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Abstract—The requirement for accurate one-way delay (OWD)
estimation lead to the recent introduction of an algorithm
enabling a server to estimate OWDs between itself and a client
by cooperating with two other servers, requiring neither client-
clock synchronization nor client trustworthiness in reporting
one-way delays. We evaluate the algorithm by deriving the
probability distribution of its absolute error, and compare its
accuracy with the well-known round-trip halving algorithm.
While neither algorithm requires client-trustworthiness nor client
clock synchronization, the analysis shows that the new algorithm
is more accurate in many situations.

I. INTRODUCTION

MANY Internet applications can benefit from accurate
one-way delay (OWD) estimation mechanisms. A server

and a client1 can cooperate to estimate OWDs between
themselves [1]. Cooperation typically involves clock synchro-
nization and exchanging timestamps, e.g., One-way Active
Measurement Protocol (OWAMP) [2]. Such approaches thus
require considerable client trustworthiness.

Because round-trip times (RTTs) are easier to estimate than
OWDs, they are often used instead [3]. Half the RTT is
sometimes taken as a OWD estimate; we call this the average
(av) algorithm. Nonetheless, the asymmetric nature of Internet
routes [4] substantially affects the av algorithm’s accuracy.

Client Presence Verification (CPV) [5] was proposed as a
delay-based mechanism that verifies clients’ geographic loca-
tions over the Internet. It introduced a new OWD-estimation
algorithm, minimum pairs (mp), designed to be more accurate
than av, yet requires less client cooperation (hence trustwor-
thiness) than OWAMP-like tools. In mp, the server cooperates
with two trusted verifiers (e.g., cloud-based servers) instead of
the client. The accuracy of mp was informally discussed [5].

We formally analyze the accuracy of mp and av given the
delay characteristics of the underlying network, enabling an
informed choice between alternatives. Contributions:
• Deriving the probability mass function (PMF) of the

absolute error for the mp (proposed in previous literature
[5]) and the av algorithms as a function of the delay
distribution between the client and the server/verifiers.

• Using the derived probability model to compare the
accuracy of both algorithms assuming Poisson delay
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1We use the server/client terminology to discriminate between the party
measuring delays (server) and the one the delays are measured to/from (client).

Fig. 1. OWDs between client c and verifiers v1 (server), v2 and v3 [5].

distribution with various representative means. This ex-
ample comparison can now be drawn since the derived
models allow general determination of the more accurate
algorithm given the probability distribution of delays.

II. REVIEW OF THE MINIMUM PAIRS ALGORITHM

The mp algorithm estimates the smaller of the forward and
reverse OWDs between the client and the server at current
network conditions.2 The server cooperates with two other
trusted verifiers; for simplicity, we refer to the three parties
as verifiers v1, v2 and v3. Notation of OWDs between the
three verifiers with the client is given in Fig. 1. The server is
v1, so the algorithm should estimate the smaller between d1c
and dc1. Each verifier must possess a public-private key pair,
and be aware of the public keys of the other two verifiers.

Using the established connection with the client,3 v1 notifies
the client of the IP addresses of v2 and v3, the client connects
to both verifiers and Algorithm 1 (below) starts. Notation:
• Sa(m) denotes message m digitally signed by entity a.
• A m−→ B means A sends message m to B.
• ta is the most recent timestamp according to a’s clock.
• d+ij corresponds to dic + dcj (see Fig. 1).
• βi is an estimate to the smaller of dic and dci.
In lines 13 through 16, v1 discards the larger sums between

dic + dcj and djc + dci for all 1 ≤ i, j ≤ 3 and i 6= j,
and uses the remaining sums to estimate the smaller OWD.
This exclusion helps in reducing the effect of delay spikes
happening in one direction but not the other. Note that, similar
to av, the mp algorithm does not indicate the direction of the
shorter delay.

2Although not noted by the authors of mp [5], the larger OWD can also
be estimated based on the difference between the smaller and the RTT.

