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Abstract. We provide a state-of-the-art explication of application se-
curity and software protection. The relationship between application
security and data security, network security, and software security is
discussed. Three simplified threat models for software are sketched. To
better understand what attacks must be defended against in order to
improve software security, we survey software attack approaches and at-
tack tools. A simplified software security view of a software application
is given, and along with illustrative examples, used to motivate a partial
list of software security requirements for applications.

1 Introduction

More than 20 years ago, data security was defined by Denning [22] as the science
and study of methods of protecting data in networked systems, and to include
cryptographic controls, access controls, information flow controls, inference con-
trols, and procedures for backup and recovery. Of these, cryptographic controls
have received the greatest academic attention, with emphasis on typically math-
ematical data-manipulation algorithms involving secret keys – e.g. encryption
algorithms for confidentiality, and message authentication codes (MACs) and
digital signature algorithms for real-time authentication, data origin authentica-
tion, integrity or non-repudiation. Applied cryptography [39] includes additional
areas of practical interest – e.g. authentication and key management protocols,
and implementation issues. Complete security infrastructures are now used in
practice, such as the Kerberos authentication service [56] and more ambitious
(and correspondingly complex) key and credential management systems known
as Public-Key Infrastructures (PKI) [1].

However, providing security within networked information systems goes far
beyond protecting data, cryptographic keying material, and credentials. The
transition from a mainframe-based computing infrastructure, through client-
server architectures, to global connectivity in today’s Internet has resulted in
a vast array of new security threats and challenges. Indeed, it is difficult to de-
fine exactly what is meant by “security” – it is generally intended to vaguely
mean protection “of valuable things” and “against bad actions”.
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More formally (e.g. see Bishop [5]), security is usually defined relative to
a security policy, which defines actions, typically related to accessing resources
(memory reads/writes, the CPU, communications ports, input-output devices,
etc.), as allowed or disallowed. Methods, tools or procedures enforcing policies
are called security mechanisms. A system is in either an allowed state (secure)
or not; these states are precisely defined in theory. Attacks are actions which
may cause security violations (movements to non-secure states). The security
objective is to prevent, detect and/or recover from attacks.

In practice, of course, the situation is far less clear. Policies are often im-
precise and incomplete common-language descriptions of what users, adminis-
trators, and outsiders are allowed to do. Typically they are neither explicitly
formulated nor written down – in part due to the failure to understand the need
for a security policy, and the difficulty of properly formulating one. Even experts
find it challenging to accurately assess all relevant threats (potential violations
of security) in a particular environment. Due to their large numbers and chang-
ing natures, it is virtually impossible to stay abreast of all relevant types of
attacks, levels at which attacks may occur, exploitable implementation details,
and complex protection mechanisms available.

In this paper, we take a step towards clarifying this picture with particular fo-
cus on application security, software protection, and software security as relevant
to commercial practice. We seek to facilitate a better understanding of software
protection and its intricacies, to be better positioned to improve software se-
curity. This necessitates understanding the state-of-the-art in attack tools and
approaches. To this end, the sequel is organized as follows. In §2, we distinguish
three architectural categories of security, all of which play a role in application
security. §3 discusses practical threat models. §4 considers software attack ap-
proaches and how attacks are developed. §5 surveys software tools of use to
attackers. §6 provides specific illustrative examples of where software protection
is needed. §7 gives a software security view of software applications, motivating
specific software security requirements. §8 ends with concluding remarks.

2 Application Security and Architectural Categories

We broadly define application security as the protection of software applications
against threats (potentially including those not presently known). We clarify this
as folows. By software applications (see also §7), we do not restrict ourselves to
applications in the OSI layer-7 sense (e.g. see [54]), nor to end-user applications
on client machines. In our view, application security includes, requires or depends
on three inter-related architectural categories of security, as follows.

1. Data security. This is largely concerned with protecting the confidentiality
and integrity of data, typically in transit and storage (cf. Denning’s definition
above). We note that a typical assumption in data security and cryptogra-
phy, that end-points are trusted, does not generally hold in environments
requiring application security (see §3).
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2. Network security. We view this as the science and study of the protection
(including access to, availability and integrity) of network resources, devices
and services (including bandwidth, connectivity, and platforms). We include,
within network security mechanisms: firewalls, intrusion detection systems
(IDS), systems providing access control to devices, and mechanisms to ame-
liorate denial of service (DOS) and distributed DOS (DDOS) attacks.

