
Int. J. Inf. Secur. (2006) 5(3): 186–199
DOI 10.1007/s10207-006-0081-8

REGULAR CONTRIBUTION

Paul C. van Oorschot · Jean-Marc Robert ·
Miguel Vargas Martin

A monitoring system for detecting repeated packets
with applications to computer worms

Published online: 8 March 2006
c© Springer-Verlag 2006

Abstract We present a monitoring system which detects re-
peated packets in network traffic, and has applications in-
cluding detecting computer worms. It uses Bloom filters
with counters. The system analyzes traffic in routers of
a network. Our preliminary evaluation of the system in-
volved traffic from our internal lab and a well known his-
torical data set. After appropriate configuration, no false
alarms are obtained under these data sets and we expect
low false alarm rates are possible in many network environ-
ments. We also conduct simulations using real Internet Ser-
vice Provider topologies with realistic link delays and sim-
ulated traffic. These simulations confirm that this approach
can detect worms at early stages of propagation. We believe
our approach, with minor adaptations, is of independent in-
terest for use in a number of network applications which
benefit from detecting repeated packets, beyond detecting
worm propagation. These include detecting network anoma-
lies such as dangerous traffic fluctuations, abusive use of cer-
tain services, and some distributed denial-of-service attacks.

Keywords Computer worms · Anomaly detection ·
Network security · Intrusion detection · Traffic monitoring

1 Introduction

Worms, unlike other malicious code such as viruses and
trojans, are capable of self-propagating [60]. The constant
threat of worms to the network infrastructure has become
one of the major concerns of network equipment designers.

P. C. van Oorschot
School of Computer Science, Carleton University, Canada
E-mail: paulv@scs.carleton.ca

J.-M. Robert
Research and Innovation Centre – Security Group, Alcatel Canada,
Canada
E-mail: jean-marc.robert@alcatel.com

M. Vargas Martin (B)
University of Ontario Institute of Technology, Ontario, Canada
E-mail: miguel.vargasmartin@uoit.ca

In this paper we propose a router-based monitoring system
using Bloom filters with counters (BFWC) [17] to automat-
ically detect repeated packets. This capability is adapted to
detect worms which transmit significant numbers of pack-
ets within short time periods. The idea is to use BFWCs
to count the number of times each packet has been for-
warded locally. If the count for one packet exceeds a speci-
fied threshold within a given fixed period of time, the BFWC
triggers an alarm. (Note that Bloom filters can indeed be im-
plemented in hardware without considerable performance
degradation in routers [13, 50].) In addition, the detection
mechanism provides sufficient information – e.g., identify-
ing a port number or packet signature – to allow some pos-
sible reactions. (In contrast, e.g., detecting only that “there
is a UDP flood attack in progress” would not suffice to al-
low an appropriate reaction.) While the monitoring system
can also detect abnormal behavior in the network (by iden-
tifying the port number responsible for sending significant
amounts of repeated packets), in this paper we focus our at-
tention largely on worm detection.

A large class of worms can be characterized by self-
propagating code that selects victims by generating random
IP addresses, yielding a propagation pattern giving the im-
pression of a “fan.” For example, the Slammer worm [36]
arrives at the victim network in one malicious UDP packet;
once the infection is completed an infected host sends the
malicious packet to as many random IP addresses as possi-
ble. Similar behaviour can also be observed in multi-TCP-
packet worms such as Code Red [63]. This paper addresses
the problem of how to efficiently detect such a propagation
behavior locally, and how to locate the monitoring mecha-
nisms in the network infrastructure to use as few monitors
as possible.

1.1 Our contributions

Our main contributions are: (1) a monitoring system based
on stateful analysis of network traffic in routers, using an
extension of Bloom filters [4]; (2) a validation of the system

A monitoring system for detecting repeated packets with applications to computer worms 187

using limited data sets of network traffic, which suggests that
the number of false alarms may be reduced by filtering out
a small number of common preidentified nonworm repeated
packets, such that they are not processed by the BFWC; (3)
addressing the problem of where to locate the monitoring
mechanisms in the network infrastructure to use as few mon-
itors as possible, which eases deployment and reduces the
impact on the network; this may be of independent interest.
We furthermore (4) use simulations to show that deploying
BFWCs in routers of an approximate minimum vertex cover
may be effective at detecting worms in the early stages of
propagation.

While our results, as presented, involve algorithms op-
erating directly on packets – which is the context in which
we have carried out this research – in practice our (packet
matching) work may be of greater interest if one assumes
a device carries out these algorithms after full IP and TCP
stream reassembly by independent means (see [15]).

1.2 Limitations

As our monitoring system is designed to detect worm pack-
ets with identical payloads, it has limitations with respect
to worms with varying payloads. BFWCs are not effective
against polymorphic worms (i.e., those changing their repre-
sentation on each new infection, e.g., see Nachenberg [37]),
or the simpler subset of encrypted worms (which encrypt
the bulk of their payloads using a different key per infec-
tion). Even a worm which changes a single byte (e.g., the
Witty worm [47], which includes random padding and vari-
able destination port in each packet) can deceive BFWCs.
To deal with polymorphic worms that only mutate part of
their payload, the monitoring system may use a fingerprint-
ing technique which considers only unchanged portions of
the payload such as the Rabin fingerprinting technique [45],
which has been previously used in intrusion detection (see
[27, 48, 49]). Identifying these unchanged portions is be-
yond the scope of this paper, and merits attention as an open
problem. However, our approach in its present form is of use
as a first step, and indeed is capable of detecting “popular”
recent worms, almost all of which are nonpolymorphic. (For
further discussion of polymorphic worms and “Polygraph”
[39], see sect. 2.) While we believe that detecting polymor-
phic worms is an important problem, in this paper we focus
on how BFWCs can be deployed efficiently for detecting
nonpolymorphic worms. Also, an attacker could take eva-
sive action through worm instances with packets intention-
ally fragmented to cause recognition ambiguities [23, 44],
thereby escaping our BFWC detection technique. Nonethe-
less, our results remain interesting in that they may lead to-
wards an effective stream matching algorithm.

1.3 Outline

Section 2 briefly overviews related work. In Sect. 3 we
present the principles of Bloom filters, leading to the BFWC

discussion of Sect. 4. In Sect. 5 we consider the deployment
of BFWCs in routers of a vertex cover. Section 6 addresses
some important implementation issues. In Sect. 7 we evalu-
ate the performance of the BFWC under selected traffic data
sets. Section 8 reports on the performance of the BFWC in
a simulated network. Section 9 gives concluding remarks.
The Appendix considers the selection of a threshold param-
eter used.

2 Related work

In this section we present a partial summary of strategies
against worm propagation. This includes intrusion detection
systems (IDS) based on the principle that worms (as well
as other kinds of denial-of-service attacks) perform many
similar actions within a short period of time. Our approach
relies on this same principle.

The CERIAS Group [8] proposes a network anomaly-
based IDS based on a common propagation technique ob-
served in worms: probing many random IP-addresses in a
“short” period of time. It is assumed that legitimate traffic
does not exhibit such probing behavior. The idea is to have
a sensor constantly monitoring the outbound traffic of a host
(or a set of hosts). This sensor triggers an alert if the number
of packets of a particular [src addr, dst port] pair exceeds
a predefined threshold t . The counter for each [src addr,
dst port] pair is set to zero every Q units of time. The au-
thors indicate that the implementation of this approach is in
progress; details are not provided. A similar approach has
been used to detect malware scanning hosts remotely [26].

Williamson [62] pursues an approach based on the same
principle. He presents a network anomaly-based intrusion
detection and response system against viruses based on the
belief that a virus would open many new connections, i.e.,
connections that have not been seen recently. This behav-
ior is also characteristic of worms. The idea is to maintain
a list of n (different) destination IP addresses (the working
set) representing the n most recently open connections. Any
connection to an IP address not found in the working set is
considered a new connection. Before a connection is pro-
cessed the system checks for newness; if the connection is
not new, it is processed normally. Otherwise, the connection
is put into a delay queue, whose elements are popped off in
FIFO order every Q units of time. An implementation of this
approach is presented in [54].

