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Abstract

For several reasons a database may not satisfy certain integrity constraints (ICs),

for example, when it is the result of integrating several independent data sources.

However, most likely, information in it is still consistent with the ICs; and could

be retrieved when queries are answered. Consistent answers with respect to a set

of ICs have been characterized as answers that can be obtained from every possible

minimal repair of the database. The goal of this research is to develop methods to

retrieve consistent answers for a wide and practical class of constraints and queries

from relational databases and from data integration systems. We will put special

interest on databases with null values. We will give a semantics of satisfaction of

constraints in the presence of null that generalizes the one used in commercial DBMS.

Since there are interesting connections between the area of consistently querying

virtual data integration systems and other areas, like querying incomplete databases,

merging inconsistent theories, semantic reconciliation of data, schema mapping, data

exchange, and query answering in peer data management systems, the results of this

research could also be applied to them. In our research, we explore in more depth the

connection with virtual data integration systems and peer data management systems.
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Chapter 1

Introduction

In databases (DB), integrity constraints (ICs) capture the semantics of the application

domain and help maintain the correspondence between that domain and its model

provided by the database when updates on the database are performed. However,

databases may become inconsistent with respect to a given set of integrity constraints.

This may happen due, among others, to the following factors: (1) Certain ICs, e.g.,

general inclusion dependencies, are not part of the SQL Standard [International Orga-

nization for Standardization, 2003] and cannot be expressed/maintained by database

management systems (DBMS) such as IBM DB2 [IBM, 2006], Oracle [Oracle, 2005],

MySQL [MySQL, 2006], Microsoft SQL Server [Microsoft, 2006], PostgreSQL [Post-

greSQL, 2006] and Sybase ACE [Sybase, 2006]. (2) Inconsistency with respect to

soft or informational integrity constraints, i.e., constraints that are declared and not

enforced, but used in query answering. (3) Integration, virtual or materialized, of het-

erogeneous databases; where each DB may be consistent but the integration can be

inconsistent. (4) Legacy data on which one wants to impose new semantic constraints.

(5) Users’ constraints that cannot be checked or maintained.

Example 1.1 Consider a database D with two relations1 P (X, Y ) and R(U, V ),

and a constraint that says that every value in Y should also be in V . The database

management systems (DBMSs) IBM DB2, Oracle, Microsoft MySQL, SQL Server and

PostgreSQL would only be able to declare this constraint if V was the primary key.

1Underlined attributes correspond to the primary key. For basic concepts related to databases
and integrity constraints, see Section 2.1.

1



2

DBMSs allow the user to declare “triggers” that can be used to enforce constraints.

However, if the trigger is not in place since the creation of the database, as may be

the case in legacy data, constraints could be violated. 2
Example 1.2 Consider two databases D1 and D2 that are consistent with respect

to their primary keys:

D1 :
S1 ID N P

636 Paul 2910357

531 Josh 3552487

D2 :
S2 ID N P

636 Ann 2910357

313 Ted 4586844

If we want to merge the data (virtually or by materializing the new instance) into a

new table Student with the same primary key, we get:

Student ID N P

636 Paul 2910357

636 Ann 2910357

531 Josh 3552487

313 Ted 4586844

Even though the sources were consistent, the integration of both sources results in

an inconsistent database, and it is not clear which tuple has the wrong information:

Student(636,Paul , 2910357) or Student(636,Ann, 2910357)?

If we were to materialize table Student , then we could try to find out which of the

tuples is correct and delete the other one. This process could be very time consuming

and in some cases, the information could even be unavailable. As an alternative we

could delete both of them. With this option we might delete data that is still useful.

If we are using virtual integration, i.e., table Student is not materialized, then in

order to restore consistency, we would need to modify the sources. In many cases, we
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may not have sufficient permission to do so; and if we do, we would have the same

problem as described in the materialized case. 2
This example shows that sometimes, even though we are able to identify the set of

tuples that are directly involved in inconsistencies, we might not be able to create

a consistent database by modifying the database. If we do not have permission to

modify the data or if there is not enough information about how to restore the data,

we would be unable to solve the inconsistencies. On the other hand, even if we have

access to all the information, the process can be complex and nondeterministic, and

as a consequence, may demand too much time and resources. Therefore, trying to

repair a database can be expensive, impossible or undesirable.

In any of the scenarios above and others, we are in the presence of an inconsistent

database, where only a portion of the information is inconsistent with respect to the

intended semantics of the database. Even though the database is inconsistent, we

might still need or want to use it.

Example 1.3 Consider a student database D with a relation Student(ID , N, P ),

where ID is the student number, N is the name, and P is the phone number.

Student ID N P

636 Paul 2910357

636 Ann 2910357

531 Josh 3552487

313 Ted 4586844

The database D does not satisfy the ICs stating that ID is the primary key, since

there are two tuples with ID = 636. If we delete the data involved in inconsistencies,

we might lose information. For example, even though we do not know the name of

student with ID = 636, we do know that this student’s phone number is 2910357. 2
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A reasonable approach is to define what data is consistent, and to be able to retrieve

only the consistent data stored in inconsistent databases. In other words, we could

think of ICs on a database as constraints on the answers to queries rather than on

the information stored in the database. Then, retrieving answers to queries that

are consistent with respect to the ICs becomes a central issue in the development,

implementation, and use of DBMSs.

The first notion of consistent answer to a first-order (FO) query was defined in

[Arenas et al., 1999], where a computational mechanism for obtaining consistent an-

swers was also presented. Intuitively speaking, a ground tuple t̄ to a first-order query

Q(x̄) is consistent in a possibly inconsistent relational database instance D if it is

an answer to Q(x̄) in every minimal repair of D , that is, in every database instance

over the same schema and domain that differs from D by a minimal set (under set

inclusion) of inserted or deleted tuples. In other words, the consistent data in an in-

consistent database is invariant under sensible forms of restorations of the consistency

of the database. The next example will help to clarify these concepts.

Example 1.4 (example 1.3 continued) There are two possible ways of repairing D

with respect to the primary key:

D ′ : D ′′ :
Student ID N P

636 Paul 2910357

531 Josh 3552487

313 Ted 4586844

Student ID N P

636 Ann 2910357

531 Josh 3552487

313 Ted 4586844

If we want to know the phone number of the student with ID = 636, we can ask a

query to get the phone number of the student with ID = 636. The answer to the

query obtained from the first and second repair is in both cases 2910357. Therefore

the consistent answer is 2910357. Although this data is involved in an inconsistency,
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useful information can be obtained from it. If we had deleted the data involved in

inconsistency, we would have lost this information. If instead we pose ask if there is

a student called Paul, the consistent answer would be No, since in the second repair

there is no student with name Paul. 2
A definition of consistent answer has been given in [Arenas et al., 1999] in terms of

database repairs. The database repairs are used as auxiliary concepts of the definition,

but it does not mean that all the possible repairs need to be produce in order to obtain

the consistent answers.

Consistent answers can be sometimes obtained by posing a rewritten query on the

database [Arenas et al., 1999]. The rewriting uses the ICs. The rewriting operator

was analyzed in [Arenas et al., 1999] in terms of soundness, completeness and termi-

nation. Syntactical classes of queries and ICs were identified for which the operator

has these properties. The rewriting technique introduced in [Arenas et al., 1999] was

successfully implemented, but only for some restricted kind of constraints and queries

[Celle and Bertossi, 2000].

The mechanism presented in [Arenas et al., 1999] has some limitations in terms of

the ICs and queries it can handle. Although most of the ICs found in database praxis

are covered by the positive cases in [Arenas et al., 1999], the queries are restricted to

quantifier-free conjunctions of literals.

In [Fuxman and Miller, 2005], a tight class of conjunctive queries was identified for

which the query rewriting technique can also be applied. Consistent query answering

was implemented for this class of queries [Fuxman et al., 2005a; Fuxman et al., 2005b].

In [Arenas et al., 2000a; Arenas et al., 2003], a more general methodology to re-

trieve consistent answers, based on logic programs with a stable model semantics was

introduced. There is a one-to-one correspondence between the stable models of the

logic programs and the database repairs. More general queries could be considered,
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but ICs were restricted to be “binary”, i.e., universal with at most two database

literals (plus built-in formulas). A similar, independent approach to database repair

based on logic programs was also presented in [Greco et al., 2001].

In [Arenas et al., 2000b], annotated logic was used in such a way that the database

repairs turned out to be certain minimal models of a theory written in annotated logic.

This was done with the intention of providing a logical specification of the repairs of

the database and developing mechanisms for consistent answering general first-order

queries. In [Barceló and Bertossi, 2002; Barceló; and Bertossi, 2003], this theory was

transformed into a disjunctive logic program with annotation constants and a stable

model semantics. The logic program specification works for the whole class of the

so-called universal constraints, in the sense that there is a one-to-one correspondence

between repairs and stable models.

The basic idea behind the logic programming based approach to consistent query

answering (CQA) is as follows: since we need to reason with all the repairs of a

database, we had better specify or axiomatize the class of repairs. From a manageable

logical specification of this class, different reasoning tasks could be performed, in

particular, computation of consistent answers to queries. This approach is able to

handle all first-order queries and a much wider class of ICs than a rewriting technique.

CQA from databases with null values has not been considered so far. In most

practical cases, we will have to deal with databases with null , and, since they cannot

be treated as any other constant, their effect on CQA needs to be addressed. In this

thesis, we will consider databases with null values, and provide a precise, uniform,

and logic-based definition of IC satisfaction in SQL databases with null that extends

the one used in commercial DBMSs.

We will also use null values to repair databases, in such a way that the problem of

retrieving consistent query answers becomes decidable, in contrast to the case where
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repairs must appeal to arbitrary, non-null values in the possibly infinite underlying

domain.

The results and techniques obtained for obtaining consistent answers from stand

alone databases, can be applied also in the context of virtual data integration. In a

virtual data integration system (DIS), the user interacts with a mediator that acts as

a virtual, global database that integrates data from different sources. These sources

are mapped to the global schema. The semantics of the integration system is given

by a set of global database instances. Since there is no common and centralized

mechanism for maintaining global consistency, the system might violate any global

integrity constraints that the global system is expected to satisfy. Even if the sources

are consistent, the integration of them might violate the constraints. It becomes

crucial to use the ICs at query time to ensure that the system returns only the

consistent answers. In this setting, we can use the notion of repairs for stand alone

databases for the global instances and, in this way, obtain the consistent answers of

the integration system.

There are interesting connections between the area of consistently querying virtual

data integration systems and other areas, like querying incomplete databases [van der

Meyden, 1998; Grahne, 2002], merging inconsistent theories [Lin and Mendelzon,

1998; Baral et al., 1992], semantic reconciliation of data [Hull, 1997], schema mapping

[Rahm and Bernstein, 2001; Doan et al., 2003; Pottinger and Bernstein, 2002], data

exchange [Fagin et al., 2003a; Fagin et al., 2003b; Kolaitis et al., 2006], and query

answering in peer-to-peer (P2P) data exchange systems, or more precisely peer data

management (PDM) systems [Kementsietsidis et al., 2003; Halevy et al., 2003; Halevy

and Madhavan, 2003; Franconi et al., 2004b; Calvanese et al., 2004b; Fuxman et al.,

2005c]. We are specially interested in exploring this connection with virtual data

PDM systems (see Chapter 7).
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A PDM system consists of a set of database peers that share data. A peer has data

exchange constraints that relate its data with the data of other peers. A peer might

trust more or the same the data owned by the other peers. These trust relationships

have not been considered before in the literature, where there was only an implicit

assumption that a peer always trusted its own data less than the one of others. We

also consider more general types of data exchange constraints. The data exchange

constraints can be seen as integrity constraints over a database consisting of the union

of the databases in the different peers.

A query is posed on a single peer, which, in order to answer it, may import data

from other peers, and modify or delete its own data, in such a way that answers are

compatible with the peer’s local ICs, the data exchange mappings, and the trust rela-

tionships. The techniques and results of CQA need to be adjusted via a redefinition

of repairs, in order to take into consideration all these different elements.

One of the differences between a DIS and a PDM system is that in the former case

there is a global schema, whereas in the latter this is not the case. Also, in a DIS the

queries are posed to the mediator, in opposition to a PDM system where there is no

mediator and queries are be posed to the database at a single peer site.

This thesis is structured as follows. In Chapter 2 we introduce some definitions

and concepts. Chapter 3 contains the objectives of the thesis. Chapter 4 introduces

semantics for IC satisfaction and query answering in databases with null values. Chap-

ter 5 defines and analyzes repair programs and CQA for a very general class of ICs.

Chapters 6 and 7 apply the results of the previous chapters to data integration and

to PDM systems, respectively. Finally Chapter 8 provides some final conclusions and

future work.

Some of the results of this thesis have been published in [Barceló et al., 2003; Bravo

and Bertossi, 2003; Bravo and Bertossi, 2004; Bertossi and Bravo, 2004a; Bertossi and
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Bravo, 2004b; Bravo and Bertossi, 2005; Bertossi and Bravo, 2005; Bravo and Bertossi,

2006].



Chapter 2

Preliminaries

2.1 Databases and Integrity Constraints

We concentrate on relational databases, and we assume we have a fixed relational

schema Σ = (U ,R,B), where U is the possibly infinite database domain such that

null ∈ U ; R is a fixed set of database predicates (also called relations), where each

relation R has an a finite, ordered set of attributes AR; and B is a fixed set of built-in

predicates, like comparison predicates. The attribute in position i of predicate R ∈ R

is denoted by R[i]. For A ⊆ AR, R[A] denotes predicate R projected on the attributes

in A.

The schema determines a language L(Σ) of first-order predicate logic. A database

instance D compatible with Σ can be seen as a finite collection of ground atoms of

the form R(c1, ..., cn),
1 where R is a predicate in R and c1, ..., cn are constants in U .

Built-in predicates have a fixed extension in every database instance, not subject to

changes.

A query is a first-order formula over language L(Σ). If the query does not have

free variables, it is called a boolean query. We will later consider more expressive

languages such as Datalog queries and its extensions.

Integrity constraints (ICs) can be used to restrict the data stored in the database

by imposing semantics on data. The most common type of constraints are functional

dependencies and inclusion dependencies.

1Also called database tuples. Finite sequences of constants in U are simply called tuples.

10
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A functional dependency (FD) R : X → Y , where X, Y are sets of attributes

associated to R, is satisfied in relation R if any two tuples that have the same values

in the attributes in X, also have the same values in the attributes in Y . A set of

attributes X is a candidate key of a relation R if for every attribute Y in R it holds

that R : X → Y , and no subset of X has this property. One of the candidate keys

can be chosen as the primary key (PK).

An inclusion dependency (IND) S[Y ] ⊆ R[X], where X, Y are sets of attributes

from S and R, respectively, is satisfied iff for each tuple s in S, there exists a tuple

r in R such that s[Y ] = r[X]. An inclusion dependency is said to be full if X = AR

and partial if X $ AR. A foreign key is an inclusion dependency S[Y ] ⊆ R[X], where

X is the primary key of R.

More generally, we can define an integrity constraint (IC) as a sentence ψ ∈ L(Σ)

of the form :

∀x̄(
n
∧

i=1

Pi(x̄i) −→ ∃z̄(
m
∨

j=1

Qj(ȳj, z̄j) ∨ ϕ)), (2.1)

where Pi, Qj ∈ R, x̄ =
⋃m
i=1 x̄i, z̄ =

⋃n
j=1 z̄j , ȳj ⊆ x̄, x̄ ∩ z̄ = ∅, z̄i ∩ z̄j = ∅ for

i 6= j, z̄j does not have repeated variables for j = 1, . . . , n, and m ≥ 1. Formula ϕ is

a disjunction of built-in atoms from B, whose variables appear in the antecedent of

the implication. Given an IC ψ, Ant(ψ) and Con(ψ) denote the set of predicates in

the antecedent and consequent of ψ, respectively.

We will assume that there is a propositional atom false ∈ B that is always false

in a database. Domain constants other than null may appear instead of some of the

variables in a constraint of the form (2.1). A wide class of ICs can be accommodated in

this general syntactic class, e.g. all the ICs used in commercial database management

systems. However, the class of tuple-generating-dependencies [Beeri and Vardi, 1984]

can not be written with form (2.1), since it would require a conjunction of literals
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instead of a disjunction in the consequent of the constraint. We do not consider

this type of constraints since, as we will later show, we want to repair inconsistent

databases using null , and a joint in the consequent could not be enforced by the use

of null .

ICs of the form (2.1) are safe [Gelder and Topor, 1987; Gelder and Topor, 1991]

and then also domain independent [Abiteboul et al., 1995; Ullman, 1988]. This means

that the satisfaction of the constraints can be checked by restricting the inspection to

the finite active domain and the constants appearing in the ICs instead of the whole

underlying domain U . The active domain consists of all the constants appearing in

the extensional relations.

A universal integrity constraint (UIC) has the form (2.1), but with z̄ = ∅, i.e., it

has no existentially quantified variables:

∀x̄(
m
∧

i=1

Pi(x̄i) −→
n

∨

j=1

Qj(ȳj) ∨ ϕ). (2.2)

A referential integrity constraint (RIC) is of the form (2.1), but with m = n = 1 and

ϕ = ∅, i.e., it is of the form 2: (here x̄′ ⊆ x̄ and P,Q ∈ R)

∀x̄ (P (x̄) −→ ∃ȳ Q(x̄′, ȳ)). (2.3)

Class (2.1) includes most ICs commonly found in database practice. Functional de-

pendencies can be expressed by several implications of the form (2.1), each of them

with a single equality in the consequent. Partial inclusion dependencies are RICs,

and full inclusion dependencies are universal constraints. Denial constraint can be

expressed as ∀x̄(
∧m
i=1 Pi(x̄i) −→ false). We can also specify check constraints (CC)

that express conditions on each row in a table. Check constraints can be formulated

2To simplify the presentation, we are assuming that the existentially quantified variables appear
in the last attributes of Q.
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with one predicate in the antecedent of (2.1) and only a formula ϕ in the consequent.

For example, ∀xy(P (x, y)→ y > 0) is a check constraint.

Consider a database D without null3. A database D can be seen as a first-order

theory obtained by applying the domain closure, unique names, and closed world

assumptions to the original set of ground atoms in D [Reiter, 1984]. The latter

assumption makes false any ground atom not explicitly appearing in the set of atoms

D . From now on, we denote with D |= IC the fact that the database satisfies IC .

In this case, we say that D is consistent with respect to IC ; otherwise we say D is

inconsistent.

In the following, we will assume that we have a fixed finite set IC of ICs of the

form (2.1). Notice that sets of constraints of this form are always consistent in the

classical logical sense, because the empty database always satisfies them.

Example 2.1 For R = {P,R, S} and B = {>,=, false}, the following are ICs: (a)

∀xyzw (P (x, y)∧R(y, z, w)→ S(x)∨(z 6= 2∨w ≤ y)) (universal); (b)∀xy(P (x, y) →

∃z R(x, y, z)) (referential); (c)∀x(S(x) → ∃yz(R(x, y) ∨ R(x, y, z))). 2
Notice that defining ϕ in (2.1) as a disjunction of built-in atoms is not an important

restriction, because an IC that has ϕ as a more complex formula can be transformed

into a set of constraints of the form (2.1). For example, the formula ∀xy (P (x, y)→

(x > y ∨ (x = 3 ∧ y = 8))) can be transformed into: ∀xy (P (x, y)→ (x > y ∨ x = 3))

and ∀xy (P (x, y)→ (x > y ∨ y = 8)).

Definition 2.1 [Caniupan and Bertossi, 2005] The dependency graph G(IC ) for a

set of ICs IC of the form (2.1) is defined as follows: Each database predicate P in

R appearing in IC is a vertex, and there is a directed edge (Pi, Pj) from Pi to Pj

iff there exists a constraint ψ ∈ IC such that Pi ∈ Ant(ψ) and Pj ∈ Con(ψ). A

3We will deal with databases with null in Chapter 4
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S Q

R

T1 3

2

Figure 2.1: Dependency graph of Example 2.2

connected component in a graph is a set-theoretically maximal subgraph such that,

for every pair (A, B) of its vertices, there is a path from A to B or from B to A. For

a graph G, C(G) := {c | c is a connected component in G}; and V(G) is the set of

vertices of G. 2
Example 2.2 For the set IC containing the UICs ψ1 : S(x)→ Q(x) and ψ2 : Q(x)→

R(x), and the RIC ψ3 : Q(x) → ∃yT (x, y), the dependency graph G(IC ) is shown in

Figure 2.1. The edges are labelled just for reference. Edges 1, 2 and 3 correspond to

the constraints ψ1, ψ2 and ψ3, respectively. 2
Definition 2.2 Given a set IC of UICs and RICs, ICU denotes the set of UICs in IC .

The contracted dependency graph, GC(IC ), of IC is obtained from G(IC ) by replacing,

for every c ∈ C(G(ICU)),4 the vertices in V(c) by a single vertex and deleting all the

edges associated with the elements of ICU . Finally, IC is said to be RIC-acyclic if

GC(IC ) has no cycles and RIC-cyclic otherwise. 2
Example 2.3 (example 2.2 continued) The contracted dependency graph GC(IC ) is

obtained by replacing in G(IC ) the edges 1 and 2 and their end vertices by a vertex

labelled with {Q,R, S}. The contracted dependency graph, shown in Figure 2.2(a),

has no loops, therefore IC is RIC-acyclic. For IC ′ = IC ∪ {T (x, y)→ R(y)}, all the

vertices in G(IC ) belong to the same connected component. G(IC ′) and GC(IC ′) are

4Notice that for every c ∈ C(G(ICU )), it holds c ∈ C(G(IC )).
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in Figures 2.2(b) and 2.2(c), respectively. Since there is a self-loop in GC(IC ), IC ′ is

not RIC-acyclic. 2
Q,R,S T3

(a) GC(IC )

S Q

R

T1

2

3

4

(b) G(IC ′)

Q,R,S
T

3

(c) GC(IC ′)

Figure 2.2: Contracted dependency graphs of Example 2.3

As expected, a set of UICs is always RIC-acyclic.

2.2 Repairs and Consistent Query Answering (CQA)

When repairing an inconsistent database with respect to a set IC of integrity con-

straints by inserting and deleting tuples, we need to be able to determine the distance

between the database and the repaired version.

Definition 2.3 [Arenas et al., 1999] The distance between two database instances

D1 and D2 is their symmetric difference ∆(D1,D2) = (D1 − D2) ∪ (D2 − D1). 2
We want to have repairs that minimally differ from the original database.

Definition 2.4 [Arenas et al., 1999] Given a database instance D without null values

and possibly inconsistent with respect to a set of constraints IC , we say that the

instance D ′ is a repair of D with respect to IC iff D ′ is compatible with Σ, D ′ |= IC ,

and ∆(D ,D ′) is minimal under set inclusion in the class of instances that satisfy IC

and are compatible with Σ. The set of repairs of D with respect to IC is denoted

with Rep(D, IC ). 2
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This definition of repair, assumes that the basic repair operations are tuple deletions

and insertions. Alternative semantics have been considered: tuple updates for numer-

ical values [Wijsen, 2003; Wijsen, 2005; Bertossi et al., 2005a; Bertossi et al., 2005c;

Bertossi et al., 2005b; Bertossi et al., 2005d; Lopatenko and Bravo, 2006], only tuple

deletions [Chomicki and Marcinkowski, 2005b; Chomicki and Marcinkowski, 2002],

and priority of tuple insertions over deletions [Lembo et al., 2002].

Example 2.4 Consider the relational schema Book(author , name, publYear), a

data-base D = {Book(kafka,metamorph, 1915 ), Book(kafka, metamorph, 1919 )}

and the functional dependency FD : author , name → publYear , that can be ex-

pressed using form (2.1) as ∀xyzw(Book(x, y, z)∧Book(x, y, w) → z = w). Instance

D is inconsistent with respect to FD, and has two repairs: D1 = {Book(kafka,

metamorph, 1915 )} and D2 = {Book(kafka,metamorph, 1919 )}. The respective dis-

tances are ∆(D,D1) = {Book(kafka, metamorph, 1919)} and ∆(D,D2) = {Book

(kafka, metamorph, 1915 )}. The instance D3 = ∅ is not a repair since ∆(D,D3) =

{Book(kafka, metamorph, 1915 ), Book(kafka, metamorph, 1919 )} % ∆(D,D1). 2
The definition of repair given in [Arenas et al., 1999] implicitly ignores the possible

presence of null values. Similarly, in [Arenas et al., 2003; Barceló; and Bertossi, 2003;

Cal̀ı et al., 2003a], that followed the repair semantics in [Arenas et al., 1999], no null

values were considered in databases or repairs.

Example 2.5 Consider the database D below and the RIC: Reg(ID ,Code)→∃Name

Student(ID ,Name).

D : Reg ID Code

21 C15

34 C18

Student ID Name

21 Ann

45 Paul

D is inconsistent, because there is no tuple in Student for tuple Reg(34,C18). The
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database can be minimally repaired by deleting the inconsistent tuple or by inserting

a new tuple into table Student. In the latter case, since the value for attribute Name

is unknown, we should consider repairs with all the possible values in the domain.

Therefore, for the repair semantics in [Arenas et al., 1999], the repairs are of the

following two forms:

Reg ID Code

21 C15

Student ID Name

21 Ann

45 Paul

Reg ID Code

21 C15

34 C18

Student ID Name

21 Ann

45 Paul

34 µ

for all the possible values of µ in the domain, obtaining, possibly, infinite repairs. 2
Definition 2.5 [Arenas et al., 1999] Given a database D , a set of ICs IC , and a

query Q(x̄), a ground tuple t̄ is a consistent answer to Q with respect to IC in D iff

for every D ′ ∈ Rep(D , IC ), D′ |= Q[t̄]. If Q is a sentence (boolean query), then yes is

a consistent answer iff D ′ |= Q for every D ′ ∈ Rep(D, IC ). Otherwise, the consistent

answer is no. 2
Example 2.6 (example 2.4 continued) The query Q1 : Book(kafka,metamorph,

1915 ) does not have Yes as a consistent answer, because it is not true in every

repair. Query Q2(y) : ∃x∃zBook(x , y , z ) has y = metamorph as a consistent answer.

Query Q3(x) : ∃zBook(x,metamorph, z) has x = kafka as a consistent answer. 2
The problem of deciding if a tuple is a consistent answer to a query with respect to

a set of universal and referential ICs is undecidable for this repair semantics [Cal̀ı et

al., 2003a].
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2.3 Disjunctive Logic Programs and Stable Models Semantics

The stable models semantics was introduced in [Gelfond and Lifschitz, 1988] to give a

semantics to logic programs with weak negation. It was later extended to disjunctive

logic programs [Gelfond and Lifschitz, 1991; Przymusinski, 1991]. By now it is the

standard semantics for such programs.

A disjunctive logic program Π is a finite set of rules r, of the form :

A1 ∨ · · · ∨ Ak ← B1, . . . , Bn, not C1, . . . not Cm.

where A1, . . . , Ak, B1, . . . , Bn, C1, . . . , Cm are atoms. The disjunction A1 ∨ · · · ∨An is

the head of rule r, while the conjunction B1, . . . , Bm, not C1, . . . not Ck is the body

of r. A rule with k = 0 is a program denial constraint. A rule with m = n = k = 0 is

called a fact, and we will omit the arrow in this case. Let rule(Π) be the set of rules

in a program Π. A program is called normal if k = 1 for every rule. A program is

positive if m = 0 for every rule.

For any program Π, let UΠ (the Herbrand Universe) [Lloyd, 1987] be the set of all

constants appearing in Π. In case no constant appears in P , an arbitrary constant is

added to UΠ. Let the Herbrand Base [Lloyd, 1987], BΠ, be the set of all ground atoms

constructible from the predicate symbols (except for built-in predicates) appearing in

Π , and the constants of UΠ. The ground instantiation of a rule r, Ground(r), denotes

the set of rules obtained by applying all possible substitutions from the variables in

r to elements of UΠ. For any program Π, Ground(Π) =
⋃

r∈rules(Π) Ground(r).

An interpretation I for Π is a set of ground atoms, i.e., I ⊆ BΠ. A positive ground

rule A1∨· · ·∨Ak ← B1, . . . , Bn is true in an interpretation I if {B1, . . . , Bn} ⊆ I and

(∪ki=1Ai)∩ I 6= ∅ or if {B1, . . . , Bn} 6⊆ I. A interpretation I is an model of a program

Π if all the rules in it are true in I. A modelM of Π is minimal iff there is no other
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modelM′ of Π such thatM′ $M.

A model M of a disjunctive program Π is stable iff M is a minimal model of

Ground(Π)M, where the positive ground program Ground(Π)M is defined as {A1 ∨

· · · ∨ Ak ← B1, . . . , Bn | (A1 ∨ · · · ∨ Ak ← B1, . . . , Bn, not C1, . . . , not Cm)

∈ rule(Ground(Π)) and, for every 1 ≤ i ≤ m,M 6|= Ci} [Gelfond and Lifschitz, 1991;

Przymusinski, 1991].

Since a program Π can have multiple stable models, we can consider two possible

semantics to answer queries. Given a query Q(x̄), a ground tuple t̄ is an answer to

Q in Π under the skeptical semantics (brave semantics) if Q[t̄] is true in all (at least

one) stable model.



Chapter 3

Thesis Objectives

There are many relevant and promising open problems in the area of consistent query

answering in inconsistent databases. The research in this thesis is focused on extend-

ing the current methodologies for retrieving consistent information from databases

to a wider class of constraints, exploring alternative semantics, and applying the

obtained results to other areas such as data integration systems and peer data man-

agement systems.

1. Null values and consistency:

(a) Define a semantics for satisfaction of constraints in databases with null

values, that extends and unifies the semantics currently used in commercial

DBMS that follow the SQL Standard, such as IBM DB2.

(b) Extend the semantics for satisfaction of constraints to a query answering

semantics.

2. Consistent Query Answering (CQA) in Relational Databases:

(a) Extend current methodologies [Barceló and Bertossi, 2002; Barceló; and

Bertossi, 2003] that use repair logic programs to deal with referential in-

tegrity constraints (RICs). Analyze possible ways of optimizing the repair

logic program.

(b) Consider alternative semantics, such as repairs obtained only by tuple

deletions or where insertions have priority over deletions.

20
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(c) Complexity Analysis of CQA for the different semantics. Classes of lower

complexity are also identified.

3. CQA in Data Integration Systems (DIS):

(a) Give a logical specification of a DIS for open sources with local-as-view

(LAV) mappings between sources and the global schema. Explore possi-

ble modifications to the specification if closed and exact mappings are to

be considered. Analyze how and when this specification can be used to

retrieve certain answers.

(b) Modify the repair logic program obtained in 1.(a) to work together with

the DIS specification. Analyze how and when this specification can be

used to retrieve consistent answers.

(c) Explore modifications of the specification to consider global-as-view (GAV)

mappings.

4. Peer Data Management Systems (PDM):

(a) Provide a semantics for query answering from a PDM with trust relation-

ships and local integrity constraints, assuming that only direct neighbors

influence the answers of a peer.

(b) Extend the results in 4.(a) to the transitive case in which neighbors of

neighbors can also influence the answers of a peer.

(c) Modify the repair program of 1.(a) so that it can be used to obtain answers

from a peer.



Chapter 4

Null Values and Consistency

This research has its origin in consistent query answering (CQA) [Arenas et al., 1999;

Bertossi and Chomicki, 2003; Bertossi, 2006]. This is the problem of characterizing

and retrieving semantically correct answers to a query from a relational database that

may fail to satisfy a given set of integrity constraints (ICs).

Different forms of repair have been studied in the literature to characterize con-

sistent answers. Some of them restore consistency with respect to referential ICs

by introducing a single null value [Arenas et al., 2003; Barceló; and Bertossi, 2003;

Barceló et al., 2003; Bravo and Bertossi, 2004], and others, labeled (or symbolically

different) null values [Cal̀ı et al., 2003a]. However, several issues that are relevant to

the possible application and use of the notion of CQA in real databases, as imple-

mented in and managed by commercial systems that (possibly only partially) follow

the SQL standard [International Organization for Standardization, 2003], have been

basically ignored: (a) Possibly several occurrences of a unique unlabeled null value,

null , can be found already in the database, even before considering repairs. (b)

In these systems and in the SQL standard, the notion of satisfaction of ICs in the

presence of null does not follow a clear or general logic. (c) The “logics” for IC

satisfaction and query answering are not uniformly integrated.

It is clear that, in order to define and do CQA in real DBMSs that use null

values in practice, it is necessary to address these issues first. These problems are

also of theoretical and practical relevance in themselves, independently from CQA.

22
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In this chapter we provide: (a) A precise, uniform, and logic-based definition of IC

satisfaction in SQL databases; and (b) a notion of logical satisfaction as applied

to query answering that smoothly extends the same notion for ICs. As a result of

this research we are able to propose a clear and precise formalization in first-order

logic of the notions of integrity satisfaction in databases that conform to the SQL

standard SQL:2003 [International Organization for Standardization, 2003], that is

implemented in commercial DBMSs, like IBM DB2 UDB. In particular, we propose a

logical reconstruction of the way null values are usually treated in commercial DBMSs.

In order to give a precise semantics for integrity constraint satisfaction in the

presence of null , we introduce the notion of relevance of an attribute for the occurrence

of null in a relation. This is because the position null in a relation is crucial to check

the satisfaction of ICs.

In this chapter, we do not consider database repairs or CQA. These topics will be

addressed in Chapter 5. There, we will not only consider databases with null , but we

will use null to restore consistency of referential constraints.

There is no agreement in the literature on the semantics of null values in relational

databases. The same applies to incomplete databases (null values can be seen as a way

of representing incomplete information). There are several different proposals in the

research literature [Reiter, 1984; Atzeni and Morfuni, 1986; Levene and Loizou, 1997a;

Lien, 1982] (see [van der Meyden, 1998] for a survey), in the SQL standard [Türker and

Gertz, 2001; International Organization for Standardization, 2003], and also implicit

semantics through the way null values are handled in commercial DBMSs.

In general, the literature on incomplete databases and null values in databases

deals with several, possibly symbolically different, null values (labeled nulls), or with

different kinds of null values that capture different intuitions behind them, e.g. nulls



24

that represent information that is withheld, inapplicable, uncertain, missing, un-

known, etc. Different null constants can be used for each of these different interpre-

tations [Libkin, 1995]. Other publications on incomplete databases consider that a

null value represents a collection of possible values of the database domain, so that

in this way we are dealing not with a single database, but with a set of possible

worlds [Imielinski and Lipski, 1984; Grahne, 1991]. In [Reiter, 1984], a null value is

considered a value taken from a set of special constants to which the unique names

assumption does not apply, i.e., different constants may denote the same object. In

consequence, we can have several symbolically different null values in a database, but

they could be interpreted in the same way.

In spite of all the existing semantics that have been proposed for null values, the

logical foundations of databases with null values as they are found in the practice

of databases and managed by commercial DBMSs has not received much attention

[Levene and Loizou, 1999b]. The implemented “semantics” of null values as specified

in the SQL standard and implemented in commercial DBMSs has been criticized in

the database literature [van der Meyden, 1998].

The implemented semantics for query answering follows some sort of three-valued

logic. However, it has been noted that under this three-valued logic, some tuples

will not be returned as answers to some tautological queries [Grant, 1977; Codd,

1979]. For example if we ask for all the employees with salary > 3000 or salary ≤

3000, any employee with salary = null will be left out of the answer set. Date

and Warden (1990) show that the EXIST operator has some unexpected behavior

as a consequence of how operators behave in the presence of null . For example, the

union1 of two relations where each contains tuple (a, null) would be expected to return

{(a, null), (a, null)} since the null value in each tuple might be different, but in the

1Even tough most of the operations in DBMSs use the bag semantics, the operations union and
intersection return by default the set semantics.



25

SQL standard a relation with only one tuple (a, null) is returned [van der Meyden,

1998].

As mentioned before, logically cleaner versions of null value semantics have been

proposed by the research community, but they have not been adopted by commercial

systems in spite of the criticisms they have received.

In this chapter, we start from the fact that we have working commercial imple-

mentations with a specific semantics. In many aspects, they still lack a clear logic,

and for this reason, it is better to have a clear picture of the logics behind their con-

structs and processes. From this point of view, our research sheds some light on this

scenario, by providing a logical reconstruction that can be uniformly applied to a wide

class of ICs, in particular to those that are used in common database applications,

but going beyond the type of ICs supported by commercial DBMS.

Starting from the semantics of IC satisfaction given in Section 4.1, we proceed to

develop in Section 4.2 a semantics for query answering in databases with null , which

amounts to developing a logical notion of formula satisfaction in databases conceived

as first-order structures. Since such a notion should be applicable to satisfaction

of sentences, it should also be applicable to satisfaction of ICs. We show that IC

satisfaction from this perspective is compatible with the previously defined notion of

IC satisfaction.

In this paper we consider a set semantics for databases, as apposed to a bag

semantics that would accept repeated tuples in a databases. An extension of our

semantics for IC satisfaction and query answering in order to properly deal with bags

is left for future work.
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4.1 IC Satisfaction in Databases with Null Values

Not even within the SQL standard there is a homogenous and global semantics of

integrity constraint satisfaction in databases with null values; rather, different defini-

tions of satisfaction are given for each type of constraint. Actually, in the case of for-

eign key constraints, three different semantics are suggested (simple-, partial- and full-

match)[International Organization for Standardization, 2003]. Commercial DBMSs

implement only the simple-match semantics for foreign key constraints [IBM, 2006;

Oracle, 2005; MySQL, 2006; Microsoft, 2006; PostgreSQL, 2006; Sybase, 2006]. Fur-

thermore the “position” where null appears in a database or in the IC is relevant for

checking IC satisfaction.

In [Barceló et al., 2003; Bravo and Bertossi, 2004], in the context of CQA, a

semantics for null values was adopted, according to which a tuple with a null value in

any of its attributes would not be the cause for any inconsistencies. In other words,

it would not be necessary to check tuples with null values with respect to possible

violations of ICs (except for NOT NULL- constraints, of course). This assumption is

consistent in some cases with the practice of DBMSs, e.g. in IBM DB2 UDB. Here, we

will propose a semantics that is less liberal in relation to the participation of null values

in inconsistencies; a sort of compromise solution between the different alternatives

available, that coincides with the portion of the SQL standard that is implemented

in DBMSs. This is, we will extend the simple-match for foreign keys and we will not

consider assertion constraints [International Organization for Standardization, 2003]

which are not currently implemented in commercial DBMSs [IBM, 2006; Oracle, 2005;

MySQL, 2006; Microsoft, 2006; PostgreSQL, 2006; Sybase, 2006].

We need some examples first, to motivate our approach.

Example 4.1 For a set of IC containing only of ψ1 : ∀xyz(P (x, y, z)→ R(y, z)), the
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database D = {P (a, b, null)} would be: (a) Consistent with respect to the semantics

in [Barceló et al., 2003; Bravo and Bertossi, 2004], because null is in the tuple. (b)

Consistent with respect to the simple-match semantics of SQL:2003 [International

Organization for Standardization, 2003], because null is in one of the attributes in the

set {P [2], P [3], R[1], R[2]} of attributes that are relevant to check the constraint. (c)

Inconsistent with respect to the partial-match semantics in SQL:2003, because there

is no tuple in R with a value b in its first attribute. (d) Inconsistent with respect to

the full-match semantics in SQL:2003, because null cannot be in an attribute that is

referencing a different table.

If we consider, instead of ψ1, the constraint ψ2 : ∀xyz(P (x, y, z) → R(x, y)), the

same database would be consistent only for the semantics in [Barceló et al., 2003;

Bravo and Bertossi, 2004]. 2
Example 4.2 Consider a database with a table Course that stores courses with the

professors who teach them, along with the terms in which they are taught; and

a table Exp that stores each professor in each course with the number of times

(s)he has taught the course. We have a foreign key constraint based on the RIC

∀xyz(Course(x, y, z) → ∃w Exp(y, x, w)), together with the constraint expressing

that table Exp has {ID ,Code} as a primary key. In commercial DBMSs, primary

keys cannot contain null values.

Now consider instance D1:

Course Code ID Term

CS27 21 W04

CS18 34 null

CS50 null W05

Exp Code ID Times

CS27 21 3

CS18 34 null

CS32 45 2

In IBM DB2, this database is accepted as consistent. The null values in columns Term

and Times are not relevant to check the satisfaction of the constraints. In order to
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check the constraint, the only attributes that we need to pay attention to are ID and

Code. If null is in one of these attributes of table Course, the tuple is considered to

be consistent, without checking table Exp. For example, Course(CS50 , null ,W05 )

has a null value in ID , therefore DB2 does not check if there is a tuple in Exp that

satisfies the constraint. It does not even check that there exists a tuple in Exp with

attribute Code = CS50 .

This behavior for foreign key constraints is called “simple-match” in the SQL stan-

dard, and is the one implemented in commercial DBMS such as IBM DB2 [IBM, 2006],

Oracle [Oracle, 2005], MySQL [MySQL, 2006], Microsoft SQL Server [Microsoft,

2006], PostgreSQL [PostgreSQL, 2006] and Sybase ACE [Sybase, 2006]. The “partial-

match” and “full-match” would not accept the database as consistent, because partial-

match would require Exp to have a tuple of the form (any non-null value,CS50 , any

value); and full-match would not allow a tuple with null in attributes ID or Code in

table Course.

If we try to insert tuple (CS41 , 18, null) into table Course, it would be rejected

by DB2. This is because the attributes ID and Code are relevant to check the

constraint and are different from null, but there is no tuple in Exp with ID = 18

and Code = CS41 . 2
Example 4.3 Consider a database with tables Person and Phone, where Number is

the primary key of Phone, and there is a foreign key from attribute Phone in Person

to table Phone, i.e., ∀xyz(Person(x, y, z)→ ∃wPhone(z, w)). The following database

instance is accepted as a consistent state in DB2.

Person ID Name Phone

182 Ann null

Phone Number Provider

This is an example where the null can be interpreted as a non-existent value, that

is, Ann might not have a phone number and, therefore it is not a problem to have no
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tuples in table Phone. Here, the relevant attributes needed to check the satisfaction

of the foreign key are Phone, ID. 2
Example 4.4 Consider the check constraint ∀xyz(Emp (x, y, z)→ z > 100) and the

database D:

Emp ID Name Salary

32 null 1000

41 Paul null

DB2 accepts this database instance as consistent. Here, in order to check the satisfac-

tion of the constraint, we only need to verify that the attribute Salary is greater than

100; therefore the only attribute that is relevant to check the constraint is Salary.

