Parallel Collison Search with
Application to Hash Functions and Discrete L ogarithms

Paul C. van Oorschot and Michael J. Wiener

Bell-Northern Research,®. Box 351 Station C, Ottawa, Ontario, K14H7, Canada

1994 August 17

Abstract 1. Introduction

Current techniques for collision search with feasible The power of parallelized attacks has been illustrated in
memory requirements involve pseudo-random walks recent work on integer factorization and cryptanalysis of the
through some space where one must wait for the result oData Encryption Standard (DES) [7]. In the factoring of the
the current step before the next step can begin. Thes&SA-129 challenge number and other factoririgres (e.g.
techniques are serial in nature, and direct parallelization is[14, 15]), the sieving process was distributed amongge lar
inefficient. We present a simple new method of number of workstations. Similar fefts have been
parallelizing collision searches that greatly extends theundertaken on lge parallel machines [8, 9]. In a recent
reach of practical attacks. The new method is illustratedexhaustive key search attack proposed for DES [24]ga lar
with applications to hash functions and discrete logarithmsnumber of inexpensive specialized processors were
in cyclic groups. In the case of hash functions, we beginproposed to achieve a high degree of parallelism. The
with two messages; the first is a message that we want ouimportance of producing memoryless versions of attacks is
target to digitally sign, and the second is a message that thevell recognized (e.g. [6, 21]), but even a memoryless attack
taget is willing to sign. Using collision search adapted for is of little practical use unless it can befi@éntly
hashing collisions, one can find slightly altered versions of parallelized. In this papewe provide a method forfefient
these messages such that the two new messages give tiparallelization of collision search techniques.
same hash result. As a particular example, anillion
custom machine for applying parallel collision search to the Theé remainder of this paper isganized as follows.
MD5 hash function could complete an attack with an Section 2 reviews general collision search techniques and
expected run time of 24 days. This machine would be presents a new parallel method. This hew method allows,
specific to MD5, but could be used for any pair of messages.for the first time, dicient use of parallelization in collision
For discrete logarithms in cyclic groups, ideas from search and greatly extends the reach of practical attacks.
Pollards rho and lambda methods for index computation Section 3 illustrates the application of parallel collision
are combined to allow fifient parallel implementation search by adapting it to finding hash function collisions; we
using the new method. As a concrete example, we considefhoose as an illustrative example the well-known hash
an elliptic curve cryptosystem oveF (2159 with the order function MD5 [22] and propose a high-level design for a
of the curve having lgest prime factor of approximate size Machine to ihd MD5 collisions in hardware. For
106 A $10million machine custom built for this finite $10million,* one could expect to find a collision in 24 days.
field could compute a discrete logarithm with an expected This was not possible by previous techniques whereby the
run time of 36 days. efficiency of parallelization wa®(./m), rather tharO(m)
for m processors. Section 4 discusses using parallel
collision search to find discrete logarithms in cyclic groups.
As an illustrative example we consider an elliptic curve
cryptosystem over GF{29 with the order of the curve
having lagest prime factor of size 3% and again give a

L All estimates are given in U.S. dollars.

high-level hardware design to attack this system. A collision becausd(x) =f(x.), but x; Zx.. The run time
$10million custom built machine could complete a analysis for the simple algorithm above also applies here.
logarithm with an expected time of 36 days. Nficemt The expected number of steps taken on the pseudo-random
algorithm has previously appeared in the literature for walk before an element @& is repeated is/mn/ 2, where
parallelizing the computation of discrete logarithms in n=|9g. The advantage of this method is that the memory
cyclic groups; again, the most fiegfent previously requirements are small if one uses a clever method of
documented algorithms fefed O(./m) speedup form detecting a cycle.

processors, rather than linear speedup. Section 5 contains
concluding remarks. A simple approach to detecting a collision with Pollgrd’

rho method is to use Floygltycle-finding algorithm [12, ex
3.1-6]. Start with two sequences, one applyfitgice per
2. Parallde Collision Search step and the other applyifignce per step, and compare the
outputs of the sequences after each step. The two sequences
In this section we first review known methods for collision will eventually reach the same point somewhere on the
search, and then describe how tficeintly parallelize this cycle? However this is roughly three times more work
task. The goal in collision search is to take a given functionthan is necessarySedgewick, Szymanski, anéd showed
fand find two diferent inputs that produce the same output. that by saving a small number of the values from the
This functionf is chosen so that finding a collision serves sequence, one could step through the sequence just once and
some cryptanalytic purpose. eWmake the reasonable detect the repetition shortly after it starts [23]. Quisquater
assumption thdtis suficiently complex that it behaves like and Delescaille took a didrent approach based on storing
a random mapping. distinguished points [21]. A distinguished point is one that
has some easily checked property such as having a number
of leading zero bits. During the pseudo-random walk,
points that satisfy the distinguishing property are stored.
Repetition can be detected when a distinguished point is
encountered a second time. The distinguishing property is
selected so that enough distinguished points are encountered
to limit the number of steps past the beginning of the
repetition, but not so many that they cannot be stored easily

