
Abstract

Current techniques for collision search with feasible
memory requirements involve pseudo-random walks
through some space where one must wait for the result of
the current step before the next step can begin.  These
techniques are serial in nature, and direct parallelization is
inefficient.  We present a simple new method of
parallelizing collision searches that greatly extends the
reach of practical attacks.  The new method is illustrated
with applications to hash functions and discrete logarithms
in cyclic groups.  In the case of hash functions, we begin
with two messages; the first is a message that we want our
target to digitally sign, and the second is a message that the
target is willing to sign.  Using collision search adapted for
hashing collisions, one can find slightly altered versions of
these messages such that the two new messages give the
same hash result.  As a particular example, a $10million
custom machine for applying parallel collision search to the
MD5 hash function could complete an attack with an
expected run time of 24 days.  This machine would be
specific to MD5, but could be used for any pair of messages.
For discrete logarithms in cyclic groups, ideas from
Pollard’s rho and lambda methods for index computation
are combined to allow efficient parallel implementation
using the new method.  As a concrete example, we consider
an elliptic curve cryptosystem overGF(2155) with the order
of the curve having largest prime factor of approximate size
1036.  A $10million machine custom built for this finite
field could compute a discrete logarithm with an expected
run time of 36 days.

1. Introduction

The power of parallelized attacks has been illustrated in
recent work on integer factorization and cryptanalysis of the
Data Encryption Standard (DES) [7].  In the factoring of the
RSA-129 challenge number and other factoring efforts (e.g.
[14, 15]), the sieving process was distributed among a large
number of workstations. Similar efforts have been
undertaken on large parallel machines [8, 9]. In a recent
exhaustive key search attack proposed for DES [24], a large
number of inexpensive specialized processors were
proposed to achieve a high degree of parallelism.  The
importance of producing memoryless versions of attacks is
well recognized (e.g. [6, 21]), but even a memoryless attack
is of little practical use unless it can be efficiently
parallelized.  In this paper, we provide a method for efficient
parallelization of collision search techniques.

The remainder of this paper is organized as follows.
Section 2 reviews general collision search techniques and
presents a new parallel method.  This new method allows,
for the first time, efficient use of parallelization in collision
search and greatly extends the reach of practical attacks.
Section 3 illustrates the application of parallel collision
search by adapting it to finding hash function collisions; we
choose as an illustrative example the well-known hash
function MD5 [22] and propose a high-level design for a
machine to find MD5 collisions in hardware.  For
$10million,1 one could expect to find a collision in 24 days.
This was not possible by previous techniques whereby the
efficiency of parallelization wasO( ), rather thanO(m)
for m processors.  Section 4 discusses using parallel
collision search to find discrete logarithms in cyclic groups.
As an illustrative example we consider an elliptic curve
cryptosystem over GF(2155) with the order of the curve
having largest prime factor of size 1036, and again give a

1 All estimates are given in U.S. dollars.
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high-level hardware design to attack this system.  A
$10million custom built machine could complete a
logarithm with an expected time of 36 days.  No efficient
algorithm has previously appeared in the literature for
parallelizing the computation of discrete logarithms in
cyclic groups; again, the most efficient previously
documented algorithms offered O( ) speedup form
processors, rather than linear speedup.  Section 5 contains
concluding remarks.

2. Parallel Collision Search

In this section we first review known methods for collision
search, and then describe how to efficiently parallelize this
task. The goal in collision search is to take a given function
f and find two different inputs that produce the same output.
This functionf is chosen so that finding a collision serves
some cryptanalytic purpose.  We make the reasonable
assumption thatf is sufficiently complex that it behaves like
a random mapping.

An obvious method for finding a collision is to select
distinct inputsxi for i = 1, 2, …  and check for a collision in
the f(xi) values.  Letn be the cardinality of the range off.
The probability that no collision is found after selectingk
inputs is  (1−1/n)(1−2/n)…(1−(k−1)/n) ≈   for
largen andk = O( ) [17].  The expected number of inputs
that must be tried before a collision is found is   [10].
Assuming that thef(xi) values are stored in a hash table so
that new entries can be added in constant time, this method
finds a collision inO( ) time andO( ) memory.

