
Paola Flocchini

1

Paola Flocchini

Election in Arbitrary Networks

Mega-Merger

Yo-Yo

Some Considerations

Paola Flocchini

In general networks, the election problem and the
spanning tree construction problem are equivalent.

Election in Arbitrary Networks
(Gallager, Humblet, Spira ‘84)

The Mega-Merger

Paola Flocchini

Minimum spanning tree construction algorithm.
The root of the spanning tree is the leader

The Mega-Merger

3

1 2

4

8 6

5 7

1
3

3

5

6

12

2

3 9 10

4

4

3

3

2

8
weights

Paola Flocchini

Minimum spanning tree construction algorithm.
The root of the spanning tree is the leader

The Mega-Merger

3

1 2

4

8 6

5 7

1
3

3

5

6

12

2

3 9 10

4

4

3

3

2

8

Distinct weights

Paola Flocchini

2

Paola Flocchini

Minimum spanning tree construction algorithm.
The root of the spanning tree is the leader

The Mega-Merger

3

1 2

4

8 6

5 7

1
3

3

5

6

12

2

3 9 10

4

4

3

3

2

8

Distinct weights
(3,6)

(8,6)

Equal weights can
be made distinct

Paola Flocchini

So, from now on we assume that

 edges have distinct weigths

Paola Flocchini

node = village with a name
edge = road with a distance

names and distances are different

The goal

to merge all the villages into one mega-city
Paola Flocchini

roads serviced by public transport

city

city

Paola Flocchini

3

Paola Flocchini

1) City is a subgraph,
its spanning tree
 has public transportation,
root is downtown

downtown

2) a city has a unique name and has a level
all districts eventually know the name of the city

Ottawa
level=i

4) Initially: each node is a city with just one district and
no roads. All cities are at the same level

3) Edges are roads with a distinct name and distance

bank st.
25Km.

Paola Flocchini

Cities are merged into
bigger cities until only ONE
city is left.

Paola Flocchini

Issues to consider when merging two cities:

How to name the new city
will depend on several factors

which roads of a city will be serviced by public
 transports

[the roads serviced in the two cities plus
 a connecting road]

Paola Flocchini

6)The decision to request a merge must come from downtown.
 There cannot be more than one request at a time

5) A city must merge with the closest neighboring city.
To request a merge, it sends a let-us-merge message on
the shortest road connecting the cities

Paola Flocchini

4

Paola Flocchini

7) When the merge occurs, the roads of the new city
 serviced by buses will be the road of the two cities +
 the connecting road.
 The new downtown will depend on several factors.

Paola Flocchini

A: city
D(A): downtown
level(A): level of city A
e(A) = (a,b): merge link with closest city (let it be B)A

B

When the request arrives:
- the two cities have the same level
- the two cities have different levels

b

a

Paola Flocchini

8) If level(A) = level(B) AND the link chosen by A
 is the same as the one chosen by B (e(A)=e(B)), then:

friendly merger
A

B

newname

increase level by one

9) If level(A) < level(B) A is absorbed in B

A
B

B

level(B)

Let A send the let-us-merge message to B

Paola Flocchini

10) If level(A) = level(B) BUT e(A) ≠ e(B), then:

In the other cases the decision is postponed

the merge is suspended until B
arrives at a level GREATER than A

11) If level(A) > level(B) then:

the merge is suspended until B
arrives at the same level as A

A
B

A
B

Paola Flocchini

5

Paola Flocchini

A B

a

b

dA
dB

Absorption (rule 9)

b notifies a about the absorption (putting B’s name in the message)

a broadcast the info in A

flip all logical link direction to point to the new downtown

level(A) < level(B)

A will be absorbed by B

Paola Flocchini

BdB

Absorption (rule 9)

b notifies a about the absorption (putting B’s name in the message)

a broadcast the info in A

flip all logical link direction to point to the new downtown

level(A) < level(B)

A will be absorbed by B

Paola Flocchini

A B

a

b

dA
dB

Friendly Merger (rule 8)

new downtown, new name, new level
downtown = min{a,b}
newlevel = oldlevel + 1
new name = name of the road connecting a and b

level(A) = level(B)
e(a)= e(B)

Paola Flocchini

C

dC

Friendly Merger (rule 8)

new downtown, new name, new level
downtown = min{a,b}
newlevel = oldlevel + 1
new name = name of the road connecting a and b

level(A) = level(B)
e(a)= e(B)

let a < b

a and b compute the new info independently and broadcast
the appropriate links are flipped

Paola Flocchini

6

Paola Flocchini

Suspension (rules 10,11)

b locally keeps the necessary info for later

NOTICE: nobody in A knows about the suspension
no other request can be launched from A

A B

a

b

dA
dB

level(A) = level(B) BUT e(A) ≠ e(B)
or
level(A) > level(B)

Paola Flocchini

Choosing the merging link

dA needs to find the min length among all
edges exiting the city

5.1) each district ai of A determines di of the
shortest road going to another city (if none, di= ∞)

5.2) dA finds the smallest
(min in a rooted tree)

ai

Paola Flocchini

ai

Outs
ide

?