3In a delay-dependent application, the server and the client are typically
assumed to have an established connection.
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Algorithm 1: The mp algorithm [5]. See notation inline.
Input: The set of the three verifiers, V (see Fig. 1).
Output: An estimate to the smaller one-way delay

between client c and verifier v1.
1 begin
2 foreach vi in V do
3 vi retrieves its current system time b := ti

4 vi
b,Si(b)−−−−→ c

5 foreach vj in V do
6 c

b,Si(b)−−−−→ vj
7 vj records the message-receiving time r := tj
8 vj validates Si(b)
9 if invalid signature then

10 Abort “possible client cheating attempt”

11 d+ij := r − b

12 if vj 6= v1 then vj
d+ij−−→ v1

13 v1 solves simultaneously for β1, β2, β3:
14 β1 + β2 = min(d+12 , d

+
21)

15 β2 + β3 = min(d+23 , d
+
32)

16 β3 + β1 = min(d+31 , d
+
13)

17 return β1

III. ANALYZING THE AVERAGE ALGORITHM (av)
a) Notation: The absolute error is the absolute difference

between the smaller of the forward and reverse OWDs and the
OWD estimated by the algorithm. Let fx(d) be the PMF of
the delay of edge d, for each of the six edges in Fig. 1.

b) Absolute error: The av algorithm estimates the smaller
OWD between v1 (the server) and c as:

tav =
RTT
2

=
d1c + dc1

2
(1)

The absolute error of the av algorithm is:

εav = |tav −min(d1c, dc1)|

The magnitude of the error thus depends on the difference
between d1c and dc1. Table I lists the three cases. Denoting
by εavi the error in Case i, then:

εav1 =

∣∣∣∣d1c + dc1
2

− d1c
∣∣∣∣ = dc1 − d1c

2

We can drop the “absolute” sign (||) because in Case 1, d1c <
dc1. The error for the remaining two cases is given in Table I.

c) PMF of error: The PMF of εavi depends on the
probability of occurrence of Case i. Thus, for all x ≥ 0:

P{εav = x} =
3∑
i=1

P{Case i} · P{εavi = x | Case i}

=

3∑
i=1

P{εavi = x ,,, Case i}
(2)

TABLE I. CASES RELATING d1c WITH dc1 , THE CALCULATED DELAY
(tav ) IN EACH CASE, AND THE ERROR (εav ) OF THE av ALGORITHM.

Case (i) Condition
tav
i εav

i
d1c [relation] dc1

1 < (d1c + dc1)/2 (dc1 − d1c)/2

2 = (d1c + dc1)/2 0

3 > (d1c + dc1)/2 (d1c − dc1)/2

where the “comma” indicates the intersection of the two
events. Expanding the term at i = 1 yields:

P{εav1 = x ,,, Case 1}
= P{(dc1 − d1c)/2 = x ,,, d1c < dc1}
= P{dc1 = 2x+ d1c ,,, d1c < 2x+ d1c}
= P{dc1 = 2x+ d1c ,,, x > 0}

=

( ∞∑
i=0

P{d1c = i} · P{dc1 = 2x+ i}

)
· P{x > 0}

=


∞∑
i=0

fi(d1c) · f2x+i(dc1), x > 0

0, otherwise

(3)

Since εav2 = 0 (see Table I), therefore,

P{εav2 = x ,,, Case 2} = P{x = 0 ,,, d1c = dc1}

=

{
P{d1c = dc1}, x = 0

0, otherwise

The term for i = 3 in (2), P{εav3 = x ,,, Case 3}, can be
expanded analogous to Case 1. We thus rewrite (2) as:

P{εav = x}

=

{
P{d1c = dc1}, x = 0

P{εav1 = x ,,, Case 1}+ P{εav3 = x ,,, Case 3}, x > 0

where:

P{d1c = dc1} =
∞∑
i=0

fi(d1c) · fi(dc1)

IV. ANALYZING THE MINIMUM PAIRS ALGORITHM (mp)
a) Absolute error: In Algorithm 1, lines 14 to 16 define

three simultaneous equations that estimate the smaller OWD
(tmp). Although the mp algorithm does not enable the verifiers
to calculate d−ii for all i ∈ {1, 2, 3},4 it enables them to sort
these differences. For example, assume in line 14 that d2c +
dc1 ≤ d1c+dc2. Rearranging yields d−22 ≤ d

−
11. Also assuming

in line 15 that d3c+dc2 < d2c+dc3 (equivalent to d−33 < d−22),
the verifiers can deduce that d−33 < d−22 ≤ d

−
11.

The order of d−11, d−22 and d−33 identifies the cases in Table II;
possible outcomes of the min() function in lines 14 to 16 are
indicated at the header of the “Conditions” column, with their

4d+ij denotes dic + dcj ; likewise, d−ij denotes dic − dcj .
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TABLE II. CASES RELATING d+ij WITH d+ji , THE CALCULATED DELAY IN EACH CASE (tmp
i ), AND THE ABSOLUTE ERROR (εmp) OF THE mp

ALGORITHM. IN EACH CASE, A CIRCLED CONDITION IS IMPLIED BY THE OTHER TWO.