3. Software security. We define this as the science and study of protecting soft-
ware (including data in software) against unauthorized access, modification,
analysis or exploitation (cf. [62, 33, 60]; see also program security [5, Ch.29]).
We also use the term “software security” informally (see discussion below) in
relation to the security properties and level of inherent security in a software
application (in the sense of protection against relevant attacks).

While software protection is a term sometimes interchanged with copy protec-
tion (e.g. [27, 29]), our definition differs. In our view, software protection consists
of a broad collection of principles, approaches and techniques intended to im-
prove software security, providing increased protection against threats ranging
from buffer overflow attacks [66] to reverse engineering and tampering [20]. We
thus view copy protection as only one application of software protection; other
example end-goals are preventing unauthorized use of software, and content pro-
tection: preventing unauthorized use of bulk data processed by software, e.g.
music files, streaming audio or video. Here unauthorized use means uses other
than intended by the legitimate software creator.

We distinguish software protection from security code, which provides nar-
rower or more localized security-specific functionality. Security code is a part of
the application, contributing security functionality such as authentication (e.g.
for copy protection) to a user, server, machine or other hardware such as a CD.
(Network security software – including virus scanners, firewalls, intrusion de-
tection systems and other perimeter-type defenses – consists largely of security
code, but in applications unto themselves.)

More specifically, in our view (cf. [57]), applications consist of three types of
software: functional code (which accomplishes the primary goal), error-handling
code, and security code. In contrast to the latter, we see software protection
as binding together (reinforcing) the existing software, changing its inherent
structure or properties – analogous to adding cement to sand, gravel and water
to make a monolithic slab from three otherwise easily separable components.
While security code plays an important role in the overall security design, it
may itself be subject to attack; software protection ideally makes the software
itself resistant to attack.

In summary, software security is dependent on both security code and soft-
ware protection. Furthermore, depending on the threat model (§3), application
code other than security code may also require software protection.

Many software protection techniques and approaches exist. Some can be clas-
sified into major groups: software obfuscation, software tamper resistance, diver-
sity, marking schemes (e.g. watermarking), node-locking schemes, time-limiting
schemes, etc. (see also §7). For further details, see recent surveys [4, 20, 60].
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3 Threat Models for Software

An enormous number of security threats to software-based systems exist. In
reality, no system can be 100% guaranteed to be “totally secure”; our knowledge
of attacks is incomplete, and new attacks are devised regularly. Even in the best
case, we are aware of only a subset of possible threats at any point in time, and
of these, not all warrant defenses – it is too costly to design a system to be secure
against every known threat. Some have near zero likelihood of being mounted
or succeeding; others would result in relatively minor losses if they did succeed,
or are too costly for an attacker to mount despite being theoretically possible.
The goal in practice is to cost-effectively counter relevant threats.

3.1 What is a Threat Model?

A threat model identifies the threats a system is designed to counter, taking
into account the nature of relevant classes of attackers (including their expected
attack approaches and resources – e.g. techniques, tools, powers, geographic
access), as well as other environmental assumptions and conditions. Pertinent
questions include: “Which resources need protection, and from which specific
malicious actions?” Answering such questions requires risk assessment (cf. [9]):
analyzing threats and system vulnerabilities; estimating potential losses; and
estimating the likelihoods of particular attacks and their success. The threat
model should be used within the system design process, and a security model
should then be devised showing how the system design counters relevant threats.

As should now be clear, threat models are based on assumptions (which are
not always correct), environmental conditions (which may change over time), im-
perfect judgements, and unconfirmable estimates. The quality of a threat model
for a software application depends on how closely it reflects the reality of the
environment in which the application runs, and the threats it is actually sub-
jected to. Far from an exact science, this is at best an approximate art, and
almost always an interative process adapting to better knowledge, new threats
and changing conditions.

As a case in point of how threat models may not accurately reflect reality, in
a section titled The Internet Threat Model, Rescorla [49, p.1] states two major
assumptions around which most Internet security protocols including SSL are
built: (1) the protocol end-points (e.g. client and server machine) are secure;
and (2) the communications link is totally vulnerable to attacker control (e.g.
eavesdropping, message modification, message injection). This follows the typical
cryptographer’s model, which is suitable for securing data transmitted over unse-
cured links in a hostile environment. However, it is clear that assumption (1) is no
longer generally valid for the Internet circa 2003, with large-scale malicious soft-
ware [51] compromising the integrity of vast numbers of machines (e.g. 350 000
machines due to a Code Red worm circa July 2001 [7]). As noted earlier, in many
places where application security is required, this standard cryptographic trusted
endpoint assumption fails. It is of course well known that cryptography alone
cannot solve all software security problems; for example, a 1998 U.S. National
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Research Council report [52, p.110] notes that less than 15% of all problems in
CERT advisories are cryptographically addressable.