Based on the same principle, Weaver et al. [61] present
a worm containment system which throttles connections
based on approximate source-destination pair reputation. In
this approach, a pair gains/loses good reputation every time
a connection attempt between the source and destination
succeeds/fails. Based on the same principle, Venkataraman
et al. [57] propose a system for detecting superspreaders
(i.e., hosts which contact at least a given number of other
hosts within a short period of time) at low memory and
processing expense. The authors present two basic proba-
bilistic approaches based on hash-based sampling; one of

188 P. C. van Oorschot et al.

them consists of sampling distinct source-destination pairs
and counting the number of times each pair is repeated
within a short period of time. The other algorithm performs
a two-level filtering where the first level consists of filtering
out (i.e., not sampling) sources which contact a small
number of distinct destinations, whereas in the second level
each distinct source-destination pair resulting from the
first-level filtering is counted.

Following the same principle, Toth et al. [53] propose
a network anomaly-based IDS against worms, involving a
firewall on each host, a traffic monitor per local network,
and a central analyzer. Each traffic monitor listens to all
packets transmitted in that network and collects tuples of
the form: [timestamp, src addr, src port, dst addr, dst port,
z bytes of payload]. These tuples are stored temporarily in
a connection-history table, which is renewed every given
fixed period of time. The central analyzer periodically col-
lects lists of tuples from the traffic monitors and infers at-
tacks based on measured values which include the number
of times a tuple is repeated, the number of connection at-
tempts to non-existing hosts, and the number of connec-
tion attempts to non-existing services. Upon detection of a
worm, the central analyzer automatically broadcasts “appro-
priate changes” to the firewalls’ policies to all the hosts in the
network. Given the number of issues involved overall (e.g.,
overhead of reassembling packets, storage capacity required
to keep lists of tuples, time to retain the lists, etc.), the im-
pact on network performance is not clear; no performance
measurements or implementation is reported.

Based on the same principle, Chen et al. [9] present
a worm propagation detection system employing packet
matching. An enhanced router maintains two lists of coun-
ters with each counter associated with one port. One list is
for incoming connections; the other is for outgoing con-
nections. The system matches port counters in both lists
and then monitors the number of packets to distinct desti-
nation addresses for each of these ports. The system relies
on Williamson’s observation [62] that users (as opposed to
worms propagating to random IP addresses) usually make
connections to a small set of addresses. Every predetermined
period of time enhanced routers check the number of con-
nections to different addresses. Worm activity is inferred if
this number is “significantly” larger than the long-term av-
erage. The system is tested with simulations using different
router-level topologies. The authors test the system under
different scenarios including variations on scanning strate-
gies, network topologies, and parameters of the detection
system. No experimentation using real traffic or real net-
work topologies is reported. Unless routers are vulnerable
to worm infections, matching incoming and outgoing port
counters is not effective in routers which have no LANs at-
tached.

Singh et al. [48, 49] present the “EarlyBird System” for
worm detection based on packet payload analysis. Their ap-
proach consists of detecting the most popular flows (flows
are identified with packet payload hashes), counting the
number of source and destination addresses for these flows,

and counting the number of connection attempts of these
flows to unused portions of IP addresses. The system can
detect different malicious packets in real networks. As for
almost all systems to date (including that proposed in the
present paper), worms employing polymorphism or end-to-
end encryption evade detection.

Wang et al. [58] propose a network IDS based on n-
gram analysis (an n-gram is a consecutive sequence of n
characters or symbols in a text document). The idea is to
train the IDS with traffic with no malicious packets into
categories according to destination port and size. Then an
n-gram frequency distribution is computed for each cate-
gory (they focus on 1-gram analysis). After the training pe-
riod the IDS compares statistically the n-gram frequency
distribution of each arriving packet with the n-gram fre-
quency distribution of the corresponding category (accord-
ing to destination port and packet size) using a variant of
the well-known Mahalanobis distance. If the result of this
comparison is above a threshold the packet is considered
malicious. Matrawy et al. [32] propose a network denial-
of-service mitigation system based on (p, n)-gram analy-
sis, where a (p, n)-gram is an n-gram at byte position p.
The idea is to categorize traffic according to their (p, n)-
gram characteristics hoping that disruptive traffic can effec-
tively be separated from non-disruptive traffic. In terms of
network overhead, the number of tasks involved in many of
these systems [32, 49, 58] raises performance issues war-
ranting further practical validation regarding applicability in
core routers.1

Newsome et al. [39] present “Polygraph,” a system for
automatic generation of signatures for polymorphic worms.
This system relies on the fact that a number of polymorphic
worms need to contain an unchanged portion to be able to
exploit the targeted vulnerability (this may not the case for
Santy worms, for example, which exploit generic flaws of
web applications [29]). The authors present a group of sig-
nature generation algorithms which employ the naı̈ve Bayes
classifier, and methods for finding signatures by determining
the presence of a set of tokens within a sequence of bytes.
“Polygraph” relies on appropriate classification of worm and
nonworm flows.

Valdes et al. [55] present a visualization technique of
network activity. This technique allows visual detection of
vertical and horizontal scanning through graphical combina-
tions of source and destination IP addresses and ports. The
authors indicate that appropriate entropy analysis may en-
able this technique for early detection of malicious traffic;
see also Onut et al. [41].

Regarding the deployment of sensors in core networks,
Park et al. [43] show experimentally that a vertex cover of
the Internet can be constructed with approximately 20% of
the total number of nodes. Their results rely on the char-
acteristics of the network underlying the Internet [16]. Park
et al. use randomly generated power-law networks to test

1 The EarlyBird system has recently been progressed commercially
and advanced (including hardware implementation) by NetSift Inc.,
which was acquired by Cisco in June 2005.

A monitoring system for detecting repeated packets with applications to computer worms 189

the performance of a well-known approximation algorithm
for finding a vertex cover. They deploy filtering mechanisms
in the vertex cover to detect spoofed addresses. We use the
vertex cover results of Park et al. to deploy our monitoring
mechanism for detecting repeated packets.

3 Bloom filters

In this section we review Bloom filters [4]. A Bloom filter
is a hash based method for testing membership of a series
of items in a large given set of items, with allowable errors.
Bloom filters have been used in a number of different con-
texts since they were introduced [7, 13, 14, 21, 28, 46, 56].
For example, Snoeren et al. [50] present a traceback sys-
tem capable of tracing packets delivered by the network in
the recent past using Bloom filters. They show that the sys-
tem is effective (up to a certain number of false positives,
inherent to Bloom filters), efficient (requiring storage pro-
portional to 0.5% of the link capacity), and, perhaps most
importantly, they show that it can be efficiently implemented
in hardware. Using Bloom filters each router of the network
keeps a record of the packets that it sends forward over a
certain fixed time window. When a packet needs to be traced
back, the system constructs an attack graph indicating the
path(s) from which the packet was forwarded along the net-
work. This graph is constructed by checking which routers
forwarded this packet.

The idea of Bloom filters is to insert a given set of items
into a bit-array, or Bloom-table, as follows. Each item is
hashed by k independent hash functions hi , for i = 1, . . . , k.
The resulting value of each of these hash functions is inter-
preted as an index pointing to an entry of the Bloom-table.
Then the corresponding entry of the Bloom-table is set to 1
(initially, each entry is set to 0).

To test membership of an item p, a similar procedure is
followed: p is hashed and if hi (p) = 1, for i = 1, . . . , k,
then it is inferred that p is already in the Bloom-table. See
Fig. 1.

One way to assess the efficiency of a Bloom filter
is by measuring the accuracy of its membership test. If

2bm = bits

h (p)k

bitsb

h (p)

h (p)1

2

...

1

1

1

Bloom table

Fig. 1 Illustration of a Bloom filter

a membership test is negative, we can be certain that it
is correct, i.e., the item p has not been inserted into the
Bloom-table. However, if the test is positive, there exists
the possibility that the result is incorrect, i.e., arises due to
several items p′ �= p collectively causing cells hi (p) being
set to 1. We define a false positive as follows.

Definition 1 (false positive) Insert n items p1, . . . , pn into
a Bloom filter. If a membership test for an item p �= pi
(for i = 1, . . . , n) succeeds, then we call this event a false
positive.

Note that the notion of falseness here has to do with the
fact that the membership test succeeds as a result of a hash-
ing collision rather than a repeated item.