DBMSs will accept as consistent any state where the condition (the consequent) eval-

uates to true or unknown. The latter is the case here. Tuple (32, null , 50) could

not be inserted, because Salary > 100 evaluates to false. Notice that the null val-

ues in attributes other that Salary are not even considered in the verification of the

satisfaction. 2
DBMSs use a bag semantics instead of the set semantics, that is, a table can have

two copies of the same tuple. This raises some issues when checking the satisfaction

of primary keys.

Example 4.5 Since the SQL standard allows duplicate rows, i.e., uses bag semantics,

it is possible to have the database D:

P A B

a b

a b
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If this database had A as the primary key, then D would not have been accepted

as a consistent state, i.e., the insertion of the second tuple P (a, b) would have been

rejected. This is one of the cases in which the SQL standard deviates from the

relational model, where duplicates of a row are not considered. In a commercial

DBMS a primary key is checked by adding an index to the primary key and then

ensuring that there are no duplicates. Therefore, if we try to check the primary key

by using the associated functional dependency ∀xyz(P (x, y) ∧ P (x, z) → y = z),

we would not have the same semantics. This is because D satisfies the functional

dependency in this classical, first-order representation. 2
With the type of first-order constraints that we are considering, we cannot enforce a

bag semantics, therefore we will assume that D has no duplicate tuples.

In order to develop a null-value semantics that goes beyond the ICs supported by

DBMSs, we analyze other examples.

Example 4.6 Consider the UIC ∀xyzstuw(Person(x, y, z, w) ∧ Person(z, s, t, u)

→ u > w + 15), and the database D:

Person Name Dad Mom Age

Lee Rod Mary 27

Rod Joe Tess 55

Mary Adam Ann null

This constraint can be considered as an extension of check constraints, that, instead of

checking a condition for one row of the table, it considers multiple rows (a multi-row

check constraint). Therefore, we can naturally extend the semantics for single-row

check constraints, by taking D as consistent iff the condition evaluates to true or

unknown. In this case, D would be consistent, because the condition evaluates to
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unknown for u = null and w = 27, and to true in the other cases. Here, the relevant

attributes to check the IC are Name, Mom, Age. 2
The following example shows that it is not clear how to extend the semantics of

satisfaction of constraints in DBMSs to inclusion dependencies that are not foreign

key constraints.

Example 4.7 Consider the UIC ∀xyz(Course(x, y, z) → Employee(y, z)) and the

database D:

Course Code Term ID

CS18 W04 34

Employee Term ID

W04 null

Since {Term, ID} is not a primary key of Employee, the constraint is not a foreign

key constraint, and therefore it is not supported by DBMS [IBM, 2006; Oracle, 2005;

MySQL, 2006; Microsoft, 2006; PostgreSQL, 2006; Sybase, 2006]. Also, in contrast

to foreign key constraints, now we can have null in the referenced attributes. There

is no class of constraints used in commercial DBMSs that we can use as a hint on

how we can extend the satisfaction semantics to this case. 2
In order to decide what semantics to give for constraints like the one in Example 4.7,

we appeal to the literature. In [Levene and Loizou, 1997a], the satisfaction of this

type of constraints is defined as follows: An IND P [X̄] ⊆ Q[Y ] is satisfied if, for

every tuple t1 ∈ P , there exists a tuple t2 ∈ Q, such that t1[X̄] provides less or equal

information than t2[Ȳ ]. The concept of less or equal information is defined as follows:

Definition 4.1 [Levene and Loizou, 1997a] (a) A constant c provides less or equal

information than a constant d, denoted c ⊑ d, iff c is null or c = d. (b) A tuple

t1 = (c1, . . . , cn) provide less or equal information than t2 = (d1, . . . , dn), denoted

t1 ⊑ t2, iff ci ⊑ di for every i = 1, . . . , n. (c) t1 ⊏ t2 iff t1 ⊑ t2 and t1 6= t2. (d) An



32

IND P [X̄] ⊆ Q[Y ] is satisfied if, for every tuple t1 ∈ P , there exists a tuple t2 ∈ Q

such that t1[X̄] ⊑ t2[Ȳ ]. 2
Example 4.8 (example 4.7 continued) For the tuple Course(CS18,W04,34) there is

no tuple in table Employee that provides less or equal information. For example,

(W04,34) 6⊑ (W04,null). Therefore, we consider the database to be inconsistent with

respect to the constraint. Note that the only attributes that are relevant to check the

constraint are Term and ID . 2
Examples 4.2, 4.3, 4.4, 4.6 and 4.8 show that there are some attributes that are

“relevant” when the satisfaction of a constraint is checked against a database.

Definition 4.2 For t a term, i.e., a variable or a domain constant, let posR(ψ, t) be

the set of positions in predicate R ∈ R where t appears in ψ. The set V of relevant

variables for an IC ψ of the form (2.1) is V(ψ) = {x | x is a repeated variable in ψ}.

The set A of relevant attributes for ψ is

A(ψ) = {R[i] | x ∈ V(ψ) and i ∈ posR(ψ, x)} ∪

{R[i] | c is a constant in ψ and i ∈ posR(ψ, c)}.2 2
For an IC of the form (2.1), all relevant variables have at least one occurrence in the

antecedent of ψ, are variables in joins or appear in ϕ.

If a built-in predicate in ϕ has a redundant or trivial occurrence of a variable,

e.g. x = x for x appearing in a database atom, then this would have the effect of

transforming an attribute in relevant when it does not need to be. For example, the

constraint ∀xy(T (x, y)→ x ≤ 5 ∨ y ≥ y) is equivalent to ∀xy(T (x, y)→ x ≤ 5), but

the latter has relevant attributes x and y and the former only x. The specifier of ICs

should be aware of this issue. Furthermore, we should observe that an apparently

tautological occurrence of x = x is not such, because this equality has a different

2Remember that R[i] denotes a position in relation R.



33

meaning than the classical when applied to null values. As a consequence, it is

reasonable to consider this variable or attribute as relevant (with respect to null

values).

Definition 4.3 For a set of attributes A and a predicate P ∈ R, we denote by PA

the predicate P restricted to (or projected onto) the attributes in A. DA denotes

the database D with all its database atoms projected onto the attributes in A, i.e.,

DA = {PA(ΠA(t̄)) | P (t̄) ∈ D}, where ΠA(t̄) is the projection on A of tuple t̄. DA

has the same underlying domain U as D. 2
Example 4.9 Consider a UIC ψ : ∀xyz(P (x, y, z)→ R(x, y)), and D:

P A B C

a 5 a

b 3 a

R A B

a 5

a 2

Since x and y appear twice in ψ, A(ψ) = {P [1], R[1], P [2], R[2]}. The value in z should

not be relevant to check the satisfaction of the constraint, because we only want to

make sure that the values in the first two attributes in P also appear in R. This,

checking its satisfaction is equivalent to checking if ∀xy(PA(ψ)(x, y) → RA(ψ)(x, y))

is satisfied by DA(ψ). For a more complex constraint, such as γ : ∀xyzw(P (x, y, z) ∧

R(z, w) → ∃vR(x, v) ∨ w > 3), variable x is relevant to check the implication, z is

needed to do the join, and w is needed to check the comparison, therefore A(γ) =

{P [1], R[1], P [3], R[2]}.

DA(ψ) :
PA(ψ) A B

a 5

b 3

RA(ψ) A B

a 5

a 2
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DA(γ) : PA(γ) A C

a a

b a

RA(γ) A B

a 5

a 2 2
An important observation we can make from Examples 4.2, 4.4, 4.6 and 4.7 is that,

roughly speaking, a constraint is satisfied if any of the relevant attributes has null or

the constraint is satisfied in the traditional way (i.e. first-order satisfaction and null

treated as any other constant).

Definition 4.4 A constraint ψ of the form (2.1):

∀x̄(
n
∧

i=1

Pi(x̄i) −→ ∃z̄(
m
∨

j=1

Qj(ȳj, z̄j) ∨ ϕ)),

is satisfied in the database instance D, denoted D |=
N
ψ, iff DA(ψ) |= ψN , where

ψN is

∀x̄(
m
∧

i=1

P
A(ψ)
i (x̄i) → (

∨

vj∈V(ψ)

vj = null ∨
n

∨

j=1

Q
A(ψ)
j (ȳj) ∨ ϕ)), (4.1)

and x̄ = ∪mi=1x̄i. Here, DA(ψ) |= ψN refers to classical first-order satisfaction, where

null is treated as any other constant in U . 2
We can see from Definition 4.4 that there are basically two cases for constraint sat-

isfaction: (a) If null is in any of the relevant attributes in the antecedent, then the

constraint is satisfied. (b) If null does not appear in the relevant attributes, then

the second disjunct in the consequent of formula (4.1) has to be checked, i.e., the

consequent of the IC restricted to the relevant attributes. This can be done as usual,

treating null as any other constant.

Formula (4.1) is a direct reduction of Formula (2.1). In particular, if the constraint

is universal, so is the transformed version. Notice that Formula (4.1) is domain

independent, and therefore its satisfaction can be checked on the active domain.
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As mentioned before, the semantics for IC satisfaction introduced in [Bravo and

Bertossi, 2004] considers that tuples with null never generate any inconsistency, even

when null is not in a relevant attribute. For example, under the semantics in [Bravo

and Bertossi, 2004], the instance {P (b, null)} would be consistent with respect to the

IC ∀xy(P (x, y)→ R(x)), but intuitively the constraint implies that every element in

the first attribute of table P should be in the first attribute of table R, and this is

not the case for {P (b, null)}. The new semantics corrects this, and adjusts itself to

the semantics implemented in commercial DBMS.

Example 4.10 Given the ICs: (a) ∀xyz(P (x, y, z) → R(x, y)), (b) ∀x(T (x) →

∃yzP (x, y, z)), the database instance D below is consistent.

P A B C

a d e

b null g

R D E

a d

T F

b

For (a), the relevant variables to check the constraint are V1 = {x, y}, therefore

A1 = {P [1], R[1], P [2], R[2]}; and for (b), V2 = {x} ; therefore A2 = {P [1], T [1]}.

DA1 :
PA1 A B

a d

b null

RA1 D E

a d

DA2 :
PA2 A

a

b

TA2 F

b

To check ifD |=
N
∀xyz(P (x, y, z)→R(x, y)), we need to check ifDA1 |= ∀xy(PA1(x, y)

→ (x = null ∨ y = null ∨ RA1(x, y))). For x = a and y = d, DA1 |= PA1(a, d), but
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none of them is null , therefore we need to check if DA1 |= RA1(a, d). This is true,

therefore the constraint is satisfied for x = a and y = d. Now, for x = b and y = null ,

DA1 |= PA1(b, null), and since y = null , the constraint is satisfied. The same anal-

ysis can be done to prove that D satisfies constraint (b), i.e., by checking DA2 |=

∀x(TA2(x)→ (x = null ∨PA2(x))).

If we add tuple P (f, d, null) to D, it would become inconsistent with respect to

constraint (a), because DA1 6|= (PA1(f, d)→ (f = null ∨ d = null ∨RA1(f, d))). 2
Example 4.11 Consider the IC ψ: ∀xywz((P1(x, y, w)∧ P2(y, z))→ ∃u Q(x, z, u))

and the database D:

P1 A B C

a b c

d null c

b e null

null b b

P2 D E

b a

e c

d null

null b

Q F G H

a a c

b null c

b c d

null c a

Variables x, y and z are relevant to check the constraint, therefore the set of relevant

attributes is A(ψ) = {P1[1], P1[2], P2[1], P2[2], Q[1], Q[2]}. Then we need to check if

DA(ψ) |= ∀xyz((PA(ψ)
1 (x, y) ∧ P

A(ψ)
2 (y, z)) → (x = null ∨ y = null ∨ z = null ∨

QA(ψ)(x, z)), where DA(ψ) is

P
A(ψ)
1 A B

a b

d null

b e

null b

P
A(ψ)
2 D E

b a

e c

d null

null b

QA(ψ) F G

a a

b null

b c

null c

When checking the satisfaction of DA(ψ) |= ψN , null is treated as any other constant.

For example for x = d, y = null and z = b, the antecedent of the rule is satisfied since
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P
A(ψ)
1 (d, null) ∈ DA and P

A(ψ)
2 (null , b) ∈ DA. If null had been treated as a special

constant, with no unique names assumption applied to it, the antecedent would have

been false. For these values the consequent is also satisfied, because y = null is true.

In this example, DA(ψ) |= ψN , and the database satisfies the constraint. 2
Notice that in a database without null , Definition 4.4 coincides with the traditional,

first-order definition of IC satisfaction.

Example 4.12 (example 4.9 continued) In order to check if D |=
N
ψ, we need

to check if DA(ψ) |= ψN , with ψN : ∀xyz(PA(ψ)(x, y) → (x = null ∨ y = null ∨

RA(ψ)(x, y))). It is easy to see that, since D has no null , checking DA(ψ) |= ψN is

equivalent to checking D |= ψ. 2
Our semantics is a natural extension of the semantics used in commercial DBMSs.

Note that: (a) in a DBMS there will never be a join between null and another value

(null or not); (b) Any check constraint with comparison, e.g <,>,=, will never create

an inconsistency when comparing null with any other value. These two features justify

our decision in Definition 4.4 to include the attributes in the joins and the elements in

ϕ among the attributes that are checked to be null , because if there is null in them,

an inconsistency will never arise.

4.1.1 The IsNull Predicate

There is a very important constraint widely used in DBMSs that we have not dealt

with yet: the NOT NULL constraint (NNC). This constraint prevents certain at-

tributes from taking the value null .

NNCs are of particular interest for attributes in primary key constraint. In fact, all

the attributes in a primary key have to be set to NOT NULL [IBM, 2006; Oracle, 2005;
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MySQL, 2006; Microsoft, 2006; PostgreSQL, 2006; Sybase, 2006]. A unique constraint

has the same characteristics as a primary key, but without the NOT NULL constraint.

To express a NNC, we introduce a special predicate IsNull(·), with IsNull(c) true

iff c is null , instead of using the built-in comparison atom c = null , because in

traditional DBMS this equality would be always evaluated as unknown (as observed

in [Reiter, 1984], the unique names assumption does not apply to null).

Definition 4.5 A NOT NULL-constraint (NNC) is a denial constraint of the form

∀̄x̄(P (x̄) ∧ IsNull(xi)→ false), (4.2)

where xi ∈ x̄ is in the position of the attribute that cannot take the value null . 2
Notice that a NNC is not of the form (2.1), because it contains the special predicate

IsNull .

Definition 4.6 A NNC ψ of the form (4.2), is satisfied by a database D with null ,

denoted D |=
N
ψ, iff

D |= ∀x̄((P (x̄) ∧ xi = null)→ false) (4.3)

with null treated as any other constant. 2
Example 4.13 Consider the NNC ψ : ∀xy(P (x, y) ∧ IsNull(y) → false). This con-

straint is satisfied if D |= (∀xy(P (x, y) ∧ y = null → false)). 2
We can modify the general form of ICs (see equation (2.1)) to accommodate also

NNCs and other variations of constraints with the IsNull predicate.
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Definition 4.7 A general integrity constraint is a sentence ψ ∈ L(Σ) of the form :

∀x̄((
m
∧

i=1

Pi(x̄i) ∧
a

∧

k=1

IsNull(xk)) −→
b

∨

l=1

IsNull(xl) ∨ ∃z̄(
n
∨

j=1

Qj(ȳj, z̄j) ∨ ϕ)), (4.4)

where Pi, Qj ∈ R, x̄ =
⋃m

i=1 x̄i, xk ⊆ x̄ for k = 1, . . . , a, xl ⊆ x̄ for l = 1, . . . , b, z̄ =
⋃n
j=1 z̄j , ȳj ⊆ x̄, x̄∩ z̄ = ∅, z̄i∩ z̄j = ∅ for i 6= j, z̄j does not have repeated variables

for j = 1, . . . , n, and m ≥ 1. 2
We now need to define which are the relevant variables and attributes for a general

integrity constraint. In this case, we will also need to separate the relevant variables

that are related to the IsNull predicate from those that are not.

Definition 4.8 (a) The set VR of restricted relevant variables for an IC ψ of the form

(4.4) is: VR(ψ) = {x | x is a repeated variable in ψ except for the variables in the

IsNull predicate }. (b) The set of variables in IsNull predicates in ψ is denoted by

VIsNull (ψ). (c) The set V of relevant variables of ψ is V(ψ) = VR(ψ) ∪ VIsNull (ψ).

(d) The set A(ψ) of relevant attributes of ψ is {R[i] | x ∈ V(ψ) and i ∈ posR(ψ, x)}3.2
For constraints of the form (2.1), if any of the repeated variables in it is null , the

constraint is satisfied. This is no longer the case when there is an IsNull predicate. In

fact, in ∀x(P (x)∧ IsNull (x)→ false), even though x is repeated, if we assign null to

x, the constraint is not satisfied. This is why we need to add the distinction between

the restricted relevant variables and the relevant variables.

The satisfaction of a general IC can be determined as in Definition 4.4, but using

relevant attributes and variables as defined in Definition 4.8.

3As defined in Chapter 2, R[i] denotes the attribute in position i in predicate R.
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Definition 4.9 A general IC constraint ψ as in (4.4) is satisfied in the database

instance D, denoted D |=
N
ψ, iff DA(ψ) |= ψN , where ψN is

∀x̄′((
m
∧

i=1

P
A(ψ)
i (x̄′i) ∧

a
∧

k=1

xj = null) → (
∨

vj∈VR(ψ)

vj = null ∨
b

∨

l=1

xl = null ∨

n
∨

j=1

Q
A(ψ)
j (ȳj) ∨ ϕ)), (4.5)

and x̄′ = ∪mi=1x̄
′
i = A(ψ). Here, DA(ψ) |= ψN refers to classical first-order satisfaction,

where null is treated as any other constant in U . 2
It is easy to check that Definition 4.9 is an extension of both the semantics of IC

satisfaction for ICs without IsNull (see Definition 4.4) and the semantics of NNCs

satisfaction (see Definition 4.13).

Example 4.14 (example 4.13 continued) The only repeated variable in the NNC ψ,

taking into consideration all the variables except for those in the IsNull predicate, is

x, thereforeA(ψ) = {P [1]}. By Definition 4.4, it holds D |=
N
ψ ifD |= (∀xy(P (x, y)∧

y = null → false)). This coincides with Definition 4.6.

Consider now the general IC φ : ∀xy(P (x, y) ∧ IsNull(y) → Q(x, 3)). Here, the

only repeated variable, taking into consideration all the variables except for those in

the IsNull predicate, is x, therefore A(ψ) = {P [1], Q[1], Q[2]}. The position Q[2] is

relevant because there is a constant in this position. D |=
N
φ if D |= (∀xy(P (x, y) ∧

y = null → Q(x, 3))). 2
By adding NNCs, we are able to represent all the common constraints of commercial

DBMS, i.e., primary keys, unique constraints, foreign key constraints, check con-

straints and NOT NULL-constraints.
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4.1.2 Primary Keys

If we consider a primary key constraint as a set of functional dependencies, and we

apply to it the notion of satisfaction of Definition 4.4 via the corresponding FDs, we

will obtain a semantics for satisfaction of primary key constraints that is different

from the one implemented in DBMSs.

Example 4.15 Consider D = {P (a, b), P (a, null)} with primary key P [1]. This

data-base is not accepted in DB2 as a consistent state. Alternatively, we could try to

define the primary key as the functional dependency: ψ : ∀xyz(P (x, y) ∧ P (x, z) →

y = z). By Definition 4.4, D |=
N
ψ iff D |= (∀xyz(P (x, y) ∧ P (x, z) → x = null ∨

y = null ∨ z = null ∨ y = z)). Since this is true, the constraint is satisfied for this

semantics. Primary keys impose a stronger requirement over the database than their

functional dependency versions. 2
If we want our semantics to coincide with the portion of the SQL standard imple-

mented in DBMSs, we would need to define a primary key in the following way:

Definition 4.10 Given a predicate R(x1, . . . , xn) and its primary key {R[1], . . . ,

R[m]},4 the primary key can be logically expressed as the following set of formulas:

∀x̄ȳ (R(x1, ..., xm, xm+1, . . . , xn) ∧ R(x1, . . . , xm, ym+1, . . . , yn) → xj = yj),

for j = m + 1, . . . , n.

∀x̄ȳ (R(x1, . . . , xm, xm+1, . . . , xn) ∧R(x1, . . . , xm, ym+1, . . . , yn) ∧ IsNull(xj) → IsNull(yj)),

for j = m + 1, . . . , n.

∀x̄ȳ (R(x1, . . . , xm, xm+1, . . . , xn) ∧ IsNull(xj) → false), for j = 1, . . . ,m.

The third set of rules, are NNCs for all the attributes in the key. A unique constraint

can be logically expressed by using only the first two set of rules. 2
4Without loss of generality we will assume the primary key to be the first m attributes of R
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Now, by defining a primary key as in Definition 4.10, the problem presented in Ex-

ample 4.15 is solved, and our semantics coincides with the one of SQL. Note that

we are assuming that our database is a set of atoms and therefore, that there are no

repeated atoms. If we defined instead a database instance as a bag of tuples, then

our semantics would not coincide with SQL, as the following example shows.

Example 4.16 If we consider a database instance to be a bag of tuples, we could

have the following database instance D = {P (a, b), P (a, b)}. If P [1] is the primary

key of P , the database would not be accepted as a consistent state in a SQL database.

Our semantics is not able to distinguish between the two tuples and would, therefore

consider it as consistent. 2
Theorem 4.1 Given a database instance D with no repeated tuples and set IC of

primary keys, unique constraints, foreign keys, NOT NULL and check constraints,

the database D satisfies IC with respect to the SQL standard (using simple-matching

for foreign keys and no assertions) [International Organization for Standardization,

2003] iff D |=
N

IC . 2
This theorem can be proved by appealing to the different constraints in the SQL stan-

dard [International Organization for Standardization, 2003] and to the corresponding

notions of satisfaction in SQL for them [Türker and Gertz, 2001].

Our semantics of IC satisfaction for databases with null allows us to integrate our

results in a compatible way with current commercial implementations; in the sense

that the database repairs we will introduce later on would be accepted as consistent

by current commercial implementations (for the classes of constraints that can be

defined and maintained by them).
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4.2 Query Answering in Databases with Null Values

With the purpose of answering first-order queries, we would like to extend our se-

mantics of IC satisfaction with null values to query satisfaction, in an homogenous

way.

We will assume, without loss of generality, that all the quantifiers in a first-order

query are over different variables. For example, the query ∀xP (x, y)∧∀xQ(y, x), that

has two quantifiers with variable x, can be transformed into the equivalent query

∀xP (x, y) ∧ ∀zQ(y, z).

The queries may contain also the special predicate IsNull . This predicate will

allow us to write SQL queries with IS NULL and IS NOT NULL expressions in first-

order logic.

Example 4.17 Consider a table P (A,B) and the SQL query:

SELECT P.A

FROM P

WHERE B IS NULL

The query can be written in first-order as ∃y(P (x, y) ∧ IsNull(y)). 2
Definition 4.11 The set of restricted relevant variables of a first-order query ψ are:

VR(ψ) = {x | x is present at least twice in ψ, except for the variables in the IsNull

predicate } 2
Example 4.18 For query Q1 : (P (x, y) ∧ IsNull(x) ∧ y > 5), VR(Q1) = {y} since y

is used twice. Variable x is not repeated, since it appears only once in a predicate

different from IsNull . For query Q2 : (P (x, y) ∧ Q(y, z) ∧ IsNull(y)) the restricted

relevant variables are VR(Q2) = {y}. 2
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If the first-order query is a sentence (a boolean query) that expresses an integrity con-

straint, then Definition 4.11 of restricted relevant attributes is equivalent to Definition

4.8.

Definition 4.12 A variable assignment function s is a function from the set of vari-

ables to U , the underlying database domain. We denote with s[x|a] the assignment

obtained from s by setting s(x) to take the value a. A term assignment function, s,

associated to the variable assignment function s, is defined as follows: (a) If term t

is a variable x, then s(t) = s(x). (b) If t is a constant c or null , then s(t) = c.

Given a formula φ, φ[s] denotes the formula obtained from φ by replacing its free

variables by its value according to s. 2
Given a variable assignment function s, we can check if D satisfies φ[s] by assuming

that a quantifier over a relevant variable is evaluated over (U r {null}) and a non-

relevant variable is evaluated over U .5 Formally:

Definition 4.13 Let φ be a first-order formula, s a variable assignment function

and B = {<,>,=, false}. We define, by induction on φ, when D satisfies φ with

assignment s with respect to the null-value semantics, denoted D |=q
N
φ[s]. Then,

D |=q
N
φ[s] when φ is of one of the following forms:

1. IsNull(t) and s̄(t) = null .

2. t1 ⋄ tn for ⋄ ∈ {<,>,=}, s̄(t1) 6= null , s̄(t2) 6= null , and D |= t1 ⋄ tn.

3. R(t1, . . . , tn), with R ∈ R and R(s̄(t1), . . . , s̄(tn)) ∈ D

4. ¬α, and D 6|=q
N
α[s̄].

5. (α ∨ β), and D |=q
N
α[s̄] or D |=q

N
β[s̄]

5By definition null ∈ U .
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6. (α ∧ β), and D |=q
N
α[s̄] and D |=q

N
β[s̄]

7. (∀y)(α), and one of the following holds:

(a) y ∈ VR(α), and for all a in (U r {null}), D |=q
N
α[s̄[y|a]].

(b) y 6∈ VR(α), and for all a in U , D |=q
N
α[s̄[y|a]].

8. (∃y)(α), and one of the following holds:

(a) y ∈ VR(α), and there exists an a in (U r {null}) with D |=q
N
α[s̄[y|a]].

(b) y 6∈ VR(α), and there exists an a in U with D |=q
N
α[s̄[y|a]].

For all database instance D, D 6|=q
N

false. 2
In the definition we assume B = {<,>,=, false}. The addition of new built-ins might

modify the definition of relevant attribute.

Definition 4.14 A variable assignment s is null-valid with respect to φ if for every

relevant variable x in φ, s(x) 6= null . 2
Definition 4.15 (a) A tuple (t1, . . . , tn) with values in U is an answer from a database

D under the null query answering semantics to a FOL query Q with free variables

(x1, . . . , xn) iff there exists a null-valid assignment s for Q, such that s(xi) = ti,

for i = 1, . . . , n, and D |=q
N
Q[s]. (b) AnsN(Q,D) denotes the set of answers to Q

obtained from database D under the semantics in (a). (c) If Q is a sentence (boolean

query), the answer under the null query answering semantics is yes iff D |=q
N
Q and

no otherwise. 2
Example 4.19 Consider a databaseD = {P (f, 7), P (f, 5), P (d, 9), P (e, 2), P (null , 8),

P (b, null)} and the query Q : ∃y(P (x, y) ∧ y > 5).
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For this query VR(Q) = {y} and the only free variable is x. Since x is not a

relevant variable, a null-valid assignment can assign any value in the domain to x

(including null). Let us check if D |=q
N
Q[s1] for an assignment s1 with s1(x) = f .

The database D |=q
N
∃y(P (f, y) ∧ y > 5) if there exists a ∈ (U r {null}), such

that D |=q
N

(P (f, a)∧ a > 5). This is true for a = 7. Therefore, D |=q
N
Q[s1], and (f)

is an answer to the query. Analogously, (d) and (null) are answers to the query.

Now, let us check if D |=q
N
Q[s2] for an assignment s4 with s2(x) = b. Database

D |=q
N
∃y(P (b, y)∧ y > 5) if there exists a ∈ (U r {null}), such that D |=q

N
(P (b, a)∧

a > 5). This value does not exist, therefore (b) is not an answer. 2
In the following example, we will check if the query answering semantics coincides

with the semantics of IC satisfaction.

Example 4.20 Consider database D and a RIC ψ : ∀x(P (x) → ∃y R(x, y)).

D : P X

b

null

R X Y

b null

e c

For this example, VR(ψ) = V(ψ) = {x}, and A(ψ) = {P [1], R[1]}. Therefore, in

order to check if D |=
N
ψ, we need to prove: DA(ψ) |= ∀x (PA(ψ)(x) → (x = null ∨

RA(ψ)(x))). This is true, therefore the constraint is satisfied.

On the other hand, we can consider ψ a boolean first-order query. If the answer to

the query is true, i.e., D |=q
N
ψ, then the constraint is satisfied. We use the inductive

definition of satisfaction:

• Since x is relevant, D |=q
N

(∀xP (x)→ ∃yR(x, y)) iff for all a ∈ (U r {null}), it

holds that D |=q
N

(P (a)→ ∃yR(a, y)).

• D |=q
N
P (a)→ ∃yR(a, y) iff D 6|=q

N
P (a) or D |=q

N
∃yR(a, y).
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• D 6|=q
N
P (a) for all a 6= b (remember that a 6= null).

• For a = b, we have D |=q
N
P (b), and therefore, we have to check if D |=q

N

∃yR(b, y). Since y is not relevant, it is sufficient to check if there exists c ∈ U ,

such that D |=
N
R(b, c). This is true since R(b, null) ∈ D.

Therefore, the answer to the query ψ is Yes. As expected, the semantics for satisfac-

tion of constraints coincides with the query answering semantics. 2
Proposition 4.1 Given a database instance D and a general integrity constraint ψ,

D |=
N
ψ (see Definition 4.4) iff D |=q

N
ψ (see Definition 4.13). 2

Proof: First we will prove that if D |=
N
ψ, then D |=q

N
ψ. The general IC ψ is of

the form (4.4). D |=
N
ψ implies that DA(ψ) |= ψN , where ψN :

∀x̄′((
m
∧

i=1

P
A(ψ)
i (x̄′

i) ∧
a

∧

k=1

xj = null) → (
∨

vj∈VR(ψ)

vj = null ∨
b

∨

l=1

xl = null ∨

n
∨

j=1

Q
A(ψ)
j (ȳj) ∨ ϕ)), (4.6)

By contradiction, we will assume that D 6|=q
N
ψ. This implies that there exists an as-

signment c̄ = (c1, . . . , cn) for x̄ = (x1, . . . , xn), such that the following two statements

hold:

1. If xi ∈ VR(ψ), then ci ∈ (U r {null}). Otherwise, ci ∈ U .

2. D |=q
N

((
∧m
i=1 Pi(c̄i) ∧

∧a
k=1 IsNull(ck)) and D 6|=q

N
(
∨b
l=1 IsNull(cl) ∨ ∃z̄ (

∨n
j=1

Qj(c̄j, z̄j)) ∨ ϕ[s̄[x̄|c̄]])

Database D 6|=q
N
∃z̄(

∨n

j=1Qj(c̄j, z̄j) ∨ ϕ)) implies that D 6|=q
N

∨b

l=1 IsNull(cl), D 6|=q
N

∃z̄ (
∨n

j=1 Qj(c̄j , z̄j)) and D 6|=q
N
ϕ[s̄[x̄|c̄]]. Since no variable in z̄ is relevant, D 6|=q

N
∃z̄

(
∨n
j=1 Qj(c̄j, z̄j)) implies that, for all d̄ ∈ U , D 6|=q

N
∃z̄ (

∨n
j=1 Qj(c̄j , d̄j)).
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If we use assignment c̄ in Equation (4.6), it follows that vj = null is false for every

vj ∈ VR(ψ). This implies that DA(ψ) |= (
∨b

l=1cl = null ∨
∨n

j=1Q
A(ψ)
j (c̄j) ∨ ϕ[s̄[x̄|c̄]]),

and therefore that DA(ψ) |=
∨b
l=1cl = null , DA(ψ) |=

∨n
j=1Q

A(ψ)
j (c̄j) or DA(ψ) |=

ϕ[s̄[x̄|c̄]]. Then, D |=
∨b
l=1cl = null , D |= ∃z̄

∨n
j=1Qj(c̄j, z̄j)) or D |= ϕ[s̄[x̄|c̄]].

This contradicts the fact that D 6|=q
N

∨b

l=1 IsNull(cl), D 6|=q
N

∨n

j=1 Qj(c̄j, d̄j) and

D 6|=q
N
ϕ[s̄[x̄|c̄]].

Now, let us prove that if D |=q
N
ψ, then D |=

N
ψ. Let us assume by contradiction

that D 6|=
N
ψ. Database D 6|=

N
ψ implies that DA(ψ) 6|= ψN , where ψN :

∀x̄′((
m
∧

i=1

P
A(ψ)
i (x̄′i) ∧

a
∧

k=1

xk = null) → (
∨

v∈VR(ψ)

v = null ∨
b

∨

l=1

xl = null ∨

n
∨

j=1

Q
A(ψ)
j (ȳj) ∨ ϕ)), (4.7)

Then there exists an assignment s = s[x̄′ | c̄] such that:6

DA(ψ) |= (
m
∧

i=1

P
A(ψ)
i (c̄′i) ∧

a
∧

k=1

ck = null) (4.8)

DA(ψ) 6|= ((
∨

v∈VR(ψ)

v = null)[s̄] ∨
b

∨

l=1

cl = null ∨
n

∨

j=1

Q
A(ψ)
j (c̄j) ∨ ϕ[s̄]) (4.9)

It follows from equation (4.8) that there exists an extension of the variable assignment

such that D |= (
∧m

i=1 Pi(c̄i) ∧
∧a

k=1 ck = null). It follows from equation (4.9) that,

for every v ∈ VR(ψ), s(v) ∈ (U r {null}). Then, it follows from D |= (
∧m
i=1 Pi(c̄i) ∧

∧a
k=1 ck = null) that D |=q

N
(
∧m
i=1 Pi(c̄i) ∧

∧a
k=1 ck = null). Then, since D |=q

N
ψ,

there exists s′ = s[z̄ | d̄] such that D |=q
N

(
∨b

l=1cl = null ∨
∨n

j=1Qj(c̄j, d̄j) ∨ ϕ[s̄′]).

As a consequence, D |=q
N

(
∨b

l=1cl = null), D |=q
N

(
∨n

j=1Qj(c̄j , d̄j)) or D |=q
N

(ϕ[s̄′]).

6Note that yj ⊆ x̄′, and therefore that an assignment for variables in x̄′ also assigns values to
variables in each yj .
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This is inconsistent with equation (4.9). 2
4.2.1 Relationship with SQL

Query answering in SQL is not an extension of the semantics of IC satisfaction in SQL

standard, and therefore, any uniform extension of IC satisfaction semantics (like the

null query answering semantics presented in the previous section) will not coincide

with SQL for some types of queries.

Example 4.21 (example 4.20 continued) Consider the queryQ : (P (x)∧¬∃yR(x, y)).

Since S satisfies ψ, i.e., D |=
N
∀x(P (x) → ∃y R(x, y)), we would expect to have no

answers to query Q. For the null query answering semantics it holds AnsN(Q,D) = ∅,

which is consistent with the fact that ψ is satisfied by D.

Query Q can be rewritten as a SQL query QSQL:

SELECT X

FROM P

WHERE NOT EXISTS (SELECT *

FROM R

WHERE R.X=P.X)

The answer to this query in SQL is not empty, but {(null)}. Even though the

constraint is satisfied in SQL, the answer to query Q in SQL is not empty. 2
Example 4.22 (example 4.19 continued) Query Q can be rewritten as the following

SQL query QSQL:

SELECT X

FROM P

WHERE Y>5
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If this SQL query is posed on databaseD, it will return the set of tuples {(f), (d), (null)}.

In this case, the answers obtained from a SQL query coincide with our query answer-

ing semantics. 2
Example 4.23 Consider database D and the SQL query below.

D : P A B

b 1

c null

T C D

b 3

e 1

SELECT A

FROM P

WHERE NOT EXISTS (SELECT *

FROM T

WHERE T.D=P.B)

The only answer to the SQL query is (c). The SQL query can be written in FOL as

Q : ∃y(P (x, y)∧¬(∃zT (z, y))). The set of restricted relevant variables is VR(Q) = {y}

and the only free variable is x. Then, a null-valid assignment s will be such that

s(x) ∈ U . Let us first take s(x) = c. Now, D |=q
N
∃y(P (c, y) ∧ ¬(∃zT (z, y))) if there

exists a constant k ∈ (U r {null}) such that D |=q
N

(P (c, k) ∧ ¬(∃zT (z, k))). There

is no such k; therefore (c) is not an answer to the query. In fact, the set of answers

to query Q is empty. In this case, the answers given by SQL and the null query

answering semantics do not coincide. 2
Definition 4.16 Given a SQL query Q and a database D, AnsSQL(Q,D) is the set

of answers obtained by executing Q on D using the SQL query answer semantics

[International Organization for Standardization, 2003]. For a tuple t̄, we also denote

t̄ ∈ AnsSQL(Q,D) with D |=SQL
N

Q[t̄]. 2
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A first-order conjunctive query (CQ) is of the form : Q : ∃ȳ(
∧n

i=1 Pi(x̄i, ȳi)∧ϕ), where

the Pi are database predicates, ȳ = ∪ni=1ȳi, and ϕ is a conjunction of comparison

atoms. Let {x1, . . . , xm} = ∪ni=1x̄i. A CQ can be rewritten as a SQL query QSQL as

follows :

SELECT x′1, . . . , x
′
m

FROM P1, . . . , Pn

WHERE Pi.v = Pj .v, AND . . . AND Pl.u = Pk.u, AND ϕ
SQL

where x′i is an attribute associated with variable xi in Q, the conditions in the WHERE

represent the joins, and ϕSQL replaces each variable x in ϕ by its x′ version.

Example 4.24 Consider relations T (A,B) and S(C,D,E), and the conjunctive query

Q : ∃yz(T (x, y) ∧ S(y, z, u) ∧ u > 5). This query can be written in SQL as QSQL:

SELECT A, E

FROM T, S

WHERE T.B = S.C AND E > 5 2
These queries are very common in database praxis. It can be shown that the answers

to a query of this kind obtained from both the null query answering semantics and

the SQL query answering semantics coincide.

Proposition 4.2 For a CQ Q, AnsN(Q,D) = AnsSQL(QSQL, D). 2
Besides the class CQ, other relevant queries are the first-order conjunctive queries

with negation. Negation in SQL queries can be expressed using the NOT EXISTS

statement.

Example 4.25 For relations P (A,B), T (C,D) and S(E), the query Q1 : ∃yP (x, y)∧

¬∃zT (x, z) ∧ ¬S(y) can be written as QSQL
1 in SQL as follows:
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SELECT A

FROM P

WHERE NOT EXISTS (SELECT * FROM T WHERE T.C=P.A)

AND

NOT EXISTS (SELECT * FROM S WHERE S.E=P.B)

Query Q2 : P (x, y) ∧ ¬∃z(T (x, z) ∧ ¬S(z)) can be rewritten as QSQL
2 into an SQL

query:

SELECT A

FROM P

WHERE NOT EXISTS (SELECT *

FROM T

WHERE T.C=P.A

AND

NOT EXISTS (SELECT *

FROM S

WHERE S.E=T.D)) 2
We will now define a set of conjunctive queries Q with negation for which we can

define a rewriting Q′, such that the answers obtained for Q′ under the null query

answering semantics coincide with those obtained fromQ for the SQL query answering

semantics. This set of queries consists of queries that can be rewritten in SQL without

nested occurrences of NOT EXISTS. We leave the analysis of queries with nested NOT

EXISTS for future research.

Definition 4.17 An extended conjunctive queries (ECQ) is of the form

∃v̄(Q0 ∧
n

∧

j=1

¬Qj)
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where Q0, Q1, . . . and Qn are conjunctive queries; and each variable v ∈ v̄ is a free

variable in Q0, and every free variable of Q1, . . . , Qn is also in Q0. 2
Extended conjunctive queries are domain independent and can be rewritten as SQL

queries using the NOT EXISTS SQL statement. If n = 0, the query is a conjunctive

query.

Example 4.26 (example 4.25 continued) Q1 is an extended conjunctive query, but

Q2 is not since it has nested NOT EXISTS expressions. 2
Example 4.27 The queries Q1 : (P (x, y) ∧ R(y, z)) and Q2 : ∃u(T (y, u) ∧ u >

3) are both CQ and ECQ. Query Q3 : ∃y(Q1 ∧ ¬Q2) = ∃y (P (x, y) ∧ R(y, z) ∧

¬(∃uT (y, u) ∧ u > 3)) is by construction it is a ECQ, but not a CQ. In the case of

query Q4 : ∃yu(P (x, y) ∧ ¬T (x, u)), variable u is in a negated subquery, and is not

in the positive part, therefore Q4 is not a ECQ. It is not a CQ either since it has

negation. 2
The following example shows that for extended conjunctive queries, it may happen

that AnsN(Q,D) 6= AnsSQL(Q,D).

Example 4.28 Consider a databaseD and the query Q1(x, z) : ∃y (P (x, y)∧R(y, z)∧

¬(∃uR(z, u))).

D : P A B

a b

c c

a g

d null

R C D

b c

c null

g b

The SQL version QSQL
1 of this ECQ query is:
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SELECT A D

FROM P, R AS R1

WHERE P.B=R1.C AND NOT EXISTS (SELECT *

FROM R AS R2

WHERE R1.D=R2.C)

In this case, AnsN(Q1, D) = {(a, g)} 6= AnsSQL(QSQL
1 , D) = {(c, null), (a, g)}. 2

Example 4.29 (example 4.28 continued) ConsiderQ2(x) : ∃y (P (x, y)∧¬∃u(R(y, u)∧

R(c, y))). The SQL version QSQL
2 of this ECQ query is:

SELECT A

FROM P

WHERE NOT EXISTS (SELECT *

FROM R AS R1, R AS R2

WHERE R1.A=R2.D)

In this case, AnsN(Q2, D) = ∅ 6= AnsSQL(QSQL
2 , D) = {(d)}. 2

There are some other cases in which AnsN(Q,D) and AnsSQL(QSQL, D) coincide.

Example 4.30 (example 4.28 continued) Consider Q3(x, z) : ∃y (P (x, y)∧R(y, z)∧

¬(∃uR(y, u))). The SQL version QSQL
3 of this ECQ query is:

SELECT A

FROM P, R AS R1

WHERE P.B=R1.C AND NOT EXISTS (SELECT *

FROM R AS R2

WHERE R1.C=R2.C)

In this case, AnsN(Q3, D) = AnsSQL(QSQL
3 , D) = {(a, b)}. 2
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Definition 4.18 Given an ECQ Q of the form Q = ∃v̄(Q0 ∧
∧n

j=1¬Qj), the positive

relevant attributes of Q are A+(Q) = A(Q0). Let A−(Q) = A(Q) rA+(Q). 2
It can be checked in the three previous examples that, when A−(Q) 6= ∅, the difference

between AnsN(Q,D) and AnsSQL(QSQL, D) can be attributed to not assigning null

to one of the variables in A−(Q).