3.2 Three Basic Threat Models (Classes of Attacks)

An overall threat model may incorporate any or all of the following sketches.

a) Network Threat Model.
An increasing number of software applications are network-connected – e.g.
browsers, mail clients, word processing applications and spreadsheets. These
are both willing and able to provide functions across a network to other
network-accessible applications. Such applications are vulnerable to remote
external attacks, as they can be caused to directly process data from remote
processes. Here the target application is assumed to reside on a host ma-
chine (hardware plus software) which is both trustworthy and under control
of a trustworthy entity (e.g. the individual running the application, or an en-
tity hosting application services). Typical software security concerns include:
buffer overflow exploits [66]; protocol attacks exploiting “normal” features
of a protocol (e.g. [11, 6]); and malicious code [35, 65, 58] that allows unau-
thorized access and/or intrusion on the application, data and hardware by
an outsider. Attacker goals typically include gaining privileged access to the
machine to carry out other malicious actions, e.g. launching other attacks,
consuming resources, or harvesting information.

b) Insider Threat Model.
Here the attacker has some level of privileges on either the network (e.g.
inside a corporate firewall, on a local area network) or hardware running
the target application. Software security concerns include software piracy,
local exploits to boost privileges, and stealing information embedded in or
processed by the software. The attacker’s goal is typically to gain privileged
access to the device, or to steal or tamper with data or applications.

c) Untrusted Host Threat Model.
Under the assumption of an application running on an untrusted host ma-
chine [50], the application is subject to attacks originating from the host
machine itself – e.g. the operating system, kernel, other applications, the
hardware, etc. The attacker is assumed to be local and to enjoy full privi-
leges, including unconstrained access to the running code, and installation
and use of additional software or hardware attack tools. This white-box at-
tack context requires special software protection techniques [13], and differs
from both a black-box attack model (where the attacker can only monitor in-
puts and outputs), and a side-channel attack model (where the attacker can
monitor side effects of program execution). Software security concerns in-
clude: piracy of data and applications, unlicensed use and tampering of data
or applications, and theft of software-embedded information and intellectual
property. Attacker goals include: “freeing content” (removing any constraints
or controls thereon), freeing the application (removing copy protection or the
requirement for license strings), information theft, and unlicensed use of the
data or application.
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Network Insider Untrusted Host
Threat Model Threat Model Threat Model

privileges of attacker none some full

attacker location remote local network same host
or same host

host trusted? yes yes no

Table 1. Comparison of selected characteristics of three threat models.

Note: as successful network and insider attacks may lead to compromise of the
target machine, these attacks may evolve to create an untrusted host scenario
(see related remarks in §8).

Table 1 summarizes a few of the major differences between these threat mod-
els. Other distinguishing characteristics include: types of tools available, preva-
lent types of attacks, and goals of attackers (which map directly to software
security concerns). Providing application security under each of the threat mod-
els of Table 1 generally requires the use of security mechanisms from all three
architectural categories: data security, network security, and software security.
One exception is in the untrusted host model: there, network security protec-
tion is less relevant, and standard data security mechanisms provide only static
protection of data.

4 Software Attacks

Attackers may achieve their goals through many approaches. §4.2 discusses di-
rect access attacks. §4.3 addresses automated attacks. §4.4 reviews the steps in
developing large-scale attacks. We begin with a note regarding terminology.

4.1 Terminology: Hackers, Crackers and Hats

In line with security researchers, we refer to someone trying to defeat security
policy or mechanisms as an attacker. This is meant as an unbiased term – the
attack motives may be honorable (e.g. penetration testing by product developers
or researchers to find vulnerabilities in order to fix them), or not (e.g. breaking
in for malicious reasons or “fun”).