The number of false positives depends on the number of
hash functions k, the size of the Bloom-table m, and the to-
tal number of items to be inserted, n. It is desirable to design
a Bloom filter which simultaneously minimizes the number
of false positives, the size of the Bloom-table, and the num-
ber of hash functions. The number of false positives can be
approximated as follows. When an item is inserted into the
Bloom-table, the probability that any particular entry is set to
1 by one hash function is 1/m, and the probability that any
particular entry is unchanged is 1 − 1/m. Hence, after in-
serting n random items using k independent hash functions,
the probability that a particular entry is still 0 is (1 − 1

m)nk .
Thus, when we test for membership, the probability f of a
false positive equals the probability that the k hash functions
all point to entries with value 1, i.e., f = (1 − (1 − 1

m)nk)k .

For m large, f can be approximated by f ≈ (1 − e− nk
m)k

which is minimized for

k = (ln 2)
m

n
. (1)

For m large, we obtain a false positive probability of f ≈
0.6185

m
n . (See e.g., [17, 35].)

There are several studies regarding hardware design of
Bloom filters including feasibility studies of incorporating
them in network devices without considerable performance
degradation (e.g., [13, 50]).

4 Bloom filters with counters

The problem of detecting the “fan” effect produced by worm
propagation (see Sect. 1) consists of detecting duplicated
packets leaving a network. In particular, we focus on ma-
licious software which employs scanning methods. As re-
ported previously [19], a common scanning strategy consists
of sending out many packets with same payload and desti-
nation port, but different destination addresses within a short
period of time.

Fan et al. [17] introduced BFWC applied to web cache
techniques. We use BFWC in a router-based monitoring sys-
tem. The idea is to enhance the routers of a network (or a
subset of them – see Sect. 5) with BFWC to analyze the

190 P. C. van Oorschot et al.

outbound traffic. For each outbound packet p, an enhanced
router (i.e., a router that implements a BFWC) tracks how
many times this packet has been forwarded in the recent past.
If the packet has been forwarded more than t times for an ap-
propriate trigger threshold t (precisely the behavior that one
would expect from a worm) an alarm is triggered.

To measure the efficiency of a BFWC we need to analyze
the expected number of alarms. The value of the threshold
t directly affects the expected number of alarms. To deter-
mine an appropriate value for t we need to take into account
two different factors that may legitimately increase the coun-
ters (i.e., in the absence of malicious packets). First, we give
some definitions.

Definition 2 (random packet) A random packet is a con-
catenation of a fixed number s of bits, where each bit may
be 0 or 1 with equal probability (0.5). s is the (bit) size of
the random packet.

Definition 3 (Class I traffic) Class I traffic is a sequence of
n random packets.

Definition 4 (Class II traffic) Class II traffic is a sequence
of n packets generated by a legitimate (e.g., non-worm)
communication protocol in a network and contains at least
one repeated packet.

When we speak of “Class I traffic”, we assume that s
is sufficiently large relative to n that the probability of any
two packets being identical is negligible, or at least relatively
small. In real networks, although most packet sequences are
not randomly generated, some may look like “Class I traffic”
in the sense that no packet is repeated.

We need to consider the increments to the counters
caused by “Class I traffic”, which increments the counters
due to different packets resulting in the same hash value
(i.e., statistical hash function collisions). Secondly, we need
to consider the increments caused by “Class II traffic”, i.e.,
non-worm traffic that contains repeated packets due to “nor-
mal”2 repeated use of particular protocols (e.g., peer-to-peer,
Google visits, Yahoo connections). Figure 2 illustrates these
two types of traffic. The safety gap is the remaining number
of increments allowed or provisioned before the threshold
t is reached, i.e., beyond the expected number of Bloom-
table entry collisions (increments) contributed by “Class I”
and “Class II traffic”. This safety gap should be sufficiently
large to avoid false alarms due to expected statistical varia-
tion in “Class I” and “Class II traffic”. “Class I traffic” in-
crements are studied in the Appendix. Increments caused
by “Class II traffic” are inherent to the characteristics of
the system where the BFWC is deployed and such incre-
ments are not a major focus of this paper. However, the
results of testing the BFWC under selected data sets (see
Sect. 7) partially clarifies how “Class II traffic” affects the
counters and what needs to be done to deal with this type of
traffic.

2 “Normal” will vary depending on the nature of the network and its
users.

class II traffic

class I traffic (statistical collisions)

safety gap

counter

0

t

Fig. 2 Types of nonworm traffic that increment a Bloom counter, and
the resulting safety gap

h (p)k

bitsb

h (p)

h (p)1

2

... 2bm = entries

kh (p)counter[]

counter[]1h (p)

counter[]2h (p)
increment

increment

c bits

Bloom table

increment

Fig. 3 Bloom filter with counters (BFWC)

Figure 3 illustrates a Bloom filter with counters.
Algorithm 4 describes the actions taken for each packet ar-
riving at an enhanced router to be forwarded. Line 2 is a
threshold test which triggers if a packet (worm or otherwise)
is processed more than t times.

In the Appendix we consider the probability that any k
among the m counters have value greater than t each after n
packets are processed.

Since memory capacity is limited, the entries of the
Bloom-table are reset to 0 every fixed period of time,
the reset period. The probability that a counter reaches
its maximum value M solely based on “Class I traffic”
is low because of the choice of parameters (e.g., size of
Bloom-table, number of hash functions, expected number
of packets). If a counter reaches its maximum value M ,
increments and wraps around to 0, important information is
lost for the remaining time of the reset period. One way to
address this is to use a design whereby the counters remain
at the maximum value.

Algorithm 1 BFWC (packet p)

1 for i ← 1 to k
counter[hi (p)] ← counter[hi (p)]+1

2 if counter[hi (p)] > t for all i = 1, . . . , k then
trigger alarm

3 else process p as usual

A monitoring system for detecting repeated packets with applications to computer worms 191

5 Enhanced routers

Consider BFWCs (as described in Sect. 4) with “appropri-
ate” values for k and m according to the expected traffic vol-
ume n, and a threshold t with a reset period r . Suppose that
these BFWCs are deployed in each router of the network.
Worms spreading at t or more worm packets per second from
a host would be detected by the first router that forward these
packets. In this way, enhancing all the routers of a network
would facilitate detection. However, costs and complexity of
deployment might make it impossible or impractical to en-
hance every single router of a network. Therefore, we are in-
terested in minimizing the number of enhanced routers while
still being able to detect worms efficiently. In this section we
describe how we can take advantage of Internet connectiv-
ity properties to find an appropriate small set of routers to
enhance.

Consider a graph representing a network of autonomous
systems where each node represents an autonomous system.
Internet topology follows power-law relationships [16], in-
cluding: the number of nodes with d neighbors is propor-
tional to d−c, where c > 1.

Several experimental studies have attempted to find an
accurate value for c (e.g., [6, 16]). Since the power-law prop-
erty induces hubs in the network (i.e., routers attached to
“many” other routers – see [59]), we suggest that enhanc-
ing the routers of a small vertex cover including the hubs
would be advantageous. A vertex cover of an undirected
graph G = (V, E) is a set of vertices C ⊆ V such that
for each link (u, v) ∈ E , u or v or both are in C . Given G
and a positive integer z ≤ |V |, the vertex cover problem is
to find a vertex cover C such that |C | ≤ z, if one exists. This
problem is NP-complete [20].

Park et al. [43] show experimentally that a vertex cover
of the autonomous-system-level Internet can be constructed
with approximately 20% of the total number of nodes, and
use random power-law networks to test the performance of
a standard greedy algorithm [10, Sect. 35.1] – which we call
greedyVC – for finding an approximated minimum vertex
cover. This algorithm iteratively selects a node of highest
degree and adds the node to the vertex cover, deleting the
associated edges until all links are covered. We expect that
enhancing the routers as selected by algorithm greedyVC,
will be efficient in detecting a worm since the routers of the
vertex cover tend to be the ones with most neighbors, and
therefore the ones that will likely forward most of the traffic
in the network (see results of Sect. 8).

6 Implementation issues

In this section we discuss a few important implementa-
tion issues regarding BFWCs, four in particular: the packet-
subset that is input to the hash functions, the nature of the
hash functions themselves, the amount of memory required
to store the Bloom-table, and the length of the reset period.
While additional issues arise in an actual implementation,
these are the most fundamental ones.