The large memory requirements can be eliminated using
Pollard’s rho method [19, 20].  This method involves taking
a pseudo-random walk through some finite set S.
Conceptually, the shape of the path traced out resembles the
letter rho, giving this method its name.  Assume the
function f has the same domain and range (i.e.,f: S → S).1

Select a starting valuex0 ∈ S, then produce the sequence
xi = f(xi−1), for i = 1, 2, … .  BecauseS is finite, this
sequence must eventually begin to cycle.  The sequence will
consist of a leader followed by an endlessly repeating cycle.
If xl is the last point on the leader before the cycle begins,
thenxl+1 is on the cycle.  Letxc be the point on the cycle
that immediately precedesxl+1.  Then we have a desired

1 When we wish to find a collision for some functionf ′: D → R,
D ≠ R, we can define a functiong: R → D and letf = g ° f ′.  If
|D| ≥ |R| theng can be injective and a collision inf is also a
collision in f ′.  If |D| < |R| theng can be constructed so that the
probability that a collision inf is also a collision inf ′ is |D|/|R|.
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collision becausef(xl) = f(xc), but xl ≠ xc.  The run time
analysis for the simple algorithm above also applies here.
The expected number of steps taken on the pseudo-random
walk before an element ofS is repeated is , where
n = |S|.  The advantage of this method is that the memory
requirements are small if one uses a clever method of
detecting a cycle.

A simple approach to detecting a collision with Pollard’s
rho method is to use Floyd’s cycle-finding algorithm [12, ex
3.1-6].  Start with two sequences, one applyingf twice per
step and the other applyingf once per step, and compare the
outputs of the sequences after each step.  The two sequences
will eventually reach the same point somewhere on the
cycle.2  However, this is roughly three times more work
than is necessary.  Sedgewick, Szymanski, and Yao showed
that by saving a small number of the values from the
sequence, one could step through the sequence just once and
detect the repetition shortly after it starts [23].  Quisquater
and Delescaille took a different approach based on storing
distinguished points [21].  A distinguished point is one that
has some easily checked property such as having a number
of leading zero bits.  During the pseudo-random walk,
points that satisfy the distinguishing property are stored.
Repetition can be detected when a distinguished point is
encountered a second time.  The distinguishing property is
selected so that enough distinguished points are encountered
to limit the number of steps past the beginning of the
repetition, but not so many that they cannot be stored easily.

Pollard’s rho method is inherently serial in nature; one must
wait for a given invocation of the functionf to complete
before the next can start.  One way to parallelize this
algorithm is to start each processor with a different valuex0
and wait until one of them finds a collision.  However, the
classical occupancy distribution applicable to collision
search leads to poor effectiveness of this approach.    If there
are m processors, the probability that no collision has
occurred for any processor after selectingk inputs is
[(1−1/n)(1−2/n)…(1−(k−1)/n)]m ≈ .  This is
(approximately) the same distribution that one gets with a
single processor operating on a set withn/m elements.  Thus
the expected number of steps taken by each processor
before a collision occurs is .  Because the

2 At this point we have detected that a collision has occurred, but
we have not found the point where the leader meets the cycle.  As
discussed later, finding this point is necessary in some cases (e.g.,
finding collisions in hash functions), but in other cases (e.g.,
Pollard’s methods of factoring and computing discrete logarithms
[19, 20]) it is sufficient that there are two distinct paths to the same
point.
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expected speedup is only a factor of , this is a very
inefficient use of parallelization as it requires  times
more processing cycles than the single processor (serial)
version.