An obvious method for finding a collision is to select
distinct inputsx fori =1, 2, ... and check for a collision in
the f(x;) values. Lemn be the cardinality of the range bf
The probability that no collision is found after selecting
inputs is (¥1/n)(1-2/n)...(1-(k-1)/n) = e®len for
largen andk = O(ﬁ) [17]. The expected number of inputs
that must be tried before a collision is found/mn/2 [10].
Assuming that thé(x,) values are stored in a hash table so
that new entries can be added in constant time, this metho@ollards rho method is inherently serial in nature; one must
finds a collision irD(/n) time andO(/n) memory wait for a given invocation of the functidnto complete
before the next can start. One way to parallelize this
The lage memory requirements can be eliminated using algorithm is to start each processor with edént valuex,
Pollards rho method [19, 20]. This method involves taking ,n4 wait until one of them finds a collision. Howee

a pseudo-random walk through sommite set S. classical occupancy distribution applicable to collision
Conceptuallythe shape of the path traced out resembles thegearch leads to poorfetiveness of this approach. If there

letter rho, giving this method its name. Assum? the are m processors, the probability that no collision has
functionf has the same domain and range (i:¢5,-). occurred for any processor after selectkginputs is
Select a Startlng Va'Uﬁ) O S, then produce the sequence [(1—1/n)(1—2/n)(1—(k—1)/n)]m= e—kzm/(Zn)_ This is
X =f(x—y), for i=1,2,.... BecauseS is finite, this L

: _(approximately) the same distribution that one gets with a
sequence must eventually begin to cycle. The sequence wil ingle processor operating on a set with elements. Thus

consist of a leader followed by an endlessly repeating cycle 4,0 expected number of steps taken by each processor

If % is the last point on the leader before the cycle begins,tore a collision occurs is/mm/ (2m) (2m). Because the
thenx,, is on the cycle. Let; be the point on the cycle

that immediately precedes,;. Then we have a desired

2 At this point we have detected that a collision has occurred, but
we have not found the point where the leader meets the cycle. As
1 When we wish toifid a collision for some functiofi: D - R, discussed latefinding this point is necessary in some cases (e.g.,
D # R, we can dehe a functiong: R - D and letf=gof'. If finding collisions in hash functions), but in other cases (e.g.,
D] = |IR| theng can be injective and a collision fris also a Pollards methods of factoring and computing discrete logarithms
collision inf'. If |D| <|R] theng can be constructed so that the [19, 20]) it is suficient that there are two distinct paths to the same
probability that a collision ifiis also a collision i’ is D|/|R]. point.

expected speedup is only a factor @, this is a very the DES key space i$%2 which is £ times smaller than its
inefficient use of parallelization as it require/% times message space. They ran several trails witferdifit
more processing cycles than the single processor (serialgtarting points within the same processoAll trails
version. contributed to the same list of distinguished points. The
process continued until a true DES collision (rather than a
This ineficient use of parallelization can be overcome by pseydo-collision) was found. The time to get to the first
modifying the method of distinguished points as follows. cojjision is approximately®/2= 228 put the probability of
We start all processors at their own vakgeand as they getting a true (rather than a pseudo-) collision f 2f all
encounter distinguished points, these points are contributeqyata |eading to a pseudo-collision is abandoned and one
to a single common list for all processors. A collision is starts all over again, then the expected run time is
detected when the same distinguished point appears twice in28-8 = 236 Howevey by keeping previous data, the
the central list. As illustrated in Figure 1, we have many nymber of collisions found grows as the square of the time
processors taking pseudo-random walks through th& set gpent (because, the number of pairs of points grows as the
As soon as any trail touches another trail, the two trails will 5qyare of the number of points produced). In this case, after
coincide from that point on and the two processors involved ahoyt 28, /28 =232 steps, one would expect to hav@ 2
will produce the same list of distinguished points thereafter cqjjisions, one of which is expected to be a true DES
(see processors 3 and 4 in Figure 1). In general, such @oljision. This eliminated the penalty fered by standard
collision is due to coincident paths rather than traversing atechniques due to pseudo-collisions. Howgeveren they
cycle as in Pollard’ rho method. If additional collisions parallelized this algorithm tm processors, they achieved a
are desired, processor 3 can be restarted at a newxgalue gpeed up of only a factor ofm because the processors
and one can wait for some other pair of trails to collide. gperated independently with fiifent mappingsg. In