To be able to detect the “fan” produced by worm prop-
agation we must look only at those portions of the packet
that do not change. Our selection criteria for extracting a
packet-subset is to retain those portions of the packet which
we expect to be identical in a propagating worm (see Sect. 9
for comments regarding polymorphic worms). For example
the destination IP address would vary, therefore this field
should be excluded. For most worms, the destination port
however, is expected to be constant. At the same time we
want the packet-subset to contain enough information to
avoid having non-identical packets which have the same
packet-subset. Thus, we propose assembling packet-subsets
of the form: [dst port, payload]. Taking packet-subsets of
this form prevents worms from evading detection by simply
spoofing (varying) source IP addresses which would result in
distinct hashes; i.e., worm packets not being counted by the
same k counters of the Bloom-table. In addition, this packet-
subset allows the detection of worm packets coming from
different IP sources. However, by omitting the source IP ad-
dress in the packet-subset, flashcrowds (i.e., sudden trans-
mission of a significant number of packets from different
IP addresses) of legal packets yielding equal packet-subsets
may trigger false alarms; e.g., the same http request made at
the same time by a considerable number of users in a cor-
poration network, or any broadcasting application as online
gaming. The destination port helps us to identify the vulner-
able application.

It is important to use appropriate hash functions accord-
ing to the requirements on performance and security. Sev-
eral papers have discussed performance measures of hash
functions implemented in both hardware and software. For
example Grembowski et al. [22] show experimentally that
SHA-512 implemented in hardware performs surprisingly
well (i.e., with not much additional performance degrada-
tion) in terms of speed compared to other widely-known
cryptographic hash functions. Nevelsteen et al. [38] com-
pare several MAC algorithms against universal hash func-
tions implemented in software and find that universal hash
functions perform better than MAC algorithms in general.
However, for our present purposes, we expect that even sim-
ple linear hash functions may suffice and provide perfor-
mance advantages (e.g., see [24, p. 151]). For the purposes
of our present research also, we are less concerned about ad-
vanced attacks such as those proposed by Crosby et al. [11];
depending on his objectives, a worm writer might achieve
greater success by spending additional time crafting better
worms than by trying to exploit details of hash functions
employed in a detection mechanism deployed in some sub-
set of a large network. An attacker, however, could carefully
fabricate packets that provoke false alarms due to hash colli-
sions (i.e., different packets resulting in the same hash value,
as described by Crosby et al.). This attack represents a po-
tential problem requiring further consideration, and argues
against the use of linear hash functions.

As discussed in Sect. 3, the efficiency of a BFWC
depends on the total number of packets n expected to be
processed over a fixed reset period r , the number of hash

192 P. C. van Oorschot et al.

functions k, the number of counters m in the Bloom-table,
and the bit size of each counter. The objective is to achieve
an acceptable level of false alarms with reasonable memory
size. Several factors need to be considered to design realistic
and efficient Bloom filters, as illustrated in the following
paragraphs.

Suppose we have a relatively low bandwidth OC-3 router
interface3 and 520 KBytes of memory available for the
Bloom-table.4 First, if the threshold t can fit within 4 bits
(see Appendix) then we can allocate two counters per byte,
giving a Bloom-table with m = 1,040,000 counters. Sec-
ondly, considering an average packet size of 1000 bits, this
router can forward at most about 150,000 packets per s.
Now, suppose we want to detect worm propagation within 1-
s windows, then a reset period of r = 1 s yields n = 150,000
packets. Thirdly, the number of hash functions k can be ob-
tained from Eq. (1): k = ln(2) ·1,040,000/150,000 = 4.8 (to
reduce overhead we can choose k = 4). Finally, an appro-
priate trigger threshold t under “Class I traffic” can be se-
lected as explained in the Appendix. With these parameters
and t = 15 the probability of a false alarm after one sec-
ond of “Class I traffic” is approximately 1.52 × 10−64 (see
Appendix), or 4.79 × 10−57 in 1 year (3.15 × 107 s), leav-
ing ample room to accommodate links of sufficiently higher
bandwidth.

Similarly, for an OC-192 router interface (with a capac-
ity of n = 10,000,000 packets per second, considering an
average packet size of 1000 bits) with 4 MB of available
memory, a BFWC with m = 8,000,000 counters (i.e., two
counters per byte), k = 4 hash functions, and t = 15, would
have a false alarm probability of approximately 2.27×10−17

under one second of “Class I traffic,” or 7.15 × 10−9 over 1
year. Using more memory, for example 64 MB (vs. 4 MB),
would decrease this rate dramatically.

7 Performance of BFWCs under specific traffic samples

In our evaluation we use packet subsets of the form:
[dst port, payload], as discussed in Sect. 6. It is clear that the
BFWC would detect packets with identical packet-subsets
forwarded at more than t packets per reset period. However,
we expect that the number of non-worm packets with iden-
tical packet-subsets is not sufficiently large to trigger false
alarms.

In our preliminary analysis, we use three different data
sets to test a BFWC with the parameters described in
Table 7: one hour of incoming traffic to our internal lab (out-
side), one day of traffic generated within our internal lab (in-
side), and 1 day of traffic of the well known DARPA data
set [34] (the last two are known to contain no worm pack-
ets). The data sets consist of 113,463, 37,379, and 1,476,391

3 OC stands for optical carrier. One OC-3 link has a capacity of
155.52 Mbps.

4 An OC-3 router interface is not realistic compared to core routers
which may have several OC-192 interfaces, however one OC-3 router
interface can be well used as an illustrative example.

Table 1 Most frequent destination ports of the outside traffic

Port Freq. Port Freq. Port Freq.

80 43,582 137 382 513 40
32,777 38,815 138 346 1,715 27
1,985 7,771 21 291 1,667 26

16,080 6,455 34,852 124 1,699 26
32,771 3,111 32,781 113 1,674 25
32,787 3,060 53 108 1,683 25
32,788 2,713 22 106 1,706 25

520 2,429 427 71 1,689 24
631 2,324 3,127 47 32,772 22
135 770 445 47 1,096 21

Table 2 Most frequent destination ports of the inside traffic

Port Freq. Port Freq. Port Freq.

53 7,830 34,295 552 33,298 270
631 6,118 32,886 420 3,932 263

9,100 5,489 33,175 414 68 192
32,795 2,575 33,788 414 67 188

138 2,088 1,028 319 3,179 177
123 1,544 33,300 315 40,216 156

38,729 1,455 38,833 300 3,213 126
137 1,198 39,135 287 1,298 126

32,775 615 32,770 285 3,159 114
32,782 600 50,566 272 34,296 112

Table 3 Most frequent destination ports of DARPA data set

Port Freq. Port Freq. Port Freq.

23 398,734 123 10,511 15,901 6,395
80 202,921 21,262 8,983 16,510 6,143
22 85,028 24,638 8,580 18,486 6,087
25 40,639 520 8,124 30,865 5,563
53 28,354 17,258 7,963 20,551 5,334

161 19,992 23,308 7,536 20 5,156
32,770 19,413 16,933 6,856 14,942 5,024
15,574 14,177 16,586 6,757 15,037 4,798
12,862 10,891 29,810 6,626 4,702 4,356

1,132 10,884 21 6,554 17,782 4,349

TCP and UDP packets, with average packet size of 10,464,
7769 and 3011 bits per packet (respectively). The destination
port frequency of the data sets are presented in Tables 1, 2,
and 3. The predominant destination ports in the outside traf-
fic (ports 80 and 32,777) correspond to http (web) and rpc
(remote service requests) packets, whereas the most frequent
ones in the inside traffic (53, 631, and 9100) correspond to
DNS (domain names address resolution) and printing proto-
cols. As for the DARPA data set, the traffic is predominantly
composed of telnet port 23 (remote login) and http packets
on port 80. It is important to note that the incoming traffic
to our internal lab had been pre-screened by one or more
university firewalls, and thus a number of malicious packets
may not have reached our lab. Although our data sets fall
well short of the traffic volume in core routers – and further
evaluation with representative traffic is necessary for higher
confidence–we believe they validate the overall design

A monitoring system for detecting repeated packets with applications to computer worms 193

principles of our approach. Similarly, despite known flaws
in the DARPA data set [33], it suffices for a preliminary
analysis.

To avoid false alarms due to repeated nonworm packets
we need to adjust the BFWC according to the predominant
(nonworm) repeated traffic in the data sets. For our lab data
set, we inserted all the outside 113,463 and the inside 37,379
packets into the BFWC. For the outside traffic we found
that packets with the following destination ports triggered
false alarms: 1985 (Hot Standby Router Protocol), 520 (local
routing process), and 631 (Internet Printing Protocol). We
filtered out packets with these destination ports, such that
they are not processed by the BFWC.5 After this filtering,
the BFWC triggered no false alarms (on these data sets)6

and moreover was able to detect Slammer packets [36] try-
ing to infect new targets. We were not expecting these latter
packets in our network, and thus were pleasantly surprised
(by their detection, rather than their presence; the absence
of other worms generally present in today’s Internet traffic
likely resulted from enterprise-level filtering of worm traffic
prior to this traffic reaching our outside lab link, as noted ear-
lier). The detection of incoming Slammer packets confirms
the effectiveness of BFWCs since incoming worm packets
are more difficult to detect, as they may arrive at slower rates
than if they were generated from within our lab.