Case (i) Conditions Order tmp
i

εmp
i,j

d+31 [relation] d+13 d+21 [relation] d+12 d+32 [relation] d+23 d1c ≤ dc1 d1c > dc1

1 < ≤ < d−33 < d−22 ≤ d
−
11 dc1 + d

−
22/2

∣∣∣d−22/2− d−11∣∣∣ ∣∣∣d−22/2∣∣∣
2 < < ≥ d−22 ≤ d

−
33 < d−11 dc1 + d

−
33/2

∣∣∣d−33/2− d−11∣∣∣ ∣∣∣d−33/2∣∣∣
3 ≤ > < d−33 ≤ d

−
11 < d−22 d

+
11/2 −d−11/2 d

−
11/2

4 = = = All three are equal d
+
11/2 −d−11/2 d

−
11/2

5 ≥ < > d−22 < d−11 ≤ d
−
33 d

+
11/2 −d−11/2 d

−
11/2

6 > > ≤ d−11 < d−33 ≤ d
−
22 d1c − d−33/2

∣∣∣−d−33/2∣∣∣ ∣∣∣d−11 − d−33/2∣∣∣
7 > ≥ > d−11 ≤ d

−
22 < d−33 d1c − d−22/2

∣∣∣−d−22/2∣∣∣ ∣∣∣d−11 − d−22/2∣∣∣
d−33 [relation] d−11 d−22 [relation] d−11 d−33 [relation] d−22

Rearranged Conditions

rearrangements indicated at the bottom. Two conditions imply
the third; the implied condition is circled in Table II.

The smaller between d1c and dc1 is indicated by the tmpi
column in Table II. In Case 1 for example, where d+31 < d+13,
d+21 ≤ d+12, and d+32 < d+23, the simultaneous equations of
lines 14 to 16 will be β1 + β2 = d+21, β2 + β3 = d+32, and
β3 + β1 = d+31. In Algorithm 1, β1 is returned as the estimate
to the smaller between d1c and dc1, which evaluates to:

tmp1 = β1 =
d+21 + d+31 − d

+
32

2

=
d2c + dc1 + d3c + dc1 − (d3c + dc2)

2

=
d2c − dc2 + 2dc1

2
= dc1 +

d−22
2

Similarly, tmpi can be calculated for the remaining cases.
The returned OWD estimate (tmp) can indicate whether

there were large delay asymmetries between each verifier and
the client. For example, if tmp < 0, then the difference between
the forward and reverse delays of some links between the client
and the verifiers is relatively large.

b) Comparison between tmp and tav: As is now shown,
in none of the seven cases will the mp algorithm return a larger
estimate to the smaller OWD than that of the av algorithm;
that is, the inequality tmpi ≤ tav holds for all i ∈ {1..7}. In
Case 1, we have (Table II):

tmp1 = dc1 +
d−22
2

(4)

Since d−22 ≤ d−11 in this case (second rearranged condition,
bottom of the “Conditions” column in Table II), therefore:

tmp1 ≤ dc1 +
d−11
2

Simplifying yields

tmp1 ≤ d1c + dc1
2

= tav from (1)

Analogous analysis applies to Cases 2, 6 and 7, which we
omit for space reasons. The equation tmpi = tav already holds
for i ∈ {3, 4, 5} (see Table II). Thus, the mp algorithm never
returns an estimate, to the smaller between the forward and
reverse OWDs, that is larger than that of the av algorithm.

c) PMF of error: The PMF of error depends on the
probability of occurrence of each case in Table II, and the
probabilities of d1c ≤ dc1 and d1c > dc1 in each case.
We index those two additional conditions using the variable
j ∈ {1, 2} respectively. For example, to calculate the error in
Case 1 given additional condition 2 (which is d1c > dc1):

εmp1,2 = |tmp1 −min(d1c, dc1)| =
∣∣∣∣dc1 + d−22

2
− dc1

∣∣∣∣ = ∣∣∣∣d−222
∣∣∣∣

The probability that the error is equal to x is the probability
that any of the expressions listed under the εmpi,j column in
Table II evaluates to x, for all x ≥ 0. The PMF of the absolute
error can, thus, be expressed as:

P{εmp = |x|} =
7∑
i=1

2∑
j=1

P{Xi,j} · P{εmpi,j = |x| | Xi,j}

=

7∑
i=1

2∑
j=1

P{εmpi,j = |x| ,,, Xi,j}

(5)

where Xi,j is the intersection of all three conditions under the
“Conditions” column of Case i with additional condition j.
Because the error is the absolute difference, then:
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TABLE III. MEANS OF THE POISSON DISTRIBUTIONS OF THE DELAYS
FOR EACH EDGE IN FIG. 1, AND THEIR CORRESPONDING CHART IN FIG. 2.