Following the computer technical community (cf. [48, 47, 28]), we reserve the
term hacker for computer gurus familiar with low level programming details and
how to “stretch” programming functionality. We view it to have a generally pos-
itive (“geeky” to some) connotation. In contrast, we reserve the term cracker for
individuals who break into computer systems, typically bypassing or defeating
security mechanisms. Hackers generally take pride in having ethical standards,
and view crackers as vandals or thieves who misuse their technical skills, in-
cluding to gain unauthorized access. The mass media most often uses the term
“hacker” in place of “cracker”; we find this confusing, and in what follows intend
the terms as defined above.
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Several related terms are worth mentioning. Ethical hacking is used as a term
for the practice, by those with sufficient skills and with the advance permission
of the system owners, of breaking into computer systems to demonstrate security
weaknesses. Two additional terms stem by analogy from Western movies, where
“good guys” wear white hats and “bad guys” wear black. The term white-hat
(white hat hacker), having a positive connotation, is associated with those using
their skills for legitimate purposes, e.g. computer security experts doing system
research or vulnerability testing to better defend against attacks. In contrast,
the term black-hat, having a negative connotation, denotes unauthorized indi-
viduals who break in to computer systems for illegitimate purposes – thus being
synonomous with crackers. Finally, grey-hat (gray-hat) denotes white-hats who
sometimes go beyond what white hats typically do.

4.2 Direct Access Attacks

Analysis and tampering typically involve direct access to the target code, in-
volving a skilled attacker, with sufficient resources and time to manipulate the
code in a controlled environment. We usually define direct access attacks to be
those developed on a local machine using a local copy of the target code. How-
ever in some cases, the term may also include attacks developed over a network
connection; the main point is direct human involvement. Note that under some
threat models, attacker access to the code and environment is straightforward.

We now consider the differences between software analysis and tampering,
and static vs. dynamic approaches.

i) Analysis vs. Tampering. While software reverse engineering (see §5.1) may
be an attacker’s end-goal, often it is a precursor to tampering, which requires
that the attacker first sufficiently understand the internals of an application.
When reverse engineering leads to discovery of an exploit or vulnerability,
the code may then be modified to perform as the attacker desires.

ii) Analysis: Static vs. Dynamic. Static analysis refers to analysis of software
and data when it is not running. It typically includes static disassembly (see
§5.3) of executable code and subsequent examination. In contrast, dynamic
analysis, performed on executing code, involves tracing of data values and
control flow. While typically more powerful than static analysis, it may be
more time consuming, more complicated, and requires a platform similar to
that of the target code.

iii) Tampering: Static vs. Dynamic. Software tampering attacks may similarly
be static or dynamic. A static tampering attack modifies code in a non-
executing state; the modified code is subsequently run. If a software in-
tegrity mechanism is in place (e.g. the operating system verifies integrity
using code-signing techniques, or the code checks itself [36, 12, 32]), then the
integrity-checking mechanism must be defeated for the modified software to
execute as desired. A dynamic tampering attack changes values (data or
code) in memory during execution. An attack may be developed or tested
dynamically, on a separate platform, and then turned into a static attack on
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a target platform. A typical goal of tampering attacks is software piracy, or
unauthorized duplication of files in violation of a licensing agreement.

Many more complex direct access attacks exist. We mention of few here which
have analogies in data security and cryptography.

Software differential analysis (SDA) is a powerful attack that one or multiple
attackers may use. Two or more different versions of an application are compared,
to identify which parts have been changed – e.g. between product releases (over
time), or between users (per-user variations). Crackers who develop copy pro-
tection removal tools use SDA to quickly isolate changed protection techniques,
updating their tools to allow them to continue working on new releases.

Collusion attacks involve multiple attackers sharing analysis, to leverage not
only different skills to reverse engineer a system, but also to pool user-specific
data or knowledge of help in defeating security mechanisms (see SDA above).

Replay attacks capture program state and later restore it. For example, a
user downloading a movie may watch it within three days of pressing play (e.g.
movielink.com). A backup of the entire machine state is made using a disk imag-
ing tool (e.g. www.powerquest.com/driveimage/). Once the original digital rights
are consumed, the user restores them using the back-up machine state.

4.3 Automated Attacks

Once a direct access attack has yielded an exploit proven to work, often the
attacker’s goal is to automate the attack so that it can be rapidly deployed on
a broader scale, including by others. Internet viruses and worms are evidence of
the power of automated attacks. Viruses consist of three parts: exploit, vector,
and payload. The exploit, taking advantage of a discovered or known vulner-
ability, is first developed as a direct access attack. The vector is the means of
self-propagation, providing automation. The payload code does the damage. Au-
tomated attacks also apply to copy protection schemes, such as CSS used with
DVDs [23, 42], and unSafeDisc, a software tool used to remove (Macrovision
Corporation’s) SafeDisc copy protection from PC games.

Automated attacks have limitations. They typically necessarily involve nu-
merous implementation assumptions regarding the target code. Special markers
and offsets are used to know where to apply a patch or inject values. If a spe-
cific target code instance differs slightly in critical places – e.g. due to a slightly
different product release – the automated attack will fail on that instance. For
this reason, highly automated attacks are often fragile. Automated attacks are
also typically limited in analysis, and do not generally incorporate feedback.
Nonetheless, automated attacks are highly effective in today’s Internet, due to
the homogeneity of the installed base of applications.