For the inside traffic, no packets had to be filtered out.
The BFWC did not trigger false alarms under this traffic;
this was as expected, in traffic with no worms.

As for the DARPA data set, we filtered out several desti-
nation ports: 520, 161 (Simple Network Management Proto-
col), 6667 (Internet Relay Chat), and 1270 (OPSMAN). We
inserted sequences of 155,550 packets each (the maximum
number of packets per second that can be forwarded by a
router with 3 OC-3 interfaces, considering an average packet
length of 3000 bits per packet). After filtering packets with
these destination ports, the BFWC triggered no false alarms,
which is what we expected since the data set is known to
have no malicious packets.

While obviously additional testing is required on larger
data sets representing true Internet traffic, our preliminary
results show the effectiveness of our system and suggest that
the approach may indeed be effective in core routers.

8 Simulations

BFWCs have to be tuned up to take into account envi-
ronment variables and characteristics inherent to the net-
work, such as type of traffic (e.g., predominantly peer-to-
peer), network topology fluctuations (e.g., constant failures
or changes will trigger routing control packets), network

5 These adjustments may vary for different networks depending on
factors such as configuration settings, predominant applications, net-
work disruptions, etc.

6 We do not claim zero false alarms for arbitrary Internet traffic, e.g.,
as might be seen by a backbone router. Again, testing on additional
data sets would greatly improve our evaluation, although no data set is
representative of all possible classes of real world traffic.

Table 4 Characteristics of networks used in simulation

ISP 1 ISP 2 ISP 3

Minimum link delay 1 ms 1 1
Maximum link delay 17 ms 29 44
Number of routers 108 87 79
Number of links 153 161 147
Routers in vertex cover 33 46 37

speed and volume of traffic, available memory in routers,
etc. The parameters of the BFWC used in the simulations are
determined as discussed in Sect. 6. We note that while our
motivation here was for packet matching, the simulation re-
sults appear to apply equally for stream matching, although
more tuning may be required to address repeated context in
streams. (We thank an anonymous referee for this observa-
tion.)

The goals of the simulations are (1) to determine an ap-
proximation of how efficient the BFWC is in detecting a
worm when the BFWC is installed in the routers of an ap-
proximate minimum vertex cover and when all the routers of
the network are enhanced, and (2) to determine an approx-
imation of how many infections of a particular worm have
been perpetrated by the time the worm is first detected by
one BFWC.

Several network and worm simulators were considered
[30, 40, 42, 52]. In our simulations we use NS-2 [40]. NS-2
provides flexibility on the topology of the network, making
it possible to define “large” networks with a reasonable level
of detail. The simulations were performed over the backbone
topologies of three real ISPs. These topologies were made
available by the Rocketfuel project [1, 31, 51], an Internet
measurement tool. The simulation also uses real link delays,
also made available by the Rocketfuel project. The charac-
teristics of the ISP topologies used in our simulations are
summarized in Table 4.

In our simulations, each node represents a router con-
nected to a local area network (LAN). Internally, the simu-
lator treats each router as a collection of hosts (e.g., clients,
servers) on a LAN, as illustrated in Fig. 4. To simplify the
simulations, we assume that each router has a LAN associ-
ated with it.7 Each router has a disjoint set of IP addresses
associated, which represent the hosts of the LAN accessi-
ble through this router. To simulate IP addresses that do not
reside within this ISP (i.e., foreign hosts), we assume that
these addresses are reachable through arbitrary routers (as-
signed at the beginning of the simulation) of this ISP (these
foreign hosts can also be thought of as nonvulnerable hosts
residing within this ISP).

We simulated a UDP worm that propagates in a single
400-byte UDP packet (not including the required headers)
to a non-predetermined number of random IP addresses.
The operation of this worm is described in Algorithm 2.

7 In simulations, routers themselves are not considered to be hosts.

194 P. C. van Oorschot et al.

ISP topology

routers

LAN
associated with router
hosts machines

Fig. 4 Example of network topology used in simulations

Algorithm 2 Simulated UDP Worm()

Upon reception of a worm packet, repeat forever:
1 Send copy of the worm packet to a random IP address

(i.e., host) using a pseudo-random number generator.
2 Wait for D seconds (the delay D determines the

stealthiness of the worm; a larger delay makes detec-
tion more difficult).

The propagation of a worm can be modeled with the
“generic epidemic model” [12]. This model divides the hosts
into two disjoint sets: susceptible and infectious. Infected
hosts remain infected for an undetermined period of time
(i.e., hosts do not transition from infectious to susceptible).
Assuming that the network topology does not change (i.e.,
there are no new hosts or links, nor failures), and that there
are no delays in the transmission lines, the number of infec-
tious hosts at time T , i(T) can be modeled with the follow-
ing equation:

di(T)

dT
= β · i(T) · s(T),

Table 5 Network parameters used in the simulations

Parameter Value or configuration

Address space ∼ 3 × 216 (approx. 3 class B networks)
Number of hosts associated with each router (see Fig. 4) 100 (empirically set; Rocketfuel does not provide a value for this parameter)
Which routers to “enhance” Routers as selected by an approximate minimum vertex cover

Table 6 Worm and nonworm traffic used in the simulations

Parameter Value

Worm payload Fixed sequence of 400 bytes within one UDP packet
Infection attempts per infected host 1 per worm delay period, D
Worm delay, D 0.5 s
Nonworm payload Random sequence of 500 bytes within a single UDP packet
Rate of nonworm packets 200 packets/second, each 500 bytes

where s(T) is the number of susceptible hosts at time T and
β is the propagation rate of the worm (i.e., the number of
victims a single infectious host attempts to infect per unit of
time).

Initially, in our simulations, all the hosts of the network
are susceptible, having a process listening at port 0, which is
assumed to be the service being exploited by the worm. The
propagation rate, β, depends primarily on processor power
and bandwidth available. We assume that hosts from other
ISPs do not try to infect hosts of the ISP in question; in other
words, we assume other ISPs are effectively preventing the
spread of the infection.

To simulate multiple infected hosts within a router,
whenever a host becomes infected, the propagation rate of
worm packets leaving this router is increased accordingly
to reflect the number of infected hosts within the LAN at-
tached to this router. If a host attempts to infect another host
residing within the same LAN, the attached router will not
be able to see the worm packet, and consequently, even if
this router was enhanced, the BFWC would not be able to
count the worm packet. Thus, we do not detect worm pack-
ets propagating within a LAN.

Constant-rate UDP packets representing nonworm traffic
are transmitted between random pairs of hosts. The rate of
UDP packets transmitted by a host is fixed to 200 packets
per s. The payload of each packet is a string of 500 random
bytes (see Definition 3). This traffic was generated using the
NS-2 built-in generator.

The traffic generated by the underlying routing mecha-
nism should also be considered as part of nonworm traffic.
The NS-2 simulator comes with several built-in routing al-
gorithms, including distance vector algorithms [3]. Our sim-
ulation was configured to use the built-in implementation of
the Distributed Bellman-Ford routing algorithm [3]. Route
information packets are thus inherently added to the set of
nonworm packets.

The simulation lets us easily adjust the parameters of the
network, the BFWC and the simulator itself. The configu-
ration of the three ISP networks used in the simulations is
shown in Table 5. The parameters of the worm and non-
worm network traffic are listed in Table 6. The nonworm

A monitoring system for detecting repeated packets with applications to computer worms 195

Table 7 BFWC parameters used in the simulations

Parameter (see Fig. 3) Value

Size of hash values, b 20 bits (b = log2 m)
Entries in Bloom-table, m 1,048,576 (m = 2b)
Bits per counter, c 4
Hash functions, k 4
Threshold t 15
Reset period r 1 s

15 infections in ISP 1

first detection
worm propagation in ISP 3
worm propagation in ISP 2
worm propagation in ISP 1

infected hosts
number of

time (in seconds)

18 infections in ISP 2
20 infections in ISP 3

 0

 50

 100

 150

 200

 0 5 10 15 20 25 30 35 40 45 50

Fig. 5 Detection of the worm enhancing the routers of an approximate
minimum vertex cover

traffic can be classified as “Class I traffic” (see Sect. 4). The
parameters of the BFWC were set up as discussed in Sect. 6,
assuming that the routers have about 520 KBytes of mem-
ory available for the Bloom-table and that their maximum
throughput is around 150,000 packets per second; a network
operator should be able to adjust the BFWC parameters ac-
cording to the characteristics of the underlying network and
its predominant traffic (see Sect. 6). The parameters of the
BFWC appear in Table 7.