Scenario Mean λ (ms)
d1c dc1 d2c dc2 d3c dc3

Fig. 2

(a) 30 30 30 30 30 30
(b) 30 7 8 25 5 5
(c) 2 20 5 50 7 80
(d) 35 5 45 70 2 15
(e) 10 10 30 12 30 60
(f) 10 10 30 3 20 5

P{εmpi,j = |x| ,,, Xi,j}

=

{
P{εmpi,j = 0 ,,, Xi,j}, x = 0

P{εmpi,j = x ,,, Xi,j}+ P{εmpi,j = −x ,,, Xi,j}, otherwise
(6)

V. EXAMPLES OF ACCURACY COMPARISON

It has been established that Internet delays follow a Gamma
distribution with varying parametrization [6], [7]. We model
the OWDs of the six edges of Fig. 1 as independent and
discrete random variables that follow Poisson distributions,5
and take on integer values (e.g., delays in milliseconds).
Poisson is used because it is a discrete distribution that is a
special case of Gamma. Table III lists the distribution means in
six example scenarios. The scenarios were chosen to analyze
the effect of delay asymmetry between the client and the
verifiers. Figure 2 plots the Cumulative Distribution Functions
(CDFs) of the absolute errors for each scenario in Table III,
using (2) and (5) for the av and the mp algorithms respectively.

Scenario (a) (Table III) addresses delay symmetry in all six
edges. Figure 2(a) shows that mp is more accurate than av
in this scenario, with a 54% chance of producing an absolute
error <1.5 ms, versus 35% for av.

Scenario (b) addresses the effect of delay symmetry between
the client and one verifier. In this scenario, we deduce that mp
will operate in Case 2 most of the time (from the “Order”
column in Table II), and thus εmp = εmp2,2 as it is highly
probable that d1c > dc1. Because d3c and dc3 have equal
means (5 ms), the error εmp2,2 = |d−33/2| becomes relatively
small, as shown in Fig. 2(b). The mp algorithm has a 90%
chance of resulting in <2.5 ms absolute error, versus 0.1% for
the av, making it significantly more accurate in this scenario.

Scenarios (c) and (d) explore delay asymmetry in all six
edges. Despite the huge asymmetries in (c), mp has a ∼25%
chance to result in <2.5 ms absolute error, versus ∼0.2% for
av. The smaller delay variations of scenario (d), compared to
(c), caused mp to be substantially more accurate (Fig. 2(d)).

Scenarios (e) and (f) analyze the effect of delay symmetry
between d1c and dc1, and asymmetry in the other two links. In
Fig. 2(e), where the two graph lines coincide, the accuracy of
mp is similar to that of av because, with higher probability, mp
operates in Case 3 of Table II (the resulting OWD-estimates
are similar to av). In (f), delay asymmetry between the client
and {v2, v3} mislead mp, but do not affect the average of
d1c and dc1. Because d1c and dc1 are highly symmetric (see
Table III), av is more accurate.

5Note that this is not the packet arrival times.
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Fig. 2. Absolute errors between the estimated and the actual OWD, assuming
Poisson delay distributions (see Table III for means) for the edges in Fig. 1.

VI. CONCLUSION

Errors due to imperfect clock synchronization among the
verifiers can be mitigated as shown in the literature [3], and
are thus not considered by the mp’s PMF derived herein.

The analysis herein establishes that the mp algorithm [5]
is in many cases more accurate in estimating OWDs than the
commonly-used av algorithm. This is achieved with the added
bonus of the mp’s reduced client-cooperation requirements,
making it suitable for adversarial environments, but comes at
the cost of requiring extra infrastructure (the verifiers).

We highlight that the degree of delay asymmetry between
the verifiers and the client is a key element affecting the
accuracy of both algorithms. The PMFs derived herein are thus
useful to an application deciding between both algorithms.
This follows from the properties of the PMFs derived herein:
(1) they allow determination of which algorithm is more
accurate given the delay environment, and (2) they are
generic—they evaluate the probability mass of error given
any discrete delay distribution (Poisson was used herein).
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