This inefficient use of parallelization can be overcome by
modifying the method of distinguished points as follows.
We start all processors at their own valuex0 and as they
encounter distinguished points, these points are contributed
to a single common list for all processors.  A collision is
detected when the same distinguished point appears twice in
the central list.  As illustrated in Figure 1, we have many
processors taking pseudo-random walks through the setS.
As soon as any trail touches another trail, the two trails will
coincide from that point on and the two processors involved
will produce the same list of distinguished points thereafter
(see processors 3 and 4 in Figure 1).  In general, such a
collision is due to coincident paths rather than traversing a
cycle as in Pollard’s rho method.1  If additional collisions
are desired, processor 3 can be restarted at a new valuex0
and one can wait for some other pair of trails to collide.
Because a collision can be detected between any two points
produced by any of them processors, the run time analysis
is similar to the single processor case, except that the points
are producedm times faster.  The expected number of steps
taken by each processor is /m.

Figure 1:  Parallelized Collision Search

Quisquater and Delescaille used an idea similar to this
parallel collision search in finding DES collisions [21].
They had to contend with “pseudo-collisions” caused by a
mappingg which could not be injective because the size of

1 In fact, the method of distinguished points conceptually
resembles Pollard’s lambda method (discussed later), where two
sequences of points are computed with the hope that at some
(union) point they coincide, whereafter the sequences are identical.
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the DES key space is 256, which is 28 times smaller than its
message space.  They ran several trails with different
starting points within the same processor.  All trails
contributed to the same list of distinguished points.  The
process continued until a true DES collision (rather than a
pseudo-collision) was found.  The time to get to the first
collision is approximately 256/2 = 228, but the probability of
getting a true (rather than a pseudo-) collision is 2−8.  If all
data leading to a pseudo-collision is abandoned and one
starts all over again, then the expected run time is
228/2−8 = 236.  However, by keeping previous data, the
number of collisions found grows as the square of the time
spent (because, the number of pairs of points grows as the
square of the number of points produced).  In this case, after
about 228 = 232 steps, one would expect to have 28

collisions, one of which is expected to be a true DES
collision.  This eliminated the penalty suffered by standard
techniques due to pseudo-collisions.  However, when they
parallelized this algorithm tom processors, they achieved a
speed up of only a factor of  because the processors
operated independently with different mappingsg. In
contrast, our new technique described above provides a
speedup by a factorm for m processors.

3. Finding (Real) Collisions in Hash Functions

In this section we apply the parallel collision search
technique to finding real collisions in hash functions.  We
first review how hash functions are typically used in
conjunction with digital signatures, and the classic attack of
Yuval.  We then apply parallel collision search to extend this
attack allowing parallelization and reducing memory
requirements, and consider as an example the impact on the
MD5 hash function.

Hash functions are designed to take a message consisting of
an arbitrary number of binary bits and map it to a fixed size
output called a hash result.  LetH: M → R  be such a hash
function.  Typically, hash functions are constructed from a
function h: B×R → R  which takes a fixed size block of
message bits together with an intermediate hash result and
produces a new intermediate hash result.  A given message
m ∈ M is typically padded to a multiple of the block size
and split into blocksm1, … ml ∈ B.  The padding often
includes a field which indicates the number of bits in the
original message.  Beginning with some constantr0 ∈ R, the
sequenceri = h(mi, ri−1) is computed fori = 1, … l, andrl is
the hash result for messagem.

Hash functions are commonly used in connection with
digital signatures.  Instead of signing a message directly, the

28
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message is first hashed and the hash result is signed.  For
cryptographic security, it must be computationally
infeasible to find two messages that hash to the same value;
otherwise, a digital signature could be moved from one
message to the other.

Now suppose we have a messagem that we would like our
adversary to digitally sign, but he is not willing to do so.  A
simple attack on the hash function can help to acquire the
desired signature as follows [25].  Choose some other
messagem′ that the adversary is willing to sign.  Find
several ways to modify each ofm andm′ that do not alter
their respective semantic meaning (e.g., adding extra spaces
or making small changes in wording).  The combinations of
message modifications lead to many versions of a message,
all of which have essentially the same meaning.  Then hash
the different versions ofm andm′ until we find two versions
that give the same hash result.  The adversary will sign the
version ofm′, and we can move the signature tom.  This
attack requiresO( ) time and space, wheren = |R|.