produced by any of then processors, the run time analysis speedup by a facton for m processors.

is similar to the single processor case, except that the points
are producedn times faster The expected number of steps

taken by each processor.jsm/ 2/m. 3. Finding (Real) Collisionsin Hash Functions

In this section we apply the parallel collision search
S technique to finding real collisions in hash functionse W
first review how hash functions are typically used in
conjunction with digital signatures, and the classic attack of
Yuval. We then apply parallel collision search to extend this
attack allowing parallelization and reducing memory
5 requirements, and consider as an example the impact on the
MD5 hash function.

distinguished point

processor
i 2 Hash functions are designed to take a message consisting of
4 an arbitrary number of binary bits and map it to a fixed size
3 output called a hash result. lt¢tM — R be such a hash

function. Typically, hash functions are constructed from a
function h: BxR - R which takes a fixed size block of
Figure 1: Parallelized Collision Search message bits together with an intermediate hash result and
produces a new intermediate hash result. A given message

Quisquater and Delescaille used an idea similar to thismU M is typically padded to a multiple of the block size
parallel collision search in finding DES collisions [21]. @nd split into blocksmy, ... m 0 B. The padding often
They had to contend with “pseudo-collisions” caused by aincludes a field which indicates the number of bits in the
mappingg which could not be injective because the size of Original message. Beginning with some constgt R, the
sequence; = h(m, rj—;) is computed for=1, ... |, andr, is

1 In fact, the method of distinguished points conceptually the hash result for message
resembles Pollard’lambda method (discussed later), where two
sequences of points are computed with the hope that at somdédash functions are commonly used in connection with

(union) point they coincide, whereafter the sequences are identicaldigita| signatures. Instead of signing a message direioty

message is first hashed and the hash result is signed. Fqrocessors (recall that is the cardinality of the hash
cryptographic securityit must be computationally function space).
infeasible to find two messages that hash to the same value;

message to the other [22]. With MDS5, the hash result is 128 bits, and messages

are divided into 512-bit blocks. oTreduce the amount of
Now suppose we have a messagthat we would like our ~ computation required, we will assume that tHeafof the
adversary to digitally sign, but he is not willing to do so. A mappingsg,, and g,y can be confined to a single block
simple attack on the hash function can help to acquire thewithin the messages. &\ustify this as follows. Fag,, and
desired signature as follows [25]. Choose some otherg,, to be injective, we must be able to code 128 bits of
messagem’ that the adversary is willing to sign. Find information into a 512-bit message block. One way to do
several ways to modify each nfandn that do not alter this would be to find four non-printable characters and code
their respective semantic meaning (e.g., adding extra spacesvo bits per byte. Another way is to hide data within a 512-
or making small changes in wording). The combinations of bit segment of a word processor file in such a way that the
message modifications lead to many versions of a messagappearance of the file is not altered.
all of which have essentially the same meaning. Then hash
the diferent versions af andnt until we find two versions ~ 1he messagen consists of the blocksy, ... m. Message
that give the same hash result. The adversary will sign the™ consists of the blocksy, ... mj, my,;, ... m. Note that
version ofm, and we can move the signaturento This m and m’ must have the same length so that the length

The efect of gy, andgyy is coded into blockey andmy. If

The memory requirements for a hash function attack can behe intermediate hash results are the sammfmdn' after
eliminated using collision search techniques. il M block numbelj, then the final hash results will be the same
and letg,; R -~ M be an injective function which takes a as well. The functioi now just needs to use one iteration
hash result (and a fixed messageas input and produces a of the hash function. Let_; andr|_, be the intermediate
perturbation ofm with the same semantic meaning to the hash results fom andnt afterj—1 blocks. Replacg,, and
signer For example, each bit of a hash result may g,y with g: R -~ B which maps a hash result to a 512-bit
correspond to one possible modification of the message message block; this assumes we are free to manipulate the
Partition the seR into two roughly equal size subs&sand 512-bit blocksm and mj in their entirety Then use the
S, based on some easily testable property of a hash resulfollowing functionf for collision search.
Then define a functiorf: R - R as follows, withm andm’
as described above as implicit constants. F(r) = Uh(g(r),r_,) if riseven
oh(g(r),r_y) if r isodd