4.4 How Software Attacks are Developed

Software attacks often proceed according to the following sequence.
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1. Analysis. This is typically the first step in an attack, although in some cases
it may be the end-goal – such as in theft of intellectual property (e.g. to
understand a communications algorithm).

2. Tampering. This involves modifying the code and/or data to perform other
than originally intended. Some attacks involve tampering only; typically tam-
pering occurs after some analysis.

3. Automation. This typically involves the development and use of software
tools to create and apply attack software to multiple instances of the target
application. In some cases the tampered application is re-distributed (e.g. di-
rect piracy of copy-protected PC games). With content protection schemes,
preference is for a general automated attack that works for all content pro-
tected with that scheme (e.g. DVD CSS [23, 42]). In the case of computer
viruses or worms, the attack goal is to obtain privileges, cause damage, or
consume resources on many devices.

4. Distribution. This allows others to use the automated attack. Attacks may
also be manually distributed via web sites and bulletin boards. Some attacks
are highly prized by groups and not distributed. Computer worms include
mechanisms for self-propagation.

5 Software Attack Tools

Like many areas of security, and perhaps moreso than most, software security
is an arms race between those who create and deploy security mechanisms, and
attackers eager to defeat them. In order to provide stronger protection, or (more
pessimistically) at least understand why many of the present protection tech-
niques are inadequate, it is thus essential to understand the techniques attackers
use to defeat them. To this end, this section briefly discusses software reverse
engineering, attack techniques, and attack tools.

5.1 Software Reverse Engineering

Software reverse engineering – given an application’s binary code, analyzing
the program and recovering the details within it – is an open-ended research
area, for both those interested in software protection, and in defeating it (see
[45, 24] for different views and resources). Major aspects of reverse engineering
include disassembly and decompilation. Decompilation recovers higher-level pro-
gram abstractions and semantic structure from binary programs. Disassembly
reconstructs assembly language instructions from machine code; it may be con-
sidered a subset of decompilation, or a step along the way. Reverse engineering of
type safe languages such as Java is much easier than most other languages, like
C and C++, whose binaries contain no type information, and whose executables
have program code and data mixed within their runtime layout [63].

Attackers become aware of security vulnerabilities through many means, in-
cluding: announcements by product vendors typically accompanied by patches
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(attackers then target unpatched installations); similar announcements by in-
dependent researchers (without patches); and independent discovery. Reverse
engineering for malicious purpose – e.g. theft of intellectual property (such as a
competitor’s secret formula or process), software tampering, or the discovery and
exploitation of vulnerabilities – is facilitated by a number of advanced program
analysis tools which also serve the legitimate software development community,
e.g. in debugging, software engineering, and understanding malware. In both
cases, useful capabilities for reverse engineering include:

1. observation of dynamic program behavior in a controlled manner, including
granularity down to instruction-by-instruction execution;

2. recovery, from binary, of assembler code and higher-level abstractions; and
3. dynamic modification of binary code and observation of resulting behavior.

To this end, foundational tools in the cracker’s reverse engineering toolkit in-
clude: debuggers, disassemblers, decompilers and emulators. Each of these are
discussed in turn below, as well as additional attack tools.

5.2 Debuggers

Debuggers (e.g. see [17]) trace the program logic and data values during program
execution. Breakpoints can be set and code and data modified on the fly, mak-
ing debuggers valuable tools for uncovering bugs and addressing performance
issues, as well as reverse engineering and tampering with applications. SoftICE
[40] is powerful debugger (software in-circuit emulator) for Microsoft Windows
environments and Pentium family processors; crackers write plug-ins to extend
its functionality, and to provide information for widely hacked applications. An-
other debugger for Windows environments is the free OllyDbg [41]. The GNU
Project debugger, GDB [25, 55], is the most popular debugger for Unix systems.

5.3 Disassemblers

A disassembler is typically the first tool used in reverse engineering an executable
program, whether for legitimate purposes (e.g. automated code optimization) or
otherwise. Disassemblers allow analysis of binary code, mapping it to assembly
language (additional decompilation steps may allow recovery of higher-level con-
structs). Code navigation may be simplified by identifying API calls, building
and displaying call graphs, and producing anotated assembly-language listings.
For extensive background and pointers to online tools, see the Disassembly pages
at the Program Tranformation Wiki [46]; for a recent research paper on disas-
semblers, see e.g. Schwarz et al. [53].