Definition 4.19 Given an ECQ Q of the form Q = ∃v̄(Q0∧
∧n

j=1¬Qj), the rewritten

query

QN = Q ∨
∨

e∈E∧e 6=∅

(Q1[s̄e] ∧
∧

Qj∈Qe

¬Qj),

where se is a substitution that assigns each variable v ∈ e to null , E is the powerset

of A−(Q) and Qe = {Qj | j ∈ {1, . . . , n} and no free variable in Qj is in set e}. 2
Note that if Q is a CQ, then A−(Q) = ∅ and QN = Q.

Example 4.31 (examples 4.28, 4.29, 4.30 continued) Query Q1 has A−(Q1) = {z}

and E = {∅, {z}}. Therefore, QN

1 (x, z) : (∃y P (x, y) ∧ R(y, z) ∧ ¬ ∃uR(z, u)) ∨

(∃y (P (x, y) ∧ R(y, null))). Query Q2 has A−(Q2) = {y} and E = {∅, {y}}; and

therefore QN

2 (x) : (∃y P (x, y) ∧ ¬ ∃u(R(y, u) ∧ R(c, y))) ∨ ∃y P (x, null). Query Q3

has A−(Q3) = ∅ and E = {∅}, and therefore QN

3 (x, z) : ∃y (P (x, y) ∧ R(y, z)∧ ¬ ∃u

R(y, u)).

Consider now the ECQ Q4(x, y) : T (x, y, z) ∧ y > 3 ∧ ¬ ∃v R(x, v) ∧ ¬ S(y, z).

For this query, A−(Q4) = {x, z} and E = {∅, {x}, {z}, {x, z}}, and QN

4 (x, y) :

(T (x, y, z) ∧ y > 3 ∧ ¬ ∃v R(x, v) ∧ ¬ S(y, z)) ∨ (T (null , y, z) ∧ y > 3 ∧ ¬ S(y, z))

∨ (T (x, y, null) ∧ y > 3 ∧ ¬ ∃v R(x, v)) ∨ (T (null , y, null) ∧ y > 3). 2
This rewriting of queryQ allows us to get the answers that are missing from AnsN(Q,D),

to make it equal to AnsSQL(QSQL, D).
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Proposition 4.3 Given an ECQ Q and a database D:

AnsN (QN, D) = AnsSQL(QSQL, D). 2
Example 4.32 (example 4.28 and 4.31 continued) Considering the null query an-

swering semantics, the answers obtained from QN

1 (x, z) : ∃y (P (x, y) ∧ R(y, z) ∧

¬(∃uR(z, u)))∨ (P (x, y) ∧ R(y, null)) coincide with the answers of Q1 under the

SQL query answering semantics. That is, AnsN(QN

1 , D) = AnsSQL(QSQL
1 , D) =

{(c, null), (a, g)}. 2
The results for ECQ cannot be applied directly for SQL queries with nested NOT

EXISTS statements.

Example 4.33 Consider a database D and a query Q(x, y) : P (x, y) ∧ ¬∃z(R(x, z)

∧ ¬∃wS(z, w)).

D :
P A B

a b

R C D

a null

S E F

c d

Query Q can be written is SQL as QSQL:

SELECT A B

FROM P

WHERE NOT EXISTS (SELECT *

FROM R

WHERE P.A=R.C AND

NOT EXISTS (SELECT *

FROM S

WHERE R.D=S.E))

In this case, AnsN(Q,D) = {(a, b)} and AnsSQL(QSQL, D) = ∅. If we try to use the
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techniques for ECQ we get AnsN(QN, D) = {(a, b)}, which does not coincide with

AnsSQL(QSQL, D). 2
It is left for future research find a rewriting for SQL queries with nested negation that

can be used with the null query answering semantics.

These results just obtained are interesting in themselves, but we will also make

crucial use of them in Section 5.2.1, when retrieving consistent answers to queries

using the SQL query semantics. The consistent answers of Q will be obtained by first

rewriting Q into QN, then producing a query program Π(QN); and finally comput-

ing the stable models of Π(QN) combined with a logic programming specification of

repairs.

4.3 Conclusions

Motivated by the problem of consistent query answering in databases, as we find them

in commercial DBMS implementations, that only partially conform to the SQL stan-

dard, we revisit the problems of integrity constraint satisfaction and query answering.

More specifically, we have proposed a precise and uniform logical reconstruction of

IC satisfaction for databases with only one kind of null value. This semantics is com-

patible with the way null values are treated according to the SQL standard. The

integrity constraint satisfaction semantics presented in this chapter was published in

[Bravo and Bertossi, 2006].

We also provide a semantics for query answering, called null query answering se-

mantics, that extends the one for IC satisfaction, but that does not always coincide

with the query answering semantics of SQL. However, the null and SQL query an-

swering semantics coincide for conjunctive queries. For extended conjunctive queries

they might not coincide, but if an ECQ Q is rewritten as QN , the answers to Q un-

der the SQL query semantics coincide with the answers to QN under the null query
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semantics. The advantage of being able to use the null query answering semantics

is that it can be easily reduced to first-order query answering semantics of predicate

logic.

The satisfaction of an integrity constraint can be checked using violation view

[Gupta and Mumick, 1995], that contains the set of tuples that violate the constraint.

If the violations view is empty, the IC is satisfied. Examples 4.20 and 4.21 show a

case in which even though the constraint is satisfied, the traditional violation view is

not empty. Therefore, in databases with null it is not possible to use the traditional

violation views to check the satisfaction of constraints. It should be possible to provide

a general methodology to (re)define violation views for databases with null .

For example, for the integrity constraint in Example 4.20, the following query

would define the violation view for databases with null values, and can be used to

correctly check the satisfaction of the IC under the SQL semantics:

SELECT X

FROM P

WHERE NOT EXISTS (SELECT *

FROM R

WHERE R.X=P.X)

AND IS NOT NULL X

With respect to related work, there are plenty of different semantics for IC satis-

faction and query answering in databases with null values. For a survey see [van der

Meyden, 1998]. Integrity constraint satisfaction in the SQL standard is described in

[International Organization for Standardization, 2003] (cf. [Türker and Gertz, 2001;

Ullman and Widom, 2002]). There, for each type of constraint, a separate definition

of satisfaction is given. So a uniform semantics is missing.

One of the most widely accepted semantics for incomplete databases is the possible
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worlds semantics [Kripke, 1971; Imielinski and Lipski, 1984; Grahne, 1991]. This

semantics interprets null as an unknown, but existing value. Since null values in

commercial databases can also be interpreted as non-existent, this semantics does

not coincide with the SQL semantics for satisfaction of constraints.

Semantics for IC satisfaction are introduced in [Grant, 1980; Levene and Loizou,

1997b; Atzeni and Morfuni, 1984; Atzeni and Morfuni, 1986; Lien, 1979]. They all

consider a unique null value and consider some restricted types of constraints, such

as functional dependencies and/or inclusion dependencies. None of those semantics

gives an account of the behavior of commercial DBMSs. Finally, in [Buneman et al.,

1991; Libkin, 1991; Libkin, 1995; Reiter, 1984; Reiter, 1986] incomplete databases are

studied for general type of constraints, but their semantics does not coincide with the

one in commercial DBMSs either.



Chapter 5

CQA in Relational Databases

In Section 2.2, we review techniques to compute consistent query answers. The tech-

niques are query rewriting [Arenas et al., 1999; Celle and Bertossi, 2000], and spec-

ification of repairs using logic programs [Barceló and Bertossi, 2002; Barceló; and

Bertossi, 2003]. The latter deals with constraints and queries that are more general

than the ones dealt by the former. However, the repair specification is still not general

enough to deal with the most common ICs such as foreign key constraints.

The repair programs in [Barceló and Bertossi, 2002; Barceló; and Bertossi, 2003]

use annotation constants with the intended, informal semantics shown in Table 5.1 .

The annotations are used in an extra attribute introduced in each database predicate;

so for a predicate P ∈ R, the new version of it, P , contains an extra attribute.

Definition 5.1 [Barceló and Bertossi, 2002] Given a database D and a set of UICs

IC of the form (2.2), the repair program Π(D , IC ) is a disjunctive logic program

formed by the following set of rules:

Annotation Atom The tuple P (ā) is...
td P (ā, td) true in the database
ta P (ā, ta) advised to be made true
fa P (ā, fa) advised to be made false
t⋆ P (ā, t⋆) true or becomes true
f⋆ P (ā, f⋆) false or becomes false
t⋆⋆ P (ā, t⋆⋆) it is true in the repair
f⋆⋆ P (ā, f⋆⋆) it is false in the repair

Table 5.1: Annotation constants and their meaning

60
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1. dom(x) for every constant x in database D .

2. The fact P (ā, td) for every atom P (ā) ∈ D .

3. For every predicate p ∈ R, Π(D , IC ) contains the rules:

P (x̄, t⋆)← P (x̄, td). P (x̄, t⋆)← P (x̄, ta).

P (x̄, f⋆)← P (x̄, fa). P (x̄, f⋆)← dom(x̄), not P (x̄, td).

4. For every constraint of the form (2.2), Π(D , IC ) contains the clause:

n
∨

i=1

Pi (x̄i, fa) ∨
m
∨

j=1

Qj (ȳj, ta) ←−
n

∧

i=1

Pi (x̄i, t
⋆) ∧

m
∧

j=1

Qj (ȳj, f
⋆) ∧ ϕ̄,

where ϕ̄ represents the negation of ϕ.

5. For every predicate p ∈ R, Π(D , IC ) contains the rules:

P (x̄, f⋆⋆) ← P (x̄, fa). P (x̄, f⋆⋆) ← dom(x̄), not P (x̄, td), not P (x̄, ta).

P (x̄, t⋆⋆) ← P (x̄, ta). P (x̄, t⋆⋆) ← P (x̄, td), not P (x̄, fa).

6. For every predicate p ∈ R, Π(D , IC ) contains the rules:

← P (x̄, ta) , P (x̄, fa). 2
The rules in 1. correspond to database tuples. The rules in 2. correspond to the facts

in the database. The rules in 3. collect with t⋆ (respectively f⋆ elements that are

true (false) or have been made true (false). Rules in 4. are the most important and

express how the inconsistencies should be repaired. The body of the rule will be true

if the constraint is not satisfied and the head indicates how to repair the inconsistency.

Rules in 5. collect with t⋆⋆ all the tuples that will be true in the repairs. Rule 6.

enforces that a tuple cannot be made true and false at the same time.
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Example 5.1 Consider a database that stores a table Course with the list of courses

and a table Reg with the IDs of students registered in each course. Consider the

following database instance D:

Course Code

C21

C15

Reg ID Code

21 C15

34 C18

The primary keys are ID and Code1 respectively, and there is a foreign key constraint

from attribute Code in table Reg to the primary key of table Course. Database D is

inconsistent with respect to this set of constraints since there is a Code in table Reg

that is not in table Course.

The integrity constraints can be written in form (2.1) as follows:

∀xyzReg(x, y) ∧ Reg(x, z)→ y = z.

∀xyReg(x, y)→ Course(y).

Both of these constraints are universal integrity constraints of the form (2.2) and

therefore we can use the repair program of Definition 5.1:

1. Course (C21 , td). Course (C15 , td).

Reg (21, C15, td). Reg (34, C18, td).

2. Course (x, t⋆)← Course (x, td). Course (x, t⋆)← Course (x, ta).

Course (x, f⋆)← Course(x, fa). Course (x, f⋆)← not Course (x, td).,

Reg (x, y, t⋆)← Reg (x, y, td). Reg (x, y, t⋆)← Reg (x, y, ta).

Reg (x, y, f⋆)← Reg(x, y, fa). Reg (x, y, f⋆)← not Reg (x, y, td).,

3. Reg (x, y, fa) ∨ Reg (x, z, fa)← Reg (x, y, t⋆),Reg (x, z, t⋆), y 6= z.

Reg (x, y, fa) ∨ Course (y, ta)← Reg (x, y, t⋆),Course (y, f⋆).

4. Course (x, f⋆⋆) ← Course (x, fa).

Course (x, f⋆⋆) ← not Course (x, td), not Course (x, ta).

1Note that since Code is the only attribute of table Course, the primary key cannot be violated.
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Course (x, t⋆⋆) ← Course (x, ta).

Course (x, t⋆⋆) ← Course (x, td), not Course (x, fa).

Reg (x, y, f⋆⋆) ← Reg (x, y, fa).

Reg (x, y, f⋆⋆) ← not Reg (x, y, td), not Reg (x, y, ta).

Reg (x, y, t⋆⋆) ← Reg (x, y, ta).

Reg (x, y, t⋆⋆) ← Reg (x, y, td), not Reg (x, y, fa).

5. ← Course (x, ta),Course (x, fa).

← Reg (x, y, ta),Reg (x, y, fa).

The most important rules here are the rules in 3. The first one specifies the require-

ments on a repair if the primary key of table Reg is violated, and the second one if the

foreign key is violated. If we compute the stable models of this program and select

only the tuples annotated with t⋆⋆, we get the following sets:

M1 = {Course (C21 , t⋆⋆), Course (C15 , t⋆⋆), Course (C18 , t⋆⋆), Reg (21, C15, t⋆⋆)}

M2 = {Course (C21 , t⋆⋆), Course (C15 , t⋆⋆), Reg (21, C15, t⋆⋆), Reg (34, C18, t⋆⋆)}

Which correspond to the following two repairs:

D1:
Course Code

C21

C15

Reg ID Code

21 C15

D2 :
Course Code

C21

C15

C18

Reg ID Code

21 C15

34 C18 2
The repair program of Definition 5.1 can be used to obtain the repairs only for UICs.
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There are important types of constraints that are not considered, e.g. not all foreign

key constraints can be expressed as UICs. This is why we want to extend the repair

programs to deal with RICs, i.e., constraints of the form (2.3).

Example 5.2 (example 2.5 continued). In this example, there is an inclusion depen-

dency that references only attribute ID from table Student and therefore Name is

existentially quantified in the integrity constraints. Therefore, this constraint is not

a UIC, but a RIC. We can also observe that the number of repairs in this case, using

the repair semantics of [Arenas et al., 1999], is infinite. 2
In [Cal̀ı et al., 2003a], it was proven that the problem of CQA for a cyclic set of con-

straints with existential quantifiers is undecidable for the repair semantics in [Arenas

et al., 1999]. This implies that we cannot implement the repair semantics for RICs. In

[Barceló; and Bertossi, 2003], a variation of the repair semantics of [Arenas et al., 1999]

is proposed but not formalized. There, for a RIC of the form P (x̄) → ∃y(Q(x̄′, y)),

where x̄′ ⊆ x̄, it is suggested to repair by inserting null , say Q(ā, null), or by deletion.

Taking this variation into consideration we can redefine repairs.

Example 5.3 (example 2.5 and 5.2 continued) If, instead of repairing a database

with respect to a RIC by inserting all the possible values in the domain, we could

repair by adding null in the position of the existentially quantified values, then, there

would only be two repairs for this example:

D′ :
Reg ID Code

21 C15

Student ID Name

21 Ann

45 Paul
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D′′ :
Reg ID Code

21 C15

34 C18

Student ID Name

21 Ann

45 Paul

34 null 2
In the next section, we formalize this new repair semantics.

5.1 Repairing using null

Now, not only databases may contain null , but they can be used to repair inconsisten-

cies. In order to define formally new semantics for repairs, we need a new definition

of distance that captures the fact that we prefer to repair with null than with an

arbitrary value of the domain.

Definition 5.2 Let D,D′, D′′ be database instances over the same schema and do-

main U . It holds that D′ ≤D D′′ iff for every database atom P (ā) ∈ ∆(D,D′), there

exists an atom P (ā′), such that: (a) P (ā′) ∈ ∆(D,D′′); (b) P (ā) ⊑ P (ā′);2 and

(c) if P (ā) ⊏ P (ā′), then P (ā′) 6∈ ∆(D,D′). 2
Now, a repair is a new database, possibly with null , that satisfies the ICs as defined

in Section 4.1 and that solves inconsistencies with respect to RICs by inserting null .

Definition 5.3 Given a database instance D and a set IC of ICs of the form (2.1)

and NNCs, a repair of D with respect to IC is a database instance D′ over the same

schema, such that D′ |=
N

IC and D′ is ≤D-minimal in the class of database instances

that satisfy IC with respect to |=
N
, and share the schema with D, i.e., there is no

database D′′ in this class with D′′ <D D′, where D′′ <D D′ means D′′ ≤D D′ but not

D′ ≤D D′′. We denote by Rep(D, IC ) the set of repairs of D with respect to IC . 2
2For the definition of ⊑ see Definition 4.1.
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For a database without null and a set of UICs, this definition of repair coincides with

the one in [Arenas et al., 1999].

Example 5.4 The database instance D = {Q(a, b), P (a, c)} is inconsistent with

respect to the ICs ψ1 : (P (x, y) → ∃zQ(x, z)) and ψ2 : (Q(x, y) → y 6= b), be-

cause D 6|=
N
ψ2. The database has two repairs with respect to {ψ1, ψ2}, namely

D1 = {}, with ∆(D,D1) = {Q(a, b), P (a, c)}, and D2 = {P (a, b), Q(a, null))}, with

∆(D,D2) = {Q(a, b), Q(a, null)}. Notice that D2 6≤D D1, because for Q(a, null) ∈

∆(D,D2), even though Q(a, b) ∈ ∆(D,D1) is such that Q(a, null) ⊏ Q(a, b), Q(a, b)

is also in ∆(D,D2) violating condition (c) of Definition 5.2. Similarly, D1 6≤D D2,

because P (a, c) ∈ ∆(D,D1) and P (a, c) 6∈ ∆(D,D1). 2
Example 5.5 If the database instance is {P (a, null), P (b, c), R(a, b)} and the set

IC consists only of (P (x, y) → ∃z R(x, z)), then there are two repairs: D1 =

{P (a, null), P (b, c), R(a, b), R(b, null)}, with ∆(D,D1) = {R(b, null)}, and D2 =

{P (a, null), R(a, b)}, with ∆(D,D2) = {P (b, c)}. Notice, for example, that D3 =

{P (a, null), P (b, c), R(a, b), R(b, d)} is not a repair: since ∆(D,D3) = {R(b, d)}, we

have R(b, null) ⊑ R(b, d) and, therefore D2 <D D3. 2
Example 5.6 Consider the UIC ∀xy(P (x, y) → T (x)) and the RIC ∀x(T (x) →

∃yP (y, x)), and the inconsistent database D = {P (a, b), P (null , a), T (c)}. In this

case, we have a RIC-cyclic set of ICs. The four repairs are

i Di ∆(D,Di)

1 {P (a, b), P (null, a), T (c), P (null , c), T (a)} {T (a), P (null , c)}

2 {P (a, b), P (null , a), T (a)} {T (a), T (c)}

3 {P (null , a), T (c), P (null, c)} {P (a, b), P (null , c)}

4 {P (null , a)} {P (a, b), T (c)}
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Notice that, for example, the additional instance D5 = {P (a, b), P (null , a), T (c),

P (c, a), T (c)}, with ∆(D,D5) = {T (a), P (c, a)}, satisfies the set of constraints IC ,

but is not a repair because D1 <D D5. 2
The previous example shows that with the new repair semantics we obtain a finite

number of repairs (each with a finite extension) even when the set of ICs is cyclic. If

we repaired the database by using the non-null constants in the infinite domain, with

the repair semantics of [Arenas et al., 1999], we would obtain an infinite number of

repairs and infinitely many of them with infinite extension, as analyzed in [Cal̀ı et

al., 2003a].

In fact, it is possible to prove that under our repair semantics there will always

exist a repair for a database D with respect to a set of ICs of the form 2.1. This

follows from the fact that a database instance with no tuples always satisfies the ICs.

Furthermore, the set of repairs is finite and each of them is finite in extension (i.e.

each database relation is finite). This can be proved establishing first that the repairs

are restricted to have constants in adom(D) ∪ const(IC ) ∪ {null}, where adom(D)

is the active domain of the original instance D and const(IC ) is the set of constants

that appear in the ICs. Since finitely many constants can appear in a repair, there is

a finite set of database instances that are candidates to repairs, and each of them is

finite.

The results in this section do not consider NNCs, but can be extended to them,

as shown in Section 5.2.2.

Proposition 5.1 Given a database D and a set IC of RICs and UICs: (a) For every

repair D′ ∈ Rep(D , IC ), adom(D′) ⊆ adom(D) ∪ const(IC ) ∪ {null}. (b) The set

Rep(D , IC ) of repairs is non-empty and finite; and every D ′ ∈ Rep(D, IC ) is finite.

Proof: (a) By contradiction, let us assume there is a repair D′ ∈ Rep(D , IC ) with
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an atom R(ā, c) such that c 6∈ (adom(D) ∪ const(IC ) ∪ {null}). Since c 6∈ adom(D),

R(ā, c) 6∈ D and, therefore R(ā, c) ∈ ∆(D,D′). R(ā, c) could have been added to

restore consistency with respect to a RIC or UIC. We have three cases: (i) Constant

c corresponds to an existentially quantified attribute in the constraint. For database

D′′ = (D′ ∪{R(ā, null)}) r {R(ā, c)}, we would have D′′ |= IC and D′′ <D D′, there-

fore D′ would not be a repair. We have a contradiction. (ii) Constant c corresponds

to a universally quantified attribute in an ICs. Since constraints have form (2.1), it

implies that the atom(s) that created the inconsistency had c in at least one of its

attributes. Here, we have two choices (ii.1) The atom that contains c was part of D,

then c ∈ adom(D), and this is a contradiction. (ii.2) The atom that contained c was

added to solve an inconsistency, in which case we go back to the beginning of this

argument. (iii) The constraint has a constant c, therefore c ∈ const(IC ), and we have

reached a contradiction.

(b) First, let us prove that Rep(D , IC ) is non-empty. Consider a database instance

D0 compatible with Σ such that each predicate is empty. It is easy to check that

D0 |=N
IC (note that there is always a predicate in the antecedent of the constraints).

If there is no other instance D′ over Σ such that D′ |=
N

IC and D′ <D D0, then D0

is a repair. On the other hand, if there is D′ such that D′ |=
N

IC and D′ <D D0,

we can repeat the same argument; etc. Since the instances involved have all finite

extensions for the database relations, it is not difficult to show that the partial order

≤D is well-founded, so there won’t be an infinite decreasing chain.

Now let us prove that every D ′ ∈ Rep(D , IC ) is finite and the number of repairs

is also finite. Part (A) shows that the active domain of the repairs is a subset of

(adom(D) ∪ const(IC ) ∪ {null}) (which is finite). Since the number of predicates is

also finite, the set of databases that can be candidates to repairs are obtained from all

the possible instantiations and combinations of predicates and atoms, and therefore
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the number of repairs is finite and each of them is finite too. 2
Theorem 5.1 The problem of determining if a database D′ is a repair of D with

respect to a set IC consisting of ICs of the form (2.1) is coNP -complete. 2
In order to prove Theorem 5.1 we need to introduce some definitions and propo-

sitions that relate our repair semantics to the one introduced in [Chomicki and

Marcinkowski, 2005a]. In [Chomicki and Marcinkowski, 2005a] repairs are obtained

from the database by tuple deletion only, and the original database has no null val-

ues. We will refer to this type of repairs as del-repairs, and will denote the set of

del-repairs by Repdel(D, IC ).

Definition 5.4 [Chomicki and Marcinkowski, 2005a] Given a set IC of ICs and a

database D, a database D′ is a del-repair of D with respect to IC if D′ is a maximal

subset of D, such that D′ |= IC . Let Repdel(D, IC ) be the set of del-repairs of D

with respect to IC . The del-consistent answer to a boolean query is yes if it is true

in every del-repair of D with respect to IC . 2
Example 5.7 Give a database D = {P (a, b), R(b), S(a), P (c, e), R(e), T (b), T (e)}

and IC = {∀xy((P (x, y) ∧ R(y)) → S(x)), ∀x(T (x) → R(x))}. The del-repairs

of D with respect to IC are D1 = {P (a, b), R(b), S(a), R(e), T (b), T (e)} and

D2 = {P (a, b), R(b), S(a), P (c, e), T (b)}, with (DrD1) = {P (c, e)} and (DrD2) =

{R(e), T (e)}. 2
The next proposition shows that every del-repair is a repair.

Proposition 5.2 Given a database D without null and a set IC of UICs and RICs,

if D′ ∈ Repdel(D, IC ), then D′ ∈ Rep(D, IC ).
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Proof: By contradiction, let us assume there exists a del-repair D1 that is not a

repair, i.e., D1 ∈ Repd(D, IC ) and D1 6∈ Rep(D, IC ). Since D1 is a del-repair, it

holds:

1. D1 |= IC .

2. (D1 rD) = ∅. This is because D1 is obtained only by tuple deletions.

3. There is no D2 such that D2 |= IC, (D2 −D) = ∅ and (D rD2) $ (D −D1).

4. D1 has no null .

5. D1 |=N
IC. This is because |=

N
coincides with |= when there is no null .

Since D1 6∈ Rep(D, IC ) and D1 |=N
IC, there must exist a database instance D3

such that D3 |=N
IC and D3 <D D1. By definition, D3 <D D1 iff D3 ≤D D1 and

D1 6≤D D3. Then, since D3 ≤D D1, the following holds:

• For every database atom P (ā) ∈ ∆(D,D3), with ā ∈ (U r {null}), it holds

P (ā) ∈ ∆(D,D1). Then, P (ā) ∈ ((DrD1)∪(D1 rD)), but since (D1 rD) = ∅,

P (ā) ∈ (DrD1). Then, for all P (ā) ∈ ∆(D,D3), P (ā) ∈ (DrD3). This implies

that there are no tuple insertions without null .

• For every atom Q(ā, null) ∈ ∆(D,D3), with ā ∈ (U r {null}), there exists

b̄ ∈ U such that Q(ā, b̄) ∈ ∆(D,D1) and Q(ā, b̄) 6∈ ∆(D,D3). Since D has

no null we know that Q(ā, null) ∈ (D3 r D). Also, since Q(ā, b̄) ∈ ∆(D,D1),

Q(ā, b̄) ∈ (D r D1) and Q(ā, b̄) ∈ D. Since Q(ā, b̄) 6∈ ∆(D,D3), Q(ā, b̄) ∈ D3.

Let D4 = D3 r {Q(ā, null)}. It is easy to check that D4 |=N
IC and clearly

D4 <D D3. So, we can always construct an instance D4, such that δ(D , D4)

does not contain null and D4 <D D1.
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Then, there exists an instance D3 such that D3 |=N
IC, D3 <D D1 and (D3 rD) = ∅.

This implies that (D r D3) $ (D r D1). Also, D3 will have no null since D has no

null and the repair was obtained only by tuple deletion. Given that D3 |=N
IC and

D3 has no null , we can conclude that D3 |= IC. Since D1 is also a del-repair, by

condition in item 3 it holds that there should not exist such D3. We have reached a

contradiction. 2
Example 5.8 (example 5.7 continued) The repairs of D with respect to IC are

the del-repairs D1, D2 plus D3 = {P (a, b), R(b), S(a), P (c, e), R(e), T (b), T (e), S(c)},

where S(c) was added to D. This is consistent with the result of Proposition 5.2. 2
The next proposition shows that every repair that is not a del-repair has at least one

inconsistency that can be resolved by tuple insertion.

Proposition 5.3 Given a database D without null values and a set IC of UICs and

RICs, if D′ ∈ Rep(D, IC ) and D′ rD = ∅, then D′ ∈ Repdel(D, IC ).

Proof: Since D′ is a repair we know that D′ is <D-minimal and that R |=
N

IC .

In order to prove that D′ is a del-repair, we need to show that it satisfies IC , that

(D′ r D) = ∅ and that there is no D′′ such that D′ $ D′′, or in other words that

(D − D′′) $ (D − D′). We can prove the first by noting that since D has no null

and (D′ r D) =, D′ has no null and therefore R |= IC . The second condition is an

assumption of the problem. Now we only need to prove that there is no D′′ such that

D′′ |= IC and (D − D′′) $ (D − D′). By contradiction we will assume that such

D′′ exists. Since there are no null values D′′ |=
N

IC and D′′ <D D′. But this would

imply that D′ is not a repair. We have reached a contradiction. 2
Example 5.9 (example 5.8 continued) D1rD = ∅,D2rD = ∅ andD3rD = {S(c)}.

As expected from Proposition 5.3, D1 and D2 are both del-repairs. 2
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Proof of Theorem 5.1: The membership in co-NP can be proved by using the

definition of repair. To prove that a database D′ is not a repair of D with respect

to IC it is enough to guess a consistent database D′′ such that D′′ <D D′. The

comparison <D can be done in polynomial time. Such witness, if exists, will have size

polynomially bounded by the size of D′ because of the definition of <D.

Theorem 9 in [Chomicki and Marcinkowski, 2005a] proves that checking if a

database is a del-repair of D with respect to a set of UICs and RICs IC is coNP-

complete. In order to prove hardness they define a database D and a set IC of UICs

and RICs, such that the empty set is a del-repair of D with respect to IC iff a propo-

sitional formula Φ is not satisfiable. From Propositions 5.2 and 5.3 we know that the

empty set is a del-repair iff the empty set is a repair in our sense (note that the empty

set can be a repair only if tuples where only deleted from the database). Therefore,

we have proven that our problem is coNP-hard. 2
We have shown that the problem of determining if a database instance is a repair of

a database with respect to a set of ICs, is coNP-complete. Now we want to study the

problem of retrieving consistent answers. The consistent answers to a query are the

answers obtained from all the repairs of the database.

Definition 5.5 [Arenas et al., 1999] Given a database D , a set of ICs IC , a query

Q(x̄), and a notion |=Q of satisfaction in databases with null , a ground tuple t̄ is

a consistent answer to Q with respect to IC in D iff for every D ′ ∈ Rep(D , IC ),

D′ |=Q Q[t̄]. If Q is a sentence (boolean query), then yes is a consistent answer iff

D ′ |=Q Q for every D ′ ∈ Rep(D, IC ). Otherwise, the consistent answer is no. 2
In this formulation of CQA, |=Q denotes the semantics of satisfaction of queries in a

database with null . At this stage, we are not committing ourselves to any particular

semantics for query answering. We will assume that we have such a notion that can
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be applied to queries in databases with null .

Alternatives for this query semantics, among others, are those proposed in [Levene

and Loizou, 1999a; Zaniolo, 1984], the SQL query answering semantics, and the null

query answering semantics introduced in Chapter 4. We will also assume that |=Q

can be computed in polynomial time in data complexity for safe first-order queries

[Gelder and Topor, 1987], and that it coincides with the classical first-order semantics

for queries in databases without null . We will also assume in the following that queries

are safe, a sufficient syntactic condition for domain independence [Gelder and Topor,

1987].

The decision problem for consistent query answering is

CQA(Q, IC ) = {(D, t̄) | t̄ is a consistent answer to Q(x̄) with respect to IC in D}.

Since we have Q and IC as parameters of the problem, we are interested in the

data complexity of this problem, i.e., in terms of the size of the database [Abiteboul

et al., 1995]. It turns out that CQA for FOL queries is decidable, in contrast to

what happens with the classic repair semantics [Arenas et al., 1999], as established

in [Cal̀ı et al., 2003a]. The ideas behind the proof are as follows: (a) There is a finite

number of database instances that are candidates to be repairs, because they use only

the active domain of the original instance, null , and the constants in the ICs. (b)

The satisfaction of ICs in the candidates can de decided by restriction to the active

domain, because the ICs are domain independent. (c) Checking if D1 ≤D D2 can

be effectively decided. (d) The answers to safe first-order queries can be effectively

computed.

Theorem 5.2 Consistent query answering for first-order queries with respect to sets

of ICs of the form (2.1) is decidable. 2
Proof: By Proposition 5.1, there are a finite number of database instances that are
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candidates to be repairs of D with respect to a set of ICs IC . Let us denote this set

with CR(D, IC ). We can obtain them by taking all the predicates in the schema with

all the possible combinations of elements in (adom(D)∪const(IC )∪{null}). From this

set of candidates to be repairs we need to check which of them satisfy the constraints,

i.e., we need to compute ConsisCR(D, IC ) = {D | D ∈ CR(D, IC ) and D |=
N

IC}.

In order to check if D |=
N

IC , we need to check if D |= ICN . For every ψ ∈ IC ,

ψN is domain independent, therefore the formula can be checked using the active

domain. From ConsisCR(D, IC ), we can prune the database instances that are not

≤D-minimal by doing a minimality test, and therefore obtaining Rep(D , IC ). For a

safe query Q, we can compute the consistent answer by returning the tuples we get

from all the different repairs in Rep(D , IC ). 2
The following theorem can be obtained by using a similar result in [Chomicki and

Marcinkowski, 2005a] and the facts that our tuple deletion based repairs are exactly

the repairs in [Chomicki and Marcinkowski, 2005a], and every repair in our sense that

is not one of those contains at least one tuple insertion.

Theorem 5.3 Consistent query answering for first-order queries and sets of ICs of

the form (2.1) is ΠP
2 -complete.

Proof: Membership can be proved by using the definition consistent query answering.

To prove that a query is not consistently true, we need to find a database repair in

which the query is false. Checking if a database is a repair is in co-NP.

In Theorem 12 in [Chomicki and Marcinkowski, 2005a] it is proved that the prob-

lem of checking if a tuple is a del-consistent answer is ΠP
2 -complete. In order to prove

hardness Chomicki and Marcinkowski define a database D1, a set IC 1 with one func-

tional dependency, and a RIC such that R(a, a, ψ1, a) is a del-consistent answer iff

the following quantified boolean formula is true: ∀p̄ ∃q̄(ψ1 ∧ · · · ∧ ψm), where ψi are
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clauses. From Propositions 5.2 and 5.3 we know that, given a database D without

null , all del-repairs of D with respect to IC are repairs of D with respect to IC ,

and that for every repair D′ that is not a del-repair, (D′ r D) 6= ∅. For IC 1, the

constraints from the reduction, the only way in which an inconsistency can be solved

by inserting a tuple is the RIC, since the functional dependency can be solved only by

tuple deletions. Therefore, we are sure that if a tuple is inserted it will contain null

(if a value different from null is inserted in the existential variable, the new database

would not be <D-minimal). Then, we can conclude that if D′ ∈ Rep(D1, IC 1), then

only one of the following holds D′ ∈ Repdel(D1, IC 1) or D1 has null in it. Let N

be boolean query such that the answer to it is Yes iff null is in the database. It is

easy to see that R(a, a, ψ1, a) is a del-consistent answer of D1 with respect to IC1 iff

R(a, a, ψ1, a) ∨ N is a consistent answer of D1 with respect to IC1. Therefore, our

problem is ΠP
2 -hard. 2

Note that hardness can be obtained already for boolean queries.

5.2 Repair Logic Programs

Repairs of relational databases can be specified as stable models of disjunctive logic

programs. In [Barceló and Bertossi, 2002; Barceló; and Bertossi, 2003; Barceló et al.,

2003; Bravo and Bertossi, 2004; Caniupan and Bertossi, 2005] such programs were

presented, but they were based on classic IC satisfaction, that differs from the one

introduced in Section 4.1. These different semantics for satisfaction of ICs produces

as a consequence a different repair semantics. Furthermore, the results in [Barceló

and Bertossi, 2002; Barceló; and Bertossi, 2003] consider a different repair semantics

for RICs, where they are repaired using arbitrary values from the domain.

The repair programs that we will present now implement the new repair semantics

for a set of RIC-acyclic constraints. The program Π(D , IC ) from Definition 5.1 needs
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to be adjusted to deal with the new repair semantics for RICs and with the semantics

of IC satisfaction in the presence of null .

Definition 5.6 Given a database D and a set IC of UICs of the form (2.2) and of

RICs of the form (2.3), the repair program Π(D , IC ) is a disjunctive logic program

formed by the following set of rules:

1. dom(x) for every constant x in database D except null .

2. The fact P (ā, td) for every atom P (ā) ∈ D .

3. For every UIC ψ of the form (2.2), the rules:

∨n
i=1 Pi (x̄i, fa) ∨

∨m
j=1Qj (ȳj, ta) ←−

∧n
i=1 Pi (x̄i, t

⋆),
∧m
j=1Qj (ȳj, f

⋆),

∧

xl∈A(ψ) dom(xl), ϕ̄.

where A(ψ) is the set of relevant attributes for ψ, x̄ =
⋃n
i=1 xi and ϕ̄ is a

conjunction of built-ins that is equivalent to the negation of ϕ.

4. For every RIC ψ of the form (2.3), the rules:3

P (x̄, fa) ∨Q (x̄′, null , ta)← P (x̄, t⋆), not auxψ(x̄
′), dom(x̄′).

And for every yi ∈ ȳ:

auxψ(x̄
′)← Q (x̄′, ȳ, t⋆), not Q (x̄′, ȳ, fa), dom(x̄′), dom(yi).

auxψ(x̄
′)← Q (x̄′, null , td), not Q (x̄′, null , fa), dom(x̄′).

5. For every predicate P ∈ R, Π(D , IC ) contains the rules:

P (x̄, t⋆)← P (x̄, td). P (x̄, t⋆)← P (x̄, ta).

P (x̄, f⋆)← P (x̄, fa). P (x̄, f⋆)← dom(x̄), not P (x̄, td).

6. For every predicate P ∈ R, Π(D , IC ) contains the rules:

P (x̄, f⋆⋆) ← P (x̄, fa). P (x̄, f⋆⋆) ← dom(x̄), not P (x̄, td), not P (x̄, ta).

3Literal dom(x̄) denotes the conjunction of the atoms dom(xj) for xj ∈ x̄.
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P (x̄, t⋆⋆) ← P (x̄, ta). P (x̄, t⋆⋆) ← P (x̄, td), not P (x̄, fa).

7. For every predicate P ∈ R, Π(D , IC ) contains the rules:

← P (x̄, ta) , P (x̄, fa). 2
Facts in 1. are the elements of the domain and facts in 2. are the elements in the

database. Rules in 3. enforce, as before, the satisfaction of UICs. Rules in 4. enforce

the satisfaction of a RIC. If P (ā, t⋆) is true and aux(ā′) is false, i.e., there is no ȳ

such that Q(ā′, ȳ) is true or was made true by the repair program, then there are

two alternative ways to restore consistency: delete P (ā) or add Q(ā′, ¯null) to the

database. Since the satisfaction of UICs and RICs needs to be checked only if none

of the relevant attributes of the antecedent are null , we use dom(x) in rule 3. and in

the rules in 4. so that the constraint is checked only if x is different from null (since

dom(null) is always false). Notice that rules 4. are implicitly based on the fact that

the relevant attributes for a RIC of the form (2.3) are A = {x | x ∈ x̄′}. Rules in

5. capture the atoms that are part of the inconsistent database or that become true

in the repair process; and rules 6. those that become true in the repairs. Rule 7.

enforces, by discarding models, that no atom can be made both true and false in a

repair. Note that in the repair program, null is treated as any other constant.

For a stable modelM of the program, DM denotes the database obtained from it

by keeping only the tuples with annotation constant t⋆⋆.

Definition 5.7 LetM be a stable model of program Π(D , IC ). The database asso-

ciated toM is DM = {P (ā) | P (ā, t⋆⋆) ∈M}. 2
Example 5.10 Consider the database instance {P (ā)} and the ICs: {∀xy(Q(x, y)→

R(x, y)), ∀x(P (x)→ ∃yQ(x, y))}. The program Π(D , IC ) is:

1. dom(a).
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2. P (a, td).

3. Q (x, y, fa) ∨R (x, y, ta)← Q (x, y, t⋆), R (x, y, f⋆), dom(x), dom(y).

4. P (x, fa) ∨Q (x, null , ta)← P (x, t⋆), not aux 1(x), dom(x).

aux 1(x)← Q (x, y, t⋆), not Q (x, y, fa), dom(x), dom(y).

aux 1(x)← Q (x, null , td), not Q (x, null , fa), dom(x).

5. P (x, f⋆)← dom(x), not P (x, td).

P (x, f⋆)← P (x, fa).

P (x, t⋆)← P (x, ta).

P (x, t⋆)← P (x, td).

Q (x, y, f⋆)← dom(x), dom(y), not Q (x, y, td).

Q (x, y, f⋆)← Q (x, y, fa).

Q (x, y, t⋆)← Q (x, y, ta).

Q (x, y, t⋆)← Q (x, y, td).

R (x, y, f⋆)← dom(x), dom(y), not R (x, y, td).

R (x, y, f⋆)← R (x, y, fa).

R (x, y, t⋆)← R (x, y, ta).

R (x, y, t⋆)← R (x, y, td).

6. P (x, t⋆⋆)← P (x, ta).

P (x, t⋆⋆)← P (x, td), not P (x, fa).

P (x, f⋆⋆)← P (x, fa).

P (x, f⋆⋆)← dom(x), not P (x, td), not P (x, ta).

Q (x, y, t⋆⋆)← Q (x, y, ta).

Q (x, y, t⋆⋆)← Q (x, y, td), not Q (x, y, fa).

Q (x, y, f⋆⋆)← Q (x, y, fa).

Q (x, y, f⋆⋆)← dom(x), dom(y), not Q (x, y, td), not Q (x, y, ta).
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R (x, y, t⋆⋆)← R (x, y, ta).

R (x, y, t⋆⋆)← R (x, y, td), not Q (x, y, fa).

R (x, y, f⋆⋆)← R (x, y, fa).

R (x, y, f⋆⋆)← dom(x), dom(y), not R (x, y, td), not R (x, y, ta).

7. ← P (x, ta), P (x, fa).

← Q (x, y, ta), Q (x, y, fa).

← R (x, y, ta), R (x, y, fa).

The stable models of the program are:

M1= {dom(a), P (a, td), P (a, t⋆), P (a, f⋆), P (a, f⋆⋆), P (a, fa), Q (a, a, f⋆),

R (a, a, f⋆), Q (a, a, f⋆⋆), R (a, a, f⋆⋆)}

M2= {dom(a), P (a, td), P (a, t⋆), P (a, t⋆⋆), Q (a, null , ta), Q (a, a, f⋆),

R (a, a, f⋆), Q (a, a, f⋆⋆), R (a, a, f⋆⋆), Q (a, null , t⋆⋆)}

The databases associated with these models are DM1
= ∅ and DM2

= {P (a), Q(a,

null)}, and they correspond to the repairs.

If the fact Q(a, null) is added to the instance, the fact Q (a, null , td) becomes a

part of the program. Since the database is consistent in this case, the program would

have only one stable model, M1, corresponding to {P (a), Q(a, null)}, the original

database:

M1= {dom(a), P (a, td), P (a, t⋆), Q (a, null , td), P (a, t⋆⋆), Q (a, a, f⋆),

R (a, a, f⋆), Q (a, a, f⋆⋆), R (a, a, f⋆⋆), Q (a, null , t⋆⋆)}. 2
Example 5.11 (example 5.3 continued) The repair program Π(D , IC ):

1. dom(21), dom(C15). dom(34), dom(C18). dom(21),

dom(Ann). dom(45), dom(Paul).
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2. Reg (21, C15, td). Reg (34, C18, td).