. j
() = BH@EnM) it (108

gH(gy (1) if (rads) An internal study [4] indicates that a collision search chip
for one iteration of MD5 with 64 levels of pipelining (recall

Using the parallel collision search technique from section 2,that MD5 involves 4 rounds of 16 computations per 512-bit
find pairs of hash resules andb such thafi(a) = f(b), but block) could be built with a total area of (310 milghnd
a#zb. There is about a 50% chance that random hashwould run at 50MHz if designed in a 0.am CMOS
resultsa andb are in diferent subsets dR. The collision process. Due to the p|pe||n|ng, each Ch|p would be
search is not interrupted until a collision is verified to have Computing 64 independent sequences witfediht Starting
and b in different subsets§, § of R Without loss of points. Each sequence would have evaluationsf of
generality supposea S; and b 0 Sy; then performed at 1/64 of SRHz. Overall, there would be 50
H(9m(@) = H(gn (b)) (i.e., we have versions ofi andn million evaluations of per second. The chips would also
which give the same hash result). The probability that we
fail to find the desired type of collision after a totalkof Thi . . _
. i .) is expression is not quite precise (even for perfectly random
iterations of f among all processors is approximately functionsf) as it does not account for the fact that “undesirable”
(1-1/2n)(1-2/2n)...(1-(k-1)/2n) = e¥/(4n . The collisions result in two identical points being in the pool of
expected total number of iterations required among all generated points, and the second of these does not increase the

processors is/Tm, or ./Tn/m iterations per processor for chance of future collisions. Howeyes the expected number of
undesirable collisions prior to a desirable collision is 1 (as follows

from the 50% chance noted earlier), this imprecision is negligible.

5

contain logic to detect distinguished points to minimize the independent sequences and compare their outputs.) On the
rate of input and output to keep costs down. Such a chipstep before equality occurs, we have located the collision
would cost about $15 in high volume. Based on a recentvalues. The run time of locating the collision is the
DES key search design [24], the overhead of building amaximum of two geometric distributions, and has an
machine with many of these chips would be about $7 perexpected run time of (1.532 steps. Note that the main
chip. This includes the cost of a hierarchy of controllers andcollision search is not halted until a useful collision is
communications path to a central memory of distinguishedfound. The total expected run time for0Z®O0 chips with
points. The only cost that has not yet been accounted for i$4 levels of pipelining i$

the memory for the distinguished points.

64 0O 2%/m
50 MHz (350000 (64)

For a $10million budget, we suggest an appropriate +2%¥(1+15) §D24 days
distinguishing property for hash results is having 36 leading
zero bits. W expect to performGﬁﬁt iterations off before

a collision occurs. Only about™® of these will give Thus, a $10nillion machine would take 24 days to find two
distinguished points. For storage, we need 22 bytes petSeful messages that MD5 hashes to the same value.
distinguished point; this includes 12 bytes for the hash value

(leading zero bits are not stored), four bytes to identify the o])]

sequence of points, and six bytes for the number of stepé Application to Discrete L ogarithmsin

taken in the sequence (allowing fé&teps which is more Cyclic Groups

than is required). The number of steps taken in the

sequence will be used later (see below) to locate theln this section we apply the parallel collision search
collision. Allowing for a factor of two in memory size in teéchnique to discrete logarithms in cyclic groupse fitst
case the search takes longer than expected and a factor §¢view known methods for computing discrete logarithms in
1.5 for overhead due to using a hash table for the list ofcyclic groups and then discuss the use of parallel collision
distinguished points, we need aboutG8ytes of memory ~ S€arch on this problem.

(Note that this is not impractical; the existing general
purpose parallel machine of [9] has GBytes of memory
Assuming that the cost of memory and the boards to hous
it is $75/Mbyte, the memory cost is $2.2flion. At $22

per chip (including overhead), the remaining $/million

can buy about 38000 chips.