The simulations were performed over three real ISP
topologies with real link delays (see Table 4). The infec-
tion is started by a random host within the network. Figure 5
shows how the BFWC is able to detect the worm at its early
stage of propagation. The curves show the number of in-
fected hosts (cf. Fig. 4) over time. The arrows show the first
detection of the worm by an enhanced router.

The simulations results suggest that enhancing the
routers of an approximate minimum vertex cover with
BFWCs may be effective in detecting a worm within a rea-
sonably short period of time, e.g., before the worm spreads
to 1% (e.g., per Fig. 5, 20 infections out of 79 × 100 hosts
for ISP 3) of the (vulnerable) hosts in the entire network.

Also with additional experimentation we found that,
with the parameters of our particular simulations, enhanc-
ing all the routers of the network is essentially no more ef-
fective than enhancing only those in an approximate mini-
mum vertex cover. This fact becomes clear when we analyze
the scenario. For example, Fig. 6 depicts a portion of the

(nongeographic) topology of ISP 1. According to algorithm
greedyVC, the routers with most neighbors are most likely to
be enhanced, and these routers are the ones forwarding most
traffic in the network. For instance, assume that router 93
(top right) in the figure has reset period r = 1 s and threshold
t = 15. Then it is unable to detect a worm propagating from
within its associated LAN at less than 15 packets per second
because its Bloom-table is reset every second. The alarms
are triggered due to high volumes of worm packets collec-
tively sent by a significant number of hosts. Therefore, even
if all the routers were enhanced, a worm is most likely first
detected by one of the routers with most neighbors, which
most probably belongs to the vertex cover.

9 Concluding remarks

We have presented a router-based monitoring system using
Bloom filters with counters (BFWC) for detecting worms in
the propagation phase. It is based on stateful analysis of net-
work traffic in the routers of a network of LANs, and the
principle that worms send out many similar packets within
a short period of time. A variation of Bloom filters is used
to count the number of times that a packet is repeated. Our
simulation results suggest that this approach may be effec-
tive in detecting a worm at the early stages of propagation.
Further testing under real network conditions and additional
data sets is necessary for a rigorous evaluation to answer
critical questions about the utility and efficiency of the ap-
proach. As noted in Sect. 1, BFWCs are not effective against
polymorphic or variable-key encrypted worms.

Our system cannot distinguish between repeated worm
packets and repeated nonworm packets. Though this situa-
tion must be appropriately addressed (see next paragraph),
this “feature” allows our approach to have applications be-
yond worm detection such as detection of dangerous traffic
fluctuations, abusive use of certain services, and distributed
denial-of-service attacks. This characteristic of our system
does not prevent it from being useful for worm detection
since we expect the frequency of repeated worm packets to
dramatically exceed that of repeated nonworm packets (see
safety gap in Fig. 2), except for “stealth” worms.

An additional solution to preventing repeated non-
worm packets from triggering false alarms is to preidentify
such packets where possible, and decrement corresponding
Bloom-table counters every fixed period of time. This might
be viewed as part of the network-specific “tuning”.

Further evaluation should include testing the BFWC
technique on data sets with significant numbers of pack-
ets of particular legitimate protocols (e.g., peer-to-peer) –
and other legitimate traffic including, e.g., flashcrowd or
slashdot-effect behaviour at core router rates – which we
expect to be susceptible to false alarms; and determining
the tuning required under such traffic. Other follow-on work
may involve: exploring how inclusion of more fields in the
packet-subset affects the rate of undetected worms; run-
ning simulations under different worm propagation rates,

196 P. C. van Oorschot et al.

Fig. 6 Partial topology of ISP 1. Each node represents a router. Enhanced routers are illustrated with double circle

and with fewer enhanced routines than those of a vertex
cover; and enhancing only routers with particular character-
istics (e.g., capacity, type of predominant traffic, number of
neighboring routers, etc.).

Acknowledgements Some major parts of this research were carried
out while the third author was a post-doctoral student in the School
of Computer Science, Carleton University. We thank Javier Govea and
Tomás Pospı́chal for their valuable help on the simulations and the
Poisson approximation to the distribution of counters’ values of the
Bloom-table (respectively), and anonymous reviewers for their com-
ments which considerably improved the presentation and positioning
of this paper. We acknowledge the support of NCIT, MITACS, and Al-
catel Canada. The first author is Canada Research Chair in Network
and Software Security and acknowledges the support of an NSERC
Discovery Grant, and the Canada Research Chairs Program. The third
author acknowledges the support of an NSERC Discovery Grant.

Appendix: Determining the repeated packet threshold
in BFWCs

In Sect. 4 we describe Bloom filters with counters (BFWC). Here, we
describe a method for generating a table to allow the appropriate se-
lection of a threshold t of repeated packets – at which an alarm is trig-
gered – under “Class I traffic”. We first review some basic statistical
concepts.

Definition 5 (Bernoulli trials) Bernoulli trials are repeated indepen-
dent trials with only two possible outcomes for each trial and their
probabilities remain the same over time: outcome success has proba-
bility p, and outcome failure has probability q = 1 − p.

Often one is interested in the probability of obtaining s successes
out of n Bernoulli trials regardless of the order of occurrence. This
probability has a Binomial distribution.

Theorem 1 [18] Let b(s; n, p) be the probability that n Bernoulli tri-
als with probabilities p for success and q = 1 − p for failure result in

s successes and n − s failures (0 ≤ s ≤ n). Then

b(s; n, p) =
(

n
s

)
psqn−s .

For large n and small p, a direct evaluation of b(s; n, p) may
be impractical. In this case, we can use the Poisson approximation to
b(s; n, p):

b(s; n, p) ≈ p(s; λ) = e−λ

(
λs

s!
)

(2)

where λ = np.
A generalization of the Binomial distribution for m possible out-

comes for each trial is the multinomial distribution [18]. The possible
outcomes for each trial are denoted Ei (for i = 1, . . . , m) and the prob-
ability of each outcome is denoted pi (for i = 1, . . . , m,

∑m
i=1 pi = 1,

and pi ≥ 0). In a multinomial distribution, the probability that in n
trials E1 occurs s1 times, E2 occurs s2 times, etc., is:

n!
s1!s2! · · · sm ! ps1

1 ps2
2 · · · psm

m (3)

where si are arbitrary nonnegative integers and s1 + s2 +· · ·+ sm = n.
Observe that the number of successes for each possible outcome

Ei after n trials can be approximated using (2).8 Now we return to
BFWCs by stating the following.

Observation 1 Inserting N packets of “Class I traffic” into a BFWC
with m counters and k independent hash functions that distribute
the packets equiprobably into the m counters,9 is equivalent to
equiprobably throwing n = Nk packets into m bins.

Below we use the terms counter and bin interchangeably. Consider
the following experiment.

8 The accuracy of the Poisson approximation to the multinomial dis-
tribution is well-studied (e.g., [2, 5, 25]). A Normal distribution may
also be used as an approximation to b(s; n, p) for large n [18].

9 i.e., the probability of throwing a packet into counter i is 1/m, for
all 1 ≤ i ≤ m.

A monitoring system for detecting repeated packets with applications to computer worms 197

Table 8 Poisson approximation to P[k, t, m, N] after inserting N =
150,000 packets into a BFWC with k = 4 hash functions and m =
1,048,576 counters

t P(k, t, m, N)

2 1.75 × 10−7

3 6.50 × 10−11

4 1.03 × 10−14

5 8.02 × 10−19

6 3.43 × 10−23

7 8.69 × 10−28

8 1.38 × 10−32

9 1.45 × 10−37

10 1.04 × 10−42

11 5.31 × 10−48

12 1.98 × 10−53

13 5.93 × 10−59

14 2.43 × 10−63

15 1.52 × 10−64

Experiment 1 Throw equiprobably n random packets into m bins.