Student (21,Ann, td). Student (45,Paul , td).

3. There is no UIC.

4. Reg (x, y, fa) ∨ Student (x, null , ta)← Reg (x, y, t⋆), not aux(x), x 6= null .

aux(x)← Student (x, y, t⋆), not Student (x, y, fa), x 6= null , y 6= null .

aux(x)← Student (x, null , td), not Student (x, null , fa), x 6= null .

5. .Reg (x, y, t⋆)← Reg (x, y, ta).

Reg (x, y, t⋆)← Reg (x, y, td).

Reg (x, y, f⋆)← Reg (x, y, fa).

Reg (x, y, f⋆)← dom(x), dom(y), not Reg (x, y, td).



























(Similarly for Student)

6. .Reg (x, y, t⋆⋆)← Reg (x, y, ta).

Reg (x, y, t⋆⋆)← Reg (x, y, td), not Reg (x, y, fa).

Reg (x, y, f⋆⋆)← Reg (x, y, fa).

Reg (x, y, f⋆⋆)← dom(x), dom(y), not Reg (x, y, td),

not Reg (x, y, ta).











































(Similarly for Student)

7. ← Reg (x, y, ta),Reg (x, y, fa).

← Student (x, y, ta), Student (x, y, fa).

The program has two stable models:4

M1 = {Reg (21,C15 , t⋆), Reg (34,C18 , t⋆), Student (21,Ann, t⋆), Student (45,

Paul , t⋆), Reg (34,C18 , fa), Reg (21,C15 , t⋆⋆), Student (21,Ann, t⋆⋆),

Student (45,Paul , t⋆⋆)}.

4Facts and atoms annotated with f
⋆ and f

⋆⋆ are omitted in all the model.
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M2 = {Reg (21,C15 , t⋆), Reg (34,C18 , t⋆), Student (21,Ann, t⋆), Student (45,

Paul , t⋆), Student (34, null , ta), Reg (21,C15 , t⋆⋆), Student (21,Ann, t⋆⋆),

Student (45,Paul , t⋆⋆) Student (34, null , t⋆⋆)}.

The databases associated to these models correspond exactly to the repairs:

DM1
= {Reg(21,C15 ), Student(21,Ann), Student(45,Paul)}.

DM2
= {Reg(21,C15 ), Reg(34, C18 ), Student(21, Ann), Student(45, Paul), Student

(34, null)}. 2
Under this new repair semantics it holds that:

Theorem 5.4 Given a database D and a RIC-acyclic set of UICs and RICs, ifM is a

stable model of Π(D , IC ), then DM is a repair of D with respect to IC . Furthermore,

the repairs obtained in this way are all the repairs of D . 2
In order to prove this theorem we need to introduce some lemmas, propositions and

definitions.

Lemma 5.1 Given a database D and a RIC-acyclic set of UICs and RICs, ifM is a

stable model of Π(D , IC ), i.e., a minimal model of Π(D , IC )M, then exactly one of

the following cases holds:

1. P (ā, td), P (ā, t⋆) and P (ā, t⋆⋆) belong to M, and no other P (ā, v), for v an

annotation value, belongs toM.

2. P (ā, td), P (ā, t⋆) and P (ā, fa) belong to M, and no other P (ā, v), for v an

annotation value, belongs toM.

3. P (ā) 6∈ M and P (ā, ta), P (ā, t⋆) and P (ā, t⋆⋆) belong to M, and no other

P (ā, v), for v an annotation value, belongs toM.
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4. P (ā) 6∈ M and no P (ā, v), for v an annotation value, belongs toM.

Proof: For an atom P (ā), we have two possibilities:

• P (ā, td) ∈ M. Then, from rule 5, P (ā, t⋆) ∈ M. Two cases are possible

now: P (ā, fa) 6∈ M or P (ā, fa) ∈ M. For the first case, since M is minimal,

P (ā, ta) 6∈ M) and P (ā, t⋆⋆) ∈ M. For the second case, because of rule 7,

P (ā, ta) 6∈ M. These cases cover the first two items in the lemma.

• P (ā, td) 6∈ M. Two cases are possible now: P (ā, ta) ∈M or P (ā, ta) 6∈ M. For

the first one we also have P (ā, t⋆⋆), P (ā, t⋆) ∈M because of rules 5 and 6 and

P (ā, fa) 6∈ M because of rule 7. For the second one, P (ā, t⋆) 6∈ M (since M

is minimal), P (ā, fa) 6∈ M (because P (ā, t⋆) 6∈ M and M is minimal). These

cases cover the last two items in the lemma. 2
From two database instances we can define a structure.

Definition 5.8 For two database instances D1 and D2 over the same schema and

domain and a set of ICs IC ,M⋆
IC (D1,D2) is the Herbrand structure 〈D, IP , IB〉, where

U is the domain of the database5 and IP , IB are the interpretations for the database

predicates (extended with annotation arguments) and the built-ins, respectively. IP

is inductively defined as follows:

1. If P (ā) ∈ D1 and P (ā) ∈ D2, then P (ā, td), P (ā, t⋆) and P (ā, t⋆⋆) ∈ IP .

2. If P (ā) ∈ D1 and P (ā) 6∈ D2, then P (ā, td), P (ā, t⋆) and P (ā, fa) ∈ IP .

3. If P (ā) 6∈ D1 and P (ā) 6∈ D2, then P (ā, v) 6∈ IP for all annotated constants v.

4. If P (ā) 6∈ D1 and P (ā) ∈ D2, then P (ā, ta), P (ā, t⋆) and P (ā, t⋆⋆) ∈ IP .

5Strictly speaking, the domain U now also contains the annotations values.
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5. For every RIC ψ ∈ IC of the form ∀x̄(P (x̄) → ∃ȳQ(x̄′, ȳ)). If P (ā, t⋆⋆) ∈ IP ,

for ā 6= null and there exists a b̄ with at least one b ∈ b̄ such that b 6= null and

Q(ā′, b̄, t⋆⋆) ∈ IP , then auxψ(ā′) ∈ IP .

The interpretation IB is defined as expected: if Q is a built-in, then Q(ā) ∈ IB iff

Q(ā) is true in classical logic, and Q(ā) 6∈ IB iff Q(ā) is false. 2
Notice that the database associated toM⋆

IC (D1, D2) corresponds exactly to D2, i.e.,

DM⋆
IC

(D1,D2) = D2.

Lemma 5.2 Given a database D and a set of UICs and RICs, if D′ |=
N

IC , then

there is a modelM of the program (Π(D , IC ))M such that DM = D′. Furthermore,

this model isM⋆
IC (D,D′).

Proof: As M⋆
IC (D,D′) = D′, we only need to show M⋆

IC (D,D′) satisfies all the

rules of (Π(D , IC ))M. It is clear that, by construction, rules 2, 5 and 6 are satisfied

by M⋆
IC (D,D′). For every UIC in IC there is a set of rules of the form 3. If the

body of the rule is satisfied, then the atoms Pi (āi, t
⋆) ∈M⋆

IC (D,D′) and Qi (b̄i, fa) ∈

M⋆
IC (D,D′) or Qi(b̄i) 6∈ M⋆

IC (D,D′). Also, since the constraint is satisfied, at least

one of the Pi(āi) is not in D′ or one of the Qi(b̄i) is in D′. By construction of

M⋆
IC (D,D′), at least one of Pi (āi, fa) or Qi (b̄i, ta) is inM⋆

IC (D,D′). Therefore, the

head of the rule is also satisfied and the whole rule is satisfied. For every RIC in

IC , there is a set of rules of the form 4. By construction of M⋆
IC (D,D′), the rules

that define auxψ(x̄) for all ψ ∈ IC are satisfied. If the body of the first rule in 4

is true in M⋆
IC (D,D′), it means that the integrity constraint is not satisfied in the

database or at some point of the repair process. Since the constraint is satisfied by

D′, the satisfaction had to be restored by adding Q(x̄, null) or by deleting P (x̄). This

implies that Q(x̄, null , ta) ∈ M⋆
IC (D,D′) or P (x̄, fa) ∈ M⋆

IC (D,D′), and therefore
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that the first (or second) rule is satisfied. Then, by construction of M⋆
IC (D,D′),

P (ā, null , fa) ∈M⋆
IC (D,D′), and the head of the rule is also satisfied. 2

The next lemma shows that if M is a minimal model of the program Π(D , IC )M,

then DM satisfies the constraints.

Lemma 5.3 Given a database D and a set of UICs and RICs, ifM is a stable model

of the program Π(D , IC ), then DM |=N
IC .

Proof: We want to show that DM |=N
ψ, for every constraint ψ ∈ IC . There are

three cases to consider:

• IC ψ is a UIC. Since M is a model of (Π(D , IC ))M, M satisfies rules 3 of

Π(D , IC ). Then, at least one of the following cases holds:

– M |=
N
Pi(ā, fa). Then,M 6|=

N
Pi(ā, t

⋆⋆) and P (ā) 6∈ DM (by Lemma 5.1).

Hence, DM |=N
¬Pi(ā). Since the analysis was done for an arbitrary value

ā, DM |=N

∧n
i=1 Pi(x̄i)→

∨m
j=1Qj(ȳj) ∨ ϕ holds.

– M |=
N
Qj(ā, ta). It is symmetric to the previous one.

– It is not true that M |=
N
ϕ̄. Then M |=

N
ϕ. Hence, ϕ is true, and

DM |=N

∧n
i=1 Pi(x̄i)→

∨m
j=1Qj(ȳj) ∨ ϕ holds.

– M 6|=
N
Pi(ā, t

⋆). Given that M is minimal, just the last item in Lemma

5.1 holds. This meansM 6|=
N
Pi(ā, t

⋆⋆), Pi(ā) 6∈ DM and DM |=N
¬Pi(ā).

Since the analysis was done for an arbitrary value ā, DM |=N

∧n

i=1 Pi(x̄i)

→
∨m
j=1Qj(ȳj) ∨ ϕ holds.

– M 6|=
N
Qj(ā, fa) or M |=

N
Qj(ā, td). Given that M is minimal, just the

first item in Lemma 5.1 holds. Then, M |=
N
Qj(ā, t

⋆⋆), Qj(ā) ∈ DM

and DM |=N
Qj(ā). Since the analysis was done for an arbitrary value ā,

DM |=N

∧n
i=1 Pi(x̄i)→

∨m
j=1Qj(ȳj) ∨ ϕ holds.
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• Formula ψ is a RIC. Since M is a model of (Π(D , IC ))M, M satisfies rules 4

of Π(D , IC ). Then, at least one of the following cases holds:

– M |=
N
P (ā, fa). Then,M 6|=

N
Pi(ā, t

⋆⋆) and P (ā) 6∈ DM (by Lemma 5.1).

Hence, DM |=N
¬Pi(ā). Since the analysis was done for an arbitrary value

ā, DM |=N
(P (x̄)→ Q(x̄′, y)) holds.

– M |=
N
Q(ā′, null , ta). It is symmetric to the previous one.

– M 6|=
N
P (ā, t⋆). Given that M is minimal, just the last item in Lemma

5.1 holds. This means M 6|=
N
P (ā, t⋆⋆), P (ā) 6∈ DM and DM |=N

¬P (ā).

Since the analysis was done for an arbitrary value ā, DM |=N
(P (x̄) →

Q(x̄′, y)) holds.

– M |=
N

auxψ(ā′). This means that P (ā, t⋆) ∈ M and that there exists

b̄ 6= null such that Q(ā′, b̄, t⋆) ∈ M, Q(ā′, b̄, fa) 6∈ M, and therefore that

P (ā) ∈ DM and Q(ā, b̄) ∈ DM. Then, the constraint is satisfied. 2
Lemma 5.4 Consider two database instances D and D′ over the same schema and

domain. IfM is a minimal model of (Π(D, IC ))M
⋆(D,D′) such thatM $M⋆(D,D′),

then there exists M′ that is a minimal model of (Π(D, IC ))M
′

with DM′ <D D′.

Proof: SinceM is a minimal model of (Π(D, IC ))M
⋆
IC

(D,D′), P (ā, td) ∈M iff P (ā) ∈

D. By definition of M⋆
IC (D,D′) andM $M⋆(D,D′), the only two ways that both

models can differ is that, for some P (ā) ∈ D, {P (ā, fa)} ⊆ M⋆(D,D′) and P (ā)

nor P (ā, fa) belong to M, or for some P (ā) 6∈ D, {P (ā, ta), P (ā, t⋆), P (ā, t⋆⋆)} ⊆

M⋆
IC (D,D′) and P (ā), P (ā, ta), P (ā, t⋆) nor P (ā, t⋆⋆) belong to M. Now, if we

use the interpretation rules overM, we will construct a modelM′ that is a minimal

model of (Π(D, IC ))M
′

. FromM, the modelM′ is constructed as follows:

• If P (ā, td) ∈M and P (ā, fa) 6∈ M, then P (ā, td), P (ā, t⋆) and P (ā, t⋆⋆) ∈M′.
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• If P (ā, td) ∈M and P (ā, fa) ∈M, then P (ā, td), P (ā, t⋆) and P (ā, fa) ∈M
′.

• If P (ā, td) 6∈ M and P (ā, ta) 6∈ M, then nothing is added toM′.

• If P (ā, td) 6∈ M and P (ā, ta) ∈M, then P (ā, ta), P (ā, t⋆) and P (ā, t⋆⋆) ∈M′.

It is clear that M′ is a coherent and minimal model of (Π(D, IC ))M
′

. It just rests

to prove that DM′ <D D′. First, we will prove DM′ ≤D D′. Let us suppose P (ā) ∈

∆(D,DM′). Then, either P (ā) ∈ D and P (ā) 6∈ DM′ or P (ā) 6∈ D and P (ā) ∈ DM′ .

In the first case, P (ā, td), P (ā, t⋆) and P (ā, fa) are inM′. These atoms are also inM

and, given the only two ways in which M and M⋆
IC (D,D′) can differ, they are also

in M⋆
IC (D,D′). Hence, P (ā) ∈ ∆(D,D′). In the second case, P (ā, ta) and P (ā, t⋆)

are inM′. These atoms are also inM and, given the only two ways in whichM and

M⋆
IC (D,D′) can differ, they are also inM⋆

IC (D,D′). Hence, P (ā) ∈ ∆(D,D′).

We will now prove DM′ <D D′. We know that, for some fact P (ā), P (ā, ta) ∈

M⋆
IC (D,D′) and P (ā, ta) 6∈ M, or P (ā, fa) ∈ M

⋆
IC (D,D′) and P (ā, fa) 6∈ M. If

P (ā, fa) is in M⋆
IC (D,D′) and not in M. Then, P (ā) ∈ ∆(D,D′), but P (ā) 6∈

∆(D,DM′). Alternatively, if P (ā, ta) and P (ā, t⋆) are inM⋆
IC (D,D′) and not inM.

Then, P (ā) ∈ ∆(D,D′), but P (ā) 6∈ ∆(D,DM′) and therefore DM′ <D D′. 2
Proposition 5.4 Given a databaseD and a set IC of UICs and RICs, ifD′ is a repair

of D with respect to IC , then there is a stable modelM of the program (Π(D , IC ))M

such that DM = D′. Furthermore, the modelM corresponds toM⋆
IC (D,D′).

Proof: By Lemma 5.2, M⋆
IC (D,D′) is a model of Π(D , IC )M

⋆
IC

(D,D′). We just have

to show it is minimal. Let us suppose, by contradiction, that there exists a modelM

of (Π(D , IC ))M
⋆
IC

(D,D′) such that M $ M⋆
IC (D,D′). Since M $ M⋆

IC (D,D′), the

model M contains the atom P (ā, td) iff P (ā) ∈ D. Then, we can assume, without

loss of generality, that M is minimal (if it is not minimal, we can always generate

from it a minimal model M′, such that M′ $ M, by deleting atoms that are not

supported by program rules).
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By Lemma 5.4, there exists modelM′ such that DM′ <D D ′ andM′ is a minimal

model of (Π(D, IC))M
′

. By Lemma 5.3, DM′ |=
N

IC . This contradicts that D′ is a

repair. 2
Proposition 5.5 IfM is a stable model of Π(D , IC ), then DM is a repair of D with

respect to IC .

Proof: From Lemma 5.3, we have DM |=N
IC . We only need to prove that it is

≤D-minimal. Let us suppose there is a database instance D′, such that D is a repair

of D with respect to IC and D′ ≤D DM. From Proposition 5.4, M⋆
IC (D,D′) is a

stable model of Π(D , IC ) and DM⋆
IC

(D,D′) = D′.

For D′ ≤D DM to hold, there should be an atom P (ā), with ā ∈ U , in ∆(D,DM)

and not in ∆(D,D′) or an atom P (ā, b̄) ∈ ∆(D,DM), with ā′, b̄ ∈ (U r {null}), and

an atom P (ā, null) ∈ ∆(D,D′).

1. P (ā) ∈ ∆(D,DM) and P (ā) 6∈ ∆(D,D′). Since P (ā) ∈ ∆(D,DM) we have

that P (a, ta) or P (a, fa) belongs toM. By Lemma 5.1, there are two options:

• P (ā, td), P (ā, t⋆) and P (ā, fa) belong toM, and no other P (ā, v), for v an

annotation value, belongs toM. P (ā, td), P (ā, t⋆) and P (ā, t⋆⋆) belong to

M⋆, and no other P (ā, v), for v an annotation value, belongs toM⋆.

• P (ā, ta), P (ā, t⋆) and P (ā, t⋆⋆) belong to M, and no other P (ā, v), for v

an annotation value, belongs toM. No P (ā, v), for v an annotation value,

belongs toM⋆.

If an atom belongs to a modelM1, e.g. P (ā, fa), and there is another modelM2

in which it is not present, then there must be in M2 an atom annotated with

ta or fa in order to satisfy the rule that was satisfied in M1 by P (ā, fa). This

implies that M⋆ has an atom annotated with ta or fa that does not belong to
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M. This implies that there is an atom that belongs to ∆(D,D′) and that does

not belong to ∆(D,DM). We have reached a contradiction, because ∆(D,D′)

is a proper subset of ∆(D,DM).

2. P (ā, b̄) ∈ ∆(D,DM) and P (ā, null) ∈ ∆(D,D′). IfM 6|=
N
P (ā′, b̄), thenM |=

N

P (ā′, b̄, ta), M 6|=
N
P (ā′, null) and M 6|=

N
P (ā′, null , ta). Since P (ā, null) ∈

∆(D,D′) and M 6|=
N
P (ā′, null), M⋆ |=

N
P (ā′, null , ta). Since M⋆ |=

N

P (ā′, null , ta), there must be a rule representing a RIC in Π(D , IC ) such that

P (ā′, null , ta) is the only atom true in the head. For that rule to also be satisfied

byM, there must be another atom in the head of that rule which is true inM

and not inM⋆. This means there is a P (b̄) ∈ ∆(D,DM) and P (b̄) 6∈ ∆(D,D′).

This brings us back to alternative 1. which was proven to lead to a contradic-

tion.

Therefore, it is not possible to have D′ <D DM; and DM is a repair of D. 2
Proof of Theorem 5.4: Directly from Propositions 5.4 and 5.5. 2
We have proven that the program Π(D , IC ) can be used to compute the repairs of

a database with respect to a RIC-acyclic set of UICs and RICs. If the set of ICs is

not RIC-acyclic, then we will have some models whose associated databases will be

consistent with respect to IC but will not be repairs (they will not be <D-minimal).

Example 5.12 Consider the database {P (a, b, c), Q(b, c), Q(a, a)} and the following

cyclic set of ICs: {∀xyz(P (x, y, z)→ ∃vQ(y, v)), ∀xy(Q(x, y)→ ∃uP (u, x, y))}. The

expected repairs are {P (a, b, c), Q(b, c)} and {P (a, b, c), Q(b, c), Q(a, a), P (null , a, a)}.

The program Π(D , IC ) corresponds to:

dom(a). dom(b). dom(c). P (a, b, c, td). Q (b, c, td). Q (a, a, td).
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P (x, y, z, fa) ∨Q (y, null , ta)← P (x, y, z, t⋆), not aux1(y), dom(y).

aux1(x)← Q (x, y, t⋆), not Q (x, y, fa), dom(x), dom(y).

aux1(x)← Q (x, null , td), not Q (x, null , fa), dom(x).

Q (x, y, fa) ∨ P (null , x, y, ta)← Q (x, y, t⋆), not aux2(x, y), dom(x), dom(y).

aux2(y, z)← P (x, y, z, t⋆), not P (x, y, z, fa), dom(x), dom(y), dom(z).

aux2(y, z)← P (null , y, z, td), not P (null , y, z, fa), dom(y), dom(z).

P (x, y, z, t⋆)← P (x, y, z, ta).

P (x, y, z, t⋆)← P (x, y, z, td).

P (x, y, z, f⋆)← P (x, y, z, fa).

P (x, y, z, f⋆) ← dom(x), dom(y), dom(z), not P (x, y, z, td).

P (x, y, z, t⋆⋆)← P (x, y, z, ta).

P (x, y, z, t⋆⋆)← P (x, y, z, td), not P (x, y, z, fa).

P (x, y, z, f⋆⋆)← P (x, y, z, fa).

P (x, y, z, f⋆⋆)← dom(x), dom(y), dom(z), not P (x, y, z, td),

not P (x, y, z, ta).































































































(Similarly for Q)

← P (x, y, z, ta), P (x, y, z, fa).

← Q(x, y, ta), Q(x, y, fa).

Π(D , IC ) will compute models that satisfy the ICs but are not necessarily minimal.

In this case, we get the following databases associated to its models:

DM1
= {P (a, b, c), Q(b, c), Q(a, a), P (null, a, a)}

DM2
= {P (a, b, c), Q(b, c)}

DM3
= {P (null , a, a), Q(a, a)}

DM4
= ∅

The first two correspond to the repairs of D with respect to IC . The last two are

consistent, but are not repairs since DM1
≤D DM3

and DM2
≤D DM4

. The databases
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associated to the models of Π(D , IC ) are superset of the repairs. 2
It can be shown that, for a database D and a RIC-cyclic set of constraints IC , the

program captures a superset of the repairs of D with respect to IC .

The repair program Π(D , IC ) can be optimized as shown in Appendix A. There,

materialization of negative information is avoided and the predicate dom is deleted.

The next definition corresponds to the optimized version of the program.

Definition 5.9 Given a database instance D , a set IC of UICs, RICs and NNCs,

the repair program Π⋆(D , IC ) contains the following rules:

1. Facts: P (ā) for each atom P (ā) ∈ D .

2. For every UIC ψ of the form (2.2), the rules:

∨n
i=1 Pi (x̄i, fa) ∨

∨m
j=1 Qj (ȳj, ta) ←

∧n
i=1 Pi (x̄i, t

⋆),
∧

Qj ∈Q′ Qj (ȳj , fa),

∧

Qk∈Q′′ not Qk(ȳk),
∧

xl∈A(ψ) xl 6= null , ϕ̄.

for every set Q′ and Q′′ of atoms appearing in formula (2.2) such that Q′∪Q′′ =

⋃m

j=1Qj(ȳj) and Q′ ∩ Q′′ = ∅.6 Here, A(ψ) is the set of relevant attributes for

ψ (see Definition 4.8), x̄ =
⋃n

i=1 xi and ϕ̄ is a conjunction of built-ins that is

equivalent to the negation of ϕ.

3. For every RIC ψ of the form (2.3), the rules:

P (x̄, fa) ∨Q (x̄′, null , ta)← P (x̄, t⋆), not auxψ(x̄′), x̄′ 6= null .

auxψ(x̄
′)← Q(x̄′, null), not Q (x̄′, null , fa), x̄

′ 6= null .

For every yi ∈ ȳ:

auxψ(x̄
′)← Q (x̄′, ȳ, t⋆), not Q (x̄′, ȳ, fa), x̄

′ 6= null , yi 6= null .

6We are assuming in this definition that the rules are a direct translation of the original ICs
introduced in Section 2; in particular, the same variables are used and the standardization conditions
about their occurrences are respected in the program.
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4. For each predicate P ∈ R, the annotation rules:

P (x̄, t⋆)← P (x̄).

P (x̄, t⋆)← P (x̄, ta).

5. For every predicate P ∈ R, the interpretation rule:

P (x̄, t⋆⋆) ← P (x̄, t⋆), not P (x̄, fa).

6. For every predicate P ∈ R, the program denial constraint:

← P (x̄, ta), P (x̄, fa). 2
The set of predicates Q′ andQ′′ are used to check that in all the possible combinations,

the consequent of a UIC is not being satisfied. This set of rules correspond to applying

the transformation rules used to replace the predicates containing f⋆ and f⋆⋆. The

predicate dom(x) was deleted and its occurrence replaced in all rules by x 6= null .

In the rest of the thesis, we will continue using the optimized version of the

program. Therefore, we will denote Π⋆(D , IC ) simply by Π(D , IC ).

5.2.1 Consistent Answers

The semantics of consistent query answering (Definition 5.5) depends on which query

answering semantics we choose for databases with null values. We will give techniques

to obtain CQAs using the repair program for the null query answering semantics

introduced in Definition 4.15 in Chapter 4 and for the SQL query answering semantics

[International Organization for Standardization, 2003].

Null Consistent Query Answers

Definition 5.5 provides the general definition of consistent query answers on the basis

of a query answering semantics |=Q. In this section, we want to use the null query

answering semantics introduced in Definition 4.15 of Section 4.2.
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Definition 5.10 Given a database D , a set of ICs IC , and a query Q(x̄), a ground

tuple t̄ is a null consistent answer to Q with respect to IC in D iff for every D ′ ∈

Rep(D , IC ), D′ |=q
N
Q[t̄]. If Q is a sentence (boolean query), then yes is a null

consistent answer iff D ′ |=q
N
Q for every D ′ ∈ Rep(D, IC ). Otherwise, the consistent

answer is no. 2
In order to obtain null consistent answers to a FO query Q from a database D , we

can use the repair program Π(D , IC ) in the following way:

1. Query Q is transformed into a query written as a logic program Π(Q). This

transformation is done using a standard process [Lloyd, 1987; Abiteboul et al.,

1995] and Π(Q) so obtained is a stratified Datalog programs [Abiteboul et al.,

1995]. The query program has a query predicate Ans that collects the answers

to Q.

2. Each positive occurrence, say P (t̄), of a database predicate in Π(Q) is replaced

by P (t̄, t⋆⋆).

3. Replace every rule (H ← B) ∈ Π(Q) by: (H ← (B ∧
∧

v∈V(Q) v 6= null)). This

ensures that relevant variables are evaluated only over values in (U r {null}).

4. Program Π(Q) is appended to the repair program Π(D , IC ).

5. The null consistent answers to Q are the ground Ans atoms in the intersection

of all stable models of Π(Q)∪ Π(D , IC ). If Q is a boolean query, yes is a null

consistent answer if Ans (a propositional atom) is in the intersection of all the

models, and no if it is not.

Example 5.13 Consider the ICs IC = {∀xy(P (x, y) → R(x)), ∀x(T (x) → ∃y

P (x, y))} and an inconsistent databaseD = {P (a, b), P (null, a), T (c), R(null)}. Query
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Q1 : ∃xP (x, y) has no relevant variables. Therefore the query is rewritten as the logic

program Π(Q1): Ans(y) ← P (x, y, t⋆⋆). The program Π(D , IC ) has four stable

models:7

M1 = {P (a, b, t⋆), P (null , a, t⋆), T (c, t⋆), R (null , t⋆), P (a, b, t⋆⋆), P (null ,

a, t⋆⋆), T (c, fa), R (a, ta), R (null , t⋆⋆), R (a, t⋆), R (a, t⋆⋆), aux(a)},

M2 = {P (a, b, t⋆), P (null , a, t⋆), T (c, t⋆), R (null , t⋆), P (a, b, t⋆⋆), P (null ,

a, t⋆⋆), T (c, t⋆⋆), R (a, ta), P (c, null , ta), P (c, null , t⋆), R (a, t⋆),

P (c, null , t⋆⋆), R (a, t⋆⋆), R (null , t⋆), R (c, ta), R (c, t⋆), R (c, t⋆⋆),

aux(a)},

M3 = {P (a, b, t⋆), P (null , a, t⋆), T (c, t⋆), R (null , t⋆), P (a, b, fa), P (null ,

a, t⋆⋆), T (c, t⋆⋆), P (c, null , ta), P (c, null , t⋆), P (c, null , t⋆⋆), R (c, ta),

R (c, t⋆), R (null , t⋆⋆), R (c, t⋆⋆)},

M4 = {P (a, b, t⋆), P (null , a, t⋆), T (c, t⋆), R (null , t⋆), P (a, b, fa), P (null ,

a, t⋆⋆), R (null , t⋆⋆), T (c, fa)}.

Then, the repairs are: DM1
= {P (a, b), P (null , a), R(a), R(null)}, DM2

= {P (a, b),

P (null , a), T (c), P (c, null), R(a), R(c), R(null)}, DM3
= {P (null , a), T (c), P (c, null),

R(c), R(null)}, and DM4
= {P (null , a), R(null)}. The stable models of program

(Π(D , IC ) ∪ Π(Q1)) are the stable models of Π(D , IC ) expanded by the answers to

the query:

M1 = M1 ∪ {Ans(b), Ans(a)},

M2 = M2 ∪ {Ans(b), Ans(a)},

M3 = M3 ∪ {Ans(a), Ans(null)},

M4 = M4 ∪ {Ans(a)}.

Since the null consistent answers are those we get from all the possible repairs, the

only answer to this query is {(a)}.

7Facts and atoms annotated with f
⋆ and f

⋆⋆ are omitted from the models.
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On the other hand, for query Q2 : ∃xy(P (x, y) ∧ R(x)), with V(Q2) = {x}, the

query program Π(Q2) is: Ans ← P (x, y, t⋆⋆) ∧ R (x, t⋆⋆) ∧ x 6= null . The stable

models of program (Π(D , IC ) ∪ Π(Q1)) are the stable models of Π(D , IC ) expanded

by the answers to the query:

M1 = M1 ∪ {Ans},

M2 = M2 ∪ {Ans},

M3 = M3 ∪ {Ans},

M4 = M4 ∪ {}.

The consistent answer to this boolean query is no. 2
If a given database D is consistent with respect to a set of ICs, then there is only

one model and one associated repair, that coincides with D. We have successfully

experimented with CQA based on this specification of database repairs using the DLV

system [Leone et al., 2006].

SQL Consistent Query Answering

Now we want to modify Definition 5.5 of consistent query answers so that the query

answering semantics, |=Q, is the SQL query answering semantics [International Or-

ganization for Standardization, 2003].

Definition 5.11 Given a database D , a set of ICs IC , and a query Q(x̄), a ground

tuple t̄ is a SQL-consistent answer to Q with respect to IC in D iff for every D ′ ∈

Rep(D , IC ), D′ |=SQL
N

Q[t̄]. If Q is a sentence (boolean query), then yes is a SQL

consistent answer iff D ′ |=SQL
N

Q for every D ′ ∈ Rep(D, IC ). Otherwise, the consistent

answer is no. 2
In order to obtain null consistent answers to extended conjunctive query (ECQ) Q

from a database D we can use the results of Proposition 4.3. The SQL-consistent
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answers to query Q can be computed as the null consistent answers to query QN (see

Definition 4.19). This is of particular relevance since this is the semantics used in

commercial databases. Further research is needed in finding more relations between

the null query answering semantics and the SQL query answering semantics, so that

we can get answers under the latter from logic programs.

Example 5.14 (example 5.13 continued) For query Q3 : ∃x(P (x, y) ∧ ¬R(x)), the

rewritten query QN

3 is: (∃x(P (x, y) ∧ ¬R(x)) ∨ P (null , y)). The SQL-consistent an-

swers of Q3 are the null consistent answers of QN

3 . They can be obtained via the

query program Π(QN

3 ):

Ans(y)← P (x, y, t⋆⋆), not R (x, t⋆⋆), x 6= null .

Ans(y)← P (null , y, t⋆⋆).

The stable models of program (Π(D , IC ) ∪ Π(QN

3 )) are the stable models of Π(D , IC )

expanded by the null consistent answers to the query QN

3 :

M1 = M1 ∪ {Ans(a)},

M2 = M2 ∪ {Ans(a)},

M3 = M3 ∪ {Ans(a)},

M4 = M4 ∪ {Ans(a)}.

The only null consistent answer to query QN

3 is {(a)} and therefore the SQL consistent

answers to Q3 is {(a)}. 2
5.2.2 Not Null Constraints

So far we have considered CQA for ICs of the form (2.1) and have not considered the

effect of having constraints with the special predicate IsNull . In particular, we have

not considered not null constraints (NNC), as introduced in Definition 4.5.
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Example 5.15 Consider a schema with relations R(X, Y ), with primary key (PK)

R[1], and S(U, V ), with S[2] a foreign key (FK) to table R, i.e., S[2] ⊆ R[1]. Then,

as discussed in Section 4.1.2, the PK can be written as ∀xyz(R(x, y) ∧ R(x, z) →

y = z), ∀xyz(R(x, y) ∧ R(x, z) ∧ IsNull(x)→ IsNull(y)) and the NNC ∀xy(R(x, y)∧

IsNull(x) → false); and the FK as ∀uv(S(u, v) → ∃y R(v, y)). Since there is no

constraint with an existential quantifier over R[1], the NNC will not be violated while

solving inconsistencies with respect to the FK. We would have, then, a non-conflicting

interaction of RICs and NNCs. Database D = {R(a, b), R(a, c), R(null , a), S(e, f),

S(null , a)} is inconsistent, since the PK is violated by {R(a, b), R(a, c)}, and {R(null ,

a)}; and the FK is violated by S(e, f). The repairs are:

D1 = {R(a, b), S(e, f), S(null , a), R(f, null)},

D2 = {R(a, c), S(e, f), S(null , a), R(f, null)},

D3 = {R(a, b), S(null , a)}, and

D4 = {R(a, c), S(null , a)}. 2
The following example shows what can happen if we have a conflicting interaction of

a RIC containing an existential quantifier over a certain variable with an additional

NNC that prevents that variable from tacking the null value.

Example 5.16 Consider the database D = {P (a), P (b), Q(b, c)}, the RIC ∀x(P (x)

→ ∃y Q(x, y)), and the NNC ∀xy(Q(x, y) ∧ IsNull(y)→ false) over an existentially

quantified attribute in the RIC. We cannot repair as expected using null . Actually,

the repairs, as introduced in Definitions 5.2 and 5.3, are {P (b), Q(b, c)}, corresponding

to a tuple deletion, and also those of the form {P (a), P (b), Q(b, c), Q(a, µ)}, for every

µ ∈ (U r {null}), that are obtained by tuple insertions. We thus recover the repair

semantics of [Arenas et al., 1999] given in Definition 5.1. 2
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With a conflicting interaction of RICs and NNCs we could have infinitely many repairs

(see remark after Example 5.6).

The repair semantics of Definitions 5.2 and 5.3 could be modified so that the

repairs are obtained only through tuple deletions when null cannot be used to re-

pair due to the presence of conflicting NNCs. This could be done as follows. If

Rep(D, IC ) is the class of repairs according to Definition 5.3, the alternative class of

repairs, Repd(D, IC ), that prefer tuple deletions over insertions with arbitrary non-

null elements of the domain when there are of conflicting NNCs, can be defined by

Repd(D, IC ) := {D ′ |D′ ∈ Rep(D, IC ) and there is noD′′ ∈ Rep(D, IC ′) with D′′ <D

D′}, where IC ′ is IC without the (conflicting) NNCs.

In the following, we will continue using the repairs introduced in Definitions 5.2

and 5.3; and in order to avoid repairs like those in Example 5.16, we will make the

following assumption:

Assumption: Our sets of ICs of the form (2.1) and NNCs, are non-conflicting, in

the sense that there is no NNC on an attribute that is existentially quantified in an

IC of the form (2.1).

In this way, we will always be able to repair RICs by tuple deletions or tuple

insertions with null . Notice that every set of ICs consisting of primary key constraints,

foreign key constraints, and check constraints satisfies this condition. Also note that

if there are non-conflicting NNCs, the given semantics and the one based on Repd-

repairs coincide.

It can be easily proven that Proposition 5.1 and Theorems 5.1, 5.2 and 5.3 still

hold if we add non-conflicting NNC. That is, the problem of determining if a database

is a repair of a database with respect to a set of ICs of the form (2.1) and NNC of the

form (4.2) is coNP -complete. Also, consistent query answering for first-order queries
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and sets of ICs (including only non-conflicting NNCs) is ΠP
2 -complete.

Now, we need to extend the repair program so that we can include NNCs. The

following definition of repair program also includes the optimizations introduced in

the previous section.

Definition 5.12 Given a database instance D , a set IC of UICs, RICs and NNCs,

the repair program Π(D , IC ) contains the following rules:

1. Same rules as in Definition 5.9.

2. For every NNC of the form (4.2), the rule:

P (x̄, fa)← P (x̄, t⋆), xi = null . 2
Rule 2. captures, in the antecedent of the rule, the violation of ICs of the form (4.2)

and, with the consequent of the rule, the intended way of restoring consistency.

Example 5.17 (example 5.15 continued) The repair program Π(D , IC ) is the fol-

lowing:

1. R(a, b). R(a, c). R(null , a). S(e, f). S(null , a).

2. R (x, y, fa) ∨ R (x, z, fa) ← R (x, y, t⋆), R (x, z, t⋆), y 6= z, x 6= null .

3. S (u, x, fa) ∨ R (x, null , ta)← S (u, x, t⋆), not aux(x), x 6= null .

aux(x)← R (x, y, t⋆), not R (x, y, fa), x 6= null , y 6= null .

4. R (x, y, fa)← R (x, y, t⋆), x = null .

5. .R (x, y, t⋆)← R (x, y, ta).

R (x, y, t⋆)← R(x, y).

R (x, y, t⋆⋆)← R (x, y, ta).

R (x, y, t⋆⋆)← R(x, y), not R (x, y, fa).

← R (x, y, ta), R (x, y, fa).











































(Similarly for S)
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Rules 2., 3. and 4. depend on the ICs: rule 2. for the UIC, 3. for the RIC and 4.

for the NNC. They say how to repair the inconsistencies. In rule 2., Q′ = Q′′ = ∅,

because there is no database predicate in the consequent of the UIC, therefore there

is only one rule.

The program has four stable models (the facts of the program are omitted for

simplicity):

M1 = {R (a, b, t⋆), R (a, c, t⋆), R (null , a, t⋆), S (e, f, t⋆), S (null , a, t⋆), aux(a),

R (null , a, fa), S (e, f, t⋆⋆), S (null , a, t⋆⋆), R (f, null , ta), R (a, b, t⋆⋆),

R (a, c, fa), R (f, null , t⋆), R (f, null , t⋆⋆) },

M2 = {R (a, b, t⋆), R (a, c, t⋆), R (null , a, t⋆), S (e, f, t⋆), S (null , a, t⋆), aux(a),

R (null , a, fa), S (e, f, t⋆⋆), S (null , a, t⋆⋆), R (f, null , ta), R (a, b, fa),

R (a, c, t⋆⋆), R (f, null , t⋆), R (f, null , t⋆⋆) },

M3 = {R (a, b, t⋆), R (a, c, t⋆), R (null , a, t⋆), S (e, f, t⋆), S (null , a, t⋆), aux(a),

R (null , a, fa), S (e, f, fa), S (null , a, t⋆⋆), R (a, b, t⋆⋆), R (a, c, fa)},

M4 = {R (a, b, t⋆), R (a, c, t⋆), R (null , a, t⋆), S (e, f, t⋆), S (null , a, t⋆), aux(a),

R (null , a, fa), S (e, f, fa), S (null , a, t⋆⋆), R (a, b, fa), R (a, c, t⋆⋆)}.

The databases associated to the models select the underlined atoms: DM1
= {S(e, f),

S(null , a), R(a, b), R(f, null)}, DM2
= {S(e, f), S(null , a), R(a, c), R(f, null)},

DM3
= {S(null , a), R(a, b)}, and DM4

= {S(null , a), R(a, c)}. As expected, these

are the repairs obtained in Example 5.15. 2
This repair program specifies the Repd-repairs, i.e., if there is a set of ICs with con-

flicting NNC, then the program will solve the inconsistencies by deletion instead of

by adding tuples with all possible values in the existentially quantified variables.

Theorem 5.5 Let IC be a RIC-acyclic set of UICs, RICs and a set of non-conflicting

NNCs. If M is a stable model of Π(D , IC ), then DM is a repair of D with respect
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to IC . Furthermore, the repairs obtained in this way are all the repairs of D. 2
Proof: In order to prove this theorem, we need to use and modify some lemmas and

propositions of Section 5.2. Lemma 5.1 can be extended to consider non-conflicting

NNC without modifying the proof. On the other hand, the proof of Lemma 5.2 needs

to be modified to consider non-conflicting NNC by adding before the last sentence:

“For every NNC in IC there is a rule of the form 2. If the body of the rule is true,

e.g. P (ā, null , t⋆) ∈ M⋆
IC (D,D′), the constraint is not satisfied at some point in the

repair process. Since it is satisfied in D′, P (ā, null) 6∈ D ′.”

Since Lemma 5.1 holds when non-conflicting NNC are added to the set of IC , we

can prove Lemma 5.3 by adding the following case to the proof:

• Formula ψ is a NNC. Since M is a model of (Π(D , IC ))M, M satisfies rules

2 of Π(D , IC ) (see Definition 5.12). Then, at least one of the following cases

holds:

– M |=
N
P (ā, fa). Then,M 6|=

N
P (ā, t⋆⋆) and P (ā) 6∈ DM (by Lemma 5.1).

Hence, DM |=N
¬P (ā). Since the analysis was done for an arbitrary value

ā, DM satisfies the constraint.

– M 6|=
N
P (ā, t⋆). Given the model is minimal, just the last item in Lemma

5.1 holds. This means M 6|=
N
P (ā, t⋆⋆), P (ā) 6∈ DM and DM |=N

¬P (ā).

Since the analysis was done for an arbitrary value ā, DM satisfies the

constraint.

– M |=
N

(ai 6= null). Hence DM satisfies the constraint.

Lemma 5.4 still holds if IC also considers non-conflicting NNC. The proof does

not need any modification. Since Lemmas 5.1, 5.2, 5.3 and 5.4 hold for sets of

ICs containing NNCs, Propositions 5.4 and 5.5 also hold. Finally, given that these

propositions hold, Theorem 5.5 also holds. 2
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If we do not restrict ourselves to non-conflicting NNC, then the program would gen-

erate the Repd-repairs.