The memory requirements for a hash function attack can be
eliminated using collision search techniques.  Letm ∈ M
and letgm: R → M  be an injective function which takes a
hash result (and a fixed messagem) as input and produces a
perturbation ofm with the same semantic meaning to the
signer.  For example, each bit of a hash result may
correspond to one possible modification of the messagem.
Partition the setR into two roughly equal size subsetsS1 and
S2 based on some easily testable property of a hash result.
Then define a functionf: R → R as follows, withm andm′
as described above as implicit constants.

Using the parallel collision search technique from section 2,
find pairs of hash resultsa andb such thatf(a) = f(b), but
a ≠ b.  There is about a 50% chance that random hash
resultsa andb are in different subsets ofR.  The collision
search is not interrupted until a collision is verified to havea
and b in different subsetsSi, Sj of R.  Without loss of
genera l i t y,  suppose a ∈ S 1 and b ∈ S 2;  then
H(gm(a)) = H(gm′(b))  (i.e., we have versions ofm andm′
which give the same hash result).  The probability that we
fail to find the desired type of collision after a total ofk
iterations of f among all processors is approximately1

(1− 1/2n)(1− 2/2n)… (1− (k− 1)/2n) ≈ .   The
expected total number of iterations required among all
processors is , or /m iterations per processor form

n

f r( )
H gm r( )( ) ���if�� r S1∈( )
H gm ' r( )( ) ��if�� r S2∈( )



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processors (recall thatn is the cardinality of the hash
function space).

Let us now apply these techniques to the MD5 hash function
[22].  With MD5, the hash result is 128 bits, and messages
are divided into 512-bit blocks.  To reduce the amount of
computation required, we will assume that the effect of the
mappingsgm and gm′ can be confined to a single block
within the messages.  We justify this as follows.  Forgm and
gm′ to be injective, we must be able to code 128 bits of
information into a 512-bit message block.  One way to do
this would be to find four non-printable characters and code
two bits per byte.  Another way is to hide data within a 512-
bit segment of a word processor file in such a way that the
appearance of the file is not altered.

The messagem consists of the blocks m1, … ml.  Message
m′ consists of the blocksm′1, … m′j, mj+1, … ml.  Note that
m and m′ must have the same length so that the length
information coded in their final blocks will be the same.
The effect of gm andgm′ is coded into blocksmj andm′j.  If
the intermediate hash results are the same form andm′ after
block numberj, then the final hash results will be the same
as well.  The functionf now just needs to use one iteration
of the hash function.  Letrj−1 andr′j−1 be the intermediate
hash results form andm′ after j−1 blocks.  Replacegm and
gm′ with g: R → B  which maps a hash result to a 512-bit
message block; this assumes we are free to manipulate the
512-bit blocksmj and m′j in their entirety.  Then use the
following functionf for collision search.

An internal study [4] indicates that a collision search chip
for one iteration of MD5 with 64 levels of pipelining (recall
that MD5 involves 4 rounds of 16 computations per 512-bit
block) could be built with a total area of (310 mils)2 and
would run at 50MHz if designed in a 0.5µm CMOS
process.  Due to the pipelining, each chip would be
computing 64 independent sequences with different starting
points.  Each sequence would have evaluations off
performed at 1/64 of 50MHz.  Overall, there would be 50
million evaluations off per second.  The chips would also

1 This expression is not quite precise (even for perfectly random
functionsf ) as it does not account for the fact that “undesirable”
collisions result in two identical points being in the pool of
generated points, and the second of these does not increase the
chance of future collisions.  However, as the expected number of
undesirable collisions prior to a desirable collision is 1 (as follows
from the 50% chance noted earlier), this imprecision is negligible.

f r( )
h g r( ) rj 1−,( ) ���if�� r��is�even

h g r( ) r' j 1−,( ) ��if�� r��is�odd��



=
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contain logic to detect distinguished points to minimize the
rate of input and output to keep costs down.  Such a chip
would cost about $15 in high volume.  Based on a recent
DES key search design [24], the overhead of building a
machine with many of these chips would be about $7 per
chip.  This includes the cost of a hierarchy of controllers and
communications path to a central memory of distinguished
points.  The only cost that has not yet been accounted for is
the memory for the distinguished points.