IDA Pro [21], viewed by many as the most sophisticated commercially avail-
able disassembler for C, supports essentially all processors on the market; it is
also the only one capable of binary reverse engineering C++ code [63]. IDA Pro
is an interactive disassembler – it relies on human intervention to control which
parts of the target binary to disassemble (it is actually both disassembler and
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debugger). Disassembly capabilities exist in many other tools. An example of
a free tool is the GNU Project objdump utility [26]; it also has capabilities to
display embedded debugging information.

Techniques to disrupt the process of static disassembly of programs have
recently been explored by Linn and Debray [37] (see also Cohen [19]). The goal is
to make correct disassembly more difficult. Their techniques are complementary
and orthogonal to software obfuscation. (Note: in static disassembly, a target
binary is disassembled without executing the code; the complete file is typically
disassembled. In dynamic disassembly, program execution is monitored by an
additional tool, typically a debugger, with instructions identified as executed;
the executed program “slice” is diassembled.)

5.4 Decompilers

Machine code decompilation has a long history, but few commercial tools exist
for non-type-safe languages like C and C++ [14, 15, 8]. For detailed background,
see the History of Decompilation at the Program Transformation Wiki [46]. The
most advanced decompilation tool for C is currently the open source University of
Queensland (Australia) Binary Translator, UQBT [16, 18], albeit developed for
binary translation; see Vinciguerra et al. [63] for a brief summary of capabilities.

Decompilation of intermediate level code intended to run on a virtual machine
(e.g. Java bytecode or Microsoft’s C# CLR – Common Language Runtime)
is much easier, and a number of commercial and freeware decompilers exist
– e.g. SourceAgain [2], a decompiler for Java class files. Obfuscators for these
languages, such as Dotfuscator [44], a Microsoft .Net obfuscator and compactor,
typically focus on program optimization by reducing symbol names, but do not
prevent serious reverse-engineering.

5.5 Emulators, Simulators and Spoofing Attacks

Emulation and spoofing attacks are methods that, rather than tampering directly
with an application, exploit an interface or impersonate presumably-trusted sys-
tem components. As one example, an expensive CAD program is protected with
a dongle that responds to challenges from the application to prove the dongle’s
presence. After reverse engineering the interface and response mechanism, an
attacker replaces the dongle’s driver with a tampered driver providing the same
interface but with an emulated dongle. This resembles a (dynamic) replay attack.

Thus emulators and simulators (e.g. [38, 64, 43]) allow crackers to emulate
the environment in which an application expects to run. Emulators can be used
to store state information (as may debuggers), to help replay attacks (cf. above).
They are also used to create virtual drives to bypass copy protection schemes –
for example, Alcohol 120% [3] makes 1:1 CD/DVD copies and allows emulation.

We note that from a defensive stance, determining whether or not an emu-
lator is running is a challenging problem [31].
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5.6 Other Software Attack Tools

Beyond the tools noted above, various others are commonly used. Anti-debug
techniques (see e.g. [62, pp.416-418], [10]), used for software protection and
by computer virus writers, are typically defeated by customized tools. Mem-
ory dump and memory lift utilities are available, including for binaries that
are packaged with compression or encryption wrappers. For example, DumpPE
dumps internal structures of Windows95 and NT PE or Portable Executable files
(e.g. .exe, .dll, .dbg); the PE Explorer tool [30] unpacks, disassembles, analyzes,
and edits PE files. ProcDump is a popular Win32 unpacker, for capturing data
from arbitrary memory locations. Hex editors such as Hackman [59] are used
to piece code together or modify executables. FileMon [67] is a utility which
monitors and displays real-time file system activity, e.g. allowing a view of how
applications use files and DLLs (for Windows environments; also a version for
Linux). Most of these tools are available through legitimate channels (free or
at reasonable cost); pirated versions and specific cracking tools are available on
many cracker web sites, bulletin boards and online networks.

6 Software Protection Examples

This section provides illustrative examples for software protection. These par-
tially motivate the software security requirements listed in §7. For additional
examples, see e.g. D’Anna et al. [4, §2.2].

A) Network Services Attack.
A network application is attacked by a worm exploiting a buffer overflow
vulnerability to install a backdoor on the host device. Subsequently, a cracker
penetrates the network and has full privileges on the (now untrusted) host.
Comments: This is a remote, dynamic tampering attack on the input soft-
ware in the application. Software protection techniques should be used to
eliminate the buffer overflow vulnerability (e.g. by proper validation of ap-
plication input data).