5.2.3 Head-cycle Free Programs

In some cases, the repair programs introduced in Section 5.2 can be transformed into

equivalent non-disjunctive programs. This is the case when they become head-cycle-

free [Ben-Eliyahu and Dechter, 1994]. Query evaluation from such programs has lower

data complexity than general disjunctive programs, actually the data complexity

is reduced from ΠP
2 -complete to coNP -complete [Ben-Eliyahu and Dechter, 1994;

Dantsin et al., 1997]. We briefly recall their definition.

The dependency graph of a ground disjunctive program Π is the directed graph

that has ground atoms as vertices, and an edge from atom A to atom B iff there is a

rule with A (positive) in the body and B (positive) in the head. Π is head-cycle free

(HCF) iff its dependency graph does not contain any directed cycles passing through

two atoms in the head of the same rule. A disjunctive program Π is HCF if its ground

version is HCF.

A HCF program Π can be transformed into a non-disjunctive normal program

sh(Π) that has the same stable models. It is obtained by replacing every disjunc-

tive rule of the form
∨n

i=1 Pi(x̄i) ←
∧m

j=1Qj(ȳj), ϕ. by the n rules Pi(x̄i) ←
∧m
j=1Qj(ȳj), ϕ,

∧

k 6=i not Pk(x̄k)., for i = 1, ..., n.

For certain classes of queries and ICs, consistent query answering has a data

complexity lower than ΠP
2 , a sharp lower bound as seen in Theorem 5.3 (see also

[Chomicki and Marcinkowski, 2005a]). In those cases, it is natural to consider this

kind of transformations of the disjunctive repair program. In the rest of this section,

we will consider sets IC of integrity constraints formed by UICs, RICs and NNCs.

Definition 5.13 A predicate P is bilateral with respect to IC if there exist ψ1 and
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ψ2 in IC such that P ∈ Ant(ψ1) and P ∈ Con(ψ2). 2
Note that ψ1 and ψ2 are not necessarily different.

Example 5.18 If IC = {∀x(T (x) → ∃ y R(x, y), ∀xy(S(x, y) → T (x))}, the only

bilateral predicate is T . 2
Theorem 5.6 For a set IC of UICs, RICs and NNCs, if for every ψ ∈ IC , it holds

that (a) ψ has no bilateral predicates; or (b) ψ has exactly one occurrence of a bilateral

predicate (without repetitions), then the program Π(D , IC ) is HCF. 2
In order to prove Theorem 5.6, we need to introduce first the following lemma.

Lemma 5.5 For a set IC of UICs, RICs and NNCs, if there is a cycle in its depen-

dency graph, then there exists at least one bilateral predicate. Furthermore, all the

atoms in the cycle correspond to bilateral predicates.

Proof: First let us analyze which are the relationships between atoms in the depen-

dency graph depending on the type of the constraints. First, note that the database

atoms, aux , and atoms with constant t⋆⋆, will never be involved in a cycle, because

they are exclusively in the head of rules (maybe negated in the body) or exclusively

in the body. The only predicates that can be in a cycle are those with constants t⋆, ta

and fa. We will concentrate on these atoms in what follows. The possible edges in the

dependency graph between two different atoms in a UIC of the form (2.2) are shown

in Figure 5.1. Figures 5.1(a) and 5.1(b) show the relationship between two predicates

in the antecedent and consequent of IC respectively, and Figure 5.1(c) shows the re-

lationship between a predicate in the antecedent and one in the consequent. For a

RIC of the form (2.3) the edges are as in Figure 5.1(c). For a NNC, since there is

unique database atom in it, the relationship is a simplified version of Figure 5.1(a)
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(a) Pi ∈ Ant(IC ), Pj ∈
Ant(IC )
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)(_, am fQ
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*)(_,tQm *)(_,tQn

(b) Qn ∈ Con(IC ),
Qm ∈ Con(IC )

*)(_,tPi

)(_, ai fP

)(_,an tQ

)(_, an fQ

*)(_,tQn

(c) Pi ∈ Ant(IC ), Qn ∈
Con(IC )

Figure 5.1: Possible dependency graphs of Π(D , UIC)

with only predicate Pi. It is clear from the figures that the only way we can have a

cycle is by having a predicate in the consequent of a constraint (as a Qm) and as an

antecedent (as a Pi). It is easy to see that the predicates of all the atoms in the cycle

will be bilateral 2
Proof of of Theorem 5.6: First, let us assume by contradiction that ψ has no

bilateral predicates, but it is not HCF. This implies there is a cycle involving a pair

of atoms in the head of a rule of Π(D , IC ). But, from Lemma 5.5 we know that if

there is a cycle there is a bilateral predicate. We have reached a contradiction.

Now, let us assume by contradiction that ψ has exactly one occurrence of a bi-

lateral predicate (without repetitions), but it is not HCF. This implies there is a

cycle involving a pair of atoms in the head of a rule of Π(D , IC ). From Lemma 5.5

we know then that both atoms should be bilateral predicates. We have reached a

contradiction. 2
As the following example shows, the conditions given in Theorem 5.6 are sufficient,

but not necessary for the program to be HCF.

Example 5.19 If in IC we have the constraint ∀xy(P (x, y) → P (y, x)), then P

is a bilateral predicate, and the condition in the theorem is not satisfied. There-

fore, the program Π(D, IC ) is not HCF. On the other hand, if we have instead
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IC ′ : ∀x(P (x, a) → P (x, b)), even though the condition is not satisfied, the program

Π(D, IC ′) is HCF. 2
Example 5.20 If IC = {∀xy(S(x, y) → R(x)), ∀x(R(x) → P (x))}, the only bilat-

eral literal is R. Since there is no integrity constraint in IC that has more than one

occurrence of R, the program Π(D , IC ) is HCF. As a consequence, we can replace,

for example, the rule of Π(D , IC ):

S (x, y, fa) ∨R (x, ta)← S (x, y, t⋆), not R (x)

by the two rules

R (x, ta)← S (x, y, t⋆), not R (x), not S (x, y, fa)

S (x, y, fa)← S (x, y, t⋆), not R (x), not R (x, ta) 2
Example 5.21 If IC = {∀(S(x) → R(x)), ∀x(P (x) → S(x)), ∀xy(T (x, y) →

P (x))}, then the bilateral literals are S and P . Since the IC ∀x(P (x) → S(x)) con-

tains two bilateral literals we can not use Theorem 5.6 to determine if the program

is HCF. 2
Theorem 5.6 can be immediately applied to useful classes of ICs, like denial con-

straints, because they do not have any bilateral literals, and as a consequence, the

repair program is HCF.

Corollary 5.1 If IC contains only ICs of the form ∀x̄(
∧n
i=1Pi(x̄i) → ϕ), where

Pi(x̄i) is a database atom and ϕ is a formula containing built-in predicates only, then

Π(D, IC) is HCF. 2
As a consequence of this corollary we obtain, for first-order queries and this class of

ICs, that CQA belongs to coNP , because a query program (that is non-disjunctive)

together with the repair program is still HCF. It has been shown that for this class
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of constraints, if repairs are obtained only by tuple-deletion, the problem is coNP -

complete [Chomicki and Marcinkowski, 2005a]. Actually, CQA for this class of ICs

with our repair semantics is still coNP -complete, because the same reduction found

in [Chomicki and Marcinkowski, 2005a] can be used in our case.

Example 5.22 For IC = {∀xyzuv(P (x, y, z) ∧ P (x, u, v) → y = u), ∀xyzuv(P (x,

y, z) ∧ P (x, u, v)→ z = v), ∀xyzv(Q(x, y, z) ∧ P (x, y, v)→ z = v)}, and any ground

instantiation, there are no bilateral literals. As a consequence, the program Π(D , IC)

will be always HCF. 2
5.3 Alternative Repair Semantics

Several alternative semantics have been considered in the literature. For example,

repairs obtained by tuple updates of attributes [Wijsen, 2003; Wijsen, 2005; Bertossi

et al., 2005a; Bertossi et al., 2005c; Bertossi et al., 2005b; Bertossi et al., 2005d],

preference of insertion over deletion [Lembo et al., 2002], tuple deletions [Chomicki

and Marcinkowski, 2002; Chomicki and Marcinkowski, 2005b] and cardinality-based

repairs [Arenas et al., 2003; Bertossi and Chomicki, 2003; Lopatenko and Bravo, 2006;

Lopatenko and Bertossi, 2006a; Lopatenko and Bertossi, 2006b]. Here, we would like

to explore how we can modify the repair program in order to implement tuple deletions

and cardinality-based repairs.

5.3.1 Tuple Deletion Repairs

Definition 5.4 defines the repairs obtained by tuple deletion. It is easy to modify

the repair program in order to capture as stable models only those obtained by tuple

deletions. The modified version of the program is as follows:
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Definition 5.14 Given a database instance D , a set IC of UICs, RICs and NNCs,

the repair program Πdel(D , IC ) contains the following rules:

1. Facts: P (ā) for each atom P (ā) ∈ D .

2. For every UIC ψ of the form (2.2), the rules:

∨n
i=1 Pi (x̄i, fa) ←

∧n
i=1 Pi(x̄i),

∧

Qj ∈Q′ Qj (ȳj, fa),
∧

Qk∈Q′′ not Qk(ȳk),

∧

xl∈A(ψ) xl 6= null , ϕ̄.

for every set Q′ and Q′′ of atoms appearing in formula (2.2) such that Q′∪Q′′ =
⋃m

j=1Qj(ȳj) and Q′∩Q′′ = ∅. Here, A(ψ) is the set of relevant attributes for ψ,

x̄ =
⋃n
i=1 xi and ϕ̄ is a conjunction of built-ins that is equivalent to the negation

of ϕ.

3. For every RIC of the form (2.3), the rules:

P (x̄, fa)← P (x̄), not aux (x̄′), x̄′ 6= null .

aux (x̄′)← Q(x̄′, null), not Q (x̄′, null , fa), x̄
′ 6= null .

For every yi ∈ ȳ:

aux (x̄′)← Q(x̄′, ȳ), not Q (x̄′, ȳ, fa), x̄
′ 6= null , yi 6= null .

4. For every NNC of the form (4.2), the rule:

P (x̄, fa)← P (x̄), xi = null .

5. For every predicate P ∈ R, the interpretation rule:

P (x̄, t⋆⋆) ← P (x̄), not P (x̄, fa). 2
This repair program can be obtained by deleting the atoms with annotated constant

ta from the rules that have this atom in the consequent, and by deleting completely

the rules that have atoms annotated with ta in the antecedent. Also, since the atoms

with annotation constant t⋆ will correspond exactly to the database facts, we can
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replace all the atoms of the form P (x̄, t⋆) by P (x̄). The resulting program computes

the del-repairs for RIC-acyclic sets of UICs, RICs and non-conflicting NNC.

5.3.2 Minimum Cardinality

In [Dalal, 1992], in the context of belief revision, a semantics that minimizes the

number of insertions and deletions was introduced. The repairs based in this intuition

are called cardinality-based repairs. We will call set-repairs the repairs used so far (see

Definition 5.3).

Repair programs to compute cardinality-based repairs for binary ICs. i.e. UICs

with only two database atoms, are proposed in [Arenas et al., 2003]. Those repair

programs are like the programs to compute the set-repairs but with additional weak

constraints. However, they do not deal with null values nor RICs. The results in

[Arenas et al., 2003] are based on the fact that every cardinality-based repair is also

a set-repair

For databases with null , we can use the repair program given in Definition 5.12

together with some weak constraints to discard the models that do not have a minimal

number of tuple insertions and deletions. We also consider a more general class of

ICs than in [Arenas et al., 2003], namely, ICs of the form (2.1) and (4.2).

Definition 5.15 Given three database instances D, D′ and D′′, D′ is said to be

closer to D than D′′, denoted D′ �CD D′′, iff (a) |∆(D,D′)| < |∆(D,D′′)|, or (b)

|∆(D,D′)| = |∆(D,D′′)| and D′ ≤D D′′. 2
So, a database D′ is closer to database D than a database D′′ if the number of tuples

insertion and deletions required to transform D′ into D are less than those required

by D′′. If they are equal, we prefer a database with null . The latter condition is to

ensure that repairs are obtained using null .
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Definition 5.16 Given a database instance D and a set IC of ICs of the form (2.1)

and (4.2), a cardinality-based repair (C-repair) of D with respect to IC is a database

instance D′ over the same schema, such that D′ |=
N

IC and D′ is �CD-minimal in the

class of database instances that satisfy IC with respect to |=
N
, and share the schema

with D, i.e., there is no database D′′ in this class with D′′ ≺CD D′, where D′′ ≺CD D′

means D′′ �CD D′ but not D′ �CD D′′. The set of C-repairs of D with respect to IC is

denoted with RepC(D, IC ). 2
Proposition 5.6 Given a database D with null values and a set IC of UICs, RICs

and NNC, a C-repair of D with respect to IC is also a repair of D with respect to

IC .

Proof: Let us assume by contradiction that there is a C-repair D′ that is not a repair.

Since D′ is a C-repair, we know that D′ |=
N

IC . Also, since D′ is not a repair, there

should exist D′′ such that D′′ |=
N

IC and that D′′ ≤D D′ but not D′ ≤D D′′. For

D′ ≤D D′′ not to be true there must exist P (ā) ∈ ∆(D,D′) such that there does not

exist an atom P (ā′), such that (a) P (ā) ⊑ P (ā′), (b) P (ā′) ∈ ∆(D,D′′) and (c) if

P (ā) ⊏ P (ā′) then P (ā′) 6∈ ∆(D,D′). Also, since D′ is a C-repair, there should also

exist an atom Q′(b̄) ∈ ∆(D,D′′) such that there does not exist an atom A ∈ ∆(D,D′)

with Q(b̄) ⊑ A (otherwise D′′ would be a C-repair instead of D′). But his would imply

that it is not true that D′ ≤D D′′. We have reached a contradiction. 2
Since every C-repair is a repair, we could try to modify the repair program Π(D , IC )

by adding constraints to the disjunctive logic program to discard the stable models

that do not lead to C-repairs. This can be done by using the so-called weak constraints

[Leone et al., 2006; Buccafurri et al., 2000]. Weak constraints are program constraints

that we would like to satisfy as much as possible, that is, we will choose the stable

models that violate the weak constraints a smaller number of times. To distinguish
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the traditional program constraints from weak constraints, we will express the latter

with ⇐ instead of ←.

In our case, we would like to minimize the number of deletions and insertions. In

the repair program the number of deletions and insertions corresponds exactly to the

number of atoms with annotated ta and fa. Therefore, if we add weak constraints

to avoid them, the stable model semantics for programs with weak constraints will

choose only the models that minimize the number of atoms with ta and fa.

Definition 5.17 Given a database instance D , a set IC of UICs, RICs and NNCs,

the cardinality repair program ΠC (D , IC ) contains the following rules:

1. Rules of Π(D , IC ) (see Definition 5.12).

2. For every predicate P the weak constraints:

⇐ P (x, ta).

⇐ P (x, fa). 2
In [Leone et al., 2006], different weights and priority levels can be assigned to each

weak constraint. The models of a program with weak constraints minimize the sum

of the weights of the violated weak constraints. If there are different priority levels,

the semantics for weak constraints minimizes first the violation of the constraints at

the highest priority level, and then it continues to the lower levels. Here, we want all

of them to have the same weight and be at the same level. The weight (w) and level

(l) can be specified after the constraint by [w : l].

In our case we would have:

⇐ P (x, ta). [1 : 1]

⇐ P (x, fa). [1 : 1]

Example 5.23 Given a database D = {S(c, d), S(c, e)} and the IC ∀x(S(x, y) →

∃R(x, z)), there are two repairs, from which only one is a C-repair: Rep(D , IC ) =
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{{S(c, d), S(c, e), R(c, null)}, ∅} and RepC(D , IC ) = {{S(c, d), S(c, e), R(c, null)}}.

The program ΠC(D , IC ) is:

S(c, d). S(c, e).

S (x, y, fa) ∨ R (x, null , ta)← S (x, y, t⋆), not aux(x), x 6= null .

aux(x)← R(x, null), not R (x, null , fa), x 6= null .

aux(x)← R (x, z, t⋆), not R (x, z, fa), x 6= null , z 6= null .

R (x, y, t⋆)← R(x, y).

R (x, y, t⋆)← R (x, y, ta).

S (x, y, t⋆)← S(x, y).

S (x, y, t⋆)← S (x, y, ta).

R (x, y, t⋆⋆)← R (x, y, t⋆), not R (x, y, fa).

S (x, y, t⋆⋆)← S (x, y, t⋆), not S (x, y, fa).

← R (x, y, ta), R (x, y, fa). ← S (x, y, ta), S (x, y, fa).



























































































































Π(D , IC )

⇐ R (x, y, ta). [1 : 1]

⇐ R (x, y, fa). [1 : 1]

⇐ S (x, y, ta). [1 : 1]

⇐ S (x, y, fa). [1 : 1]



























Weak constraints 2
It is easy to see that if we add the same weak constraints to program Πdel(D , IC ), we

would get the repairs obtained by a minimal number of deletions.

5.4 Conclusions

In this chapter, we have provided mechanisms that would allow a user to specify,

together with a query, a set of integrity constraints -that are not necessarily main-

tained by the DBMS- in such a way that the answers to the queries obtained from

the system are consistent with the given semantic constraints.
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We have introduced a new repair semantics that considers, systematically and for

the first time, the possible occurrence of null values in a database in the form we find

them present and treated in current commercial implementations. Null values are

also used to restore the consistency of the database. The new semantics applies to a

wide class of ICs, including cyclic sets of referential ICs.

We established the decidability of CQA under this semantics, and a tight lower

and upper bound were obtained. The repairs under this semantics can be specified as

stable models of a disjunctive logic program with a stable model semantics for acyclic

foreign key constraints, universal ICs and NOT NULL-constraints, covering all the

usual ICs found in database practice.

At the current state of this line of research, the methodology for computing CQA

using repair programs provably works for any class of first-order ICs that contains

RIC-acyclic universal constraints and referential constraints; in the sense that there is

a one-to-one correspondence between repairs and stable models of the repair program.

The results in this chapter have been published in [Barceló et al., 2003; Bravo

and Bertossi, 2004; Bravo and Bertossi, 2006]. The semantics of CQA for RICs, an

extension of the repair program, some optimization for it and some cases in which it

is head-cycle free were introduced in [Barceló et al., 2003; Bravo and Bertossi, 2004].

In both articles null values were used to repair the inconsistencies with respect to

RICs, and tuples with null values where assumed never to produce inconsistencies

(it did not matter if null was in relevant attributes or not). As a consequence, null

values do not propagate in the repair process. The repair programs that considers

the IC satisfaction semantics from Chapter 4 was presented in [Bravo and Bertossi,

2006].



Chapter 6

CQA in Data Integration Systems (DIS)

Independent and autonomous data sources can be virtually integrated by means of

a mediator, which is a program that provides a global schema as an interface. The

mediator is also responsible for generating query plans to answer global queries, by

retrieving data sets from the sources, and combining them into a final answer set to

be given back to the user.

The “Local-As-View” (LAV) approach to virtual data integration requires that

each data source is described as a set of views over the global schema. On the other

hand, the “Global-As-View” (GAV) approach, defines every global relation as a view

of the set of relations in the sources (see [Lenzerini, 2002] for a survey of these and

mixed approaches). Query answering is harder under LAV [Abiteboul and Duschka,

1998]. On the other hand, LAV offers more flexibility to accept or release sources

into/from an existing system.

In this virtual integration setting, inconsistencies with respect to global integrity

constraints (ICs), i.e., that refer to the relations at the virtual level, are likely to

occur. This is due to the autonomy of the participating sources, the lack of a central

maintenance mechanism; and also to the flexibility to add or delete sources, without

having to consider the other sources in the system.

Example 6.1 Consider the LAV based global integration system G1 with a global

relation R(X, Y ) and two source relations v1 = {V1(a, b), V1(c, d)} and v2 = {V2(a,

c), V2(d, e)} that are described by the view definitions V1(x, y) ← R(x, y); V2(x, y)

112



113

← R(x, y). The global functional dependency (FD) R : X → Y is violated through

the pair of tuples {(a, b), (a, c)}. 2
In a DIS there is an intuitive notion of consistent answer to a query.

Example 6.2 (example 6.1 continued) If we pose on the global system the query

Q : Ans(x, y) ← R(x, y), we obtain the answers {Ans(a, b), Ans(c, d), Ans(a, c),

Ans(d, e)}. However, only the tuples Ans(c, d), Ans(d, e) should be returned as con-

sistent answers with respect to the FD R(X, Y ) : X → Y . 2
Several algorithms for deriving query plans to obtain query answers from virtual data

integration systems have been proposed in the last few years (see [Levy, 2000] for

a survey). However they are not designed to obtain consistent answers to queries.

Furthermore, some of those algorithms assume that certain ICs hold at the global

level [Gryz, 1999; Duschka et al., 2000; Grant and Minker, 2002]. This may not

be a realistic assumption due to the independence of the different data sources and

the lack of a central, global integrity maintenance mechanism. Only a few papers

consider the problem of CQA in virtual integration systems [Lembo et al., 2002;

Bertossi et al., 2002; Bravo and Bertossi, 2003; Cal̀ı et al., 2003b].

In a virtual data integration system, the mediator should solve potential incon-

sistencies when the query plan is generated; again without attempting to bring the

whole system into a global consistent material state. Such an enhanced query plan

generator should produce query plans that are guaranteed to retrieve all and only the

consistent answers to global queries.

In this spirit and under the LAV approach, in [Bertossi et al., 2002] a methodology

for generating query plans to compute answers to limited forms of queries that are

consistent with respect to a restricted class of universal ICs was presented. This

methodology uses the query rewriting approach to CQA presented in [Arenas et al.,
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1999]; and as a consequence inherits its limitations in terms of the queries and ICs

that it can handle. Once the query is transformed, query plans are generated for the

new query. In [Bertossi et al., 2002], the authors also provides a semantics for CQA

in mediated integrated systems (see Section 6.1).

In this chapter, we address the problem of retrieving consistent answers to global

queries under the LAV approach, and assuming that sources are open (or incomplete

or sound) [Abiteboul and Duschka, 1998]. We consider arbitrary universal ICs and

referential ICs; that is, the ICs that are used most in database practice [Abiteboul et

al., 1995]. View definitions are conjunctive queries, and disjunctions thereof. Global

queries are expressed in Datalog and its extensions with negation.

The methodology can be summarized as follows. In a first stage, we specify,

using a logic program with the choice operator [Giannotti et al., 1997] and stable

model semantics [Gelfond and Lifschitz, 1991], the class of all minimal legal global

instances of a virtual integration system. This approach is inspired by the inverse-

rules algorithm [Duschka et al., 2000] and uses auxiliary Skolem predicates whose

functionality is enforced with the choice operator.

In order to obtain answers to global queries from the DIS, a query program has to

be combined with the program that specifies the minimal instances, and then be run

under the skeptical stable model semantics. It turns out that minimal answers, i.e.,

answers that are true in all minimal instances, can be retrieved for Datalognot queries.

The certain answers, i.e., those true in all legal global instances, can be obtained for

all monotone queries, a result that generalizes those found so far in the literature.

In a second stage, we address the computation of consistent answers. We first

observe that an integration system is consistent if all of its minimal legal instances

satisfy the integrity constraints [Bertossi et al., 2002]. Consistent answers from an

inconsistent integration systems are those that can be obtained from all the repairs, as
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described in Definition 5.3, of all the minimal legal instances with respect to the global

ICs [Arenas et al., 1999; Bertossi et al., 2002]. Note that null may be present in the

database sources and that it will also be used to repair inconsistencies with respect

to RICs. In order to retrieve consistent answers, the specification of the minimal

instances has to be combined with a specification of their repairs with respect to the

given ICs. The latter is a logic program that specifies the repairs as its stable models;

and uses annotation constants as in the case of repairs of single relational databases

[Arenas et al., 1999], as presented in Chapter 5. We have experimented with this query

answering mechanism (and the computation of minimal instances and their repairs)

with the DLV system [Eiter et al., 2000; Leone et al., 2006], which implements the

stable model and answer set semantics of disjunctive extended deductive databases.

This chapter is structured as follows. In Section 6.1, we review some basic notions

we need in the rest of the chapter. In Section 6.2, the minimal legal global instances

of a mediated system are specified by means of logic programs with a stable model

semantics. In Section 6.3, the repairs of the minimal global instances are specified as

the stable models of disjunctive logic programs, like those used to specify repairs of

single relational databases for CQA in Section 5.2. In Section 6.4, consistent answers

to queries are obtained by running a query program in combination with the previous

two specification programs. In Section 6.5, several issues and possible extensions

around the specification presented in the previous sections are discussed in detail.

Finally, in Section 6.6, we draw some final conclusions, and we point to related and

future work.
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6.1 Preliminaries

6.1.1 Data Integration System (DIS)

A DIS uses a mediator between the user and the data sources. The main features of

a mediator based system are: (a) The interaction with the system via queries posed

to the mediator; (b) Updates via the mediator are not allowed; (c) Data sources are

mutually independent and may participate in different mediated systems at the same

time; (d) Sources are allowed connect and disconnect from the integration system; (e)

Data is kept in the local, individual sources, and extracted at the mediator’s request.

DB3DB1 DB2 DBn

Wrapper Wrapper Wrapper Wrapper

Global Schema Source Descriptions

Plan Generator

Execution Engine

User Interface
Answers

General Architecture of an Integration System

Figure 6.1: Architecture of an integration system

The mediator interacts with the users or applications as if it was a single database.

In order to achieve this, it provides a global schema, consisting of a set of names for

relations (virtual tables) and their attributes. This schema is application dependent

and determines a (family of) query language(s), as in a usual relational databases

from the user’s point of view. However, the database instances corresponding to the
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global schema is virtual.

A user poses queries to the mediator in terms of the relations in the global schema.

However, in order to answer those global queries, the mediator needs to knows the

correspondence between the global schema and the local schemas. This is achieved

by means of a set of source descriptions, i.e., descriptions of what data can be found

in the different sources. Having this information, when the mediator receives a query,

it develops a query plan that determines: (a) the portions of data that are relevant

to the query at hand, (b) their locations in the relevant data sources, (c) how to

extract that data from the sources via queries, and (d) how to combine the answers

received into a final answer for the user. Figure 6.1 shows the main elements in the

architecture of a mediator for virtual integration of data sources.

The mediator is responsible for solving problems of redundancy, incompleteness,

and consistency of data in the integration system. In this chapter, we will consider

the latter problem, a very relevant one in this context. For example, what should

the mediator do if it is asked about a person’s ID card number and it gets two

different numbers, each coming from a different source? The two sources, taken

independently and separately, may be consistent, but taken together, possibly not.

Such consistency problems are likely and natural in virtual data integration. Notice

that consistency problems in virtual integration, unlike the “materialized” approaches

to data integration, which offer data reconciliation solutions, cannot be solved a priori,

at the physical data level.

Another element shown in Figure 6.1 is the wrapper. This is a module that is

responsible for wrapping a data source in such a way that the latter can interact with

the rest of integration system. It provides the mediator with data from a source as

requested by the execution engine. As a consequence, it presents a data source as

a database, with schema and data format that can be understood and used by the



118

mediator. Notice that this presentation schema may be different the data source.

Actually, it may be the case that the source is not at all internally structured as

a database, but this should be transparent to the mediator. All this may require

preliminary transformations, cleaning, etc., before the data can be exported to the

integration system. There is one or more wrappers for each data source. In the

following, we will assume that each data source already has a wrapper that presents

it as a relational database.

Example 6.3 Consider a global schema for a database “containing” information

about music albums: CD(Album, Artist , Year), Contract(Artist , Year , Label),

Songs(Album, Song). Now, a user wants to know the name of the label with which

Norah Jones had a contract during 2002. This is asked issuing the following query to

the global system Q : Ans(l)← Contract(NorahJones, 2002 , l).

Here, the predicate Ans will contain the answers, that are to be computed using

the expression on the RHS of this rule. In this case, this is a simple relational selection

followed by a projection: ΠLabelσArtist=“Norah Jones”∧Year=2002Contract .

It is a problem that the data is not in the virtual global relation Contract , but

in the data sources DB1(Album, Artist , Year), DB2(Album,Artist , Year , Label),

DB3(Album, Song). As a consequence, a query plan is needed in order to extract and

combine the relevant data from the data sources. However, in order to design such

a plan, the mediator needs to know the correspondence between the virtual global

relations and the data sources. 2
A key element in the mediator architecture is the set of source descriptions, i.e., the

descriptions of the available sources and their contents (as presented by the wrap-

per), which is achieved by establishing the relationships (mappings) between the

global schema and the local schemata. These descriptions are given by means of a
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set of logical formulas; similar to views definitions in terms of base tables in a rela-

tional database, i.e., using queries written in a query language. Usually those query

languages use logical formulas or their SQL versions.

With respect to how mappings are defined, there are two main approaches (and

combinations of them): (a) Global-as-View (GAV), under which the relations in the

global schema are described as views of the collection of local relations [Ullman, 2000];

and (b) Local-as-View (LAV), under which each relation in a local source is described

as a view of the global schema [Levy et al., 1996]. GLAV denotes a combination of

GAV and LAV [Friedman et al., 1999] where the rules can have more than one atom in

the head. Another approach, called Both-as-View (BAV), consists of a specification

of the transformation of the local schema into the given global schema, in such a

way that each schema can be defined in terms of the other schema [McBrien and

Poulovassilis, 2003]. In Section 6.1.2, we describe and compare the GAV and LAV

approaches.

The plan generator gets a user query in terms of global relations and uses the

source descriptions to design a query plan. This is achieved by rewriting the original

query as a set of subqueries that are expressed in terms of the local relations. The

query plan includes prescriptions on how the answers from the local sources have to

be combined. The query rewriting process executed by the plan generator strongly

depends on whether the LAV or the GAV approach is followed. Still much theoretical

and technical research is going on in relation to query plan generation. The plan is

executed by the execution engine. Notice that it should be the plan generator who

takes care of anticipating and solving potential inconsistencies. It should solve them

in advance, when the plan is being generated. Later in this chapter, we will explore

this issue in detail.
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6.1.2 Description of Data Sources

The global/local schema mappings or, equivalently, the descriptions of the source con-

tents are expressed through logical formulas that relate the global and local relations.

Global-as-View

In this case, the relations in the global schema are described as views over the tables

in the union of the local schemata. This is conceptually very natural, because views

are usually virtual relations defined in terms of relations (tables); and here we have

global relations that are virtual, and local sources that are materialized. The views

are described Datalog notation [Halevy, 2001; Lenzerini, 2002].

Example 6.4 (example 6.3 continued) Assume the relation CD is defined using the

views

CD(Album,Artist ,Year)← DB1(Album,Artist ,Year),

CD(Album,Artist ,Year)← DB2(Album,Artist ,Year ,Label).

Relation CD is defined as the union of the projections of DB1 and DB2 on attributes

Album,Artist ,Year , i.e., in relational terms, defined by

CD k ΠAlbum,Artist ,Year(DB1) ∪ ΠAlbum,Artist ,Year(DB2 ).

The global relation Songs and Label are defined by:

Songs(Album, Song)← DB1(Album,Artist ,Year),DB3(Album, Song).

Contract(Artist ,Year ,Label)← DB2(Album,Artist ,Year ,Label).

The first view is defined as the join of DB1 and DB3 via attribute Album, and with a
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projection on Album, Song . The second view is defined as the projection of DB2 on

Artist ,Year ,Label .

These views have been defined by means of rules. Each rule specifies that, in

order to compute the tuples in the relation in the LHS (the head of the rule), one

has to go to the RHS (the body of the rule) and compute whatever is specified there.

The attributes appearing in the head indicate that they are the attributes of interest,

thus the others (in the body) can be projected out at the end. If there are more that

one rule to compute a single relation, we use all of them and we take the union of the

results, as for the relation CD .

Instead of using a rule as above, we could have used relational algebra (or relational

calculus, or SQL), in the case of the relation Songs:

Songs = ΠAlbum,Song(DB1 1Album DB3). 2
Once the global relations have been defined as views, we may start posing global

queries, i.e., queries expressed in terms of the global relations. The problem is to

answer them considering that the global relations do not contain data. Under the

GAV approach this is simple, all we need to do is rule unfolding [Halevy, 2001].

Example 6.5 (example 6.4 continued) Consider the following global query about

the music albums released in the year 2003, with their artists and songs

Ans(Album,Artist , Song)← CD(Album,Artist , 2003), Songs(Album, Song).

Since the query is expressed in terms of the global schema, the data has to be obtained

from the sources, that is, the query has to be rewritten in terms of the source relations.

We do this by unfolding each global relation, replacing it by its definition in terms of

the local relations. We have underlined differently the goals in the body in order to
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keep track of the rewriting for each of them.

Ans ′(Album,Artist , Song) ← DB1(Album,Artist , 2003 ),

DB1(Album,Artist2 ,Year),DB3(Album, Song).

Ans ′(Album,Artist , Song) ← DB2(Album,Artist , 2003 ,Label),

DB1(Album,Artist2 ,Year),DB3(Album, Song).

These new queries do get answers directly from the sources; and the final answer is

the union of two answer sets, one for each of the rules. 2
If, in addition to the view definitions, there might be global ICs that have to be

satisfied by the system. Simple unfolding, in the form illustrated above, is not enough

for query answering if ICs have to be respected [Cal̀ı et al., 2002a; Cal̀ı et al., 2002c].

Local-as-View

Under the LAV approach, each table in each local data source is described as a

view (i.e. as a query expression) in terms of the global relations [Ullman, 2000;

Lenzerini, 2002]. This may seem somehow unnatural or unusual from a conceptual

point of view, and from perspective of databases practice, because here the views

contain the data, but not the “base tables”. However, as we will see, this approach

has some advantages.

More precisely, in the general situation we have a collection of data sources (think

of a collection of relational tables) S1, . . . , Sn, and a global schema G for the system

that integrates data from S1, . . . , Sn. Tables in S1, . . . , Sn are seen as views over

G, and as a consequence, they can be defined by query expressions over the global

schema.
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Example 6.6 Consider the sources S1, S2 that are defined by the view expressions

S1: V1(Album,Artist ,Year)← CD(Album,Artist ,Year),

Contract(Artist ,Year , emi),Year ≥ 1990.

S2: V2(Album, Song)← Songs(Album, Song).

Source S1 contains a table whose entries are albums produced after 1990 by the label

EMI with their artists and years. Source S2 contains one table with songs and their

albums.

Those relations that are not defined as views belong to the global schema G,

in this case, they are the relations: CD(Album,Artist ,Year), Songs(Album, Song),

Contract(Artist ,Year ,Label). 2
Notice that from the perspective of S1, there could be other sources containing infor-

mation about albums produced by EMI after 1990, and that complementary infor-

mation could be exported into the global system. In this sense, the information in

S1 could be considered as “incomplete” with respect to what G contains (or might

contain). In other words, S1 contains only a part of the data of the same kind in

the global system. We will elaborate on this later on. Finally, also notice that in the

previous example, and this is a general situation under LAV, the definition of each

source does not depend on other sources.

Now we want to answer global queries under LAV.

Example 6.7 (example 6.6 continued) The following query posed on G asks for the

songs with its album and the year they were released:

Ans(Album, Song ,Year)← CD(Album,Artist ,Year), Songs(Album, Song).
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This query is expressed as usual, in terms of global relations only, however, it is not

possible to obtain the answers by a simple and direct computation of the RHS of the

query. Now, there is no direct rule unfolding mechanism for the relations in the body,

because we do not have explicit definitions for them. And the data resides in the

sources, which are now defined as views.

We can see that plan generation to extract information from the sources becomes

more complex under LAV than under GAV. Since a query plan is a rewriting of the

query as a set of queries on the sources and a prescription on how to combine their

answers (as is needed in this example), the following could be a query plan to answer

the original query:

Ans ′(Album, Song ,Year)← V1(Album,Artist ,Year), V2(Album, Song).

The query has been rewritten in terms of the views; and in order to obtain the final

answer, we first extract values for Album,Year from V1; then we extract the tuples

from V2; finally, at the mediator level, we compute the join via Album .

Notice that due to the limited contents of the sources, we only obtain albums

produced by EMI after 1990. 2
In LAV, as in GAV, we pose a query in terms of the global relations, but we have

to answer using the contents of certain views only (the local relations). As a conse-

quence, under LAV query plan generation becomes an instance of a more general and

traditional problem in databases, the one of query rewriting using views.

To see this connection more clearly, assume we have a collection of views V1, . . . , Vn,

whose contents have already been computed, and cached or materialized. When a

new query Q arrives, instead of computing its answers directly, we try to use the

answers (contents) of V1, . . . , Vn. A problem to consider consists of determining how
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much we get from the real answer by using the pre-computed views only; and also

determining what is the maximum we can get in terms of the kind of views we have

available. The research carried out in query answering using views [Levy et al., 1995;

Abiteboul and Duschka, 1998; Gupta and Mumick, 1999; Halevy, 2001; Halevy, 2000;

Flesca and Greco, 2001] and query containment [Abiteboul and Duschka, 1998; Ko-

laitis and Vardi, 2000; Millstein et al., 2003; Calvanese et al., 2003] has become quite

relevant to the area of data integration.

6.1.3 Comparison of Paradigms

We have seen that under GAV, rule unfolding makes plan generation simple and

direct. For the LAV approach, plan generation is provably more difficult [Abiteboul

and Duschka, 1998; Lenzerini, 2002; Cal̀ı et al., 2002b; Ullman, 2000].

In terms of flexibility to adding and deleting sources into/from the system, GAV

mappings are in general less flexible than LAV mappings. If GAV mappings combine

data of different sources, adding or deleting sources might imply modifying the defini-

tions of the global relations. LAV offers more flexibility to add new sources or delete

old ones, because a new source is just a new view definition. On the other hand, if

the GAV mappings describe each global relations in terms of only one source, both

GAV and LAV have the same level of flexibility.

It is interesting to know that given a set of sources and a global schema, it is

in general not possible to find a LAV and a GAV mapping that provide the same

semantics to the system.

Example 6.8 (example 6.4 continued) If we try to use a LAV mapping for this

sources and global schema, we would need to describe DB1, DB2 and DB3 in terms
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of Songs, CD and Contract . A possible mapping under the LAV approach is:

DB1(Album,Artist ,Year)← CD(Album,Artist ,Year).

DB2(Album,Artist ,Year)← CD(Album,Artist ,Year),Contract(Artist ,Year ,Label).

DB3(Album, Song)← Songs(Album, Song).

This mappings give a different meaning to the DIS. For example, for the GAV map-

ping, it is possible to have a tuple in table Songs(Album, Song) that is not present

for the LAV mapping. This can happen if there is an Album in DB3 that is not in

DB1. 2
In this sense, the decision of which of the two approaches to use, it is not necessarily

related to flexibility or how simple the query plan generation is, but to which approach

gives a better description of the intended meaning of the DIS.

For more comparisons between LAV and GAV refer to [Levy, 2000; Ullman, 2000;

Lenzerini, 2002]. An approach that generalizes both LAV and GAV mappings is

GLAV [Friedman et al., 1999]. The results presented in this Chapter can be used in

conjunction for the GLAV approach.

The flexibility to add/remove sources, in particular under LAV, is likely to intro-

duce extra sources of inconsistencies which will have to be dealt with. This is why

we will first concentrate on the LAV approach in the rest of this chapter. In Section

6.5.6, we will address the problem of CQA for the GAV approach.

6.1.4 Global Schemas and View Definitions

A global schema R consists of a finite set of relations {R1, R2, ..., Rm} over a fixed,

possibly infinite domain U that may not contain null . With these relation symbols

and the elements of U treated as constants, a first-order language L(R) can be defined.
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This language can be extended with defined and built-in predicates, like (in)equality.

In particular, we will extend the global schema with a local schema S, i.e., a finite

set of new view predicates V1, V2, ..., Vn, that will be used to describe the relations in

the local sources.

A view, denoted by a new predicate V , is defined by means of conjunctive query

[Abiteboul et al., 1995], i.e., an L(R∪ S)-formula ϕ
V

of the form V (t̄) ← body(ϕ
V
),

where t̄ is a tuple containing variables and/or constants. For the LAV approach

body(ϕ
V
) is a conjunction of R-atoms, and V ∈ S.

Given a database instance D over schema R, and a view definition ϕ
V
, ϕ

V
(D)

denotes the extension of V obtained by applying the definition ϕ
V

to D. If the

view already has an extension v (corresponding to the contents of a data source),

it is possible that v is incomplete and stores only some of the tuples in ϕ
V
(D); i.e.

v ⊆ ϕ
V
(D), and we say the view extension v is open with respect to D [Abiteboul

and Duschka, 1998]. Most mechanisms for deriving query plans assume that sources

are open, e.g. [Duschka et al., 2000].

A source S is a pair 〈ϕ, v〉, where ϕ is the view definition, and v is an extension

for the view defined by ϕ. An open global system G is a finite set of open sources. The

global schema R consists of the relation names that do not have a definition in the

global system. The underlying domain U for R is a possibly proper superset of the

active domain, which consists of all the constants appearing in the view extensions vi

of the sources, and in their definitions. When considering global integrity constraints

the active domain also includes the constants in them. A global system G defines a

set of legal global instances (see [Lenzerini, 2002] for a survey of notions in virtual

data integration).

Definition 6.1 Given an open global system G = {〈ϕ1, v1〉, . . . , 〈ϕn, vn〉}, the set of

legal global instances is Linst(G) = {D instance over R | vi ⊆ ϕi(D), i = 1, . . . , n}.
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Example 6.9 (example 6.2 continued) Let us denote by ϕ

1
, ϕ

2
the view definitions

of V1, V2, resp. in G1. The database D = {R(a, b), R(c, d), R(a, c), R(d, e)} is a

legal global instance, because v1 = {V1(a, b), V1(c, d)} ⊆ ϕ
1
(D) = {V1(a, b), V1(c, d),

V1(a, c), V1(d, e)}, and v2 = {V2(a, c), V2(d, e)} ⊆ ϕ
2
(D) = {V2(a, b), V2(c, d), V2(a,

c), V2(d, e)}. Supersets of D are also legal instances; but proper subsets are not. 2
Example 6.10 Let U = {a, b, c, . . . } be the underlying domain. Consider the inte-

gration system G2 defined by

V1(x, z)← P (x, y), R(y, z); v1 = {(a, b)}.

V2(x, y)← P (x, y); v2 = {(a, c)}.

Each global instance D of the form {P (a, c), P (a, z), R(z, b)}, with z ∈ U , is a legal

instance, because v1 ⊆ ϕ1(D) = {(a, b)} and v2 ⊆ ϕ2(D) = {(a, c), (a, z)}. Any

superset of D is also legal, but none of its subsets is. 2
The semantics of query answers in mediated integration systems is given by the notion

of certain answer. In this chapter, we will consider queries expressed in Datalog and

its extensions with negation.