For a $10million budget, we suggest an appropriate
distinguishing property for hash results is having 36 leading
zero bits.  We expect to perform 264  iterations off before
a collision occurs.  Only about 2−36 of these will give
distinguished points.  For storage, we need 22 bytes per
distinguished point; this includes 12 bytes for the hash value
(leading zero bits are not stored), four bytes to identify the
sequence of points, and six bytes for the number of steps
taken in the sequence (allowing for 248 steps which is more
than is required).  The number of steps taken in the
sequence will be used later (see below) to locate the
collision.  Allowing for a factor of two in memory size in
case the search takes longer than expected and a factor of
1.5 for overhead due to using a hash table for the list of
distinguished points, we need about 30Gbytes of memory.
(Note that this is not impractical; the existing general
purpose parallel machine of [9] has 37Gbytes of memory.)
Assuming that the cost of memory and the boards to house
it is $75/Mbyte, the memory cost is $2.25million.  At $22
per chip (including overhead), the remaining $7.75million
can buy about 350000 chips.

The total search time will consist of three components: the
times for the collision to occur, be detected, and then
located.  A collision is expected to occur after a total of
264  iterations off divided among all sequences.  After
the desired collision occurs, all sequences will continue
until the colliding sequence encounters a distinguished point
to allow the collision to be detected.  The distribution of this
number of steps is geometric with mean 236.  Finally, we
must locate the collision as follows.  Find the previous
distinguished points produced by the two colliding
sequences in the central list (a relatively fast operation even
if performed by linear search).  Using the count of the
number of steps taken that is stored with each distinguished
point, step one of the previous distinguished points forward
until the counts of the previous points differ by the same
amount as the counts of the colliding distinguished points.
Then the two previous points are stepped forward until they
produce equal outputs.  (We assume that we have one or two
special chips which are designed to produce two

π

π

independent sequences and compare their outputs.)  On the
step before equality occurs, we have located the collision
values.  The run time of locating the collision is the
maximum of two geometric distributions, and has an
expected run time of (1.5)236 steps.  Note that the main
collision search is not halted until a useful collision is
found.  The total expected run time for 350000 chips with
64 levels of pipelining is1

Thus, a $10million machine would take 24 days to find two
useful messages that MD5 hashes to the same value.

4. Application to Discrete Logarithms in
Cyclic Groups

In this section we apply the parallel collision search
technique to discrete logarithms in cyclic groups.  We first
review known methods for computing discrete logarithms in
cyclic groups and then discuss the use of parallel collision
search on this problem.

Known methods for computing logarithms in cyclic
groups.  Recall that the powerful index-calculus techniques,
which can be applied to groups with additional structure, do
not apply to arbitrary cyclic groups.  For the latter, the well-
known “baby-step giant-step” algorithm, attributed to
Shanks [13, pp. 9, 575], allows one to compute discrete
logarithms in a cyclic groupG of ordern in deterministic
time O( log n) and space for  group elements.  If one
uses hashing instead of sorting at a particular stage
(described below), the running time falls toO( ) steps;
here, one step is a group operation.  Ifp is the largest prime
divisor ofn, Shanks’ algorithm can be generalized to run in
deterministic time and spaceO( ) [20]; moreover, space
can be traded off against time [18], which may be of interest
if one anticipates computing a large number of logarithms.

