé contains the modified program code. Then set the CS

EXTENDED RESULTS 11

Using CS Segment Override Physical Memory

CS Information: | Segment Start
Physical Address
Virtual Address
get from CS:0x1000
| f"\ Linear Address (. \
> :L Page Table Translation J
A
Without CS Segment Override
DS Information: | Segment Start | g
A H
H Virtual Address E ' H
get from DS:0x1000 Seeeees >
S e L R :
Fig. 5. Translation of a get using segment overrides
Linear Address Map
CS Base T

Code

Data

Stack

v v

Fig. 6. Splitting the flat memory model to allow a tamper resise attack

segment to point to the start @fodeé and set all other segment descriptors, including the DS ototp
to the beginning ofCode (see Figure 6). Also, set the CS segment to execute-onlhhelfapplication
attempts to perform an ordinary data read of its code, it aattess the unmodified version@bode If the
application instead uses a CS override to access datavestatCsS, it will cause an exception because CS
is execute only. The modified kernel can then take steps t@mporarily replacing the page table entry
for Codé with that for Cod€) to ensure that the read is directed@ode Codé is thus not accessible
via data reads by the application.

While it may appear as if the entire usable linear addressesfghalved by the requirement to store
code, data, and stack, only a second copy of the code mustiy@echanto the targeted application’s address
space. All that is required, then, is sufficient consecutivear memory to address the second copy of the
code. In summary, this specific implementation provides dditenal alternative for defeating currently
known self-integrity hashing mechanisms on x86 processbne PaX project [1] already implements
some components of our x86 implementation in their x86 NOEXEplementation (SEGMEXEC). Their
implementation is designed to provide no-execute peronssn x86 processors which do not support the
no-execute page table flag. They do this through seporafi@moade and data segments, similar to our
attack.

®Our test implementation’s modified kernel replaced the pabke entry forCodé with that for Code It then used the single step interrupt
and restored the page table entry after the instruction Raduted.

EXTENDED RESULTS 12

D. Microcode

Some processors (e.g. the x86 [14] and Alpha [8]) supporsttigvare loading of microcode into the
processor at boot. In this section, we discuss an alterrmate 6f attack using the microcode related
functionality of a processor.

Microcode is designed to alter the functioning of the prgoesDifferent processors support microcode
in varying forms. It is unknown to us to what extent a specifiogessor can be controlled through
microcode. With information from a processor manufactuiemay be possible to implement our at-
tack directly on the processor using microcode without eadling out to additional operating system
functionality during the attack. This would make the attaslen harder to detect, as microcode is not
accessible even by the operating system. Microcode forhmatever, is not commonly available to the
general public, and hence it may be more difficult to obtam documentation required to implement a
successful attack using microcode. There is, however, iati@ar of microcode which exists on the Alpha
processor (and possibly also on others).

The Alpha processor has the ability to execute PALcode i{Bged Architecture Library) [8]. PALcode
is similar to microcode except that it is stored in main meyramd modifiable by the operating system.
PALcode is used to implement many of the functions which wdu¢ hard to implement in hardware.
These features include memory management control. By wyiadifthe PALcode which is run by the
processor on a TLB miss, we can directly influence the statbotii the data and instruction TLB.
PALcode uses the same instruction set as the rest of thecappiis on the system, but is given complete
control of the machine state. Furthermore, implementagjpecific hardware functionality is enabled for
use by PALcode. This results in a possible attack which islaimo the UltraSparc (see Section IlI-A).
Replacing the PALcode for the TLB miss scenario thus appwaddfer yet another alternative variation
of our attack using microcode on the Alpha processor. Thigery similar to the UltraSparc attack of
Section IlI-A.

E. Performance Monitoring

Depending on the processor, performance counters may havability to deliver an interrupt to the
operating system when a specific counter wraps (overflovesjoffnance counters also (conveniently for
an attacker) have the ability to track both DTLB and ITLB neisslf these can be tracked independently,
then we expect we can arrange that the DTLB and ITLB will belézhwith different data, even though
they both examine the same page table entry. For this atteekise the same method of splitting pages
as for the UltraSparc attack in Section 1ll-A. By catchingggvDTLB or ITLB miss through performance
counters, the operating system is able to prepare the phtgedatry for loading into the specific TLB —
hence allowing an implementation of our attack. See [39]afanore complete discussion. Although not
implemented, we see no reason why this variation based dorpemnce counters would fail based on
our research.