Definition 6.2 [Abiteboul and Duschka, 1998] Given an open global system G and a

global query Q(x̄) ∈ L(R), a ground tuple t̄ is a certain answer to Q in G if for every

global instance D ∈ Linst(G), it holds that D |= Q[t̄].1 We denote with CertainG(Q)

the set of certain answers to Q in G. 2
Example 6.11 (example 6.9 continued) Consider the following global query Q posed

on G1: Ans(x, y)← R(x, y). In this case, CertainG1
(Q) = {(a, b), (c, d), (a, c), (d, e)}.2

1D |= Q[t̄] means that query Q(x̄) is true in instance D, when the tuple of variables x̄ is assigned
the values in the tuple t̄ of database elements.
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The inverse-rules algorithm [Duschka et al., 2000] for generating query plans under the

LAV approach assumes that sources are open and each source relation V is defined

as a conjunctive view over the global schema: V (x̄) ← P1(x̄1), . . . , Pn(x̄n), with

x̄ ⊆
⋃

i x̄i. Since the queries posed on the system are expressed in terms of the

global relations, that now appear in the bodies of the view definitions (contrary to

the GAV approach), those definitions cannot be applied directly . The rules need to

be “inverted”.

For j = 1, . . . n, Pj(x̄
′
j) ← V (x̄) is an “inverse rule” for Pj . The tuple x̄j is

transformed to obtain the tuple x̄′j as follows: if x ∈ x̄j is a constant or is a variable

appearing in x̄, then x is unchanged in x̄′j . Otherwise, x is a variable xi that does not

appear in x̄, and it is replaced by the term fi(x̄), where fi is a fresh Skolem function.

We denote the set of inverse rules of the collection V of source descriptions in G by

V−1.

Example 6.12 (example 6.10 continued) The set V−1 consists of the rules P (x,

f(x, z)) ← V1(x, z); R(f(x, z), z) ← V1(x, z); and P (x, y) ← V2(x, y). For a view

definition, we need as many Skolem functions as existential variables in it. For exam-

ple, if instead of V1(x, z)← P (x, y), R(y, z) we had, say V1(x, z)← P (x, y), R(y, z, w),

we would need two Skolem functions for that view, and the inverse rules arising from

that view would be P (x, f(x, z)) ← V1(x, z) and R(f(x, z), z, g(x, z))← V1(x, z). 2
The inverse rules are then used to answer Datalog queries expressed in terms of the

global relations, that now, through the inverse rules, have definitions in terms of

the sources. The query plan obtained with the inverse rule algorithm is maximally

contained in the query [Duschka et al., 2000], and the answers it produces coincide

with the certain answers [Abiteboul and Duschka, 1998].
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6.1.5 Consistency

We assume that we have a set of global integrity constraints IC ⊆ L(R) containing

UICs and RICs. The results here can be easily extended to also consider NNCs.

Definition 6.3 [Bertossi et al., 2002] (a) Given a global system G, an instance D is

minimal if D ∈ Linst(G) and is minimal with respect to set inclusion, i.e., there is no

other instance in Linst(G) that is a proper subset of D (as a set of ground atoms).

We denote by Mininst(G) the set of minimal legal global instances of G with respect

to set inclusion. (b) A global system G is consistent with respect to IC , if for all

D ∈ Mininst(G), D |= IC. 2
Example 6.13 (example 6.12 continued) Assume that G2 has the source contents

v1 = {V1(a, b)}, v2 = {V2(a, c)}, and that U = {a, b, c, u, ...}. Then, the elements of

Mininst(G2) are of the form Dz = {P (a, z), R(z, b), P (a, c)}, for some z ∈ U . The

global FD P (X, Y ): X → Y is violated exactly in those minimal legal instances Dz

for which z 6= c. Thus, G2 is inconsistent. 2
Example 6.14 (examples 6.1 and 6.2 continued) This DIS has only one minimal

legal instance: {R(a, b), R(c, d), R(a, c), R(d, e)}. Since this instance does not satisfy

the FD R(X, Y ) : X → Y , the system is inconsistent. 2
Definition 6.4 [Bertossi et al., 2002] Given an open global system G and a global

query Q(x̄) ∈ L(R), a ground tuple t̄ is a minimal answer to Q in G if for every global

instance D ∈ Mininst(G), it holds D |= Q[t̄]. We denote with MinimalG(Q) the set

of minimal answers to Q in G. 2
Clearly CertainG(Q) ⊆MinimalG(Q). For monotone queries [Abiteboul et al., 1995],

the two notions coincide [Bertossi et al., 2002]. Nevertheless, in Example 6.13 the

query Ans(x, y) ← not P (x, y) has (b, a) as a minimal answer, but not as a certain
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answer, because there are legal instances that contain P (b, a). Since consistency was

defined with respect to minimal global instances, the notion of minimal answer is

particularly relevant.

Definition 6.5 [Arenas et al., 1999] Let D, D′ be database instances over the same

schema and domain. The distance, ∆(D,D′), between D and D′ is the symmetric

difference ∆(D,D′) = (Σ(D) r Σ(D′)) ∪ (Σ(D′) r Σ(D)). 2
We will assume that if the database has null values we will consider the definition of

IC satisfaction as defined in Section 4.1.

Example 6.15 Consider the universal IC ∀xy(P (x, y)→ R(x, y)) and the referential

IC ∀x(T (x)→ ∃yP (x, y)). The database instance D = {P (a, d), R(a, d), T (a), T (b),

P (b, null)} is consistent. The universal constraint is satisfied even in the presence

of P (b, null), since the incomplete information in relevant attributes cannot generate

inconsistencies. 2
Definition 6.6 (based on [Arenas et al., 1999]) Let G be a global system and IC a

set of global ICs. A repair of G with respect to IC is a global database instance D′,

such that D′ |=
N
IC and D′ is ≤D-minimal for some D ∈ Mininst(G). 2

The semantics of satisfaction of ICs is the one introduced in Section 4.1.

Example 6.16 Consider the UIC ∀xy(P (x, y) → R(x, y)), together with the RIC

∀x(T (x) → ∃yP (x, y)), and the inconsistent minimal legal instance D = {P (a, b),

T (c)}. The repairs for the latter are:

i Di ∆(D,Di)

1 {P (a, b), R(a, b), T (c), P (c, null)} {R(a, b), P (c, null)}

2 {P (a, b), R(a, b)} {T (c), R(a, b)}

3 {T (c), P (c, null)} {P (a, b), P (c, null)}

4 ∅ {P (a, b), T (c)}
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We also have that the instance D5 = {P (a, b), R(a, b), T (c), P (c, a)}, where we have

introduced P (c, a) in order to satisfy the referential IC, does satisfy IC , but is not a

repair because ∆(D,D1) ≤D ∆(D,D7) = {R(a, b), P (c, a)}. 2
We can see that a repair of a global system is a global database instance that satisfies

IC and minimally differs, in the sense of Definition 5.2, from a minimal legal global

database instance. If G is already consistent, then the repairs are the elements of

Mininst(G). In Definition 6.6, we are not requiring that a repair respects the property

of the sources of being open, i.e., that the extension of each view in the repair contains

the corresponding view extension in the source. Thus, it may be the case that a

repair – still a global instance – does not belong to Linst(G). If we do not allow this

flexibility, a global system might not be repairable. Repairs are used as an auxiliary

concept to define the notion of consistent answer.

Example 6.17 (example 6.1 continued) The only element in Mininst(G1) is D0 =

{R(a, b), R(c, d), R(a, c), R(d, e)}. The instance D0 does not satisfy IC. Hence, G1 is

inconsistent. The repairs are the global instances that minimally differ from D0 and

satisfy the FD, namely D1
0 = {R(a, b), R(c, d), R(d, e)} and D2

0 = {R(a, c), R(c, d),

R(d, e)}. Notice that they do not belong to Linst(G1). 2
Definition 6.7 [Bertossi et al., 2002] (a) Given a global system G, a set of global

integrity constraints IC, and a global first-order query Q(x̄), we say that a (ground)

tuple t̄ is a consistent answer to Q with respect to IC iff for every repair D of G,

D |= Q[t̄]. (b) We denote by ConsisG(Q) the set of consistent answers to Q in G. 2
Example 6.18 (example 6.17 continued) For the query Q1(x) : ∃y R(x, y), the

consistent answers are a, c, d. Q2(x, y): R(x, y) has (c, d), (d, e) as consistent answers.2
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If G is consistent with respect to IC, then ConsisG(Q) =MinimalG(Q). Furthermore,

if the ICs IC are generic, i.e., there is no literal L such that IC |= L, then for any

G it holds that ConsisG(Q) ⊆ MinimalG(Q) [Bertossi et al., 2002]. Notice also that

the notion of consistent answer can be applied to queries expressed in Datalog or its

extensions with built-ins and negation.

6.2 Specification of Minimal Instances

The specification of the class Mininst(G) for system G is given using normal logic

programs, whose rules are inspired by the inverse-rules algorithm. They use auxiliary

predicates instead of function symbols, but their functionality is enforced using the

choice predicate [Giannotti et al., 1991]. We consider global system all of whose

sources are open.

6.2.1 The Simple Program

In this section, we will present a first approach to the specification of legal instances.

In Section 6.2.2, we present the definitive program, that refines the one given in this

section. We proceed in this way, because the program we give now, although it may

not be suitable for all situations (as discussed later in this section), is simpler to

understand than its refined version, already contains the key ideas, and can correctly

be applied in some situations which we will characterize.

Definition 6.8 Given an open global system G, the logic program Π(G), contains

the following facts and clauses:

1. Fact dom(a), for every constant a ∈ U .2 Also fact Vi(ā) whenever ā ∈ vi for

some source extension vi in G.

2Note that, in a DIS, U does not contain null



134

2. For every view (source) predicate Vi in the system with description Vi(x̄) ←

P1(x̄1), . . . , Pn(x̄n), the rules

Pj(x̄j)← Vi(x̄),
∧

zl∈(x̄j\x̄)
F l
i (x̄, zl), j = 1, . . . n.

3. For every predicate F l
i (x̄, zl) introduced in 2., the rule

F l
i (x̄, zl)← Vi(x̄), dom(zl), choice((x̄), (zl)). 2

In this specification, the predicate F l
i (x̄, zl) replaces the Skolem function based atom

f li (x̄) = zl introduced in Section 6.1.4, and, via the choice predicate, it assigns values

in the domain to the variables in the head of the rule in 3. that are not in x̄. There is

a new Skolem predicate for each pair formed by a description rule as in item 2. above

and a different existentially quantified variable in it. The predicate choice((x̄), (zl))

ensures that for every (tuple of) value(s) for x̄, only one (tuple of) value(s) for zl is

non-deterministically chosen from the constants in the active domain.

Example 6.19 (examples 6.12 and 6.13 continued) Program Π(G2) contains the fol-

lowing rules:

1. dom(a). dom(b). dom(c). dom(u). V1(a, b). V2(a, c).

2. P (x, z)← V1(x, y), F1(x, y, z).

R(z, y)← V1(x, y), F1(x, y, z).

P (x, y)← V2(x, y).

3. F1(x, y, z)← V1(x, y), dom(z), choice((x, y), (z)).

In this section, we will restrict ourselves to a finite domain U , which is necessary to

run the program in real implementations. In this example, we have U = {a, b, c, u}

(the extension of predicate dom). In Section 6.5.2, we study how to handle infinite

domains by adding to the active domain a finite number of extra constants, like the

constant u here. 2
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For every program Π with the choice operator, there is a stable version SV (Π), whose

stable models correspond to the so-called choice models of Π [Giannotti et al., 1991].

The program SV (Π) is obtained as follows:

1. Each choice rule r : H ← B, choice((x̄), (y)) in Π is replaced by the rule

H ← B, chosenr(x̄, y).

2. For each rule as in (a), the following rules are added

chosenr(x̄, y)← B, not diffChoicer(x̄, y).

diffChoicer(x̄, y)← chosenr(x̄, y
′), y 6= y′.

The rules defined in (2.) ensure that, for every tuple x̄ where B is satisfied, the

predicate chosenr(x̄, y) satisfies the functional dependency x̄→ y.

Example 6.20 (example 6.19 continued) Program SV (Π(G2)) contains the following

rules:

1. dom(a). dom(b). dom(c). dom(u). V1(a, b). V2(a, c).

2. P (x, z)← V1(x, y), F1(x, y, z).

R(z, y)← V1(x, y), F1(x, y, z).

P (x, y)← V2(x, y).

3. F1(x, y, z)← V1(x, y), dom(z), chosen1(x, y, z).

4. chosen1(x, y, z)← V1(x, y), dom(z), not diffChoice1(x, y, z).

diffChoice1(x, y, z)← chosen1(x, y, z
′), dom(z), z′ 6= z.

Its stable models are:
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M1 = {dom(a), dom(b), dom(c), dom(u), V1(a, b), V2(a, c), P (a, c),

diffChoice1(a, b, a), chosen1(a, b, b), diffChoice1(a, b, c),

diffChoice1(a, b, u), F1(a, b, b), R(b, b), P (a, b)},

M2 = {dom(a), dom(b), dom(c), dom(u), V1(a, b), V2(a, c), P (a, c),

chosen1(a, b, a), diffChoice1(a, b, b), diffChoice1(a, b, c),

diffChoice1(a, b, u), F1(a, b, a), R(a, b), P (a, a)},

M3 = {dom(a), dom(b), dom(c), dom(u), V1(a, b), V2(a, c), P (a, c),

diffChoice1(a, b, a), diffChoice1(a, b, b), chosen1(a, b, c),

diffChoice1(a, b, u), F1(a, b, c), R(c, b)},

M4 = {dom(a), dom(b), dom(c), dom(u), V1(a, b), V2(a, c), P (a, c),

diffChoice1(a, b, a), diffChoice1(a, b, b), diffChoice1(a, b, c),

chosen1(a, b, u), F1(a, b, u), R(u, b), P (a, u)}.

The underlined atoms of the models correspond to the elements in which we are

interested, namely the global relations of the integration system. 2
Definition 6.9 The global instance associated to a choice model M of Π(G) is

DM = {P (ā) | P ∈ R and P (ā) ∈M}. 2
Example 6.21 (example 6.20 continued) DM1

, DM2
, DM3

, DM4
are the elements of

Mininst(G3), namely {P (a, b), R(b, b), P (a, c)}, {P (a, a), R(a, b), P (a, c)}, {P (a, c),

R(c, b)}, {P (a, u), R(u, b), P (a, c)}, respectively. 2
Theorem 6.1 It holds that

Mininst(G) ⊆ {DM | M is a choice model of Π(G)} ⊆ Linst(G).

Proof: Consider Π(G) as in Definition 6.8. First we prove:

{DM | M is a choice model of Π(G)} ⊆ Linst(G). (6.1)
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Assume that there is a stable model M of Π(G) such that its associated database

DM is not a legal instance. Then there is a view Vi for which vi 6⊆ ϕi(DM), that is,

for some ā:

• ā ∈ vi, and then by rules 1. of Π(G), Vi(ā) is true in any model of the program,

in particular, inM.

• ā /∈ ϕi(DM), i.e., in M it holds that ¬∃z̄(P1(ā1, z̄1) ∧ . . . ∧ Pn(ān, z̄n)), for

āi ⊆ ā, and z̄i ⊆ z̄. This is equivalent to

∀z̄(¬P1(ā1, z̄1) ∨ . . . ∨ ¬Pn(ān, z̄n)) being true inM (6.2)

As a consequence of (6.2) and rules 2. of Π(G), the following holds inM:

∀z̄ (¬Vi(ā) ∨
∨

l

¬F l
i (ā, zl)). (6.3)

Since Vi(ā) ∈M and rules 3. of Π(G) are satisfied byM, for some b’s in the domain

the atoms F l
i (ā, b) ∈ M. But we had that equation (6.3) holds. We have reached a

contradiction because (6.3) is false inM; and (6.1) is proven.

Now we want to prove: Mininst(G) ⊆ {DM | M is a choice model of Π(G)}.

The program Π(G) can be split [Lifschitz and Turner, 1994] into the bottom

program ΠB, that contains the facts and rules in 1. and 3. of Π(G), and the top

program, ΠT , that contains the rules in 2.. If MB is a stable model of ΠB and

MB
T is a stable model of ΠMB

T (the top program partially evaluated by the atoms in

MB), thenMB ∪MB
T is a stable model of Π(G), and all the models of latter can be

obtained in this way. The bottom program contains the choice operator, and therefore

its stable models will correspond to all the possible combinations of values for the

Skolem predicates subject to the condition of functionality [Wang and Zaniolo, 2000].
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Since ΠMB

T is a non-disjunctive-positive program (without the choice operator), there

will be a unique stable model for eachMB that will correspond to its minimal model.

We will now prove that every minimal legal instance is of the form DM, whereM

is of the formMB ∪MB
T , withMB a stable model of ΠB andMB

T a minimal model

of ΠMB

T .

Let D be a minimal legal instance of G. Let us define a structure M for the

program Π(G) containing the following ground atoms:

1. The atoms in D;

2. Vi(ā) whenever ā ∈ vi, where vi is a source extension in G;

3. dom(a) for every constant a ∈ U ;

4. For each view Vi(x̄), consider the rules F l
i (x̄, zl)← body(ϕ

Vi
), for each variable

zl from the body that does not belong to x̄. Evaluate the bodies according to

the atoms in 1. When the body is true, add to M the corresponding atom in

the head.

5. If for a view Vi, ā ∈ vi and F l
i (ā, b) ∈ M, add choice(ā, b) toM.

Note that DM = D. Now we have to prove that the structureM is a stable model of

Π(G). This can be shown by proving, first, that MB := (M r D) is a stable model

of ΠB, and, next, thatMMB

T = D is a minimal model of ΠMB

T .

ΠB contains rules 1. and 3. of Π(G). By construction, MB will satisfies rules 1.

For MB to satisfy rules 3, it is sufficient to prove that for each Vi(ā) ∈ MB there

is exactly one F l
i (ā, b) ∈ MB with b ∈ U and that, if Vi(ā) 6∈ M, then there is no

F l
i (ā, z) in MB. This is enough because it is proven that the choice operator will

enforce that F l
i (x̄, z) satisfies a functional dependency between x̄ and z.
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Let us suppose, by contradiction, that for Vi(ā) ∈ MB there are two atoms

F l
i (ā, b1) ∈ MB and F l

i (ā, b2) ∈ MB. This would imply by construction of M

that the following rules are satisfied by evaluating the bodies with the elements of

D: F l
i (ā, bl) ← body(ϕ

Vi
) and F l

i (ā, b2) ← body(ϕ
Vi

). This would imply that D has

two set of atoms satisfying the mapping Vi(ā) ← body(ϕ
Vi

), and therefore D is not

minimal. Since D is minimal we have reached a contradiction.

Now we have to prove that if Vi(ā) 6∈ M, then there is no F l
i (ā, z) in MB. Let

us suppose by contradiction that there for a given value b ∈ U , F l
i (ā, b) ∈ MB. This

would imply by construction of M that it holds, by evaluating the bodies with the

elements of D, F l
i (ā, b)← body(ϕ

Vi
). This implies that D satisfies body(ϕ

Vi
) without

Vi(a) belonging to the source. Then D is not minimal. Since D is minimal we have

reached a contradiction. This proves thatMB := (MrD) is a stable model of ΠB.

Now we have to prove that D is a minimal model of ΠMB

T .

The program ΠMB

T contains only facts of the form Vi(ā, b̄)← , where Vi(ā) ∈MB

and b̄ is constructed from all the function predicates F l
i (ā, b1) ∈ MB. By construc-

tion, this facts are exactly the elements of D. Then, D is a minimal model of ΠMB

T .

This proves thatM is a stable model of Π(G) and since DM = D every minimal legal

instance has a stable model of Π(G) associated. 2
From the inclusion in Theorem 6.1 it is clear that for monotone queries Q, answers

obtained using Π(G) under the skeptical or cautious stable model semantics -that

sanctions as true what is true of all the stable models of the program- coincide with

CertainG(Q) and MinimalG(Q). This may not be the case for queries with negation,

as pointed out in the remark after Definition 6.4.

In Example 6.21, the stable models are in a one-to-one correspondence with the

minimal legal instances, but this may not be always the case.
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Example 6.22 Consider an integration system G3 with global schema R = {P}.

The set V of local view definitions consists of V1(x) ← P (x, y), and V2(x, y) ←

P (x, y), with source contents v1 = {V1(a)}, v2 = {V2(a, c)}, resp. We have that

Mininst(G3) = {{P (a, c)}}. However, the global instances corresponding to models

of Π(G3) are of the form {{P (a, c), P (a, z)} | z ∈ U}. As V2 is open, it forces P (a, c)

to be in all legal instances, and with this, the same condition on V1 is automatically

satisfied, and no other values for y are needed. But the choice operator still has

freedom to chose other values (the z ∈ U). This is why we get more legal instances

than the minimal ones. 2
Now we investigate sufficient conditions under which the simple program of Definition

6.8 captures the minimal instances. This is important because the general program to

be presented in Section 6.2.2 is much more complex than the simple version presented

so far.

Definition 6.10 We define a section of a view Vi as a set Sli consisting either of all

the predicates in the body of its definition that share the same existential variable

zl or all the atoms without existential variables, in which case l = 0 and the view

section is denoted with S0
i . 2

For example, the view defined by V (x, y) ← P (x, z1), R(z1, y), T (x, y) has two

sections: S1
1 = {P (x, z1), R(z1, y)} and S0

1 = {T (x, y)}. Let Sec denote the set of all

view sections for system G.

Given a view section Sli, we denote by Const(Sli), UV ar(S
l
i) and EV ar(Sli) the

sets of constants, universal variables, and existential variables, respectively, that occur

in predicates in Sli.

Let µ, ε be two new constants. For a view section Sli, an admissible mapping is any

mapping h : Const(Sli) ∪ UV ar(S
l
i) ∪EV ar(S

l
i)→ Const(Sli) ∪ {µ, ε}, such that: (a)
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h(c) = c, for every c ∈ Const(Sli); (b) h(x) = D with D ∈ Const(Sli) ∪ {µ}, for every

x ∈ UV ar(Sli); (c) h(z) = F with F ∈ Const(Sli) ∪ {µ, ε}, for every z ∈ EV ar(Sli).

A particular admissible mapping L is given by (a) L(c) = c, for every c ∈

Const(Sli); (b) L(x) = µ, for every x ∈ UV ar(Sli); (c) L(z) = ε, for every z ∈

EV ar(Sli). For an admissible mapping h, h(Sli) denotes the set of atoms obtained

from Sli by applying h to the arguments in Sli.

Theorem 6.2 Given an integration system G, if for every view section Sli with exis-

tential variables there is no admissible mapping h for Sli, such that

h(Sli) ⊆
⋃

S∈(Secr{Sl
i})

L(S),

then the instances associated to the stable models of the simple version of Π(G) are

exactly the minimal legal instances of G.

Proof: Let us suppose by contradiction that we have an integration system G that

has no admissible mapping h for Sli (with i 6= 0), such that h(Sli) ⊆
⋃

S∈(Secr{Sl
i})
L(S),

and that there is a stable model M of the simple version of Π(G) such that the

database associated DM is not a minimal legal instance.

Since DM is not minimal, there is a minimal legal instance E such that E $ DM.

It follows from Theorem 6.1 that there is a model M′ of Π(G) such that DM′ = E.

Then, there should be a non empty set C, such that C ∈ M and C 6∈ M′.

It follows from the proof of Theorem 6.1 that the program Π(G) can be divided

into two parts ΠB and ΠMB

T , where the second is a result of an evaluation of the model

MB of ΠB over the rules of Π(G) that do not belong to ΠB. The interesting thing is

that the program ΠMB

T turns out to be a set of facts of global relations. This shows

that the different models will be determined only by the functional predicates atoms

of the form F l
i (ā, b) chosen in each model. Each of this atom will generate exactly one
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global atom for each relation that has the existential variable zl in the view Vi. Then,

the only way that one model might generate a legal instance of G with less elements

than other model is if two functional predicate atoms generate the same global atom.

Then, C has to be formed by instantiations of sections with existential variables.

For simplicity and without lost of generality, let us suppose that C has exactly one

instantiation of one section. For C to belong to M and not to M′, M should have

different values of the existential variables that generate the instantiations of C than

those assigned in M, and the rest values should be the same (since DM′ $ DM).

Furthermore, the values given inM′ should generate the same set of predicates that

another section or sections generates inM and inM′. Then, if C is the instantiation

of a section Sli, the following has to hold for every value ak in position k of the atom

P (ā) ∈ C, being this atom an instantiation of P (x1, . . . , xk, . . . , xn) ∈ Sli:

1. If xk ∈ Const(Sli), then there is a different section Smj such that P (. . . , xk, . . . ) ∈

Smj and xk ∈ Const(Smj ) and xk = ak.

2. If xk ∈ UV ar(Sli), then there are two options:

(a) There is other section Smj such that P (. . . , xk, . . . ) ∈ Smj , xk ∈ Const(Smj )

and xk = ak.

(b) There is other section Smj such that P (. . . , xk, . . . ) ∈ Smj , xk ∈ UV ar(Smj )

and (. . . , ak, . . . ) ∈ vj .

3. If xk ∈ EV ar(Sli), then there are three options:

(a) There is other section Smj such that P (. . . , xk, . . . ) ∈ Smj , xk ∈ Const(Smj )

and xk = ak.

(b) There is other section Smj such that P (. . . , xk, . . . ) ∈ Smj , xk ∈ UV ar(Smj )

and (. . . , ak, . . . ) ∈ vj .
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(c) There is other section Smj such that P (. . . , xk, . . . ) ∈ S
m
j , xk ∈ EV ar(S

m
j )

and F k
j (b̄, ak) ∈M′ for (b̄) ∈ vj.

Consider a mapping h defined by the different cases just described. For example,

if we are in case (2b), we have that h(xk) = µ, and in case (3a), h(xk) = ak. By

construction, this mapping is such that h(Sli) ⊆
⋃

S∈(Secr{Sl
i})
L(S). We have reached

a contradiction since we assumed the mapping h did not exist. 2
Basically, Theorem 6.2 says that if there is an admissible mapping with h(Sli) ⊆
⋃

S∈(Secr{Sl
i})
L(S), then it is possible to have some view contents for which the open-

ness will be satisfied by the other sections in Sec, and then it will not be necessary

to compute values for the existential variables in section Sli. Since the simple version

will always compute values for them, it may specify more legal instances than the

minimal ones.

Example 6.23 (example 6.22 continued) The first view is defined by V1(x) ← P (x,

y), and has only one section Sy1 = {P (x, y)}. For the admissible mapping h defined

by h(x) = h(y) = µ, we have h(Sy1 ) = {P (µ, µ)} ⊆ L(S0
2). The conditions of the

theorem are not satisfied, and there is no guarantee that the simple version will

calculate exactly the minimal instances of G3. Actually, we already know that this is

not the case. 2
Example 6.24 (examples 6.12 and 6.13 continued) There are two view sections:

Sz1 = {P (x, z), Q(z, y)} and S0
2 = {P (x, y)}, where x and y are universal variables

and z is an existential variable. It is easy to see that there is no mapping h for which

h(Sz1) ⊆ L(S0
2) nor h(S0

2) ⊆ L(Sz1). As a consequence, for any source contents, the

simple version of Π(G2) will calculate exactly the minimal instances of G2. 2
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6.2.2 The Refined Program

In the general case, if we want to compute only the elements of Mininst(G), we need

to refine the program Π(G) given in the previous section. For this purpose, we will

introduce auxiliary annotation constants that will be used as extra arguments in the

database predicates. The annotation constants and their meaning are described in

Table 6.1.

annotation atom the tuple P (ā) is ...
to P (ā, to) is an obligatory atom in all the minimal legal

instances
vi P (ā,vi) an optional atom introduced to satisfy the open-

ness of view vi
nvi P (ā,nvi) an optional atom introduced to satisfy the open-

ness of view that is not vi

Table 6.1: Annotation constants and their meanings for DIS

Definition 6.11 Given an open global system G, the refined program Π(G), contains

the following clauses:

1. Fact dom(a), for every constant a ∈ U .3

2. Fact Vi(ā), whenever ā ∈ vi for some source extension vi in G.

3. For every view (source) predicate Vi in the system with description Vi(x̄) ←

P1(x̄1), . . . , Pn(x̄n):

(a) For every Pk with no existential variables, the rules

Pk (x̄k, to)← Vi(x̄).

(b) For every set Sij of predicates of the description’s body that are related

by common existential variables {z1, . . . , zm}, the rules,

3Note that, in a DIS, U does not contain null
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Pk (x̄k,vij)← addvij
(x̄′),

∧

zl∈(x̄k\x̄′)
F l
i (x̄

′, zl), for Pk ∈ Sij.

addvij
(x̄′)← Vi(x̄), not auxvij

(x̄′).

auxvij
(x̄′)←

∧m

l=1 varvijzl
(x̄zl

).

varvijzl
(x̄zl

)←
∧

Pk∈Sij&zl∈x̄k
Pk (x̄k,nvij).

where x̄zl
=

⋃

Pk∈Sij&zl∈x̄k
x̄k, for l = 1, . . .m and x̄′ = x̄ ∩

⋃

Pk∈Sij
x̄k.

4. For every predicate F l
i (x̄

′, zl) introduced in 3.(b), the rules

F l
i (x̄

′, zl)← addvijzl
(x̄′), dom(zl), choice((x̄

′), (zl)).

addvijzl
(x̄′)← addvij

(x̄′), not auxvijzl
(x̄′), for l = 1, . . .m.

auxvijzl
(x̄′)← varvijzl

(x̄zl
),

∧

zk 6=zl&zk∈x̄zl
F k
i (x̄′, zk), for l = 1, . . . m.

5. For every global relation P (x̄), the rules

P (x̄,nvij)← P (x̄,vhk), for {(ij, hk) | P (x̄) ∈ Sij ∩ Shk, ij 6= hk}.

P (x̄,nvij)← P (x̄, to), for {(ij) | P (x̄) ∈ Sij}.

P (x̄)← P (x̄,vij), for {(ij) | P (x̄) ∈ Sij}.

P (x̄)← P (x̄, to). 2
Example 6.25 (example 6.22 continued) The refined program Π(G3) is:

1. dom(a). dom(c).

2. v1(a). v2(a, c).

3. P (x, z,v1)← addv1(x), Fz(x, z).

addv1(x)← v1(x), not auxv1(x).

auxv1(x)← varv1z(x, z).

varv1z(x, z)← P (x, z, nv1).
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4. Fz(x, z)← addv1(x), dom(z), chosenv1z(x, z).

chosenv1z(x, z)← addv1(x), dom(z), not diffchoicev1z(x, z).

diffchoicev1z(x, z)← chosenv1z(x, z
′), dom(z), z′ 6= z.

5. P (x, y, to)← v2(x, y).

P (x, y,nv1)← P (x, y, to).

P (x, y)← P (x, y,v1).

P (x, y)← P (x, y, to).

Rules in 3. ensure that if there is an atom in source V1, e.g., V1(ā), and if an atom

of the form P (ā, z) was not added by view V2, then it is added by the first rule in

3. with a z value given by the function predicate Fz(ā, z). This function predicate is

calculated by rules in 4. The first rule in 5. enforces the satisfaction of the openness of

V2, by adding obligatory atoms to predicate P ; and rule 2. in 5. stores this atoms with

the annotation nv1, implying that they were added by a view different from V1. The

last two rules gather in the global relations the elements that were generated by both

views and that are in the minimal legal instances. The stable model of this program

is {dom(a), dom(c), v1(a), v2(a, c), P (a, c), P (a, c, to), P (a, c, nv1), auxv1(a)}, which

corresponds to the only minimal legal instance {P (a, c)}. 2
Theorem 6.3 If M is a stable model of SV (Π(G)), then DM := {P (ā) | P ∈

R and P (ā) ∈ M} ∈ Mininst(G). Furthermore, the minimal legal instances ob-

tained in this way are all the minimal legal instances of G. 2
The following lemmas are needed in order to prove Theorem 6.3.

Lemma 6.1 IfM is a stable model of SV (Π(G)), then DM is a legal instance of G.

Proof: In the proof we use the same notation as in the Definition 6.11 of Π(G). As-

sume thatDM is not legal. Then there must be a view Vi, with definition ϕi : Vi(x̄)←
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∧n

u=1 Pu(x̄u, z̄u), for which vi 6⊆ ϕi(DM). More specifically, there is ā such that

ā ∈ (vi r ϕi(DM)). If ā ∈ vi then Vi(ā) ∈M.

For every global relation Pu without existential variables in the view definition ϕi,

we can conclude from rules 3(a) of Π(G) that Pu (āu, to) ∈ M with āu ⊆ ā. Then,

by rules 5., Pu(āu) ∈M and therefore Pu(āu) ∈ DM.

Now we will analyze the case of global relation with existential variables treated

by rules defined in 3(b). For a certain Sij, in order to satisfy the second rule of 3(b),

we have to analyze two cases:

1. Vi(ā) ∈M and auxvij
(ā′) 6∈ M. Then, from the second rule in 3(b)., addvij

(ā′) ∈

M. It follows from the third rule of 3(b) that there exists a non-empty set L

such that varvijzl
(āzl

) 6∈ M for l ∈ L. Now let us take a look at rules in 4.

From the 3rd rule, we have that for every l ∈ L, auxvijzl
(ā′) 6∈ M. Then,

it follows from the 2nd rule and the fact that addvij
(ā′) ∈ M that for every

l ∈ L, addvijzl
(ā′) ∈ M. Now, from the first rule, the choice operator will

assign one value of the domain to zl, e.g. bl for each l ∈ L. Then we will have

F l
i (ā

′, bl) ∈M for every l ∈ L. Now let us have a look at the rules in 3(b). For

Pk ∈ Sij , there are two cases to analyze with respect to the first rule:

(a) {zl | zl ∈ (x̄k r x̄′)} ⊆ {zl | l ∈ L}. Then Pk (āk,vij) ∈ M, where āk is a

projection of ā and the bl of the functional predicates. Hence, Pk(āk) ∈M,

and therefore Pk(āk) ∈ DM.

(b) {zl | zl ∈ (x̄k r x̄′)} 6⊆ {zl | l ∈ L}. For every zl′ ∈ {zl | zl ∈ (x̄k r

x̄′)} r {zl | l ∈ L} ,we have varvijzl′
(āzl′

) ∈ M since l′ 6∈ L. Now, since

the only way for an atom to belong to a model is to have a rule with it in

the head and the body satisfied, the body of the fourth rule of 3(b) has

to be true. This implies that Pk (āk,nvij) ∈ M. We also have that since
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F l′

i (ā′, bl) 6∈ M for any value of bl, then addvijzl′
(ā′) 6∈ M and therefore

auxvijzl′
(ā′) ∈ M. Then, it follows form the third rule of 3(b) that the

values associated to the existential variables that are not zl′ in Pk (āk,nvij)

coincide with the values given by the functional predicates of the view.

Since Pk (āk,nvij) ∈M, we have from rules in 5. that Pk (āk,nvhk) (with

hk 6= ij ) or Pk (āk, to) belong toM, and therefore that Pk(āk) ∈M. Then,

Pk(āk) ∈ DM, sharing the same existential variable that those generated

by the previews case considered.

Then āSij
∈ ϕiSij

(DM).4

2. Vi(ā) ∈M and auxvij
(ā′) ∈M. Then, from the second rule in 3(b)., addvij

(ā′) 6∈

M. From the 3rd rule of 3(b) varvijzl
(āzl

) ∈M for all zl. Then, from the fourth

rule of 3(b) Pk (āk,nvij) ∈ M for all Pk ∈ Sij such that zl ∈ x̄k. From

rules in 5., with hk 6= ij , Pk (āk,nvhk) or Pk (āk, to) belong to M, and there-

fore that Pk(āk) ∈ M. Then, Pk(āk) ∈ DM which in it turns implies that

āSij
∈ ϕiSij

(DM)

Now, since the different Sij do not share existential variables, ϕi(DM) = 1Sij∈Vi

ϕiSij
(DM). Then, since āSij

∈ ϕiSij
(DM), ā ∈ ϕi(DM). We have reached a contra-

diction. 2
Lemma 6.2 If D is a minimal instance of G, then there is a stable model M of

SV (Π(G)), such that DM = D.

Proof: We need to define a Herbrand structure that will be our candidate to be the

stable modelM that generates instance D. For doing this, we use the same notation

4We denote by āSij
the atom ā restricted to the variables of the view ϕi that belong to Sij , and

by ϕiSij
the view definition ϕi restricted to the predicates in Sij and its variables
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as in the Definition 6.11 of Π(G). We put the following facts intoM:

1. Pk(ā) for every global atom Pk(ā) ∈ D. No other atom annotated with Pk

belongs toM.

2. dom(a) iff a ∈ U .

3. Vi(ā) iff ā ∈ vi for vi ∈ G.

4. Pk (āk, to) iff there is a view Vi(x̄) ← P1(x̄1), . . . , Pk(x̄k), . . . Pn(x̄n), in which

Pk has no existential variables and such that ā ∈ vi.

5. For every atom Pk(āk) ∈ D, where Pk (āk, to) 6∈ M, we need to check which

views had the potential of generating it. After some considerations we will

specify at the end of this item what new atoms go intoM and which do not.

For each view section Sli with an existential variable zl,
5 such that Pk ∈ Sli,

define the following views:

Pk (x̄′k, S
l
i)←

∧

Pj(x̄j)∈Sl
i

Pj(x̄j) ∧ Vi(x̄),

where Sli is considered as an annotation constant in the second argument of head

of the view. Let P be the result of instantiating these views over the atoms

in D and the source extensions. P contains the possible section that might

have generated the presence of each global atom in D. We will define SPk =

{Sli | Pk (āk, S
l
i) ∈ P}, i.e., SPk contains al the sections from which Pk(āk) could

have been generated. Note that there is only one Sij in G such that Sij ⊇ Smi .6

Then, for each section Sli ∈ SPk that does not have an admissible mapping 7

5The Sl
i are the view sections introduced in Section 6.2.1.

6Here, the Sij are those appearing in Definition 6.11.
7As defined in section 6.2.1
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such that h(Sli) ⊆
⋃

S∈(Secr{Sl
i})
L(S), we do the following: Pk (āk,vij) ∈ M,

addvij
(ā′) ∈ M, Vi(ā) ∈ M, auxvij

(ā′) 6∈ M, varvijzl
(āzl

) 6∈ M, auxvijzl
(ā′) 6∈

M, addvijzl
(ā′) ∈ M. For all the rest of the sections of SPk, e.g. Smi , we have

that the varvinzm
(āzm

) ∈M. If for all the sections in a view varvinzm
(āzm

) ∈M,

then auxvij
(ā′) ∈M and addvij

(ā′) 6∈ M.

6. For every Pk (āk,vij) ∈ M, we add the fact Pk (āk,nvkm) to M for every

Skm 6= Sij .

7. For every addvijzl
(ā′), Pk (āk,vij) ∈ M, add F l

i (x̄, zl) into M, where zl is the

value of that existential variable in Pk (āk,vij).

By construction, M minimally satisfies rules 1., 2., 3(a), 5. and the first rule of 3(b)

in the program Π(G)M. If auxvij
(ā′) ∈M, Π(G)M does not include the second type of

rules of 3(b). If auxvij
(ā′) 6∈ M, Π(G)M has the rule addvij

(x̄′)← Vi(x̄) corresponding

to second type of rules of 3(b). This rule is satisfied byM because of the facts added

to M in item 5. For the section Sli that has no admissible mapping such that h(Sli)

⊆
⋃

S∈(Secr{Sl
i})
L(S), it holds that no other views can generate the facts for this sec-

tion, and therefore that the body of the fourth rules in 3(b) will not be satisfied. Since

in that case varvijzl
(āzl

) 6∈ M, the whole rule is satisfied. For the sections that are not

in this case, i.e.,there is an admissible mapping, then the body of the fourth rules in

3(b) will be satisfied and since varvijzl
(āzl

) ∈M, the whole rule will be satisfied. If all

the sections are in the situation last described, auxvij
(ā′) ∈M and therefore the third

rule in 3(b). will be satisfied. Following the same analysis and the fact that the choice

operator will choose any value of the domain, it is easy to see that rules in 4. are

also minimally satisfied. M is a minimal model of Π(G)Mand therefore there is a sta-

ble model of Π(G),M, such that DM corresponds to the minimal legal instance D. 2
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Lemma 6.3 IfM is a stable model of SV (Π(G)), then DM is a minimal instance of

G.

Proof: The legality of DM was established in Lemma 6.1. Assume, by contradiction

that DM is not a minimal instance of G. Then there must be a minimal instance D

such that D $ DM. It follows from Lemma 6.2 that there is a model M′ such that

DM′ = D. Then, DM′ $ DM. In particular, there is an atom of a global relation,

say Pk(ā), such that Pk(ā) ∈M and Pk(ā) 6∈ M′. If Pk(ā) ∈M we have two options:

1. Pk (ā, to) ∈M. Then there is a view vi in which Pk has no existential variables.

In that case Pk (ā, to) belongs to all the models and in particular to M′. We

have reached a contradiction since Pk(ā) 6∈ M′

2. Pk (ā,vij) ∈ M. This implies that addvij
(ā′) ∈ M and for all al ∈ (ā \ ā′),

F l
i (ā

′, al) ∈ M. Hence there is an atom Vi(Ā) ∈ M such that the first rule of

3.b. is satisfied. We can also conclude that varvijzl
(āzl

) 6∈ M. Then there is

no other view that satisfies this section Sli. This implies that if M′ does not

contain Pk(ā) then, in order to satisfy the openness of view vi it must add a

new atom to predicate Pk. But D′
M $ DM. We have reached a contradiction

As we reached a contradiction in both cases, we have proven that DM is a minimal

legal instance of G. 2
Proof of Theorem 6.3: Directly from Lemma 6.2 and 6.3 2
Since Theorem 6.3 holds, the program Π(G) (or its stable version) can be used to

compute MinimalG(Q), where Q is a query expressed as a, say Datalognot program

Π(Q). This can be done by running the combined program under the skeptical stable

model semantics. The following corollary for monotone queries, e.g. Datalog queries
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with comparisons, can be immediately obtained from Theorem 6.3 and the fact that

for those queries, CertainG(Q) = MinimalG(Q).

Corollary 6.1 The certain answers to monotone queries posed to an open integration

system G can be computed by running, under the skeptical stable model semantics,

the query program in combination with the program Π(G) that specifies the minimal

legal instances of G. 2
We know that under the hypothesis of Theorem 6.2, the simple and refined programs

compute the same legal database instances, namely the minimal ones. Under the

hypothesis of Theorem 6.2, it is possible to provide a syntactic transformation of the

refined program into the simple program (see Appendix B).