B) Secret Algorithm Protection.
In a highly secure environment at a department of defense signal processing
center, a rogue employee copies a critical application onto a floppy disk or
USB token, sneaks it outside the facility and sells it to a foreign agent. In a
foreign lab (with the application now on an untrusted host), the application
is analyzed to recover algorithms to allow their use in competitive systems,
or to gain knowledge to defeat the original mechanisms.
Comments: The internal data and algorithms require additional software
protection. This insider attack has certain implications for software security:
since the attacker may not be able to replicate the exact platform that the
application runs on, dynamic analysis might not be applicable. A possible
defense is a cryptographic wrapper that decrypts the application upon entry
of a valid password or machine identifier.
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C) CD Copy Protection.
A PC game publisher, selling games on CDs, intends that a user may in-
stall a game on many machines, but can only play it when a valid CD (one
bought, vs. created by copying) is in the drive. Security code in the game
software checks for CD validity, by various authentication techniques exploit-
ing differences between (a) how CD drives read CDs, and (b) how copies are
burned. One recent technique measures timing differences reading certain
tracks (timings are the same for all CDs stamped from the same glass mas-
ter, but glass masters differ slightly; that used for a blank CD differs from
that used for the game). The authentication mechanism compares a value
from the measurement algorithm (security code) with a known value (data).
Comments: The game resides on an untrusted host. Software protection is
required to protect the CD authentication code from being bypassed. The
attacker may try to alter decision making code to always return “valid”; or
reverse engineer the measurement algorithm in order to (a) emulate it, or
(b) produce a new valid value for the copied CD.

D) Data Security on a Server.
An insider steals an encrypted database of credit card information stored
on a server, as well as the application used to access the database. The
application code contains the cryptographic key to decrypt the data. (The
attacker wishes to recover the credit card information but it was too difficult
to do this dynamically on the server.) The attacker statically analyzes the
application to recover the key used to encrypt the database, then writes a
utility to decrypt the database.
Comments: The database uses data security to ensure confidentiality of the
information. The application’s input software however must decrypt the data
and manipulate it. The keying material used by the input software should
be protected to hide the values (as a minimum, from static analysis).

E) Dynamic Data Protection.
A user installs a tool in their directory on a server, scanning memory for RSA
private keys, easily identified by their size and randomness [61]. Candidate
keys are stored in a log file and verified using public key certificates. Once
the server’s private key is confirmed, the server can be spoofed.
Comments: The application needs software protection, including to prevent
dynamic analysis of keying material.

F) DVD Content Protection.
Video data on a DVD is encrypted with the Content Scrambling System
(CSS) algorithm [23, 42]. When DVDs were originally launched, CSS and
the keys used were secret. The intent was that only DVD players which
knew the algorithm and had one of the correct keys could decrypt data. One
company implemented the algorithm (security code) and a valid DVD key
(data) in an unprotected application, which ran on an untrusted host (a PC).
Both the algorithm and secret key were reverse engineered and extracted by
crackers. Others were then able to write their own software to decrypt DVDs.
Comments: Software protection should have been applied to the security
code to provide algorithm and data hiding.
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Fig. 1. Simplified Software Security View of a Generic Application

G) Digital Rights Management (DRM).
A DRM system allows users to download digital content to a PC and play it
for a limited time. By design, a DRM server only sends data to valid players;
when a request is made, the player must authenticate itself (security code).
This sets up a server-player session key to ensure the encrypted content is
not intercepted in transit (data security). The server checks if the player has
been revoked before sending content. The player has protected the authen-
tication keying material using software protection. The player also checks
itself for tampering, and certain system components which (for performance
constraints) are not tamper-resistant. On detecting tampering, it alerts the
server during the content request. Revocation or tampering detection may
require user software upgrade [34]. Content played is decrypted using the
content keys, rendered and e.g. displayed on a screen output. A watermark
is added and the content resolution slightly degraded during rendering.
Comments: Software protection is needed to protect the rendering algorithm,
and to hide content keys, decrypted content, and the watermark application.
Rendered content is not hidden, but considered lower value to an attacker.
The player must be tamper resistant to prevent “siphoning off” content.