F. Locating the Hashing code

It is interesting to note that attempts to obscure the locatif reads into the code segment alone do
not protect against our attack. Since our attack (in itsouariimplementations) uses the processor directly
to locate and vector reads of code to different areas, apbesathat attempt to hide the accessing of
code through stealthy address computations provide &tlditional protection. Techniques such as those
proposed by Linn et al. [20] provide little additional proten against our attack. Indeed, we see no

EXTENDED RESULTS 13

reason why our attack could not be modified slightly to redtl location of instructions which cause
a read into the code segment (although there would be ani@diperformance hit).

V. FURTHER DISCUSSION

We now make some further observations regarding the attagkts implications.

A. Noteworthy Features of the Attack

We first discuss several features which make the attack ¢anehriations) of Section IlI particularly
noteworthy.

Difficulty of Detecting the Attack Code. The attack operates at a different privilege level than the
application process being attacked. This separation oflggie levels results in the application program
being unable to access the memory or processor functigriing used in the attack. Further, because
the page tables of a process cannot be accessed by the pteelsa targeted application has no obvious
indication that self-hashing is being bypassed. Furtheeimkernel code is also not available to userspace
processes, and so this code cannot be inspected by appig&t determine the presence of circumvention
code.

While a specific implementation of the attack may be detdethlp an application because of subtle
changes in kernel or filesystem behaviour, attempting teadetvery possible implementation leads to
a classical arms race in terms of detection and anti-dete¢échniques. Because attackers are able to
update their attack tools much more rapidly than defendansupdate their application-level defences,
such arms races favour the attacker.

Feasibility where Emulator-based Attack Would Fail. Since emulators can easily distinguish between
instruction and data reads, emulators can also be used éatdefost forms of self-hashing software
tamper resistance. Such emulation, however, typicallyoseg significant runtime overhead. Chang et al.
[4] document the performance impacts of tamper-proofingamde to the conclusion that their protection
methods only result in a “slight increase” in execution timbeir self-hashing tamper resistance methods,
therefore, are appropriate even for many speed-sensppkcations (see [11]) — as is our attack.

While emulation attacks on speed sensitive applicatioesrart feasible, our attack uses the CPU
memory management hardware itself to redirect code and réaids. Because our attack is in effect
“hardware accelerated,” it is a viable strategy even on &easitive applications. With the UltraSparc
attack implementation, the only increased delay is whenrthial data access to a page occurs and the
appropriate frame number is loaded into the data TLB. In st implementation, the calculation of
the appropriate frame number only required 6 additiona¢médy instructions (which are only executed
during a TLB miss, not on every instruction execution). @timeplementations of our attack may have
additional overhead, but we expect this overhead to stikudestantially less than an emulator.

Program Independent Attack Code The attack is not program dependant. The same kernel level
routines can be used to attack all programs implementirfghashing tamper resistance, i.e. the attack
code only needs to be written once for the entire class oftsedhing defences.

B. Attack Implications

The attack strategy outlined is devastating to the gengrpfaach of self-hashing software tamper
resistance, including even the advanced and cleverly eegéa tamper-resistance methods recently pro-

EXTENDED RESULTS 14

posed by Chang et al. [4] and Horne et al. [12], and also inefuthe original tamper resistance proposal
by Aucsmith [2]. Because of the wide variety of implemerdas available, the attack is also essentially
platform independent. It can be implemented on most modenemgl-purpose processors. This includes
CPU architectures used by most servers, workstations tajfgsknd laptop computers. One operating-
system specific attack tool can be used to defeat any implati@m of self-hashing tamper resistance.
We now discuss whether these methods can be modified so askeothen resistant to the attack, and
whether there are other self-checking tamper resistanahanésms that can be easily added to existing
applications, have minimal runtime performance overhaad, are secure.

It is not sufficient to simply intermingle instructions andntime data to prevent against our attack
strategy (as proposed by [4]), because such changes doewanprthe processor from determining when
a given virtual address is being used as code or as data.efFuithe, attempts to disguise reads into
the code segment (as discussed in [20]) are unsuccessinktgar attack. For a self-checking tamper
resistance mechanism to be resistant to our attack strategyst either not rely on treating code as data,
whether for hashing or other purposes, or it must make tHedfsorrelating code and data references
prohibitively expensive. Thus, integrity checks that examintermediate computation results appear to
be immune to our attack strategy (e.g. [5]); further, systémat dynamically change the relative locations
of all code and data are resistant to our attack. Unfortlyateese alternatives are typically difficult to
add to existing applications or impose significant runtireefgrmance overhead, making them unsuitable
for many situations where self-hashing is feasible.