Known methods for computing logarithms in cyclic
egroups. Recall that the powerful index-calculus techniques,
which can be applied to groups with additional structure, do
not apply to arbitrary cyclic groups. For the Igttee well-
known “baby-step giant-step” algorithm, attributed to
Shanks [13, pp. 9, 575], allows one to compute discrete

The total search time will consist of three components: thelogarithms in a cyclic groufs of ordern in deterministic
times for the collision to occurbe detected, and then UMe O(+/n logn) and space for/n group elements. If one

located. A collision is expected to occur after a total of US€S hashing instead of §ortipg at a particular stage
284 [t iterations off divided among all sequences. After (described below), the running time falls @f./n) steps;

the desired collision occurs, all sequences will continue hgre, one step Is a group operationp 8 the Iagest prime
until the colliding sequence encounters a distinguished pointdivisor _of_n,_Sh_anks algorithm can be generalized to run in
to allow the collision to be detected. The distribution of this deterministic time and spac¥ Jp) [20]; moreover space
number of steps is geometric with meal. 2 Finally, we can be traded bagainst time [18], which may be of interest
must locate the collision as follows. Find the previous If One anticipates computing adgrnumber of logarithms.

distinguished points produced by the two colliding
sequences in the central list (a relatively fast operation eve
if performed by linear search). Using the count of the
number of steps taken that is stored with each distinguishe
point, step one of the previous distinguished points forward
until the counts of the previous pointsfeif by the same
amount as the counts of the colliding distinguished points.1 symming the expected values of the three components of the run
Then the two previous points are stepped forward until theytime ignores the possibility that a second collision which occurs

produce equal outputs. BMssume that we have one or two later than the first will actually be detected and located eaflltes

special chips which are designed to produce two actual expected run time will be slightly less than the calculated
value.

Pollards lesseknown rho-method for discrete logarithms
r}20], based on the same theory as his rho-method for
Jactoring [19], also has time complex@(fp) (originally
given as heuristic time rather than deterministic, but

rigorously proven by Bach [3]), with only negligible space parallelization is a speedup by a factor lineamjnideally
requirements; it is thus preferable. This method requiresby mitself; thus the above parallelization is fiigént.
knowledge of the (exact) order of the group, whereas

Shanks’ method requires only an upper bound. Padlard’ We now consider a naive parallelization of Shanks’ method.
rarely discussed lambda-method for computing discrete The basic method for the cyclic group @F(with
logarithms can be used when the logarithm sought is knowrdeneratorg finds the logarithm of a group element
to lie in a specified interval [20]; this algorithm may y=g*(modp) as follows. Sett=0/p0] The process
terminate (with controllably small probability) without COnsists of two phases, with Phase 1 a one-time

yielding the answerMore specificallyit yields the logcof ~ cOmputation and I?hase 2 carried out for each logarithm.
a group element in tim@(,/w) and space foO(logw) Phase 1: compute'dor 0 < i <t; order these elements
group elements, provided one knows that x < b+w with (either by sorting or hashing). Phase 2: compgtefor

integersb and w known. Shanks’ method, similarly 0<] <t check for a common element with the first list by
modified to apply to a restricted interval of widih can either sorting or conventional hashing. (In the latter case,
guarantee success in similar running time, but requires€ach Phase 2 element is not actually inserted into the hash
space for./w group elements; again time could be traded t@ble, but an attempt is made to do so to check whether it is
off for space. Pollard’ rho-method does not seem already present) A common element is guaranteed,
adaptable to restricted intervals (thus motivating the Yielding x=ti —j (modp-1). Phase 2 can be subdivided
lambda-method). Other refinements are possible if it is@Mongm processors by subdividing the rangej afito m
known that the logarithm being sought belongs to a groupSubintervals of widtht/m. Each parallel processor will

with special structure (e.g. 1. complete Phase 2 in at mdésh steps, for a Phase 2 speedup
factor of m; one of the processors will find the desired
Direct parallelization of known methods for logarithms collision. A similar speedup can be achieved for Phase 1.

in cyclic groups. Regarding parallelization of discrete log However one would still require memory far= 0/p0
algorithms for cyclic groups, little work has been donee W group elements and a parallel method of writing to this
now briefy review the known results, and obvious memory in Phase 1 and reading from it in Phase 2 without
parallelizations of previous methods. In discussing the rho-slowing down the processors. As before, time and space
method for factorization, Brent notes that “Unfortunately can be traded §fbut due to the above issues, this method
parallel implementation of the “rho” method does not give remains impractical for lge groups.