7 Software Security: Application View and Requirements

A simplified view is that an application is software that runs on hardware and
manipulates data. A more realistic picture is that an application relies on an op-
erating system which in turn relies on a kernel and device drivers to communicate
with the hardware. The application may be distributed across various servers and
clients that communicate across a network. Thus in the broadest sense, all the
software, hardware and data that participate are part of the application, and are
thus involved in application security. Here we will view all software, including
system and operating system software, as an application, and include software
running on all types of devices – not only end-user personal computers, per-
sonal communications devices and personal digital assistants, but also servers,
switches, firewalls, routers, and other network devices.
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The simplified model of Figure 1 represents an application as a software
process that inputs data, manipulates it and outputs data. Software involved
in input-output processing is distinguished from the data itself. In a hostile
environment, an application’s input-output data may ideally be protected by
data security techniques; the software processing such data may be hardened by
software protection techniques. The model separates internal data into keying
material and other internal data. To help define software security requirements
(below), the following application components are high-lighted.

1. Input Software. Software that reads data into an internal representation for
processing. If the input is cryptographically protected, the input software
functionality includes data decryption, integrity verification, etc.

2. Output Software. Software that writes data to an output medium (e.g. RAM,
CD, socket) after processing. If the output data is cryptographically pro-
tected, then output software functionality includes data encryption, integrity
processing, etc. Applications are often chains of programs, but typically at
some point some data must be output in the “clear”, such as to a screen.

3. Internal Data. Data initialized by the application, data read into an internal
representation, or data computed within the application (e.g. intermediate
values or in preparation for output).

4. Keying Material. A subset of internal data that is typically of high value
to an attacker. Among other things, this may include cryptographic keys
(e.g. which must remain private or whose integrity must be guaranteed),
security-critical data and privilege-related data.

5. Computations and Algorithms. The internal logic embodied in the program
that processes the internal data and keying material.

The above view, and §6 examples, motivate the following, which we propose
as a partial list of high-level software security requirements for applications. Its
satisfication requires software protection and may also require security code.

1. Securing the input. Authentication, validation, hiding and integrity of data
input to an application. (Example approaches: PKI, bounds checking, type
checking, digital signatures, check sums, white-box cryptography.)

2. Securing the output. Authentication and hiding of an application’s data out-
put. (Example approaches: similar to those for securing the input.)

3. Data hiding. Hiding data and keying material from direct access (§4.2)
static or dynamic analysis. (Example approaches: obfuscation, code transfor-
mations, wrappers, just-in-time decryption, self-modifying code, techniques
thwarting analysis tools e.g. anti-debugger techniques.)

4. Algorithm hiding. Hiding algorithms and computations from direct access
(§4.2) static or dynamic analysis. (Example approaches: see data hiding.)

5. Tamper resistance. Making software difficult to modify or tamper. This may
include static and dynamic tamper detection i.e. detecting integrity violations
of any component of a software application or its operating environment.
(Example approaches: many of those listed for data hiding above; code-
signing and dynamic self-checking techniques.)
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6. Damage mitigation. Proactive and reactive strategies for protecting the ap-
plication infrastructure or installed base once an application is compromised.
(Example approaches: revocation, renewability, software diversity.)

8 Concluding Remarks

Most attacks in today’s Internet environment exploit software. Many of these
result in an attacker gaining control of an application’s execution environment.
This brings the untrusted host threat model (§3) into relevance, leading to two
observations. 1) The threats inherent in this model must be addressed in the
security models that should be part of the software design process for applica-
tions. 2) Software protection deserves a higher priority in the software industry.
Applications consisting solely of functional code, error-handling code, and secu-
rity code (§2), without software protection to harden these code groups, typically
falls short on the security level required for safe, reliable software-based systems.

We believe that the software industry, and thus our industrial world (relying
heavily on software-based systems), is in a dangerously precarious state due to
the ease with which attackers exploit software vulnerabilities and tamper with
software-based systems. The software industry, its security experts, and the aca-
demic research community, are losing ground in the battle against attackers of
computer software systems. New copy protection schemes are broken shortly af-
ter their commercial introduction; new watermarking schemes are quickly broken
by crackers; buffer overflow attacks continue to dominate lists of reported com-
puter software incidents; and the damage caused by computer worms and viruses
continues to increase each year. We believe that there is much to be learned from
the cracker community. The tools and resources available online, freely shared
and at the disposal of crackers, is both astounding and worrisome, as is the num-
ber of pirated software applications and intellectual property (including movies
and music). This calls for greater attention to research in software security – in
both industry and academia – and greater use of available software protection
technologies. This presents a tremendous opportunity for security researchers.

Software security is a highly interdisciplinary field, involving experts from
diverse areas of computing science and engineering including: programming lan-
guages, operating systems, compilers, software engineering, network security and
cryptography. We expect that over the next 10 years, many advances will come
from researchers who successfully span several of these fields.
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