There are many other alternatives to self-hashing as a cdefagainst tampering, if one is willing to
change the requirements and have applications depend om typm of trusted third party. For example,
we could assume that an application has access to some tyipestéd platform, whether in the form
of an external hardware “dongle” [9], a trusted remote sef¥6], or a trusted operating system [22],
[27]. Alternately, an application could rely on a custom i@eg system extension (e.g. a kernel module)
to verify the integrity of its code. However implementatioamplexity, platform dependence, stability,
and security concerns that arise when changing the undgrbyperating system minimize the appeal of
kernel-level modifications.

To summarize, we do not know of any alternatives to self-imgsim the self-checking tamper resistance
space that combine the ease of implementation, platforrap@ddence, and runtime efficiency of self-
hashing that are also invulnerable to our processor-basstdiction/data separation attack. Nonetheless,
advances in static and runtime analysis might possibly lerthle development of alternative systems that
verify the state of a program binary by intermingling and a@hieg runtime intermediate values. These
checks might be inserted into an application at compile tiemel be designed to impose little runtime
overhead. We believe that our work provides significant vaditon for the research and development of
such methods.

V. RELATED WORK

Various alternate tamper resistance proposals attemptidoess the malicious host problem by the
introduction of secure hardware [32], [33], [36]. Storingpgrams in memory which is execute-only [19]
has also been proposed, preventing the application fromgbésible in its binary form to an attacker.
Secure hardware, however, is not widely deployed and tbereiot widely viewed as a suitable mass-
market solution. Other research has involved the use ofreadterusted third parties [5], [6], [11]. However,
not all computers are continuously connected to the netwshich among other drawbacks makes this
solution unappealing in general. Research is ongoing itbrtiques for remote authentication (e.g. see
[16], [17], [31], also [3]). SWATT [30] has been proposed asathod for external software to verify
the integrity of software on an embedded device. Other tecesearch [28] proposes a method, built

EXTENDED RESULTS 15

using a trusted platform module [35], to verify client intgg properties in order to support client policy
enforcement before allowing clients (remote) access terprise services.

Systems likeTripwire [18] attempt to protect the integrity of a host from malicsantruders by detecting
modified system files (see also [25]). In particular, intggverification at the level of Tripwire assumes
that the operator is trusted to read and act on the verifitagsults appropriately. Other recent proposals
include a co-processor based kernel runtime integrity toof26], but these do not protect against the
hostile host problem in the case of a hostile end user.

While there are techniques for self-checking software &mpsistance that do not rely on hashing
(e.g. result checking and on-the-fly executable generdf8pr{7]), self-hashing mechanisms are notable
for being efficient in CPU time and easy to add to arbitrarygpams.

Software tamper resistance often employs software obfiesca an attempt to make intelligent software
tampering impossible (see [10], [38] and recent surveys[B7]]). We view obfuscation and tamper resis-
tance as distinct approaches with different end goals. §dafion, which is typically most effective against
static analysis, primarily attempts to thwart reverse eegiing and extraction of intelligence regarding
program design details; as a secondary effect, often tinarts intelligent software modification. Tamper
resistance attempts to make the program unmodifiable. Irb&uscated program, code modifications are
generally not directly detected.

Other related work is discussed in Section Il and SectioB.IV-

VI. CONCLUDING REMARKS

We have shown that the use of self-hashing for tamper resists vulnerable to a practical attack on
modern general-purpose processors, including the x86, 84 PowerPC, UltraSparc, Alpha, and ARM
processors with memory management units. Memory managenmstionality within a processor plays
an important role in determining how vulnerable current lenpentations are to our attack. If a processor
does not distinguish between code and data reads, thentaak atill fail (the MIPS processor [24] is
one example of such a processor). Because of the perfornaauacgeneral security benefits of code/data
separation at a processor level, it is highly unlikely thatfe processors will eliminate this distinction.
Thus, self-hashing tamper resistance mechanisms are curesagainst attack on current and foreseeable
future computer systems. Our attack does not merely explgiarticular feature of processors, but an
entire methodology of processor design. We thus believe uhiikely all variations of our attack will be
prevented by future processor revisions.

As noted earlier, other forms of tamper resistance existhwlare not susceptible to our attack, but
these typically have their own disadvantages (see Sec#d).|\We encourage further research into other
forms of self-checking tamper resistance, such as new ise@aradigms possible through work similar
to that presented by Chen et al. [5].

Acknowledgements.The first author acknowledges NSERC for funding an NSERC @isy Grant
and his Canada Research Chair in Network and Software $eciliie second author acknowledges
NSERC for funding an NSERC Discovery Grant. The third authoknowledges Canada’s National
Sciences and Engineering Research Council (NSERC) foriigndis PGS M scholarship. We thank
David Lie for his constructive comments, including a rematkich motivated the attack in Section 111-B.
We also thank Mike Atallah, Clark Thomborson and his grouptii@ir comments on a preliminary draft.