linear speedup” [5, p. 29]. He continues
A new parallelized discrete log algorithm for cyclic

“A plausible use of parallelism is to try several groups. We now discuss how to adapt the parallel collision
different pseudorandom sequences (generated by search techniques of Section 2 to the problem at hand. For a
different polynomiald). If we havem processors cyclic group of ordem, suppose one wants to find the
and usem different sequences in parallel, the discrete logarithm of a group element with respect to some
probability that the firsk values in each sequence generatar If n has a known factorization into prime powers,
are distinct mog is approximately exp(k2m/2p), this problem can be reduced to one of findindiscrete

so the speedup B(./m)" logarithms in a subgroup of sipefor each prime powgr®

dividing n (e.g., see [18] or [16]). For the reduced problem,
Analogous comments apply to the rho-method for e havey = g¥, whereg generates a subgroup of orgesy
computing logarithms. Note that here each parallel g known, and we wish to find Whenp is small, one can
processor is working independently of the others (rathersimmy compute all of the subgroup elements and compare
than interactively), and does not increase the probability ofihem toy, or use the single processor version of Polkard’

reported use of parallelization for computing logarithms in ho method as now described.

cyclic groups.

In a parallel version of the rho method for logarithms, we
A naive parallelization of Pollars’lambda-method among gyggest the same iterating function used by Pollard [20].
m processors is as follows. If the logarithm is known to lie partition the set of subgroup elements into three roughly

for each processor is then proportionald&/m, yielding
speedup by a factor ofm. Recall the objective af-fold

7

parallelized version with perfect linear speedup was implicit
0 yx if (x08) |n thi§ reasoning.) It was previously believed [1, p.809]:
X1 = 0% if (% 0S) Prov@ed that thg square root attacks are the b.es.t attacks on
0) the elliptic logarithm problem, we see that elliptic curves
o it (5 0S) over Fom with m about 130 provide very secure systems”.
However the analysis below indicates that the lower bound
Each processor follows the following steps independently of 103 for the size of the lgest prime factor of the order of
Choose random exponentg, by (1[0, p) and use the the group is too small to provide what we would understand

starting pointxg = g®y™. 1 Compute the sequence defined asvery secure systems.
above keeping track of the exponentg aihdy at each step

(%= ga*'ybi). Whenx; is a distinguished point, contribute the The elliptic curve system over GF(®) can be
triple (x;, a;, by) to a list common to all processors. The implemented in less than mm? of silicon in 1.5um
expected number of steps for eachrgbrocessors before a technology and can perform an addition irk135 clock
collision occurs isA/np/Z/m. Shortly after the collision cycles at 40MHz [1, 2]. About 75 of these cells plus
occurs, the colliding processor will encounter a input/output and logic to detect distinguished points could
distinguished point and there will be a collision among the be put on a $20 chip. &how summarize the results of an

x; values in the list. If the corresponding exponents in theanalysis similar to that for MD5 in Section 3. itVa

two triples area, b andc, d, then gayb= gcyd or g°=V, $10million budget, we suggest a distinguishing property
where s=a-c (modp) and t=d-b(modp). Provided that distinguishes one irf2group elements. &expect to
t£0 (modp), the desired logarithm can be computed as perform 188/ 2 group operations before a collision
Ioggyss[’ﬂ'l (modp); otherwise, the collision is not useful occurs. For storage, we need 46 bytes per distinguished
and the search must continue. Based on randomnespoint; this includes 16 bytes for the point on the curve and
assumptions, the probability thiegt 0 (modp) is very small 15 bytes for each exponers; @nd bi).2 Allowing for a

if p is lage enough to warrant using parallel collision factor of two in memory size in case the search takes longer

detection. than expected and a factor of 1.5 for overhead due to using a
o 155 hash table for the list of distinguished points, we need about
Impact on elliptic curve cryptosystems over GF(2™). 20 Gbytes of memory Assuming $75/Mbyte, the memory