Pollard’s lesser-known rho-method for discrete logarithms
[20], based on the same theory as his rho-method for
factoring [19], also has time complexityO( )  (originally
given as heuristic time rather than deterministic, but

1 Summing the expected values of the three components of the run
time ignores the possibility that a second collision which occurs
later than the first will actually be detected and located earlier.  The
actual expected run time will be slightly less than the calculated
value.

64
50�MHz

264 π
350000( ) 64( )

236 1 1.5+( )+ 
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rigorously proven by Bach [3]), with only negligible space
requirements; it is thus preferable. This method requires
knowledge of the (exact) order of the group, whereas
Shanks’ method requires only an upper bound.  Pollard’s
rarely discussed lambda-method for computing discrete
logarithms can be used when the logarithm sought is known
to lie in a specified interval [20]; this algorithm may
terminate (with controllably small probability) without
yielding the answer.  More specifically, it yields the logx of
a group element in timeO( ) and space forO(log w)
group elements, provided one knows thatb < x < b+w  with
integers b and w known.  Shanks’ method, similarly
modified to apply to a restricted interval of widthw, can
guarantee success in similar running time, but requires
space for  group elements; again time could be traded
off for space.  Pollard’s rho-method does not seem
adaptable to restricted intervals (thus motivating the
lambda-method). Other refinements are possible if it is
known that the logarithm being sought belongs to a group
with special structure (e.g. [11]).

Direct parallelization of known methods for logarithms
in cyclic groups.  Regarding parallelization of discrete log
algorithms for cyclic groups, little work has been done.  We
now briefly review the known results, and obvious
parallelizations of previous methods.  In discussing the rho-
method for factorization, Brent notes that “Unfortunately,
parallel implementation of the “rho” method does not give
linear speedup” [5, p. 29].  He continues

“A plausible use of parallelism is to try several
different pseudorandom sequences (generated by
different polynomialsf).  If we havem processors
and usem different sequences in parallel, the
probability that the firstk values in each sequence
are distinct modp is approximately exp(−k2m/2p),
so the speedup isO( ) … .”

Analogous comments apply to the rho-method for
computing logarithms.  Note that here each parallel
processor is working independently of the others (rather
than interactively), and does not increase the probability of
success of any other processor.  This is the best previously
reported use of parallelization for computing logarithms in
cyclic groups.

A naive parallelization of Pollard’s lambda-method among
m processors is as follows.  If the logarithm is known to lie
in an interval of widthw, assign each ofm processors to
search disjoint subintervals of widthw/m.  The running time
for each processor is then proportional to , yielding
speedup by a factor of .  Recall the objective ofm-fold

w

w

m

w/ m
m

parallelization is a speedup by a factor linear inm, ideally
by m itself; thus the above parallelization is inefficient.

We now consider a naive parallelization of Shanks’ method.
The basic method for the cyclic group GF(p)*  with
generator g finds the logarithm of a group element
y ≡ gx (modp) as follows.  Sett =  .  The process
consists of two phases, with Phase 1 a one-time
computation and Phase 2 carried out for each logarithm.
Phase 1: compute gti for 0 ≤ i < t; order these elements
(either by sorting or hashing).  Phase 2: computeygj for
0 ≤ j < t; check for a common element with the first list by
either sorting or conventional hashing.  (In the latter case,
each Phase 2 element is not actually inserted into the hash
table, but an attempt is made to do so to check whether it is
already present.)  A common element is guaranteed,
yielding x ≡ ti − j (modp−1).  Phase 2 can be subdivided
amongm processors by subdividing the range ofj into m
subintervals of widtht/m.  Each parallel processor will
complete Phase 2 in at mostt/m steps, for a Phase 2 speedup
factor of m; one of the processors will find the desired
collision.  A similar speedup can be achieved for Phase 1.
However, one would still require memory fort =  
group elements and a parallel method of writing to this
memory in Phase 1 and reading from it in Phase 2 without
slowing down the processors.  As before, time and space
can be traded off, but due to the above issues, this method
remains impractical for large groups.