EXTENDED RESULTS 16

(1]
(2]

(3]
(4]
(5]

(6]
(7]
(8]
9]
[10]

[11]

[12]

[13]

[14]
[15]

[16]
[17]
[18]

[19]

[20]
[21]
[22]
(23]

[24]
[25]

[26]
[27]

(28]

[29]

[30]

REFERENCES

Homepage of PaX, Mar 2005ttp://pax.grsecurity.net/

D. Aucsmith. Tamper resistant software: An implemeiotat In R. Anderson editoiRroceedings of the First International Workshop
on Information Hiding volume 1174 ofLecture Notes in Computer Sciengmges 317-333. Springer-Verlag, May 1996.

E. Brickell, J. Camenisch, and L. Chen. Direct anonymattestation. In B. Pfitzmann and P. Liu, editoPspceedings of the 11th
ACM Conference on Computer and Communications Secymdiyes 132—144. The Association for Computing Machinent, 2D04.
H. Chang and M. Atallah. Protecting software code by dsarin Proc. 1st ACM Workship on Digital Rights Management (DRM
2001) volume 2320 ofLecture Notes in Computer Sciengages 160-175. Springer-Verlag, 2002.

Y. Chen, R. Venkatesan, M. Cary, R. Pang, S. Sinba, andalutlowski. Oblivious hashing: A stealthy software intggxierification
primitive. In Proc. 5th Information Hiding Workship (IHW)olume 2578 ofLecture Notes in Computer Sciengeages 400-414,
Netherlands, Oct. 2002. Springer-Verlag.

J. Claessens, B. Preneel, and J. Vandewalle. (How) cébilenagents do secure electronic transactions on untrusists? A survey
of the security issues and the current solutioA€EM Trans. Inter. Tech.3(1):28—-48, 2003.

C. S. Collberg and C. Thomborson. Watermarking, tampenfing, and obfuscation: Tools for software protectitfEE Trans. Softw.
Eng, 28(8):735-746, 2002.

Compaq Computer Corporatiorlpha Architecture Handboglchapter 6 - Common PALcode Architecture. Number EC-QDZKE-
4th edition, Oct 1998.

J. Gosler. Software protection: Myth or reality? Amlvances in Cryptology — CRYPTO;8®lume 218 ofLecture Notes in Computer
Science pages 140-157. Springer-Verlag, 1985.

H. Goto, M. Mambo, K. Matsumura, and H. Shizuya. An ammto to the objective and quantitative evaluation of tampsistant
software. In J. S. J. Pieprzyk, E. Okamoto, editofprmation Security: Third International Workshop, ISW0B, volume 1975 of
Lecture Notes in Computer Sciengages 82-96, Wollongong, Australia, Dec 2000. Springatad.

F. Hohl. Time limited blackbox security: Protecting hile agents from malicious hosts. Mobile Agents and Securityolume 1419
of Lecture Notes in Computer Sciengmges 92—-113. Springer-Verlag, 1998.

B. Horne, L. Matheson, C. Sheehan, and R. Tarjan. Dyoaalif-checking techniques for improved tamper resistahedroc. 1st
ACM Workshop on Digital Rights Management (DRM 2000lume 2320 ofLecture Notes in Computer Scienqeges 141-159.
Springer-Verlag, 2002.

Intel. IA-32 Intel Architecture Software Developer’s Manuablume 3: System Programming Guide, chapter 3 - Protedede
Memory Management. Intel Corporation, P.O. Box 5937 Dei@@, 2003.

Intel Corporation, P.O. Box 5937 Denver CQA-32 Intel Architecture Software Developer's ManuaD03.

H. Jin and J. Lotspiech. Proactive software tamperieggction. In C. Boyd and W. Mao, editolsformation Security: 6th International
Conference, ISC 2003%olume 2851 ofLecture Notes in Computer Sciengages 352—-365, Bristol, UK, Oct 2003. Springer-Verlag.
R. Kennell and L. H. Jamieson. Establishing the geryiof remote computer systems. Rroceedings of the 12th USENIX Security
Symposiumpages 295-308, Aug 2003.

R. Kennell and L. H. Jamieson. An analysis of proposddcits against genuinity tests. Technical report, Purduiddsity, Aug
2004. CERIAS TR 2004-27.

G. H. Kim and E. H. Spafford. The design and implemeptaif tripwire: A file system integrity checker. Rroceedings of the 2nd
ACM Conference on Computer and Communications Secyéges 18—-29. ACM Press, 1994.