We now discuss the practical utility of this new method by cost is $1.5nillion, and the remaining budget can buy a
choosing, as an illustrative example, its application 10 amachine with about 000 chips (at $27 each, including
discrete-logarithm-based cryptosystem of Agnew et al. [1] an estimated $7/chip overhead costs) or a total of 23.6

which uses elliptic curve cryptosystems over GF{R The mjllion processor cells. The expected time to complete a
security of such systems is apparently bounded by thegjscrete logarithm is

difficulty of finding discrete logarithms over the group of
points on the elliptic curve. Curves are used for which the
best discrete logarithm attack is Pollardho-method, and

to make such attacks infeasible, they recommend curves
where the order of the elliptic curve group contains a prime
factor with at least 36 decimal digits (corresponding to This analysis makes use of the basic hardware described by
p= 100 as discussed above). Each step of the rho-method\gnew et al. [1], and does not take into account possible
requires a number of arithmetic operations over the elliptic OPtimizations from pipelining the elliptic curve
curve (specificallyfor the implementation cited, 3 elliptic implementation or from using currently available silicon
curve additions for Floyd'cycle-finding requiring a total of ~ technology Note that the computation of the discrete
39 field multiplications, each taking 155 clock cycles at 40 logarithm in the lage subgroup of size approximately*$0
MHz), and if 1000 devices are used in parallel to compute awill by far dominate other computational costs in the entire
logarithm, they note the computation would still require PohligHellman decomposition. This follows because the
1500 years. (Although no method was known by which the

rho-method could be parallelized,

13(155) 0 10%./w2 + 790136 days
40 MHz (93,6 x 10° processors O

the existence of a2 A point on an elliptic curve can be represented uniquely with one
coordinate and one other bit. ita distinguishing property of 33

1 A key point is that dferent processors use independent starting zero bits, a point can be represented in 1588% 123 bits or 16

points, but after such points are chosen, they are of known relatiorbytes. The exponents are computed mogylthe size of the

to one another This allows collision information to be resolved subgroup, and fqo < 10°%, the exponents can be represented in 15

into the recovery of logarithms. bytes each.

order of the elliptic curve group over GF[R is parallelized Pollard rho factoring [19], although better
2™+ 0(2™?), and 259106 < 10, and so the remaining general factoring methods are available.
subgroups are necessarily relatively smalinfior 155.

Acknowledgments

5. Concluding Remarks
We would like to thank Bart Preneel for his helpful

The parallelization of collision search techniques presentedsuggestions and Kevin McCurley for making us aware of

herein greatly extends the reach of practical attacks.reference [5].

Regarding collisions for hash functions, we have singled out

MD5 due to its popularitybut the new technique can be

applied to diciently parallelize the search for collisions References

between meaningful messages for any hash function.

Indeed, after fixing a budget, the only details of the specific [

hash function which enter into an analysis such as ours are

the size of the hash result, and the speed and cost of a

hardware implementation possible with current technology

The natural conclusion from our analysis is that 128-bit [2] G.B. AgnewR.C. Mullin, and S.A. ¥nstone. “On the

hash results are, depending on the application, too small to ~ Development of a Fast Elliptic Curve Cryptosystem”,

provide adequate security for the future, and perhaps even LECUENOIES N CompEJter SC|ence_658: Ad_vances n
. . . . Cryptology - Euocrypt’92 Proceedings Springef

for today For the case of discrete logarithms in cyclic Verlag, pp. 482+87

groups, while we chose to apply our new techniques to a T '

specific cryptosystem which has actually been built, the [3] E. Bach, “Dward a Theory of Pollars’Rho Method”,

technique again has general application. For the specific /nformation and Computatignvol. 90 (1991),

elliptic curve cryptosystem over GBE?) which we have pp.139155.

considered, we note that the security could be improved by [4] Bell-Northern Research, Internal study of MD5

increasing the recommended 3§0lower bound on the Silicon Implementation, 1994.

smallest prime factor of the order of the elliptic curve group. [5] R.P. Brent. “Parallel algorithms for integer

For comparison to the 24 days and 36 days, respectively factorization”. London Mathematical Society Lecture

required to attack the above-mentioned systems using our Note Series vol. 154Number Theory and

new techniques, exhaustive DES key search with the same Cryptography J.H. Loxton (ed.), pp26-37,

1] G.B. Agnew R.C. Mullin, and S.A. ¥nstone. “An
implementation of elliptic curve cryptosystems over
F,155", IEEE J. Selected A&as in Communications
vol. 11, no.5 (June 1993), pp. 804-813.

budget of $10 million would take about 21 minutes [24]. Cambridge University Press, 1990.