A new parallelized discrete log algorithm for cyclic
groups.  We now discuss how to adapt the parallel collision
search techniques of Section 2 to the problem at hand.  For a
cyclic group of ordern, suppose one wants to find the
discrete logarithm of a group element with respect to some
generator.  If n has a known factorization into prime powers,
this problem can be reduced to one of findingc discrete
logarithms in a subgroup of sizep for each prime powerpc

dividing n (e.g., see [18] or [16]).  For the reduced problem,
we havey = gx, whereg generates a subgroup of orderp, y
is known, and we wish to findx.  Whenp is small, one can
simply compute all of the subgroup elements and compare
them toy, or use the single processor version of Pollard’s
rho method.  For large primes, one can use the parallelized
rho method as now described.

In a parallel version of the rho method for logarithms, we
suggest the same iterating function used by Pollard [20].
Partition the set of subgroup elements into three roughly
equal size disjoint setsS1, S2, andS3, based on some easily
testable property.  Define the iterating function:

p

p
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Each processor follows the following steps independently.
Choose random exponentsa0, b0 ∈ [0, p) and use the
starting pointx0 = ga0yb0. 1  Compute the sequence defined
above keeping track of the exponents ofg andy at each step
(xi = gaiybi).  Whenxi is a distinguished point, contribute the
triple (xi, ai, bi) to a list common to all processors.  The
expected number of steps for each ofm processors before a
collision occurs is /m.  Shortly after the collision
occurs, the colliding processor will encounter a
distinguished point and there will be a collision among the
xi values in the list.  If the corresponding exponents in the
two triples area, b and c, d, then gayb = gcyd or gs = yt,
where s ≡ a−c (modp) and t ≡ d−b (modp).  Provided
t ≡/ 0 (modp), the desired logarithm can be computed as
loggy ≡ s⋅t−1 (modp); otherwise, the collision is not useful
and the search must continue.  Based on randomness
assumptions, the probability thatt ≡ 0 (modp) is very small
if p is large enough to warrant using parallel collision
detection.

Impact on elliptic curve cryptosystems over GF(2155).
We now discuss the practical utility of this new method by
choosing, as an illustrative example, its application to a
discrete-logarithm-based cryptosystem of Agnew et al. [1]
which uses elliptic curve cryptosystems over GF(2155).  The
security of such systems is apparently bounded by the
difficulty of finding discrete logarithms over the group of
points on the elliptic curve.  Curves are used for which the
best discrete logarithm attack is Pollard’s rho-method, and
to make such attacks infeasible, they recommend curves
where the order of the elliptic curve group contains a prime
factor with at least 36 decimal digits (corresponding to
p ≈ 1036 as discussed above).  Each step of the rho-method
requires a number of arithmetic operations over the elliptic
curve (specifically, for the implementation cited, 3 elliptic
curve additions for Floyd’s cycle-finding requiring a total of
39 field multiplications, each taking 155 clock cycles at 40
MHz), and if 1000 devices are used in parallel to compute a
logarithm, they note the computation would still require
1500 years. (Although no method was known by which the
rho-method could be parallelized, the existence of a

1 A key point is that different processors use independent starting
points, but after such points are chosen, they are of known relation
to one another.  This allows collision information to be resolved
into the recovery of logarithms.

xi 1+

yxi���if�� xi S1∈( )

xi
2����if�� xi S2∈( )

gxi���if�� xi S3∈( )



=

πp/ 2

parallelized version with perfect linear speedup was implicit
in this reasoning.)  It was previously believed [1, p.809]:
“Provided that the square root attacks are the best attacks on
the elliptic logarithm problem, we see that elliptic curves
over F2m with m about 130 provide very secure systems”.
However, the analysis below indicates that the lower bound
of 1036 for the size of the largest prime factor of the order of
the group is too small to provide what we would understand
asvery secure systems.