D. Lie, C. Thekkath, M. Mitchell, P. Lincoln, D. Boneh, Mitchell, and M. Horowitz. Architectural support for comnd tamper
resistant software. liProceedings of the Ninth International Conference on Aeattural Support for Programming Languages and
Operating Systemgpages 168-177. ACM Press, 2000.

C. Linn, S. Debray, and J. Kececioglu. Enhancing saftatamper-resistance via stealthy address computatiarRrokeedings of the
19th Annual Computer Security Applications ConferenceSAC 2003) 2003.

The Linux Kernel Archives, Oct 2004http://www.kernel.org .

P. A. Loscocco, S. D. Smalley, P. A. Muckelbauer, R. Cylda S. J. Turner, and J. F. Farrell. The inevitability ofldee: The
flawed assumption of security in modern computing enviramsieln 21st National Information Systems Security Conferehtzional
Security Agency, 1998http://csrc.nist.gov/nissc/1998/proceedings/paperF1 pdf .

Microsoft. Internet Explorer 6: Digital certificatedan 2005.http://www.microsoft.com/resources/documentation/
ie/6/all/reskit/en-us/part2/c06ie6rk.mspx

MIPS Technologies, 1225 Charleston Road Mountain vrew MIPS32 Architecture For Programmind@.95 edition, Mar 2001.

Y. Miretskiy, A. Das, C. P. Wright, and E. Zadok. AVFS: Aon-access anti-virus file system. Rroceedings of the 13th USENIX
Security Symposiunpages 73-88, Aug 2004.

J. Nick L. Petroni, T. Fraser, J. Molina, and W. A. ArbaugCopilot - a coprocessor-based kernel runtime integritnitor. In
Proceedings of the 13th USENIX Security Sympospeges 179-194, Aug 2004.

M. Peinado, Y. Chen, P. England, and J. Manferdelli. KDBSA trusted open system, Jan 2008tp://research.microsoft.
com/"yuqunc/papers/ngsch.pdf

R. Sailer, T. Jaeger, X. Zhang, and L. van Doorn. Attéstabased policy enforcement for remote access. In B.rRétm and P. Liu,
editors, Proceedings of the 11th ACM Conference on Computer and Cainations Securitypages 308-317. The Association for
Computing Machinery, Oct 2004.

T. Sander and C. Tschudin. Protecting mobile agentiagealicious hosts. In G. Vigna, editdvlobile Agents and Securityolume
1419 ofLecture Notes in Computer Sciengages 44—60. Springer-Verlag, 1998.

A. Seshadri, A. Perrig, L. van Doorn, and P. Khosla. SWWABoftware-based attestation for embedded device®rdneedings of the
IEEE Symposium on Security and Priva@akland, CA, May 2004.

EXTENDED RESULTS 17

[31]
[32]
[33]
[34]
[35]

[36]
[37]

[38]

[39]
[40]

U. Shankar, M. Chew, and J. Tygar. Side effects are nificint to authenticate software. Proceedings of the 13th USENIX Security
Symposiumpages 89-102, Aug 2004.

S. W. Smith and S. Weingart. Building a high-performanprogrammable secure coprocessGomput. Networks31(9):831-860,
1999.

G. E. Suh, D. Clarke, B. Gassend, M. van Dijk, and S. Dagad\EGIS: architecture for tamper-evident and tampestast processing.
In Proceedings of the 17th Annual International ConferenceSapercomputingpages 160-171. ACM Press, 2003.

Sun Microsystems. UltraSPARC Il Cu user's manual. @Network Circle, Santa Clara, California, Jan 2004&p://www.sun.
com/processors/manuals/USIlIv2.pdf

Trusted Computing Group. Trusted platfrom module (TRRIn specification, version 1.2, revision 62, Oct 200itp://www.
trustedcomputinggroup.org

Trusted Computing Group, Oct ZOOhttp [lwww.trustedcomputingroup.com/home

P. C. van Oorschot. Revisiting software protectionClrBoyd and W. Mao, editorsnformation Secunty 6th International Conference,
ISC 2003 volume 2851 ofLecture Notes in Computer Sciengages 1-13, Bristol, UK, Oct 2003. Springer-Verlag.

C. Wang.A Security Architecture for Survivability Mechanisni®#D thesis, University of Virginia, Charlottesville, ¥inia, Oct. 2000.
http://www.cs.virginia.edu/"survive/pub/wangthesis. pdf .

G. Wurster. A generic attack on hashing-based softwemgper resistance. Master’s thesis, Carleton Univerdity, 2005.

G. Wurster, P. van Oorschot, and A. Somayaiji. A genetac on checksumming-based software tamper resistamtEEE Symposium
on Security and Privacy2005.