When comparing these times, it is worth noting that the [6] K.W. Campbell and M.J. Wner, “DES is not a
MD5 collision search is based on @& technology the Group”, Lecture Notes in Computer Science 740:
elliptic curve logarithm implementation is based onirg Advances in Cryptology - Crypto’'92 &geedings
and DES key search is based onih@ Due to the nature SpringefVerlag, pp. 512-520.

of the estimates, our analysis for MD5 collision search and (7] “Data Encryption Standard”, National Bureau of
the above elliptic curve logarithm problem should be taken, Standards (U.S.), Federal Information Processing
for all intents and purposes, to mean that these problems are Standards Publication (FIPS PUB) 46, National
of roughly equivalent difculty. The important point is that Technical Information Service, SpringfieldV1977.
both are within the reach of a motivated opponent, and in 8] B. Dixon and A.K. Lenstra,. “Factoring Integers Using
general, the comfort-level for “adequate” security should be SIMD Sieves”,Lecture Notes in Computer Science
adjusted appropriately 765: Advances in Cryptology - Emcrypt’93,

SpringefVerlag, pp28-39.

R. Golliver, A.K. Lenstra, and K.S. McCurley

“Lattice Sieving and fiial Division”, presented at the
Algorithmic Number Theory Symposium (ANTS'94),
Cornell University May 1994.

The parallel collision search technique presented is a
general tool with many other potential applications; indeed,]
it would appear to be of use whenever one wishes to find a
collision in pseudo-random walks through agéarspace.

One such application may be in one version of the elliptic
curve factoring algorithm whose second phase involves
such a random walk [5, p. 32]; anothef course, is to

[10] P. Flajolet and A.M. Odlyzko, “Random Mapping
Statistics”,Lecture Notes in Computer Science 434:
Advances in Cryptology - BEaerypt’89 Proceedings
SpringefVerlag, pp. 329-354.

[11] R. Heiman. “A note on discrete logarithms with
special structure_ecture Notes in Computer Science
658: Advances in Cryptology - Eoerypt’92,

SpringerVerlag, pp454-457.

[12] D.E. Knuth,The Art of Computer Bgramming vol.
2: Seminumerical Algorithms, 2nd edition, Addison-

Wesley 1981.

[13] D.E. Knuth,The Art of Computer Bgramming vol.
3: Sorting and Searching, Addisoregley 1973.

[14] AK. Lenstra, H.WLenstra, M.S. Manasse, and J.M.
Pollard, “The Factorization of the ninth Fermat
Number”,Math. Compyvol. 61 (1993), pp. 319-349.

A.K. Lenstra and M.S. Manasse, “Factoring by
electronic mail”,Lectue Notes in Computer Science
434: Advances in Cryptology - Eocrypt’'89
ProceedingsSpringefVerlag, pp. 355-371.

[15]

[16] K.S. McCurley “The discrete logarithm problem”,
pp.49-74 in Cryptology and Computational Number
Theory Proc. Symp. Applied Math., vol. 42 (1990),

American Math. Society

[17] K. Nishimura and M. Sibuya. “Probability to meet in
the middle”,J. Cryptology vol. 2 no. 1 (1990),

pp.13-22.

S.C. Pohlig and M.E. Hellman. “An improved
algorithm for computing discrete logarithms over
GF(p) and its cryptographic sigmiance”,IEEE-IT,
vol. 24 (1978), pp. 10641D.

[19] J.M. Pollard, “A Monte Carlo method for
factorization”.BIT, vol. 15 (1975), pp. 331-334.

[20] J.M. Pollard, “Monte Carlo Methods for Index
Computation (mogb)”, Math.Compwol. 32, no. 143,
July 1978, pp. 918-924.

[21] J.-J. Quisquater and J.{Pelescaille, “How easy is
collision search? Application to DES”ectuie Notes
in Computer Science 434: Advances in Cryptology -
Eurocrypt'89 PioceedingsSpringerVerlag, pp. 429-
434.

[22] R. Rivest, “The MD5 Message-Digest Algorithm”,
Internet RFC 1321, April 1992.

[23] R. Sedgewick, 15. Szymanski, and A.C.a06, “The
complexity of fnding cycles in periodic functions”,
Siam J. Computingrol. 11, no. 2, 1982, pp. 376-390.

[18]

[24] M.J. Wener, “Efficient DES Key Search”, TR-244
(May 1994), School of Computer Science, Carleton
University, Ottawa, Canada. (Presented at the Rump
Session of Cryptt93.)

[25] G. Yuval, “How to Swindle Rabin"Cryptologia
vol. 3 (3) (July 1979), ppl87-189.