Outsid
e ?

Outside ?

Outside ?

How to compute the shortest road going to another city ...

one at a time
Paola Flocchini

Outs
ide

?

ai

c

if name(A) = name(C)
reply (internal)

if name(A) ≠ name(C)

 the road is not necessarily external
(maybe C has been absorbed by A and c does not know :

in such a case level(C) < level(A))

If name(A) ≠ name(C)
and level(C) ≥ level(A) then

reply(external)

If name(A) ≠ name(C)
and level(C) < level(A) then

don’t reply

so:

Paola Flocchini

7

Paola Flocchini

More Details Discovering a friendly merger

To decide, b needs to know e(A) and e(B)

level(A) = level(B) and e(A) = e(B)

How does b know e(B) ?

e(B) is chosen by D(B), which will send the request through b

When receiving the request, b will know

If e(A) =e(B), b will eventually know

If e(A) ≠ e(B), b is not the exit point, it will never know what e(B) is.

So,

Paola Flocchini

More Details Discovering a friendly merger

level(A) = level(B) and e(A) = e(B)

Receiving a let-us-merge:

If b has already received a let-us-merge from D(B) to be sent to a

both b and a will know that this is a friendly merger

Otherwise
b waits

eventually, either it will know that it is a friendly merger
or its level will be increased (because of
requests from B to other cities)
and level(B) will become greater than level(A).

[absorption] [Note: A is waiting,its level cannot increase]

Paola Flocchini

1) c send Outside? to d (level(D)< level(C)

2) receiving let-us-merge on e(C)=(c,d), d knows that level(D) < level(C)

3) receiving let-us-merge on e(C)=(c,d), d knows that level(C)=level(D)
but it is not friendly

4) receiving let-us-merge on e(C)=(c,d), d knows that level(C)=level(D)
but does not know if it is friendly

More Details Deadlocks

waiting cases:

?

Outs
ide

?

Paola Flocchini

Correctness

If a city of level l will not be suspended, its level will increase
(unless it is the mega-city)

Let city C at level l be suspended by a district d in D.
If the level of D becomes greater than l, C will no longer be suspended

No city in C will be suspended by a city of higher level

Protocol Mega-merger is deadlock-free

Paola Flocchini

8

Paola Flocchini

IMPOSSIBLE

9

5

43

2

IMPOSSIBLE

Paola Flocchini

Termination

If A is the mega-city, there are no other cities.
All the unused links are internal

The minimum finding will return a special value (∞)

D(A) understands and broadcasts termination

Paola Flocchini

Complexity

Number of messages per level: CITY A

Computation of merge links: 2 (n(A)-1)

Forwarding of let-us-merge from D(A) to e(A): n(A)

Broadcast info about new city: n(A)-1

For each friendly merger from level i-1 to level i

TOT: 4 n(A) - 3A B

a
b

dA dB

Paola Flocchini

Complexity

Number of messages per level : CITY C

Computation of merge links: 2 (n(C)-1)

Forwarding of let-us-merge from D(C) to e(C): n(C)

Broadcast info about new city: n(C)

C absorbed at level i

TOT: 4 n(C)-2C B

c
b

dC dB

Paola Flocchini

9

Paola Flocchini

Complexity

Number of messages per level

Σ (4n(A)-3) + Σ 4n(C)-2 = 4Σ n(B) -somethingsmall

A ∈ Merge(i) C ∈ Absorb(i) B ∈ City(i)

Σ n(B) ≤ n
B ∈ City(i)

disjoint cities, so: City(i) = Merge(i)∪ Absorb(i)

≤ 4n
Paola Flocchini

Outside? with answer external

≤ n

Total Cost(i) ≤ 5n

ai

Outs
ide

?

Outsid
e ?

Outside ?

Outside ?

one at a time until
found the smallest

Complexity

Paola Flocchini

Complexity

Useless messages Outside? with answer internal

A pair for each road that is not in the city

2(m - (n-1))

Broadcasting Termination: n-1

ai

Outs
ide

?

Outsid
e ?

Outside ?

Outside ?

Paola Flocchini

Complexity

How many levels ?

The level is incremented only if
the merger is between two cities with the same level

1 1 2

1

2+

+

1

+

2
Level 2 there are at least 2 nodes
(maybe MORE)

Paola Flocchini

10

Paola Flocchini

2
2

+

3

At least 4
At least 2At least 2

Paola Flocchini

≤ 2(m - (n-1)) + n-1 +5n log nTotal:

Nodes at level i ≥ 2i

i ≤ log n

 ≤ 2m + 5 n log n + n+1

Complexity

In general, at Level i there are at least 2i nodes
(maybe MORE)

n ≥ 2i

useless notification merges