The elliptic curve system over GF(2155) can be
implemented in less than 1mm2 of silicon in 1.5µm
technology and can perform an addition in 13×155 clock
cycles at 40MHz [1, 2].  About 75 of these cells plus
input/output and logic to detect distinguished points could
be put on a $20 chip.  We now summarize the results of an
analysis similar to that for MD5 in Section 3.  With a
$10million budget, we suggest a distinguishing property
that distinguishes one in 233 group elements.  We expect to
perform 1018  group operations before a collision
occurs.  For storage, we need 46 bytes per distinguished
point; this includes 16 bytes for the point on the curve and
15 bytes for each exponent (ai and bi).

2  Allowing for a
factor of two in memory size in case the search takes longer
than expected and a factor of 1.5 for overhead due to using a
hash table for the list of distinguished points, we need about
20Gbytes of memory.  Assuming $75/Mbyte, the memory
cost is $1.5million, and the remaining budget can buy a
machine with about 315000 chips (at $27 each, including
an estimated $7/chip overhead costs) or a total of 23.6
million processor cells.  The expected time to complete a
discrete logarithm is

This analysis makes use of the basic hardware described by
Agnew et al. [1], and does not take into account possible
optimizations from pipelining the elliptic curve
implementation or from using currently available silicon
technology.  Note that the computation of the discrete
logarithm in the large subgroup of size approximately 1036

will by far dominate other computational costs in the entire
Pohlig-Hellman decomposition.  This follows because the

2 A point on an elliptic curve can be represented uniquely with one
coordinate and one other bit.  With a distinguishing property of 33
zero bits, a point can be represented in 155+1−33 = 123 bits or 16
bytes.  The exponents are computed modulop, the size of the
subgroup, and forp < 1036, the exponents can be represented in 15
bytes each.

π/ 2

13 155( )
40�MHz

1018 π/ 2

23.6 106�processors×
233+ 

 
36�days≅
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order of the elliptic curve group over GF(2m) is
2m + O(2m/2), and 2155/1036 < 1011, and so the remaining
subgroups are necessarily relatively small form = 155.

5. Concluding Remarks

The parallelization of collision search techniques presented
herein greatly extends the reach of practical attacks.
Regarding collisions for hash functions, we have singled out
MD5 due to its popularity, but the new technique can be
applied to efficiently parallelize the search for collisions
between meaningful messages for any hash function.
Indeed, after fixing a budget, the only details of the specific
hash function which enter into an analysis such as ours are
the size of the hash result, and the speed and cost of a
hardware implementation possible with current technology.
The natural conclusion from our analysis is that 128-bit
hash results are, depending on the application, too small to
provide adequate security for the future, and perhaps even
for today.  For the case of discrete logarithms in cyclic
groups, while we chose to apply our new techniques to a
specific cryptosystem which has actually been built, the
technique again has general application.  For the specific
elliptic curve cryptosystem over GF(2155) which we have
considered, we note that the security could be improved by
increasing the recommended 1036 lower bound on the
smallest prime factor of the order of the elliptic curve group.
For comparison to the 24 days and 36 days, respectively,
required to attack the above-mentioned systems using our
new techniques, exhaustive DES key search with the same
budget of $10 million would take about 21 minutes [24].
When comparing these times, it is worth noting that the
MD5 collision search is based on 0.5µm technology, the
elliptic curve logarithm implementation is based on 1.5µm,
and DES key search is based on 0.8µm.  Due to the nature
of the estimates, our analysis for MD5 collision search and
the above elliptic curve logarithm problem should be taken,
for all intents and purposes, to mean that these problems are
of roughly equivalent difficulty.  The important point is that
both are within the reach of a motivated opponent, and in
general, the comfort-level for “adequate” security should be
adjusted appropriately.

The parallel collision search technique presented is a
general tool with many other potential applications; indeed,
it would appear to be of use whenever one wishes to find a
collision in pseudo-random walks through a large space.
One such application may be in one version of the elliptic
curve factoring algorithm whose second phase involves
such a random walk [5, p. 32]; another, of course, is to

parallelized Pollard rho factoring [19], although better
general factoring methods are available.
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