We are interested in finding a threshold t such that, after perform-
ing Experiment 9, the probability that k random bins have more than t
packets is “sufficiently small” to be accepted according to our context
(i.e., a tolerable number of false alarms due to “Class I traffic”). Ap-
plying (3) may be impractical since m and n may be large. Instead we
use equation (2) to approximate the number of packets in each bin.

Example 1 Consider a software implementation of a BFWC with
m = 1,048,576 counters and k = 4 hash functions. After inserting
N = 150,000 random packets into the BFWC, the mean (expected)
number of packets per bin is 0.572205. We want to set the value of
t such that the probability that k = 4 counters taken at random each
hold more than t packets is “sufficiently small”. The probability that k
random bins all have counters exceeding t , denoted P[k, t, m, N], is
approximated using (2) as:

P[k, t, m, N] ≈
(

1 −
t∑

i=0

e−n/m (n/m)i

i !

)k

. (4)

Table 8 shows this approximation for several values of t . Based on
the table, a network operator can choose an appropriate value for t ac-
cording to the number of false alarms tolerable over some time period,
under “Class I traffic”.

The expected number of false alarms while inserting N packets is∑N
i=1 P[k, t, m, i]. For large values of i , P[k, t, m, i] can be estimated

using (4). For small values of i , P[k, t, m, i] becomes negligibly small.
Observe that P[k, t, m, i] > P[k, t, m, i ′] for i > i ′. Therefore, a
very coarse upper bound for the expected number of false alarms is∑N

i=1 P[k, t, m, i] < N · P[k, t, m, N].

References

1. Anderson, T., Mahajan, R., Spring, N., Wetherall, D.:
Rocketfuel: An ISP topology mapping engine (2003).
http://www.cs.washington.edu/research/networking/rocketfuel/
[Accessed: August 2, 2003]

2. Barbour, A., Holst, L., Janson, S.: Poisson Approximation. Oxford
University Press, New York (1992)

3. Bertsekas, D., Gallager, R.: Data Networks. Prentice Hall,
Englewood Cliffs, NJ (1992)

4. Bloom, B.: Space/time trade-offs in hash coding with allowable
errors. Commun. ACM 13(17), 422–426 (1970)

5. Boutsikas, M., Koutras, M.: On the number of overflown urns and
excess balls in an allocation model with limited urn capacity. Stat.
Plan. Inference 104, 259–286 (2002)

6. Broder, A., Kumar, R., Maghoul, F., Raghavan, P., Rajagopalan,
S., Stata, R., Tomkins, A., Wiener, J.: Graph structure in the Web.
Newblock Comput. Netw. 33(1–6), 309–320 (2000)

7. Broder, A., Mitzenmacher, M.: Network applications of Bloom
filters: A survey. Internet Math. 1(4), 485–509 (2003–2004)

8. CERIAS Intrusion Detection Research Group, T.: Digging for
worms, fishing for answers. In: Proceedings of the Annual Com-
puter Security Application Conference (ACSAC’02). Las Vegas
(2002)

9. Chen, X., Heidemann, J.: Detecting early worm propagation
through packet matching. Tech. Rep. ISI-TR-2004-585, Univer-
sity of Southern California (2004)

10. Cormen, T., Leiserson, C., Rivest, R., Stein, C.: Introduction to
Algorithms, 2nd edn. MIT Press, McGraw-Hill, New York (2001)

11. Crosby, S., Wallach, D.: Denial of service via algorithmic com-
plexity attacks. In: Proceedings of the 12th USENIX Security
Symposium. Washington, DC (2003)

12. Daley, D., Gani, J.: Epidemic Modelling: An Introduction.
Cambridge University Press, Cambridge, UK (1999)

13. Dharmapurikar, S., Krishnamurthy, P., Sproull, T., Lockwood, J.:
Deep packet inspection using parallel Bloom filters. In: Sym-
posium on High Performance Interconnects (HotI), pp. 44–51.
Stanford, CA (2003)

14. Dharmapurikar, S., Krishnamurthy, P., Taylor, D.: Longest prefix
matching using Bloom filters. In: Proceedings of the Special In-
terest Group on Data Communication (SIGCOMM’03), pp. 201–
212. Karlsruhe, Germany (2003)

15. Dharmapurikar, S., Paxson, V.: Robust TCP stream reassembly in
the presence of adversaries. In: Proceedings of the 14th USENIX
Security Symposium. Baltimore (2005)

16. Faloutsos, M., Faloutsos, P., Faloutsos, C.: On power-law relation-
ships of the Internet topology. In: Proceedings of the Special In-
terest Group on Data Communication (SIGCOMM’99), pp. 251–
262. Boston/Cambridge, MA (1999)

17. Fan, L., Cao, P., Almeida, J., Broder, A.: Summary cache: A scal-
able wide-area Web cache sharing protocol. IEEE/ACM Trans.
Netw. 8(3), 281–293 (2000)

18. Feller, W.: An Introduction to Probability Theory and its Applica-
tions, vol. 1, 3rd edn. Wiley, New York (1968)

19. Fyodor: The art of port scanning. Phrack Mag. 7(51) (1997). URL:
http://www.phrack.org [Accessed: March 6, 2003]

20. Garey, M., Johnson, D.: Computers and Intractability: A Guide
to the Theory of NP-Completeness. W. H. Freeman, New York
(1979)

21. Goh, E.J.: Secure indexes. Cryptology ePrint Archive, Re-
port 2003/216 (2003). URL: http://eprint.iacr.org/2003/216/ [Ac-
cessed: January 7, 2004]

22. Grembowski, T., Lien, R., Gaj, K., Nguyen, N., Bellows, P., Flidr,
J., Lehman, T., Schott, B.: Comparative analysis of the hardware
implementations of hash functions SHA-1 and SHA-512. In: Pro-
ceedings of Information Security Conference (ISC 2002), Lecture
Notes in Computer Science, vol. 2433, pp. 75–89. Springer, Sao
Paulo, Brazil (2002)

23. Handley, M., Kreibich, C., Paxson, V.: Network intrusion detec-
tion: Evasion, traffic normalization, and end-to-end protocol se-
mantics. In: Proceedings of the 10th USENIX Security Sympo-
sium. Washington, DC (2001)

24. Horne, B., Matheson, L., Sheehan, C., Tarjan, R.: Dynamic self-
checking techniques for improved tamper resistance. In: Proceed-
ings of the First ACM Workshop on Digital Rights Management
(DRM 2001), Lecture Notes in Computer Science, vol. 2320, pp.
141–159. Springer, Berlin Heidelberg New York (2002)

25. Joag-Dev, K., Proschan, F.: Negative association of random vari-
ables, with applications. Ann. Stat. 11(1), 286–295 (1983)

198 P. C. van Oorschot et al.

26. Jung, J., Paxson, V., Berger, A., Balakrishnan, H.: Fast portscan
detection using sequential hypothesis testing. In: Proceedings of
the 2004 IEEE Symposium on Security and Privacy. Oakland
(2004)

27. Kim, H.A., Karp, B.: Autograph: Toward automated, distributed
worm signature detection. In: Proceedings of 13th USENIX Secu-
rity Symposium. San Diego, CA (2004)

28. Kumar, A., Xu, J., Li, L., Wang, J.: Space-code Bloom filter for
efficient traffic flow measurement. In: Proceedings of IMC. Miami
Beach, FL (2003)

29. Levy, E.: Worm propagation and generic attacks. IEEE Secur. Priv.
3(2), 63–65 (2005)

30. Liljenstam, M.: Modeling of security and systems. A network
worm modeling package for SSFNet (2003). http://www.crhc.
uiuc.edu/mili/research/ssf/worm/ [Accessed: September 10, 2004]

31. Mahajan, R., Spring, N., Wetherall, D., Anderson, T.: Inferring
link weight using end-to-end measurements. In: Proceedings of
the Internet Measurement Workshop 2002 (IMW’02). Marseille,
France (2002)

32. Matrawy, A., van Oorschot, P., Somayaji, A.: Mitigating network
denial-of-service through diversity-based traffic management. In:
Proceedings of the 3rd Annual Conference on Applied Cryptogra-
phy and Network Security (ACNS 2005), Lecture Notes in Com-
puter Science, vol. 3531, pp. 104–121. Springer, New York (2005)