6.3 Specification of Repairs of a Global System

In Chapter 5, repairs of single relational databases are specified as stable models of

disjunctive logic programs. In the case of data integration systems, we can treat each

minimal legal instances as a single database. In this way, we can combine the program

that specifies the minimal legal instances with the program that repairs databases.

Definition 6.12 Given a schema R and a set of ICs IC , we will denote by Π(R, IC )

the repair program for single databases but without the facts, i.e., rules 2. to 6. in

Definition 5.9. 2
Π(R, IC ) consists of the intentional part of the repair program. By combining it with

the minimal legal instance program, we obtain the repair program for an integration

system.
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Definition 6.13 Given an integration system G with global schema R and a set of

global ICs IC , the repair program is:

Π(G, IC ) := Π(G) ∪ Π(R, IC ) 2
Example 6.26 (example 6.20 continued) We have the integration system G2 with

the local view definitions V1(x, z) ← P (x, y), R(y, z), and V2(x, y) ← P (x, y), and

source contents v1 = {V1(a, b)} and v2 = {V2(a, c)}, respectively. Consider the global

symmetry integrity constraint sim : ∀x∀y(R(x, y) → R(y, x)) on G2. The repair

program, Π(G, IC ), is the union of Π(G) and Π(D , IC ) below:

Π(G) :

dom(a). dom(b). dom(c). dom(u).

v1(a, b). v2(a, c).

P (x, y,v1)← addv1(x, z), F
y
1 (x, z, y).

R (y, z,v1)← addv1(x, z), F
y
1 (x, z, y).

addv1(x, z)← v1(x, z), not auxv1(x, z).

auxv1(x, z)← varv1y(x, y, z).

varv1y(x, y, z)← P (x, y,nv1), R (y, z,nv1).

F y
1 (x, z, y)← addv1y(x, z), dom(y), chosenv1y(x, z, y).

chosenv1y(x, z, y)← addv1y(x, z), dom(y), not diffchoicev1(x, z, y).

diffchoicev1(x, z, y)← chosenv1y(x, z, y
′), dom(y), y′ 6= y.

addv1y(x, z)← addv1(x, z), not auxv1y(x, z).

auxv1y(x, z)← varv1y(x, y, z).

P (x, y, to)← v2(x, y).

P (x, y,nv1)← P (x, y, to).

P (x, y,nv2)← P (x, y,v1).

P (x, y)← P (x, y,v1).
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P (x, y)← P (x, y, to).

R(x, y)← R (x, y,v1).

Π(R , IC ) :

P (x, y, t⋆)← P (x, y, ta).

P (x, y, t⋆)← P (x, y).

R (x, y, t⋆)← R (x, y, ta).

R (x, y, t⋆)← R (x, y, td).

R (x, y, fa) ∨R (y, x, ta)← R (x, y, t⋆), R (y, x, fa), dom(x), dom(y).

R (x, y, fa) ∨R (y, x, ta)← R (x, y, t⋆), not R(y, x), dom(x), dom(y).

P (x, y, t⋆⋆)← P (x, y, t⋆), not P (x, y, fa).

R (x, y, t⋆⋆)← R (x, y, t⋆), not R (x, y, fa).

← R (x, y, ta), R (x, y, fa).

← P (x, y, ta), P (x, y, fa). 2
Definition 6.14 The global instance associated to a choice model M of Π(G, IC )

is DM = {P (ā) | P ∈ R and P (ā, t⋆⋆) ∈M}. 2
Example 6.27 (example 6.20 and 6.26 continued) Program Π(G, IC ) = Π(G) ∪

Π(R , IC ) has five stable models with the following associated repairs: (a) DMr
1

=

{P (a, b), R(b, b), P (a, c)}, corresponding to the already consistent minimal instance

DM1
in Example 6.21; (b) DMr

2
={P (a, a), P (a, c)} and DMr

3
={R(a, b), R(b, a), P (a,

a), P (a, c)}, the repairs of the inconsistent instance DM2
; (c) DMr

4
={P (a, c)} and

DMr
5
={R(c, b), R(b, c), P (a, c)}, the repairs of instance DM3

; and (d) DMr
6
={P (a,

u), P (a, c)} and DMr
7
={R(u, b), R(b, u), P (a, u), P (a, c)}, the repairs of DM4

. 2
By construction, the repair program can be split [Lifschitz and Turner, 1994] into the

specification of the minimal instances, followed by the specification of their repairs.

Therefore, the minimal legal instances can be computed first, and next, the repairs
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Figure 6.2: Computing consistent answers

of them. Each minimal model computed by the first part of Π(G, IC ) can be seen

as a simple, relational database, which is repaired afterwards by the second part of

Π(G, IC ). This gives us the following theorem.

Theorem 6.4 Let IC be an RIC-acyclic set of UICs and RICs. If M is a choice

model of Π(G, IC ), then DM is a repair of G with respect to IC. Furthermore, the

repairs obtained in this way are all the repairs of G with respect to IC. 2
In the case of cyclic sets of RICs, IC , the global instances associated to the choice

models of the program will always be a superset of the repairs of G with respect to

IC , and in order to obtain the repairs, the choice models will have to be compared,

to choose those that minimally differ from the minimal legal instance.

6.4 Consistent Answers

To obtain those answers to a query posed on a DIS G that are consistent with respect

to IC , we can run the program Π(Q) ∪ SV(Π(G, IC )) and get the answer from the

intersection of the stable models, as in the case of stand alone databases (see Section

5.2.1). Figure 6.2 describes the methodology in general terms.
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Example 6.28 (example 6.20, 6.26 and 6.27 continued) We want the consistent an-

swers to the query Q : P (x, y). First, the query is written as the query program

clause Ans(x, y) ← P (x, y, t⋆⋆). This query program, Π(Q), is run with SV (Π( G3,

sim)). The corresponding stable models of Π(Q) ∪ SV (Π(G3, sim)) are: (a) M
r

1

= Mr
1 ∪ {Ans(a, b), Ans(a, c)}; (b) M

r

2 = Mr
2 ∪ {Ans(a, a), Ans(a, c)}; M

r

3 =

Mr
3 ∪ {Ans(a, a), Ans(a, c)}; (c) M

r

4 = Mr
4 ∪ {Ans(a, c)}; M

r

5 = Mr
5 ∪ {Ans(a,

c)}; (d)M
r

6 =Mr
6 ∪ {Ans(a, u), Ans(a, c)};M

r

7 =Mr
7 ∪ {Ans(a, u), Ans(a, c)}.

Ans(a, c) is the only query atom in all stable models, then the tuple (a, c) is the only

consistent answer to the query. 2
If G is consistent, then the consistent answers to Q computed with this method

coincide with the minimal answers to Q, and then to the certain answers if Q is

monotone.

6.5 Further Analysis, Extensions and Discussion

6.5.1 Complexity

The complexity analysis of CQA in integration of open sources under the LAV ap-

proach can be split according to the main two layers of the combined program, namely,

the specification of minimal instances and the specification of the repairs of those min-

imal instances.

Query evaluation from the program Π(G) with choice under the skeptical stable

model semantics is in coNP (the case singularized as certainty semantics in [Wang and

Zaniolo, 2000]). Actually, if the choice operator program is represented in its “classi-

cal” stable version (see Section 6.2.1), we are left with a normal (non-disjunctive), but

non-stratified program whose query answering complexity under the skeptical stable

model semantics is coNP-complete [Dantsin et al., 2001; Leone et al., 2006] in data
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[Abiteboul et al., 1995]. In our case, this means in terms of the combined sizes of the

sources.

This complexity of computing minimal answers is inherited by the computation

of certain answers when the two notions coincide, e.g., for monotone queries, like

Datalog queries. This complexity result is consistent and matches the theoretical

complexity lower bound on computing certain answers to Datalog queries under the

LAV approach [Abiteboul and Duschka, 1998]. With disjunctive views, as considered

in Section 6.5.4, the complexity of the program goes up to ΠP
2 -complete.

The complexity of query evaluation with respect to the disjunctive normal pro-

gram Π(G, IC ) that specifies the repair of minimal instances is ΠP
2 -complete in data

complexity [Dantsin et al., 2001], which matches the complexity of consistent query

answering [Bertossi and Chomicki, 2003; Chomicki and Marcinkowski, 2005a; Cal̀ı et

al., 2003a].

In the cases in which the repair part of the program for CQA is head-cycle free

(HCF) (see Section 5.2.3), the complexity is reduced to coNP [Ben-Eliyahu and

Dechter, 1994; Leone et al., 1997]. The program Π(G, IC ) is HCF for a combination

of: (a) Denial constraints, i.e., formulas of the form
∨n

i=1 Pi(t̄i)→ ϕ, where Pi(t̄i) is

an atom, and ϕ is a formula containing built-in predicates only; (b) Acyclic referential

integrity constraints, i.e., without cycles in the dependency graph. This case includes

the usual integrity constraints found in database practice, like (non-cyclic) foreign

key constraints.

6.5.2 Infinite vs. Finite Domain

In Section 6.1.4, we considered the possibility of having an infinite underlying domain

U . At the purely specification level there is no problem in using, in the first item of

Definition 6.8, an infinite number of facts. Our soundness and completeness theorems
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hold. However, in the logic programs we have presented in the examples we had a finite

domain, see Example 6.19 (the finite domain is specified by the dom predicate), but

also an extra constant u that does not appear in the active domain (all the constants

in the sources plus those that appear in the view definitions) of the integration system.

The reason is that we need a finite domain to run the program, but at the same

time, we need to capture the potential infiniteness of the domain and the openness

of the sources. Furthermore, we should not be forced to use only the active domain,

because doing so might assign the wrong semantics to the integration system.

Example 6.29 Consider an integration system G4 with one source defined by the

view V (x)← R(x, y), and the query Q(y)← R(x, y). If the view extension has only

one tuple, say {(a)}, then the active domain is {a} and R(a, a) is in all the legal

instances of G4 if only this domain is used; and we would have CertainG4
(Q) = {(a)}.

Now, if the view extension becomes {(a), (b)}, the active domain is {a, b}, and there

is a global instance containing just the tuple R(a, b), and another containing just

R(a, a). In consequence, there will be no certain answers. This simple example shows

that a positive query may have an undesirable non-monotonic behavior 2
In Example 6.19, introducing one extra constant (u) is good enough to correctly

answer conjunctive queries (see below). In the general case, the number of extra

constants may vary depending on the situation.

It is necessary to make all these considerations, because the set of minimal legal

instances may depend on an underlying domain, as we saw in Example 6.13, where

Mininst(G2) = {{P (a, c), P (a, z), R(z, a)} | z ∈ U = {a, b, c, ...}}.

Since we want only the certain answers, those that can be obtained from all the

stable models, it is easy to see that the values taken by the “free variables”, like

z above, will not appear in a certain answer. However, the absence of the extra,
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new constants may sanction as certain some answers that are not if the domain is

restricted to the active domain (see Example 6.29). As a consequence, we need a larger

domain, with enough values to represent the relationships and differences between the

free variables.

Depending on the query, there is a finite domain that generates the same certain

and minimal answers as the infinite domain. It can be shown that if the query is

conjunctive, then adding only one new constant to the active domain is good enough

(see Example 6.19).

If the query is disjunctive, then the smallest “equivalent” finite domain is the active

domain plus n new constants, where n is the maximum number of instantiations of

existential variables in a minimal legal instance. This number of instantiations cannot

be obtained from the view definitions alone, because it also depends on the number of

elements in the sources associated to the Skolem predicates. An upper bound on the

number of constants to be added to the active domain to correctly answer disjunctive

queries is the sum over all sources of the product of the number of existential variables

in a view definition with the number of atoms in the corresponding source.

Example 6.30 Consider an integration system G5:

V1(x, y)← P (x, z0), R(z0, y); {V1(a, b)}.

V2(x, y)← P (x, z1), R(z2, y); {V2(a, b), V2(c, d)}.

The set of minimal legal instances is {{P (a, z1), R(z1, b), P (c, z2), R(z3, d)} | z1, z2,

z3 ∈ U}. By looking at this representation, we see that in order to obtain correct

certain answers to disjunctive queries, it is sufficient to add three extra constants to

the active domain {a, b, c, d}, obtaining, say U = {a, b, c, d, e, f, g}, a finite domain

that is able to simulate an infinite domain with respect to disjunctive queries.

Instead of inspecting the minimal instances to determine the number of new con-

stants, we can use an upper bound, in this case, five, which can be computed as: 1
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existential variable times 1 atom plus 2 existential variables times 2 atoms. So, we

could use a domain U with five extra constants. 2
6.5.3 Choice Models vs. Skolem Functions

In this chapter, we have used the choice operator to replace the Skolem functions used

in the inverse rules algorithm. In this way, we were able to specify the minimal global

instances. This was one of our original goals, and is interesting in itself. This result

allows us to specify the repairs of the integration system with respect to the ICs.

However, if we are interested in query answering only, it becomes relevant to analyze

if it is possible to retrieve the minimal, certain and consistent answers by keeping the

Skolem functions in the program, evaluating the program, and then filtering out the

final answers that contain those functions (as done in [Duschka et al., 2000] to obtain

certain answers).

We first analyze the case of the simple program (see Section 6.2.1), in which we

want to consider using Skolem functions instead of the functional predicate together

with the choice operator. For example, we would have P (x, f(x))← V (x), instead of

the rules P (x, y)← V (x), F (x, y) and F (x, y)← V (x), dom(y), choice((x), (y)).

In this case, the program will have the same rules V−1 as in the inverse rules

algorithm. The resulting definite program is positive and, therefore, its stable model

corresponds to the minimal model. That model will have atoms with instantiated

Skolem functions, and can be seen as a compact representation of the collection of

stable models of the choice program, in the sense that the latter can be recovered by

considering the different ways in which the Skolem functions can be defined in the

underlying domain.

If a query is posed using the program with Skolem functions, the set of answers

may or may not contain tuples with ground Skolem functions. Those answers with
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Skolem functions correspond to answers that would be different in different stable

models of the choice program, because in a sufficiently rich domain (see Section 6.5.2)

the functions may be defined in different ways. This is why if we delete those answers

with functions, we get the same answers as from the choice program Π(G) under

the cautious stable model semantics. As a consequence, for computing the certain

answers to a monotone query, we can use either the program with Skolem functions

(pruning the answers with Skolem functions at the end) or the choice program.

Let us now consider the refined program (see Section 6.2.2). In this case, if Skolem

functions are used instead of the choice operator, the resulting program is a normal

program that may have several stable models.

Example 6.31 Consider an integration system G with

V1(x)← P (x1, y1, z1), S(y1) V1(a)

V2(x, y)← P (x2, y2, z2) V2(a, e)

The following is the program with Skolem functions:

P (x, f1(x), f2(x),v1)← addv1(x), addv1y(x), addv1z(x).

S (f1(x),v1)← addv1(x).

addv1(x)← v1(x), not auxv1(x).

auxv1(x)← varv1y(x, y, z), varv1z(x, y, z).

varv1y(x, y, z)← P (x, y, z,nv1), S (y,nv1).

varv1z(x, y, z)← P (x, y, z,nv1).

addv1y(x)← addv1(x), not auxv1y(x).

auxv1y(x)← varv1y(x, y, z), z = f2(x).

addv1z(x)← addv1(x), not auxv1z(x).

auxv1z(x)← varv1z(x, y, z), z = f1(x).

P (x, y, f3(x, y),v2)← addv2(x, y), addv2z(x, y).

addv2(x, y)← v2(x, y), not auxv2(x, y).
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auxv2(x, y)← varv2z(x, y, z).

varv2z(x, y, z)← P (x, y, z,nv2).

addv2z(x, y)← addv2(x, y), not auxv2z(x, y).

auxv2z(x, y)← varv2z(x, y, z).

P (x, y, z,nv1)← P (x, y, z,v2).

P (x, y, z,nv2)← P (x, y, z,v1).

P (x, y, z)← P (x, y, z,v1).

P (x, y, z)← P (x, y, z,v2).

S(y)← S (y,v1). 2
The stable models of the refined program with Skolem functions are computed under

the unique names assumption [Reiter, 1984]. As a consequence of this, the program

may not be able to distinguish those cases where the openness condition for a source

can be satisfied because the condition already holds for another source (see the dis-

cussion at the end of Section 6.2.1). For example, if two atoms, say P (a, f1(a), f2(a))

and P (a, e, f3(a, e)), are added to the stable models in order to satisfy the openness

conditions for two different views, the program will treat those two atoms as differ-

ent. This may not be the case when the Skolem functions are interpreted. As a

consequence, stable models that are larger than needed might be produced.

If each of these stable models is seen as a compact representation of a set of

intended global instances, which can be recovered through all possible instantiations

of the Skolem functions in the model, we may end up generating global instances that

are not minimal. In other words, the class of stable models of the refined program

with Skolem functions represents a class that possibly properly extends the one of

minimal instances, by including global instances that are legal, but not minimal.

Example 6.32 (example 6.31 continued) The minimal instances of this integra-

tion system can be represented by {{P (a, e, f3(a, e)), P (a, f1(a), f2(a)), S(f1(a))} |
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f3(a, e) ∈ U , f2(a) ∈ U , f1(a) ∈ U r {e}}
⋃

{{P (a, e, f3(a, e)), S(e)} | f3(a, e) ∈ U}.

By interpreting the Skolem functions in the underlying domain, we obtain all and

only the minimal instances. Notice that in this case, it is necessary to give all the

possible values in the domain to the existential variables (or function symbols), the

only exception being when the existential variable y1 is made equal to e. In that case

it is good enough to give values to z1 or z2 in order to satisfy the openness conditions

for V1 and V2.

In the context of the refined program with function symbols, due to the unique

names assumption, f1(a) will always be considered different from e, and therefore

the program will not realize that there is a minimal model that does not contain

the tuple P (x, f1(x), f2(x), v1). As a consequence, the program will generate the

stable model {P (a, e, f3(a, e)), P (a, f1(a), f2(a)), S(f1(a))}, that represents a proper

superclass of the minimal legal instances. For example, it represents the instance

{P (a, e, u), P (a, e, v), S(e)}, that is not minimal. 2
The possibly strict superset of the minimal instances that is represented by the models

of the program with functions can be used to correctly compute the minimal and

certain answers to monotone queries (in this case it is better to use the simple program

though), but not for queries with negation.

We now consider the repair program. In those cases where the stable models of

the simple or revised programs with Skolem functions do not represent the minimal

legal instances, it is clear that it is not possible to compute their repairs. When the

stable models do represent the minimal legal instances, it is not possible for the repair

program to detect all the inconsistencies in them because of the underlying unique

names assumption.

Example 6.33 (examples 6.12 and 6.13 continued) The minimal legal instances are

represented via Skolem functions byM = {P (a, f(a, b)), R(f(a, b), b), P (a, c)}, which
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can be obtained as a model of the simple program with Skolem functions. This model

is inconsistent with respect to IC : ∀x∀y(R(x, y)→ R(y, x)).

The repair program Π(G, IC ) has the rule

R(x, y, fa) ∨ R(y, x, ta)← R(x, y, t⋆), R(y, x, f⋆),

that will produce the repairs DM1
= {P (a, f(a, b)), P (a, c)} andDM2

= {P (a, f(a, b)),

R(f(a, b), b), R(b, f(a, b)), P (a, c)}, which represent a superset of the real repairs of

the minimal legal instances. Because of the unique names assumption, the program

will not detect that, for f(a, b) = b, the instance is consistent with respect to IC. 2
6.5.4 Disjunctive Sources

In Section 6.2, we considered sources defined as conjunctive views only. If sources are

now described as disjunctive views, i.e., with more than one conjunctive rule [Duschka,

1997], then the program Π(G) has to be extended in order to capture the minimal

instances. In this case, a source Si is a pair 〈Φi, vi〉, where Φi is a set of conjunctive

rules defining the same view, say ϕ
i1
, . . . , ϕ

im
, and vi is the given extension of the

source.

Definition 6.15 Given an open global system G = {〈Φ1, v1〉, . . . , 〈Φn, vn〉}, the set

of legal global instances is Linst(G) = {D instance over R | vi ⊆
⋃

k ϕik
(D),

for i = 1, . . . , n}. 2
Example 6.34 Consider the global integration system G7 with global relations {R(x, y),

S(x), T (x, y)} and two source relations v1 and v2 with the view definitions and ex-

tensions shown in Table 6.2.

Examples of legal instances are {S(b), S(a), R(a, b), T (c, d)}, {S(b), S(a), R(a, b),

R(c, d), S(d)} and {S(b), S(a), R(a, b), T (c, d), T (a, b)}. 2
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Source Extension View Definitions
v1 {V1(a, b), V1(c, d)} V11 : V1(x, y)← R(x, y), S(y)

V12 : V1(x, d)← T (x, d)
v2 {V2(b), V2(a)} V21 : V2(x)← S(x)

Table 6.2: View definitions and extension of Example 6.34

If we have disjunctive view definitions, in order to satisfy the openness of a source,

it is necessary that one or more views generate each of its tuples. To capture this,

in [Duschka, 1997] the concepts of truly disjunctive view and witness are introduced,

together with an exclusion condition. Informally, a set of views is truly disjunctive if

there is a tuple t̄ that can be generated by any of the views. This tuple is called a

witness. The exclusion condition is a constraint on the witness that determines for

which tuples the truly disjunctive views are the most general.

Example 6.35 (example 6.34 continued) The atoms of v1 that have the constant d

as the second attribute can be generated either by V11 or V12. On the other hand, if

the second attribute is different from d, the atom can only be generated by V1. This

is expressed in terms of truly disjunctive views, most general witness and exclusion

condition that are shown in Table 6.3. 2
truly disjunctive views most general witness exclusion condition

V1 (x1, x2) second attribute 6= d
V1, V2 (x1, d) true

Table 6.3: Truly disjunctive views of Example 6.35

In order to extend the simple version of Π(G), incorporating disjunctive view defini-

tions, we need to take into account the different sets of truly disjunctive views with

their witnesses and exclusion conditions. For example, for the second truly disjunctive

set in Example 6.35, the following rule needs to be imposed

(R(x, d) ∧ S(d)) ∨ T (x, d)← V (x, d), (6.4)
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which is equivalent to the pair of disjunctive Datalog rules

R(x, d) ∨ T (x, d) ← V (x, d) (6.5)

S(d) ∨ T (x, d) ← V (x, d). (6.6)

For each set of truly disjunctive views, rules like (6.5) and (6.6) will have to be

satisfied by the legal instances. These remarks motivate the following program as an

specification of the minimal legal instances.

Definition 6.16 Given an open global system G, the program, Π∨(G), contains the

following clauses:

1. Fact dom(a), for every constant a ∈ U . Also the fact Vi(ā) whenever ā ∈ vi for

some source extension vi in G.

2. For every set of truly disjunctive views for a source Vi of the form

Vi1 : Vi(x̄1)← P11(x̄11), . . . , P1n(x̄1n1
)

· · ·

Vik : Vi(x̄k)← Pk1(x̄k1), . . . , Pkn(x̄knk
),

where the variables in each view are different (fresh), for its more general witness w̄

and its most general exclusion condition ϕ, the rules

P1δ1(x̄
′
1δ1

) ∨ · · · ∨ Pkδk(x̄
′
kδk

)← Vi(w̄) ∧ ϕ ∧
∧

zl∈(x̄′\w̄)

F l
i (w̄, zl),

where x̄′ =
⋃k

j=1 x̄
′
jδj

, and δl ∈ {1, . . . , nk} for l = 1, . . . , k.

The tuples of variables x̄′1δ1 , . . . , x̄
′
kδk

are those obtained by the substitution of x̄i by

w̄ in all the view definitions. These rules represent all the possible combinations of k

predicates, where each of them is chosen from a different view definition.

3. For every predicate F l
i (x̄, zl) introduced in 2., the rule
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F l
i (x̄, zl)← Vi(x̄), dom(zl), choice((x̄), (zl)). 2

Example 6.36 (example 6.35 continued) The program Π∨(G7) is:

1. dom(a). dom(b). dom(c). dom(d).

2. R(x, y)← V1(x, y), y 6= d.

3. S(y)← V1(x, y), y 6= d.

4. T (x, d) ∨ R(x, y)← V1(x, y).

5. T (x, d) ∨ S(y)← V1(x, y).

6. S(x)← V2(x).

Rules (2)-(3) and (4)-(5) represent, respectively, the first and second truly disjunctive

set for source v1. Rule (6) is for the non-disjunctive source v2. 2
If all the sources are defined by conjunctive views, then is easy to see that Π∨(G)

becomes the simple program Π(G) introduced in Section 6.2.1. As before, it holds

that

Mininst(G) ⊆ {DM | M is a stable model of Π∨(G)} ⊆ Linst(G).

For monotone queries Q, the answers obtained using Π∨(G) coincide with

CertainG(Q) and MinimalG(Q). This might not be the case of queries with nega-

tion. It is possible to give a refined version for the case of disjunctive views, corre-

sponding to the non-disjunctive program in Section 6.2.2, for which Mininst(G) =

{DM | M is a stable model of Π∨(G)} also holds.

6.5.5 The Mixed Case

So far we have assumed that all the sources are open. Now we will consider the

mixed case, where some of the sources may be closed or closed and open (clopen or
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exact) [Grahne and Mendelzon, 1999]. Intuitively speaking, a closed source contains a

superset of the data of its kind in the system, and the clopen source contains exactly

all the data of its kind in the system.

More precisely, if a material source relation v, defined as the view V (x̄) ←

ϕ
V
(x̄) of the global system, has been defined as a closed (clopen) source, then in any

legal instance D, it must hold v ⊇ ϕ
V
(D) (resp. v = ϕ

V
(D)).

In this section, we will describe how to modify the program that specifies the

minimal instances presented in Section 6.2 when some of the sources are declared

closed or clopen.

Example 6.37 For the domain U = {a, b, c, . . . }, consider the integration system

G4:

V1(x, z)← P (x, y), R(y, z); v1 = {(a, b)} open.

V2(x, y)← P (x, y); v2 = {(a, c)} clopen.

In Example 6.13, we had the same sources and definitions, but then they were all

declared open; and Mininst(G2) = {{P (a, c), P (a, z), R(z, b)} | z ∈ U}. Now, the

label on the second sources forces relation P to be {(a, c)}. As a consequence, we

obtain Mininst(G4) = {{P (a, c), R(c, b)}}. 2
It is clear that the closed and clopen labels will impose additional restrictions on

the legal instances we had for the purely open case, when all sources are open. In

particular, these labels will never force to add new tuples to the legal instances.

Actually, if a source is declared closed, then that source will contribute with the

empty set of tuples to the minimal instances of the integration system.

With open, closed and clopen sources, the sets of legal and minimal instances

will always be subsets of the same sets for the case where the same sources are all

declared open. In order to obtain the minimal instances in the mixed case, all we
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have to do is filter out some of the minimal instances obtained in the purely open

case, namely those that violate the closedness condition for some of the sources. This

can be captured at the logic program specification level by means of a program denial

constraint, which has the effect of discarding some of the stable models.

In the mixed case, the program Πmix(G) that specifies the minimal instances

consists of the program Π(G) as defined in Section 6.2 (as if all the sources were

open) plus a denial constraint of the form ← P1(x̄1), . . . , Pn(x̄n), not V (x̄), for each

closed (or clopen) source v with view definition V (x̄)← P1(x̄1), . . . , Pn(x̄n). That is,

the open sources contribute with rules to the program, the clopen sources both with

rules and program denial constraints, and the closed sources with program denial

constraints only.

With these modifications, the obtain the same correspondence between the stable

models of the program Πmix(G) and the minimal instances of the mixed integration

system G.

Example 6.38 (example 6.37 continued) The program Πmix(G4) that specifies the

minimal instances of system G4 is:

1. dom(a). dom(b). dom(c). dom(u). V1(a, b). V2(a, c).

2. P (x, z)← V1(x, y), F1(x, y, z).

R(z, y)← V1(x, y), F1(x, y, z).

P (x, y)← V2(x, y).

3. F1(x, y, z)← V1(x, y), dom(z), choice((x, y), (z)).

4. ← P (x, y), not V2(x, y).

This program, excluding the last program denial constraint, coincides with program

Π(G2) in Example 6.19, where the same sources and definitions are considered, but all
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the sources are open only. With the denial constraint, that enforces the closeness of

source V2, the only stable model of Πmix(G4) is {dom(a), . . . , V1(a, b), V2(a, c), P (a, c),

F1(a, b, c), R(c, b)}, which corresponds to the only minimal instance {{P (a, c), R(c,

b)}}. 2
Notice that the solution we have reached via logic programs is similar in spirit to the

solution presented in [Grahne and Mendelzon, 1999], where the mixed case is treated.

There, tableaux with constraints are used to compactly represent the legal instances

and obtain certain answers. The tableaux capture the open part, and the constraints,

as in our solution, the closed part.

6.5.6 GAV mappings

So far we have addressed CQA in data integration systems under the LAV approach.

Here, we will extend those results to the GAV approach. First we need some defini-

tions.

In the GAV approach, as presented at the beginning of this chapter, a view is of

the form R(t̄)← body(ϕ
R
), where ϕ

R
is a conjunctive query over S-atoms, body(ϕ

R
)

is the body of ϕ
R
, and R ∈ R. An open GAV system is defined by 〈R,S,V〉 where

R is the global schema, S the set of open sources, and V the set of views.

Definition 6.17 Given a GAV global system G = 〈R,S,V〉, the set of legal global in-

stances is Linst(G) = {D instance over R | R(D) ⊇ ϕR(S) for (R(t̄)← body(ϕ
R
)) ∈

V}. The retrieved database, Ret(G) = {A | A ∈ ϕ
R
(S), for ϕ

R
∈ V}. 2

Example 6.39 Consider source relations S1 = {(a, b), (a, e)} and S2 = {(b, a), (b,

f)}, the global schema R = {R1, R2}, and the view definitions:

R1(x, z)← S1(x, y), S2(y, z),

R2(x, y)← S1(x, y), S2(z, x).
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Here, Ret(G) = {R1(a, a), R1(a, f), R2(a, b)}, and Linst(G) = {D | D has schema R,

and D ⊇ {R1(a, a), R1(a, f), R2(a, b)}. 2
It is easy to see that the set of legal instances of a GAV integration system are the

databases that are a superset of the retrieved database.

The retrieved database corresponds to what is obtained by directly applying the

view definitions to the sources. The definition of certain answer, minimal legal in-

stance, consistency and minimal answers are the same as under LAV (see Definitions

6.2, 6.3 and 6.4).

Example 6.40 (example 6.39 continued) The minimal legal instance is unique and

is equal to the retrieved database. The certain answers to the query Q(x)← R1(x, y),

R2(x, z) are Certain(Q) = {(a)}. Since the query is positive, the minimal answers

coincide with the certain answers. Now, if we add an IC: ∀xyz(R1(x, y)∧R2(x, z)→

y = z), the integration system is inconsistent, since the minimal legal instance does

not satisfy the constraint. 2
In the GAV case there is always a unique minimal legal instance, that corresponds to

the retrieved database.

Definition 6.18 Given an open global system G, the program ΠGAV (G) contains the

rule R(x̄)← S1(x̄1), . . . , Sn(x̄n), for each view definition (R(x̄)← S1(x̄1), . . . , Sn(x̄n))

∈ V. 2
Definition 6.19 The database associated to a model M of ΠGAV (G) is DM =

{P (ā) | P (ā) ∈M and P ∈ R}. 2
Proposition 6.1 The program ΠGAV (G) has a unique minimal model M (which is

also a unique stable model), such that DM = Ret(G). 2
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This implies that program ΠGAV (G) can be used to retrieve the certain answers for

monotone queries and the minimal answers for any type of Datalog¬,∨ queries.

A GAV data integration system can be said to be consistent if the minimal legal

instance, i.e., the retrieved legal instance, satisfies the global constraints. The formal

definitions of repairs and CQA are the same as the one given for LAV (see Definition

6.6 and 2.5). Therefore, the repairs of the integration system will be, in the GAV

case, the set of repairs of the retrieved database.

Definition 6.20 Given an integration system G with global schema R and a set of

global ICs IC , the repair program is:

Π(G, IC ) := ΠGAV (G) ∪ Π(R, IC ). 2
Π(R, IC ) consists of the intentional part of the repair program Π(D , IC ).

This repair program can be used to retrieve the consistent answers from a GAV

data integration system.

In [Lembo et al., 2002; Cal̀ı et al., 2003b; Cal̀ı et al., 2002a; Cal̀ı et al., 2002c], the

authors deal with CQA in GAV integration systems. In their approach a different

semantics is used, where insertions are preferred over deletions when repairing the

retrieved database. Another difference, is that they consider only inclusions and

functional dependencies with some restrictions over the interactions between them.

6.6 Conclusions

We have presented a general approach to specifying, by means of disjunctive logic pro-

grams with stable model semantics, the database repairs of a virtual data integration

system with open sources under the LAV and GAV approaches.

Consistent answers to queries posed to such a system are computed by running a

query program together with the specification of database repairs under the skeptical
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or cautious stable model semantics.

The specification of the repairs is achieved by first specifying the class of minimal

global legal instances of the integration system (without considering any global ICs at

this level yet). To the best of our knowledge, this is also the first specification, under

the LAV paradigm, of such global instances in a logic programming formalism. The

specification is inspired by the inverse rules algorithms, where auxiliary functions are

replaced by auxiliary predicates that are forced to be functional by means of the non

deterministic choice operator.

The specification of the minimal legal instances of the integration system allows

obtaining the minimal answers to arbitrary queries; and the certain answers to mono-

tone queries, what extends previous results in the literature related to query plan

generation under the LAV approach.

The methodology for specifying minimal legal instances, computing certain an-

swers, and CQA works for conjunctive view definitions and disjunctions thereof. Wrt

the ICs and queries this approach can handle, the solution is sound and complete

for combinations of universal ICs and acyclic referential ICs, and queries expressed

as Datalog¬ programs. In consequence, the current approach to consistent query

answering (CQA) subsumes and extends the methodologies presented in [Bertossi

et al., 2002] for integration systems, and the one in [Barceló et al., 2003] for stand

alone relational databases. Also the complexity of query evaluation using the logic

programs presented here matches the theoretical lower bounds for computing certain

and consistent answers.

The specifications of the retrieved and minimal databases given for the GAV

and LAV approaches can be easily combine to provide a specification for the GLAV

approach [Friedman et al., 1999]. By combining this specification with the repair

program, we would also be able to give consistent answers for DIS under the GLAV
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mapping.

We have already indicated that, in the case the set of ICs contain referential ICs

with cycles, the stable models of the specification programs may correspond to a

superclass of the repairs of the global system [Bravo and Bertossi, 2006].

Most of the results in this chapter have been published in [Bravo and Bertossi,

2003; Bravo and Bertossi, 2005; Bertossi and Bravo, 2005].

Wrt related work, query answering in virtual DISs under the assumption that

certain global ICs hold has been treated in [Gryz, 1999; Duschka et al., 2000; Grant

and Minker, 2002; Cal̀ı et al., 2002a]. However, in CQA we do not assume that global

ICs hold. Logic programming specifications of repairs of single relational databases

have been presented in [Arenas et al., 2003; Greco et al., 2001; Barceló; and Bertossi,

2003].

In [Bertossi et al., 2002], CQA in possibly inconsistent integration systems under

the LAV approach is considered. There, the notion of repair of a minimal legal

instance is introduced. The algorithm for CQA is based on a query transformation

mechanism [Arenas et al., 1999] applied to first-order queries. The resulting query

may contain negation, and is run on top of an extension of the inverse algorithm to

the case of stratified Datalognot queries. This approach is limited by the restrictions

of the query transformation methodology [Arenas et al., 1999]. In particular, it can

be applied only to queries that are quantifier-free conjunctions of literals, and to

universal ICs.

Integration systems under the GAV approach that do not satisfy global key de-

pendencies are considered in [Lembo et al., 2002]. There, legal instances are allowed

to be more flexible, allowing their computed views to accommodate the satisfaction of

the ICs. In this sense, the notion of repair is implicit; and the legal instances are the

repairs we have considered here. View definitions are expressed as Datalog queries;
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and the queries to the global system are conjunctive. The “repairs” of the global

system are specified by normal programs under stable model semantics. In [Cal̀ı et

al., 2003b], and still under the GAV approach, this work is extended by introducing

rewriting techniques to retrieve the consistent query answers without constructing the

“repairs”. More related work is discussed in the survey [Bertossi and Bravo, 2005] .

In this chapter, we have considered repairs based on null values for RICs. In

[Arenas et al., 2003; Barceló; and Bertossi, 2003; Cal̀ı et al., 2003a], repairs of RICs

using non-null domain values are considered. Under cyclic sets of RICs, this may lead

to undecidability of consistent query answering.

Research related to the design of virtual data integration systems and its impact

on global query answering has been mostly neglected. Most of the research in the

area starts from a given set of view definitions, but the conditions on them hardly

go beyond classifying them as conjunctive, disjunctive, Datalog, etc. However, other

conditions, imposed when the systems is being designed, could have an impact on,

e.g. query plan derivation. Much research is needed in this direction.



Chapter 7

Consistency in Peer Data Management Systems

In order to answer a query, a peer P may need to consider both its own data and

the data stored at other peers’ sites if the latter are related to P by Data Exchange

Constraints (DECs). Keeping P’s exchange constraints satisfied may imply not only

getting data from other peers to complement its own data, but also not using part

of its own data. Moreover, the decision does not depend only on the exchange con-

straints, but also on the trust relationships that P has with other peers. For example,

if peer P trusts peer Q’s data more than its own, P will accommodate its data to Q’s in

order to keep the exchange constraints satisfied. Another element to take into account

in this process is a possible set of local semantic constraints that each individual peer

may have. The peer will also need to repair its own data to return consistent answers.

Given a network of peers, each with its own data, and a particular peer P in it,

a solution for P is -loosely speaking- a global database instance that respects the

exchange constraints and trust relationships P has with its immediate neighbors and

stays as close as possible to the available data in the system. Since the answers

from P have to be consistent with respect to both the local semantic constraints and

the data exchange constraints with other peers, the peer consistent answers (PCAs)

from P are defined as those answers that can be retrieved from P’s portion of data

in every possible solution for P. This definition may suggest that P may change other

peers’ data, specially of those it considers less reliable, but this is not the case.

The notion of solution is used as an auxiliary notion to characterize the correct

176
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answers from P’s point of view. Ideally, P should be able to obtain its peer consistent

answers just by querying the already available local instances. This resembles the

approach to consistent query answering (CQA) in databases [Arenas et al., 1999;

Bertossi and Chomicki, 2003].

In this chapter, we give a precise semantics for peer consistent answers to first-

order queries. First for the direct case, where transitive relationships between peers

via DECs are not automatically considered; and secondly, the transitive case. For the

transitive case we provide three possible semantics that consider different granularity

of data that can be sent between the different peers, and also provide mechanisms

for obtaining PCAs. The semantics are based on a specification of the solutions for

a peer as the stable models of a logic program, which captures the different ways the

system stabilizes after satisfying the DECs and the trust relationships.

7.1 A Framework for P2P Data Exchange

In this section, we will describe the framework we will use to formalize and address

the problem of query answering in P2P data exchange systems.

Definition 7.1 A P2P data exchange system P = 〈P,Σ, IC , trust〉 consists of:

1. A finite set P of peers, denoted by A, B, C, ..., P, Q, ...

2. For each peer P, a database schema R(P) that includes a domain U(P), and

relations R(P), .... However, it may be convenient to assume that all peers

share a common, fixed and possibly infinite domain U . Each R(P) determines a

first-order (FO) language L(P). We assume that the schemas R(P) are disjoint

except for the elements in their domains. R denotes the union of the R(P)s.

3. For each peer P, a database instance D(P) corresponding to schema R(P).
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4. For each peer P, a set of L(P)-sentences IC (P) that are ICs on R(P). Let

IC =
⋃

P
IC(P).

5. For each peer P, a collection Σ(P) of sets of data exchange constraints Σ(P, Q)

consisting of sentences written in the FO language for the signatureR(P)∪R(Q),

and the Q’s are (some of the) other peers in P. Let Σ =
⋃

P∈P Σ(P).

6. A relation trust ⊆ P×{less , same}×P, with the intended semantics that when

(A, less, B) ∈ trust , peer A trusts itself less than B; while (A, same, B) ∈ trust

indicates that A trusts itself the same as B. In this relation, the second argument

functionally depends on the other two. By default, a peer trusts its own data

more than that of others. 2
Each peer P is responsible for maintaining its material instance consistent with re-

spect to IC (P), independently from other peers. However, when local data is virtually

changed to accommodate to other peers’ data, the local ICs could be virtually vio-

lated. It is possible to keep the local ICs satisfied also at query time by using method-

ologies developed for consistent query answering [Bertossi and Chomicki, 2003]. A

peer may submit queries to other peers in accordance with the restrictions imposed

by its DECs and using other peers’ relations appearing in them.

Definition 7.2 (a) Give a set of peers P, we denote withR(P) the schema consisting

of the union of R(P) for all P ∈ P. (b) We use D̄(P) to denote the database instance

onR(P), consisting of the union of the D(P)s for all P ∈ P. (c) If D is an instance for

some schema S and S ′ is a subschema of S, then D|S ′ denotes the restriction of D to

S ′. In particular, if R(P) ⊆ S, then D|P denotes the restriction of D to R(P). (d) We

denote by R(P)less the union of all schemas R(Q), with (P, less, Q) ∈ trust . R(P)same

is analogously defined. 2
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From the perspective of a peer P, its own database may be inconsistent with respect to

the data owned by another peer Q and the DECs in Σ(P, Q). Only when P trusts Q the

same as or more than itself, it has to consider Q’s data. When P queries its database,

these inconsistencies may have to be taken into account. Ideally, the answers to the

query obtained from P should be consistent with Σ(P, Q) and its own ICs Σ(P). In

principle, P, which is not allowed to change other peers’ data, could try to repair its

database in order to satisfy Σ(P) ∪ IC (P). This is not a realistic approach. Rather P

should solve its semantic conflicts or incompleteness of data at query time, when it

queries its own database and those of other peers. Any answer obtained in this way

should be sanctioned as correct with respect to a precise semantics.

The semantics of peer consistent query answers for a peer P is given in terms of all

possible minimal, virtual and simultaneous repairs of the local databases that lead to

a satisfaction of the DECs while respecting P’s trust relationships to other peers. This

repair process may lead to alternative global databases called the global solutions for

P. The set of solutions for P are the global solutions restricted to the relations in P.

Next, the peer consistent answers from P are those that are invariant with respect to

all its solutions.