33. McHugh, J.: Testing intrusion detection systems: A critique of the
1998 and 1999 DARPA intrusion detection system evaluations as
performed by Lincoln Laboratory. ACM Trans. Inf. Syst. Secur.
(TISSEC) 3(4), 262–294 (2000)

34. MIT Lincoln Laboratory: DARPA intrusion detection evalu-
ation: Data sets (1999). http://www.ll.mit.edu/IST/ideval/data/
data index.html [Accessed: April 1, 2004]

35. Mitzenmacher, M.: Compressed Bloom filters. In: Proceedings of
the 20th Annual ACM Symposium on Principles of Distributed
Computing (PODC 2001), pp. 144–150. Newport, RI (2001)

36. Moore, D., Paxon, V., Savage, S., Shannon, C., Staniford, S.,
Weaver, N.: Inside the Slammer worm. IEEE Secur. Priv. 1(4),
33–39 (2003)

37. Nachenberg, C.: Computer virus-antivirus coevolution. Commun.
ACM 40(1), 46–51 (1997)

38. Nevelsteen, W., Preneel, B.: Software performance of univer-
sal hash functions. In: Proceedings of Eurocrypt’99, pp. 24–41.
Prague, Czech Republic (1999)

39. Newsome, J., Karp, B., Song, D.: Polygraph: Automatically gen-
erating signatures for polymorphic worms. In: Proceedings of the
2005 IEEE Symposium on Security and Privacy. Oakland, CA
(2005)

40. NS-2: The network simulator – NS-2 (2003). http://www.isi.edu/
nsnam/ns/ [Accessed: September 10, 2003]

41. Onut, I.V., Zhu, B., Ghorbani, A.: A novel visualization technique
for network anomaly detection. In: Proceedings of the 2nd Annual
Conference on Privacy, Security and Trust. Fredericton, Canada
(2004)

42. OPNET Technologies Inc.: Opnet modeler (2003). http://www.
opnet.com [Accessed: September 10, 2003]

43. Park, K., Lee, H.: On the effectiveness of route-based packet filter-
ing for distributed DoS attack prevention in power-law internets.
In: Proceedings of the Special Interest Group on Data Communi-
cation (SIGCOMM’01). San Diego, CA (2001)

44. Ptacek, T.H., Newsham, T.N.: Insertion, evasion and denial of ser-
vice: Eluding network intrusion detection. Tech. rep., Secure Net-
works, Inc. (1998). http://www.aciri.org/vern/Ptacek-Newsham-
Evasion-98.ps [Accessed: November 6, 2005]

45. Rabin, M.: Fingerprinting by random polynomials. Technical Re-
port TR-15-81, Center for Research in Computing Technology,
Harvard University, Cambridge, MA (1981)

46. Shanmugasundaram, K., Brönnimann, H., Memon, N.: Payload
attribution via hierarchical Bloom filters. In: Proceedings of the
11th ACM Conference on Computer and Communications Secu-
rity (CCS’04). Washington, DC (2004)

47. Shannon, C., Moore, D.: The spread of the Witty worm (2004).
http://www.caida.org/analysis/security/witty/ [Accessed: June 18,
2004]

48. Singh, S., Estan, C., Varghese, G., Savage, S.: The EarlyBird sys-
tem for real-time detection of unknown worms. Technical Report
CS2003-0761, University of California, San Diego, CA (2003)

49. Singh, S., Estan, C., Varghese, G., Savage, S.: Automated worm
fingerprinting. In: Proceedings of the 6th USENIX Symposium
on Operating Systems Design & Implementation (OSDI’04). San
Francisco (2004)

50. Snoeren, A., Partridge, C., Sanchez, L., Jones, C., Tchakountio,
F., Kent, S., Strayer, W.: Hash-based IP traceback. In: Proceed-
ings of the Special Interest Group on Data Communication (SIG-
COMM’01). San Diego, CA (2001)

51. Spring, N., Mahajan, R., Wetherall, D.: Measuring ISP topologies
with Rocketfuel. In: Proceedings of the Special Interest Group on
Data Communication (SIGCOMM’02). Pittsburgh, PA (2002)

52. SSFNet: Scalable simulation framework network models (2003).
http://www.ssfnet.org/homePage.html [Accessed: September 10,
2003]

53. Toth, T., Kruegel, C.: Connection-history based anomaly detec-
tion. In: Proceedings of the 2002 IEEE Workshop on Information
Assurance and Security. New York (2002)

54. Twycross, J., Williamson, M.: Implementing and testing a virus
throttle. In: Proceedings of the 12th USENIX Security Sympo-
sium. Washington, DC (2003)

55. Valdes, A., Fong, M.: Scalable visualization of propagating Inter-
net phenomena. In: Proceedings of the ACM Workshop on Visual-
ization and Data Mining for Computer Security. Washington, DC
(2004)

56. Vargas Martin, M.: A monitoring system for mitigating fast prop-
agating worms in the network infrastructure. In: Proceedings of
the 18th IEEE Canadian Conference on Electrical and Computing
Engineering (CCECE’05). Saskatoon, Canada (2005)

57. Venkataraman, S., Song, D., Gibbons, P., Blum, A.: New stream-
ing algorithms for fast detection of superspreaders. In: The Inter-
net Society Proceedings of the Network and Distributed System
Security Symposium (NDSS’05). San Diego, CA (2005)

58. Wang, K., Stolfo, S.: Anomalous payload-based network intrusion
detection. In: Proceedings of the Seventh International Sympo-
sium on Recent Advances in Intrusion Detection (RAID 2004).
Sophia Antipolis, France (2004)

59. Watts, D.: Small Worlds: The Dynamics of Networks Between Or-
der and Randomness. Princeton University Press, Princeton, NJ
(1999)

60. Weaver, N., Paxson, V., Staniford, S., Cunningham, R.: A taxon-
omy of computer worms. In: Proceedings of ACM WORM’03.
Washington, DC (2003)

61. Weaver, N., Staniford, S., Paxson, V.: Very fast containment of
scanning worms. In: Proceedings of the 13th USENIX Security
Symposium. San Diego, CA (2004)

62. Williamson, M.: Throttling viruses: Restricting propagation to de-
feat malicious mobile code. In: Proceedings of the Annual Com-
puter Security Application Conference (ACSAC’02). Las Vegas
(2002)

63. Zou, C., Gong, W., Towsley, D.: Code Red worm propagation
modeling and analysis. In: Proceedings of the 9th ACM Con-
ference on Computer and Communications Security (CCS’02).
Washington, DC (2002)

A monitoring system for detecting repeated packets with applications to computer worms 199

P. van Oorschot (Ph.D. Waterloo,
1988) is a Professor in the School of
Computer Science at Carleton Uni-
versity, and Canada Research Chair
in Network and Software Security.
He is the founding director of Car-
leton’s Digital Security Group. He
has worked in research and devel-
opment in cryptography and net-
work security, including at Bell-
Northern Research (Ottawa), and
Entrust Technologies (Ottawa) as
VP and Chief Scientist. He is coau-
thor of the standard reference Hand-
book of Applied Cryptography. His
current research interests include
authentication and identity manage-

ment, network security, software protection, and security infrastruc-
tures.

J.-M. Robert is a Principal Se-
curity Researcher at Alcatel in Ot-
tawa, Ontario. His research interests
are network and telecom infrastruc-
ture security, focusing mainly on
denial-of-service attacks and worm
propagation. Previously, Dr. Robert
worked as Security Director for the
North American Development Cen-
ter of Gemplus International as well
as Professor at the Université du
Québec à Chicoutimi. Dr. Robert re-
ceived a Ph.D. in Computer Science
from McGill University.

M. Vargas Martin is an Assistant
Professor at the University of On-
tario Institute of Technology (Os-
hawa, Canada), with faculty ap-
pointments in Business and Infor-
mation Technology, as well as En-
gineering and Applied Science. He
was previously a post-doctoral re-
searcher at Carleton University sup-
ported in part by Alcatel Canada.
He holds a Ph.D. in Computer Sci-
ence (Carleton University, 2002), a
Masters degree in Electrical Engi-
neering (Cinvestav, Mexico, 1998),
and a Bachelor of Computer Sci-
ence (Universidad Autónoma de
Aguascalientes, Mexico, 1996). His

current research interests include network and host-based intrusion de-
tection and reaction, mitigation of denial-of-service (DoS) and dis-
tributed DoS attacks, Web modeling and optimization, Internet con-
nectivity, and interconnection protocols.