Definition 7.3 The accessibility graph GA(P) for a P2P data exchange system P =

〈P,Σ, IC , trust〉 is defined as follows: Each peer P ∈ P is a vertex, and there is a

directed edge from Pi to Pj iff there exists a DEC in Σ(Pi, Pj) and (Pi, less , Pj) ∈

trust or (Pi, same, Pj) ∈ trust . The directed edges are labelled with “<” or “=”. For

S ⊆ P, GA(P)[S] is the restriction of GA(P) to the vertices in S. 2
If there is an edge from Pi to Pj labelled with “<”, this means that Pi trusts itself

less than Pj. If it is labelled with “=”, it means Pi trusts itself as much as it trusts

Pj. Note that we are not interested in a DEC in Σ(P1, P2) where peer P1 trusts itself

more than peer P2, since that means that the information of P2 is not relevant to P1.
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Example 7.1 Consider the P2P data exchange system P:

P1: R(P1) = {R1(·, ·)}, D(P1) = {R1(a, b), R1(s, t)},

P2: R(P2) = {R2(·, ·)}, D(P2) = {R2(c, d), R2(a, e)},

P3: R(P3) = {R3(·, ·)}, D(P3) = {R3(s, u)},

Σ(P1, P2)= {∀x∀y(R2(x, y)→ R1(x, y))},

Σ(P1, P3)= {∀x∀y∀z(R1(x, y) ∧ R3(x, z) → y = z)}.

The trust relationships are shown in the accessibility graph in Figure 7.1. For example,

P1 trusts itself less than it trusts peer P2, therefore there is an edge from P1 to P2

labeled with <. On the other hand, P3 has no trust relationship, so there is no edge

starting from it. 2
P1

P3P2

< <

Figure 7.1: Accessibility graph of Example 7.1

Definition 7.4 A peer P’ is accessible from peer P if there is a path in the directed

graph GA(P) from P to P’ or if P’=P. A peer P’ is a neighbor of P if there is an edge

from P to P’ in GA(P), or if P’ = P. Let AC(P) and N (P) be the set of peers that are

accessible from P and the neighbors of P, respectively. 2
Example 7.2 Consider the following P2P data exchange system P with four peers

with their DECs:

R(P1) = {R1(·, ·)}, R(P2) = {R2(·, ·), S2(·, ·)},

R(P3) = {R3(·, ·)}, R(P4) = {R4(·, ·, ·)},

Σ(P1, P2)= {∀x∀y(R2(x, y)→ R1(x, y))},

Σ(P2, P3)= {∀x∀y(R2(x, y) ∧ R3(x, y)→ false)},
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Σ(P4, P2)= {∀x∀y∀z(R2(x, y) ∧ S2(y, z)→ R4(x, y, z))},

Σ(P4, P3)= {∀x∀y∀z(R4(x, y, z)→ R3(x, z))},

trust = {(P1,less,P2), (P2,same,P3), (P4,less,P2), (P4,less,P3)}.

The accessible peers for each peer are the following: AC(P1) = {P1, P2, P3}, AC(P2) =

{P2, P3}, AC(P3) = {P3} and AC(P4) = {P2, P3, P4}. Figure 7.2 shows the accessi-

bility graph GA(P), GA(P)[AC(P1)] and GA(P)[AC(P4)].

P1

P4

P2

P3

<
=

<
<

(a) GA(P)

P1 P2

P3

<
=

(b) GA(P) restricted to
AC(P1)

P4

P2

P3

<
<

=

(c) GA(P) restricted to
AC(P4)

Figure 7.2: Accessibility graphs of Example 7.2

The neighborhoods are the following: N (P1) = {P1, P2}, N (P2) = {P2, P3}, N (P3) =

{P3}, and N (P4) = {P2, P3, P4}. 2
7.2 The Direct Case

A peer’s solution captures the idea that only some peers’ databases are relevant to P.

In the direct case, we will assume that the only data and DECs that are relevant are

the ones of the neighbors of P. In this sense, this is a “local notion”, because it does

not take into consideration transitive dependencies. In Section 7.3 we will address

the transitive case.

Definition 7.5 (direct case) Given a peer P in a P2P data exchange system and an

instance D on R(N (P)), an instance D′ on R(N (P)) is a neighborhood solution for

P if D′ is a repair of D with respect to Σ(P) ∪ IC (P) that does not change the more

trusted relations, more precisely: (a) D′ |=
⋃

{Σ(P, Q) | where P and Q are adjacent
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in GA(P)} ∪ IC (P); (b) D′|P = D|P for every predicate P ∈ R(Q), where there is

an edge from P to Q labelled <; (c) D′ minimally differs from D in the sense that

(D′ rD)∪ (DrD′) is minimal under set inclusion among those instances that satisfy

(a) and (b).

An instance D is a local solution for peer P if there is a neighborhood solution D′

for P such that D = D′|R(P ). 2
Intuitively, a neighborhood solution for P repairs the instance of the peer and its

neighbors with respect to the DECs with peers that P trusts more than –or the same

as– itself, but leaving unchanged the tables that belong to more trusted peers. As a

consequence of the definition, tables belonging to peers that are not related to P or

are less trustable are not changed. In other words, P tries to change its own tables

according to what the dependencies to more or equally trusted peers prescribe.

Solutions for a peer are used as an auxiliary conceptual tool to characterize the

peer consistent answers; and we are not interested in them per se and even less

in computing them. Solutions are virtual and may be only partially computed if

necessary, if this helps us to compute the correct answers from a peer. The “changes”

that are implicit in the definition of a neighborhood solution via the set differences

are expected to be minimal with respect to sets of tuples which are inserted/deleted

into/from the tables.

In these definitions we find clear similarities with the characterization of consistent

query answers in single relational databases [Bertossi and Chomicki, 2003]. However,

in P2P query answering, repairs may involve data associated to different peers, and

also a notion of priority that is related to the trust relation.

Example 7.3 (example 7.1 continued) Since P1 trusts P2 and P3 more than itself,

P2 can solve the inconsistencies with respect to the DECs at query time by virtually

modifying its own data. For Σ(P1, P2), we have (c, d), (a, e) ∈ R2, but (c, d), (a, e) 6∈
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R1, then, in order to satisfy the DEC, P1 should virtually add those tuples to R1.

Σ(P1, P3) is violated by R3(s, u) and R1(s, t). Since P1 trusts itself less than P3, peer

P1 will ignore tuple R1(s, t) in order to restore consistency. The unique neighborhood

solution for peer P1 according to Definition 7.5 is {R3(s, u), R2(a, e), R2(c, d), R1(a, e),

R1(c, d), R1(a, b)} and the respective local solution is {R1(a, e), R1(c, d), R1(a, b)}.2
Example 7.4 Consider a P2P data exchange system:

P1: R(P1) = {R1(·, ·)}, D(P1) = {R1(a, b), R1(s, t)},

P2: R(P2) = {R2(·, ·)}, D(P2) = {R2(c, d), R2(a, e)},

P3: R(P3) = {R3(·, ·)}, D(P3) = {R3(a, f), R3(s, u)},

Σ(P1, P2) = {∀xy(R2(x, y) → R1(x, y))},

Σ(P1, P3) = { ∀xyz(R1(x, y) ∧ R3(x, z) → y = z) },

trust = { (P1, less, P2), (P1, same, P3) }.

In this case, D̄(N (P1)) = {R1(a, b), R1(s, t), R2(c, d), R2(a, e), R3(a, f), R3(s, u)}. It

has two neighborhood solutions according to Definition 7.5, namely D′ = {R1(a, b),

R1(s, t), R1(c, d), R1(a, e), R2(c, d), R2(a, e)}; and D′′ = { R1(a, b), R1(c, d), R1(a, e),

R2(c, d), R2(a, e), R3(s, u)}. Therefore, the local solutions for peer P1 are D′|R(P1) =

{R1(a, b), R1(s, t), R1(c, d), R1(a, e)} and D′′|R(P1) = { R1(a, b), R1(c, d), R1(a, e)}.2
Definition 7.6 Given a FO query Q(x̄) ∈ L(P) posed to P, a ground tuple t̄ is a peer

consistent answer to Q for P iff D′ |= Q(t̄) for every local solution D′ for P. 2
Example 7.5 (example 7.4 continued) The query Q : R1(x, y) posed to P1 has as

peer consistent answers (PCA) the tuples (a, b), (c, d), (a, e), because those are the

tuples found in all local solutions for peer P1 . 2
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Notice that this definition of PCA is relative to a fixed peer, and not only because

the query is posed to one peer and in its query language, but also because this notion

is based on the “direct or local” notion of a solution for a single peer, which considers

its “direct neighbors” only. This is a first step towards the general case of transitive

dependencies that will be explored in Section 7.3. However, this restricted case is

the basis for the transitive case, because P does not see beyond its neighbors. When

P requests data to a neighbor, say Q, the latter may have to find local solutions of

its own by considering its direct neighbors. The transitive case has to combine these

local solutions (see Section 7.3).

Peer consistent answers to queries can be obtained by using techniques similar

to those of CQA, e.g. query rewriting [Arenas et al., 1999; Bertossi and Chomicki,

2003]. However, there are important differences, because there are now some fixed

predicates in the repair process.

Example 7.6 (example 7.4 continued) If P1 is posed the query Q : R1(x, y), asking

for the tuples in relation R1, its answers can be obtained through the rewritten query

Q′ : [R1(x, y) ∧ ∀z1((R3(x, z1) ∧ ¬∃z2R2(x, z2)) → z1 = y)] ∨ R2(x, y), which

requires from P1 to submit queries to its neighboring peers. Peer P1 needs to query

peer P2 to get all the tuples in R2. Peer P3 could be queried once to get all the tuples

in R3 and then apply the query locally in P1, or it could receive several queries to get

the tuples in R3 such that the first attribute is in the first attribute of R1 and not

in R2. The final answers are (a, b), (c, d) and (a, e), precisely the answers obtained in

Example 7.5. 2
Notice that a query Q may have peer consistent answers for a peer which are not

answers to Q when the peer is considered in isolation; this is because the peer may
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import data from other peers.1

This query rewriting approach differs from the one used for CQA. In the latter

case, literals in a query are resolved (by resolution) against ICs in order to generate

residues that are iteratively appended as extra conditions to the query [Arenas et

al., 1999]. In the case of P2P data exchange systems, the query may have to be

modified in order to include new data that is located at a different peer’s site. This

cannot be achieved by imposing extra conditions alone, but instead, by relaxing the

query in some sense. Since query answering in P2P data exchange systems includes

sufficiently complex cases of CQA, a FO query rewriting approach to P2P query an-

swering is bound to have limitations in terms of completeness [Bertossi and Chomicki,

2003]. Instead, we will now propose a more general methodology based on answer set

programming [Baral, 2003; Gelfond and Leone, 2002].

7.2.1 The Solution Program

A logic programming approach to the specification of solutions for a peer can be

developed. Those specifications will be similar to those of repairs of single relational

databases under referential integrity constraints [Barceló et al., 2003]. However, as

we have seen, there are important differences with CQA.

We now give an example of an involved exchange constraint that shows the main

issues around this kind of specifications.

Example 7.7 Consider a P2P data exchange system:

P1: R(P1) = {R1(·, ·), S1(·, ·)},

P2: R(P2) = {R2(·, ·), S2(·, ·)},

Σ(P1, P2) = { ∀x∀y∀z∃w(R1(x, y) ∧R2(z, y) → S1(x, w) ∧ S2(z, w))},

1Another difference with CQA, where all consistent answers are answers to the original query; at
least for conjunctive queries and generic ICs [Bertossi and Chomicki, 2003].
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trust = {(P1, less , P2)}.

The DEC mixes tables of the two peers on each side of the implication. If Σ(P1, P2)

is satisfied by the combination of the data in P1 and P2, then the current global

instance constitutes P1’s solution. Otherwise, alternative solutions for P1 have to be

found, keeping P2’s data fixed in the process. This is the case when there are ground

tuples R1(d,m) ∈ D(P1), R2(a,m) ∈ D(P2), such that for no t it holds both that

S1(d, t) ∈ D(P1) and S2(a, t) ∈ D(P2).

Obtaining peer consistent answers for peer P1 amounts to virtually restoring the

satisfaction of Σ(P1, P2) by virtually modifying P1’s data. In order to specify P1’s

modified relations, we introduce virtual versions R1′ , S1′ of R1, S1, containing the data

in peer P1’s solutions. In consequence, at the solution level, we have the relations

R1′ , S1′, R2, S2. Since P1 is querying its database, its original queries will be expressed

in terms of relations R1′, S1′ only (plus, possibly, built-ins).

The contents of the virtual relations2 R′
1, R

′
2 are obtained from the material sources

R1, S1, R2, S2. Since R2, S2 are fixed, the satisfaction of Σ(P1, P2) requires R1′ to

be a subset of R1, and S1′ , a superset of S1. The specification of these relations is

done in extended disjunctive logic programs with answer set (stable model) semantics

[Gelfond and Lifschitz, 1991]. These programs add classical negation to disjunctive

logic programs and their semantics is given by answer sets, which are a generalization

of the stable models. This type of programs are also used in [Arenas et al., 2003] to

specify database repairs.

The first rules for the specification program Π are:

R1′(x, y)← R1(x, y), not ¬R1′(x, y). S1′(x, y)← S1(x, y), not ¬S1′(x, y)., (7.1)

2We can observe that the virtual relations can be seen as virtual global relations in a virtual data
integration system [Bertossi and Bravo, 2004b; Levy, 2000; Lenzerini, 2002].
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which specify that, by default, the tuples in the source relations are copied into the

new virtual versions, but with the exception of those that may have to be removed in

order to satisfy Σ(P1, P2) (with R1, S1 replaced by R1′, S1′). Some of the exceptions

for R′
1 are specified by

¬R1′(x, y)← R1(x, y), R2(z, y), not aux 1(x, z), not aux2(z). (7.2)

aux 1(x, z)← S1(x, w), S2(z, w). aux 2(z)← S2(z, w). (7.3)

That is, R1(x, y) is deleted if it participates in a violation of Σ(P1, P2) (what is

captured by the first three literals in the body of (7.2) plus the first rule in (7.3)),

and there is no way to restore consistency by inserting a tuple into S1, because there

is no possible matching tuple in S2 for the possibly new tuple in S1 (what is captured

by the last literal in the body of (7.2) plus the second rule in (7.3)). In case there is

such a tuple in S2, we either delete a tuple from R1 or insert a tuple into S1:

¬R1′(x, y) ∨ S1′(x, w) ← R1(x, y), R2(z, y), not aux 1(x, z), S
2(z, w),

choice((x, z), w). (7.4)

That is, in case of a violation of Σ(P1, P2), when there is tuple of the form (a, t) in

S2 for the combination of values (d, a), then the choice operator [Giannotti et al.,

1991] non deterministically chooses a unique value for t, so that the tuple (d, t) is

inserted into S1 as an alternative to deleting (d,m) from R1. The choice predicate

can be replaced by a standard predicate plus extra rules that choose a unique value

for t [Giannotti et al., 1991]. No exceptions are specified for S1′, which makes sense

since S1′ is a superset of S1. Then, the negative literal in the body of (7.1) can be

eliminated. However, new tuples can be inserted into S1′ , which is captured by rule

(7.4). Finally, the program must contain the tuples in the relations R1, S1, R2, S2 as
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facts.

If P1 equally trusts itself and P2, both P1 and P2s’ relations are flexible when

searching for a solution. Thus, the program becomes more involved, because now

R2, S2 may also change; and virtual versions for them must be specified. 2
This example shows the main issues in the specification of a peer’s solutions. The

program with choice operators can be translated into one with standard answer set

(or stable model) semantics [Giannotti et al., 1991]; and the solutions are in one-

to-one correspondence with the answer sets of the program. Actually, each answer

set S corresponds to a neighborhood solution D′(S) for peer P which coincides with

the original material global instance on the tables other than R1, R2, whereas for the

latter, the contents are of the form {t̄ | R′
i(t̄) ∈ S}, i = 1, 2, resp. The absence of

solutions for a peer is captured through the non-existence of answer sets for program

Π.

Since program Π represents all the solutions for a peer in a compact form, the peer

consistent answers from a peer can be obtained by running a query program expressed

in terms of the virtually repaired tables in combination with the specification program

Π. For this, the combined program is run under the skeptical answer set semantics,

for which a system like DLV [Leone et al., 2006] can be used. For example, the query

Q(x, z) : ∃y(R1(x, y)∧R2(z, y)) issued to peer P, would be peer–consistently answered

by running the query program AnsQ(x, z)← R′
1(x, y), R

′
2(x, y) together with program

Π. Although only (the new versions of) P’s relations appear in the query, the program

may make P import Q’s data.

If a peer P has local ICs IC (P) to be satisfied, also at query time, then the

program that specifies its solutions should take care of its ICs. A simple but rad-

ical way of doing this consists of using program denial constraints. If in Section

7.2.1 we had, for peer P, the local functional dependency (FD) ∀x∀y∀z(R1(x, y) ∧
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R1(x, z) → y = z), then the program would include the program denial constraint

← R1(x, y), R1(x, z), y 6= z, having the effect of pruning those solutions that do not

satisfy the FD. However, a more flexible –or “robust” [Franconi et al., 2004b]– alter-

native for keeping the local ICs satisfied consists in having the specification program

split in two layers, where the first one builds the solutions, without considering the

local ICs, and where the second one repairs the solutions with respect to the local

ICs, as done with single inconsistent relational databases [Barceló et al., 2003].

A more uniform approach consists in identifying IC (P) with Σ(P, P) and consid-

ering (P, same, P) ∈ trust . The notion of solution for a peer given in Definition 7.5

captures this idea.

For DECs with existential quantifiers, it is necessary to choose values from a

domain. There are several options, some of them already considered for CQA: (a)

take a value from an open infinite domain; (b) assign labelled null values [Fagin et al.,

2005]; (c) take a value from an appropriate finite and closed proper superset of the

active domains [Bravo and Bertossi, 2005]; (d) introduce fresh constants, whenever

needed, from a separate domain [Calvanese et al., 2004a]. The option taken and the

class of DECs (e.g. presence cycles) may determine, e.g. decidability of peer consistent

answering [Chomicki and Marcinkowski, 2002; Chomicki and Marcinkowski, 2005b;

Cal̀ı et al., 2003a; Halevy et al., 2003; Calvanese et al., 2004a; Bravo and Bertossi,

2006].

If the DEC has a disjunction of literals in the consequent, it is possible to replace

the choice operator and replace the existentially quantified variables by null , i.e., a

non-labelled null value [Barceló et al., 2003; Bravo and Bertossi, 2006]. This cannot

be done in the case of Example 7.7 since there would not be a join if we replace the

two occurrences of w by null (see Chapter 5). In what follows, we will restrict to

DECs where the consequent is a disjunction of literals. Note, that these DECs might
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still combine predicates of different peers in the antecedent and consequent.

Definition 7.7 A universal data exchange constraint (UDEC) in Σ(P1, P2) is a DEC

of form:

∀x̄(
n

∧

i=1

Ri(x̄i) −→ (
m
∨

j=1

Qj(ȳj) ∨ ϕ)). (7.5)

where, for R = {Ri | i ∈ {1, . . . , n}} and Q = {Qj | j ∈ {1, . . . , m}}, R ∪ Q ⊆

R({P1, P2}), (R ∪ Q) ∩ R(P1) 6= ∅, (R ∪ Q) ∩ R(P2) 6= ∅, .

A referential data exchange constraint (RDEC) in Σ(P1, P2) is a DEC of form:

∀x̄(R(x̄) −→ ∃ȳ Q(x̄′, ȳ)), (7.6)

where R, Q ⊆ R({P1, P2}), {R,Q} ∩ R(P1) 6= ∅, and {R,Q} ∩ R(P2) 6= ∅. 2
A wide class of DECs can be accommodated into equations (7.5) and (7.6). However,

tuple-generating-dependencies (TGDs) [Beeri and Vardi, 1984] cannot. TGDs are

used in the context of data exchange [Fagin et al., 2003a; Fagin et al., 2003b; Kolaitis

et al., 2006] and are of the form:

∀x̄(
n

∧

i=1

Ri(x̄i) −→
m
∧

j=1

Qj(ȳj)). (7.7)

We do not consider this type of constraints, since we want to repair inconsistencies

with respect to DECs using null , as done in Chapters 5 and 6 in the context of

databases and data integration systems. Inconsistencies with respect to TGDs cannot

be enforced by the use of null since a joint in the consequent can not be satisfied by

it.

Example 7.8 The DECs in Example 7.2 are universal. The DEC in Example 7.7

is a TGD but not a UDEC nor a RDEC. An example of a RDEC is: Σ(P, Q) =
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∀x(T 1(x, y)→ ∃zT 2(x, z)). 2
In a PDM we can have two sources for cycles: trust relationships and constraints

(DECs and ICs). There is a cycle through trust relationships if the graph GA(P) is

cyclic. There is a cycle through constraints if Σ ∪ IC is RIC-cyclic3 (see Definition

2.2). Note that if there is no cycle through trust relationships, the only way for the

PDM to have a cycle through constraints is if a peer’s ICs are RIC-cyclic.

Definition 7.5 corresponds to repairing the DECs by using the choice operator

over an infinite domain. Now, since we are considering only UDECs and RDECs, we

can repair instead by using null :

Definition 7.8 (direct case with null values) Given a peer P in a P2P data exchange

system and an instance D on R(N (P)), an instance D′ on R(N (P)) is a neighborhood

solution for P if D′ is a repair of D with respect to Σ(P)∪ IC (P) that does not change

the more trusted relations, more precisely: (a) D′ |=
⋃

{Σ(P, Q) | (P, less, Q) or (P,

same, Q) ∈ trust}∪ IC (P); (b) D′|P = D|P for every predicate P ∈ R(Q), where Q is

a peer with (P, less, Q) ∈ trust ; (c) There does not exist an instance D′′ that satisfies

(a) and (b), and such that D′′ <D D′, where <D is defined as in Definition 5.3.

An instance D is a local solution for peer P if there is a neighborhood solution D′

for P such that D = D′|R(P ). 2
Inspired by the repair programs for stand alone databases, the following logic program

is a specification of the neighborhood solutions for the solution semantics of Definition

7.8.

Definition 7.9 Consider a P2P data exchange system P = 〈P,Σ, IC , trust〉 and a

peer P ∈ P. The direct solution program Πdirect(P,P) is:

3The UDECs and RDECs in Σ are treated as UICs and RICs respectively.
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1. dom(x), for every x ∈ (U r {null})

2. R(ā), for each atom R(ā) ∈ D̄(N (P)).

3. For every UDEC ψ ∈ Σ(P, Pj) of the form (7.5) such that Pj ∈ N (P) and there

exists (P, {same or less}, Pj) ∈ trust , the rules:

∨

R∈RP

R(x̄i, fa) ∨
∨

Q∈QP

Q (ȳj , ta) ←
n
∧

i=1

Ri (x̄i, t
⋆),

m
∧

j=1

Qj (ȳj, f
⋆),

∧

xl∈A(ψ)

xl 6= null , ϕ̄.

Here, A(ψ) is the set of relevant attributes of ψ, and ϕ̄ is a conjunction of

built-ins that is equivalent to the negation of ϕ. RP is defined as follows, for

R = {Ri | i ∈ {1, . . . , n}}:

RP =

{

R∩R(P) if (P, less, P2) ∈ trust

R if (P, same, P2) ∈ trust

QP is defined analogously.

4. For every RDEC ψ ∈ Σ(P, Pj) of the form (7.6) such that Pj ∈ N (P) and there

exists (P, {same or less}, Pj) ∈ trust :

(a) If (P, same, Pj) ∈ trust , the rules:

R (x̄, fa) ∨Q (x̄′, null , ta)← P (x̄, t⋆), not auxψ(x̄′), x̄′ 6= null .

(b) If (P, less , Pj) ∈ trust and R ∈ R(P), the rules:

R (x̄, fa)← P (x̄, t⋆), not auxψ(x̄′), x̄′ 6= null .

(c) If (P, less , Pj) ∈ trust and Q ∈ R(P), the rules:

Q (x̄′, null , ta)← P (x̄, t⋆), not auxψ(x̄
′), x̄′ 6= null .

Plus the auxiliary rules:

auxψ(x̄′)← Q(x̄′,null), not Q (x̄′,null , fa), x̄′ 6= null ,

auxψ(x̄′)← Q (x̄′, ȳ, t⋆), not Q (x̄′, ȳ, fa), x̄′ 6= null , yi 6= null , for every yi ∈ ȳ.
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5. For every ψ ∈ IC (Pi) such that ψ is a universal IC of the form (2.2) and

Pi ∈ N (P), the rules:

n
∨

i=1

Pi (x̄i, fa) ∨
m
∨

j=1

Qj (ȳj, ta) ←
n
∧

i=1

Pi (x̄i, t
⋆),

m
∧

j=1

Qj (ȳj, f
⋆),

∧

xl∈A(ψ)

xl 6= null , ϕ̄.

Here, A(ψ) is the set of relevant attributes for ψ, and ϕ̄ is a conjunction of

built-ins that is equivalent to the negation of ϕ.

6. For every ψ ∈ IC (Pi) such that ψ is a referential IC of the form (2.3) and

Pi ∈ N (P), the rules:

P (x̄, fa) ∨Q (x̄′, null , ta)← P (x̄, t⋆), not auxψ(x̄′), x̄′ 6= null .

auxψ(x̄
′)← Q(x̄′, null), not Q (x̄′, null , fa), x̄

′ 6= null .

For every yi ∈ ȳ:

auxψ(x̄
′)← Q (x̄′, ȳ, t⋆), not Q (x̄′, ȳ, fa), x̄

′ 6= null , yi 6= null .

7. For each predicate R ∈ R(N (P)), the annotation rules:

R (x̄, f⋆)← dom(x̄), not R(x̄).

R (x̄, f⋆)← R (x̄, fa).

R (x̄, t⋆)← R(x̄).

R (x̄, t⋆)← R (x̄, ta).

8. For each predicate R ∈ R(P), the interpretation rule:

R (x̄, t⋆⋆) ← R (x̄, t⋆), not R (x̄, fa).

9. For each predicate R ∈ R(N (P)), the program denial constraint:

← R (x̄, ta), R (x̄, fa). 2
In rules 3. and 4. of the program, the head of the rules will only include predicates

of the less trusted peer, this is, the repair process will only modified the less trusted

peers. Rules 5. and 6. treat the ICs of each peer P1 ∈ N (P ) as DECs in Σ(P1, P1),
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with trust relation (P1, same, P1). Also, as it can be seen from rules 3., 4., 5. and 6.,

when adding tuples, null is used for unknown values. Atoms labelled with t⋆⋆ store

the database atoms in the neighborhood solution.

Program Πdirect(P,P) differs from the program given in Example 7.7 in two ways.

First, inconsistencies with respect to DECs are solved by replacing existential quanti-

fiers by null instead of values from the active domain. Second, annotation constants

are added to handle interaction between DECs.

Definition 7.10 The P2P instance associated to a stable modelM of program Πdirect

(P,P) is DM = {R(ā) | R(ā, t⋆⋆) ∈M and R ∈ R(N (P))}. 2
Proposition 7.1 Given a P2P data exchange system P = 〈P,Σ, IC , trust〉, such

that Σ ∪ IC is RIC-acyclic,4 and a peer P in P, a database D′ is a neighborhood

solution with null (see Definition 7.8) iff there exist a stable modelM of Πdirect(P,P)

such that DM = D′. 2
We omit the proof since it is similar to the proof of Theorem 5.4.

Example 7.9 Consider a P2P data exchange system P:

P1: R(P1) = {R1(·, ·)}, D(P1) = {R1(a, null), R1(s, t)},

P2: R(P2) = {R2(·, ·)}, D(P2) = {R2(c, d), R2(a, e)},

Σ(P1, P2) = {∀xy(R2(x, y) → ∃zR1(x, z))},

trust = { (P1, less, P2) }.

The program Πdirect(P1,P) is

dom(a). dom(b). . . . dom(u).

R1(a, null). R1(s, t). R2(c, d). R2(a, e).

4The UDECs and RDECs in Σ are treated as UICs and RICs respectively and the condition of
RIC-acyclic is checked using Definition 2.2.
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R1(x, null , ta)← R2(x, t⋆), not aux (x), x 6= not .

aux(x)← R1(x, null), not R1(x, null , fa).

aux(x)← R1(x, y, t⋆), not R1(x, y, fa), x 6= null , y 6= null .

R1(x, y, t⋆)← R1(x, y, ta).

R1(x, y, t⋆)← R1(x, y).

R1(x, y, f⋆)← R1(x, y, fa).

R1(x, y, f⋆)← dom(x), dom(y), not R1(x, y).

R1(x, y, t⋆⋆)← R1(x, y, t⋆), not R1(x, y, fa).

← R1(x, y, ta), R
1(x, y, fa).























































(Similarly for R2)

The only neighborhood solution obtained from the program is {R1(a, null), R1(s, t),

R2(c, d), R2(a, e), R1(c, null)}. The null value in R1(c, null) was used to restore

consistency for the referential DEC. 2
7.3 The Transitive Case

It is natural to consider transitive DECs when a peer A that is being queried gets

data from a peer B, which in its turn -and without A possibly knowing- gets data

from a peer C to answer A’s request. Most likely there is no explicit DEC from A

to C. In order to approach peer consistent query answering for a peer P in this more

complex scenario, it becomes necessary to integrate the data of all the peers that

affect directly or indirectly peer P. This can be done in three different ways, leading

to three possible semantics for the transitive case:

• Semantics I: Integrate the local specification of each of the peers that affect P.

That is, consider that we have a unique database with the data in all the peers

and that both DECs and ICs are considered traditional ICs, with preferences

on how to repair to represent the trust relationships.
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• Semantics II: Modify the local specification in such a way that the data in

peer P, the solutions of the neighbors, and peer P’s DECs and ICs are consid-

ered. Notice that this is a recursive definition. The base case corresponds to

a peer with no DECs and therefore this solution semantics requires an acyclic

accessibility graph.

• Semantics III: Modify the local specification in such a way that the data in

peer P, the data from neighbors obtained as peer consistent answers, and peer

P’s DECs and ICs are considered. In this case, if P poses a query Q to a neighbor

Q, what Q sends to P are not its plain answers to Q, but it PCAs to Q. This is

also a recursive definition since in order to obtain the peer consistent answers

of the neighbors we need the solutions under Semantics III of them. The base

case corresponds to a peer with no DECs and therefore semantics III requires

an acyclic accessibility graph.

We will define formally these three different semantics by means of stable models

of logic programs in Section 7.3.1, 7.3.2 and 7.3.3, respectively. This is more natural

and simpler than extending to the transitive case the definition of solution for the

direct or local case. Of course, there might be no solutions. This fact is reflected in

the absence of stable models for the logic program specification. A problematic case

appears when there are implicit cyclic dependencies [Halevy et al., 2003].

In order to define the global solutions for a peer in the transitive case, we need

to determine which are the peers in P that may affect the data in it. Now a peer is

not only affected by its neighbors, but also by the neighbors of its neighbors and so

on. Therefore the relevant peers to determine the solution for a peer P are those in

AC(P).
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The presence of cycles, either through constraints or trust relationships, have an

impact on the semantics. There is a cycle through constraints if the set Σ ∪ IC is

RIC-cyclic. If that is the case, semantics I, II and III are not defined since they

might give some solutions which are counterintuitive (see Example 5.12).

There is a cycle through trust relationships if the accessibility graph GA(P) is

cyclic. Since semantics II and III are inductively defined, a cycle in GA(P) would

result in an infinite loop. In Sections 7.3.2 and 7.3.3 we will show how to avoid the

infinite loops and return an error in this case.

In the rest of the chapter we assume that we can enforce the satisfaction of RDECs

by adding tuples with null , that null ∈ U and that the peer instances might contain

null . The next three sections formalize semantics I, II and III for solutions in the

transitive case.

7.3.1 Solutions under Semantics I

The first semantics for solutions that we will define consists in considering that we

have a unique database with the data in all the peers and that the DECs and ICs are

both considered as traditional ICs, with preferences on how to repair (to represent the

trust relationships). Therefore, the global solution for a peer P will be an instance for

the peers accessible from P that respects the ICs and the DECs and trust relationships

between them and stays “as close as possible” to D̄(AC(P)). Respecting the trust

relationships implies that, if P1 trusts itself less than P2, any virtual modification to

enforce the DECs has to be done to peer P1. On the other hand, if P1 trusts peer

P2 as much as itself, the modifications can be done at any of the peers. Finally, if

P1 trusts itself more than P2, then that DEC or peer is not relevant for finding the

solution for P1.

In this case, finding the global solution for a peer P given a set of DECs and



198

trust relationships can be seen as repairing the set of data in all the peers accessible

from P with respect to the DECs (seen as ICs) and the local ICs, where the repairs

are obtained taking into consideration the trust relationships. Based on the repair

program defined in Chapter 5, we will can define a global solution program to compute

the solutions of a peer for RDECs and UDECs. In the definition we useA(ψ) to denote

the relevant attributes of a DEC ψ, which are defined as for ICs (see Definition 4.2).

Definition 7.11 Given a P2P data exchange system P = 〈P,Σ, IC , trust〉 with only

UDECs and RDECs in Σ , the solution program for semantic I for a peer P ∈ P,

denoted ΠI(P,P), contains the following facts and rules:

1. dom(x), for every x ∈ (U r {null}).

2. R(ā), for each atom R(ā) ∈ D̄(AC(P)).

3. For every UDEC ψ ∈ Σ(Pi, Pj) of the form (7.5) such that Pi, Pj ∈ AC(P), and

there exists (Pi, {same or less}, Pj) ∈ trust , the rules:

∨

R∈RPi

R(x̄i, fa) ∨
∨

Q∈QPi

Q (ȳj , ta) ←
n
∧

i=1

Ri (x̄i, t
⋆),

m
∧

j=1

Qj (ȳj , f
⋆),

∧

xl∈A(ψ)

xl 6= null , ϕ̄.

Here, A(ψ) is the set of relevant attributes for ψ and ϕ̄ is a conjunction of

built-ins that is equivalent to the negation of ϕ. RPi is defined as follows for

R = {Ri | i = 1, . . . , n}:

RPi =

{

R∩R(Pi) if (Pi, less, Pj) ∈ trust

R if (Pi, same, Pj) ∈ trust

QP is defined analogously.

4. For every RDEC ψ ∈ Σ(Pi, Pj) of the form (7.6) such that Pi, Pj ∈ AC(P):

(a) If (Pi, same, Pj) ∈ trust , the rules:

R (x̄, fa) ∨Q (x̄′, null , ta)← P (x̄, t⋆), not auxψ(x̄′), x̄′ 6= null .
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(b) If (Pi, less , Pj) ∈ trust and R ∈ R(Pi), the rules:

R (x̄, fa)← P (x̄, t⋆), not auxψ(x̄′), x̄′ 6= null .

(c) If (Pi, less , Pj) ∈ trust and Q ∈ R(Pi), the rules:

Q (x̄′, null , ta)← P (x̄, t⋆), not auxψ(x̄
′), x̄′ 6= null .

Plus the auxiliary rules:

auxψ(x̄′)← Q(x̄′,null), not Q (x̄′,null , fa), x̄′ 6= null .

auxψ(x̄′)← Q (x̄′, ȳ, t⋆), not Q (x̄′, ȳ, fa), x̄′ 6= null , yi 6= null . for every yi ∈ ȳ

5. For every UIC ψ ∈ IC (Pi) of the form (2.2) and such that Pi ∈ AC(P), the

rules:

n
∨

i=1

Pi (x̄i, fa) ∨
m
∨

j=1

Qj (ȳj, ta) ←
n
∧

i=1

Pi (x̄i, t
⋆),

m
∧

j=1

Qj (ȳj, f
⋆),

∧

xl∈A(ψ)

xl 6= null , ϕ̄.

Here, A(ψ) is the set of relevant attributes for ψ, and ϕ̄ is a conjunction of

built-ins that is equivalent to the negation of ϕ.

6. For every RIC ψ ∈ IC (Pi) of the form (2.3) and such that Pi ∈ AC(P), the

rules:

P (x̄, fa) ∨Q (x̄′, null , ta)← P (x̄, t⋆), not auxψ(x̄
′), x̄′ 6= null .

auxψ(x̄
′)← Q(x̄′, null), not Q (x̄′, null , fa), x̄

′ 6= null .

For every yi ∈ ȳ:

auxψ(x̄
′)← Q (x̄′, ȳ, t⋆), not Q (x̄′, ȳ, fa), x̄

′ 6= null , yi 6= null .

7. For each predicate R ∈ R(AC(P)), the annotation rules:

R (x̄, f⋆)← dom(x̄), not R(x̄).

R (x̄, f⋆)← R (x̄, fa).

R (x̄, t⋆)← R(x̄).

R (x̄, t⋆)← R (x̄, ta).
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8. For each predicate R ∈ R(AC(P)), the interpretation rule:

R (x̄, t⋆⋆) ← R (x̄, t⋆), not R (x̄, fa).

9. For each predicate R ∈ R(AC(P)), the program denial constraint:

← R (x̄, ta), R (x̄, fa). 2
This logical program specifies the global solutions for peer P taking into consideration

the transitive relations it has with other peers. The DECs and local ICs of all peers

that are accessible from peer P have to be satisfied by the global solution that is

captured by the atoms with annotation constant t⋆⋆. This program is very similar

to the repair programs from Chapter 5. In fact, rules in 5., 6., 7., 8. and 9 are the

same as the ones to deal with ICs in the repair program from Definition 5.2. Rules

in 3 and 4 enforce the satisfaction of the DECs by only modifying the peers that

are less or equally trusted. We also use the same annotation constants. The use of

atoms with annotation constant f⋆ and dom atoms can be avoided by using the same

optimization presented in Appendix A. Here, we used them because it makes the

program easier to understand.

Definition 7.12 The P2P instance associated to a stable model M of program

ΠI(P,P) is DM = {R(ā) | R(ā, t⋆⋆) ∈M and R ∈ R(AC(P))}. 2
Definition 7.13 (transitive case, semantics I) Given a peer P in a P2P data exchange

system P = 〈P,Σ, IC , trust〉 such that Σ ∩ IC is RIC-acyclic, an instance D over

R(A(P)) is a global solution under semantics I for P if there exists a stable modelM

of ΠI(P,P) such that D = DM. SG(P) is the set of global solutions for peer P.

An instance s is a solution under semantics I for peer P if there is a global solution

D for P such that s = D|P. S(P) is the set of solutions for P. As in the local case,

P’s peer consistent answers (PCA) are those answers that can be retrieved from every

solution for P. 2
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Example 7.10 (example 7.3 continued) ΠI(P1,P):

dom(a). dom(b). . . . dom(u).

R1(a, b). R1(s, t). R2(c, d). R2(a, e). R3(s, u).

R1(x, ta)← R2(x, y, t⋆), R1(x, y, f⋆), x 6= null , y 6= null .

R1(x, y, fa)← R1(x, y, t⋆), R3(x, z, t⋆), y 6= z, x 6= null , y 6= null , z 6= null .

R1(x, y, t⋆)← R1(x, y, ta).

R1(x, y, t⋆)← R1(x, y).

R1(x, y, f⋆)← R1(x, y, fa).

R1(x, y, f⋆)← dom(x), dom(y), not R1(x, y).

R1(x, y, t⋆⋆)← R1(x, y, t⋆), not R1(x, y, fa).

← R1(x, y, ta), R
1(x, y, fa).























































(Similarly for R2 and R3)

The inconsistencies with respect to the DECs are restored by virtually modifying only

peer P1. By running the program in DLV, we get the only stable model:

M = {. . . , R1(a, b), R1(a, b, t⋆), R1(s, t), R1(s, t, t⋆), R1(s, t, fa), R
2(a, e), R2(c, d),

R2(a, e, t⋆), R2(c, d, t⋆), R3(s, u), R3(s, u, t⋆), R3(s, u, t⋆⋆), R2(a, e, t⋆⋆), R2(c, d, t⋆⋆),

R1(a, e, ta), R
1(c, d, ta), R

1(a, e, t⋆), R1(c, d, t⋆), R1(a, e, t⋆⋆), R1(c, d, t⋆⋆), R1(a, b,

t⋆⋆)}.

SG(P) = {{R3(s, u), R2(a, e), R2(c, d), R1(a, e), R1(c, d), R1(a, b)}},

S(P) = {{R1(a, e), R1(c, d), R1(a, b)}}.

In this case, since N (P1) = AC(P1), the local solution coincides with the transitive

solution. Finally, for the query QP(x) ← R1(x, y) posed to P, the peer consistent

answers are PCA(QP) = {(a), (c)}. 2
Example 7.11 (example 7.2 continued) Consider the following instances of peers

P1, P2 and P3 : D(P1) = {R1(a, 2)}, D(P2) = {R2(c, 4), R2(d, 5)}, and D(P3) =

{R3(c, 4)}. The solution program ΠI(P1,P) is:
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dom(a). dom(c). . . .

R1(a, 2). R2(c, 4). R2(d, 5). R3(c, 4).

R1(x, y, ta)← R2(x, y, t⋆), R1(x, y, f⋆), x 6= null , y 6= null .

R2(x, y, fa) ∨ R3(x, y, fa)← R2(x, y, t⋆), R3(x, y, t⋆), x 6= null , y 6= null .

R1(x, y, t⋆)← R1(x, y, ta).

R1(x, y, t⋆)← R1(x, y).

R1(x, y, f⋆)← R1(x, y, fa).

R1(x, y, f⋆)← dom(x), dom(y), not R1(x, y).

R1(x, y, t⋆⋆)← R1(x, y, t⋆), not R1(x, y, fa).

← R1(x, y, ta), R
1(x, y, fa).























































(Similarly for R2 and R3)

The inconsistencies with respect to the DECs in Σ(P1, P2) are restored by virtually

modifying only peer P1. Those with respect to DECs in Σ(P2, P3) are solved by

modifying both P2 and P3. The global solutions are SI
G(P1) = {{R1(a, 2), R2(c, 4),

R2(d, 5), R1(c, 4), R1(d, 5)}, {R1(a, 2), R2(d, 5), R3(c, 4), R1(d, 5)}}. Then, SI(P1) =

{{R1(a, 2), R1(c, 4), R1(d, 5)}, {R1(a, 2), R1(d, 5)}}. 2
Example 7.12 Consider the P2P data exchange system P with trust relationships

as shown in Figure 7.3.

P1: R(P1) = {R1}, D(P1) = {R1(c, d), R1(f, g)},

P2: R(P2) = {R2}, D(P2) = {R2(c, d), R2(a, e)},

Σ(P1, P2) : ∀x∀y(R2(x, y)→ R1(x, y)),

trust={(P1,same,P2)}.

P1 P2
=

Figure 7.3: Accessibility graph of Example 7.12

P1 trusts its own data as much as it trusts P2’s data. If we want the solution for
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P1, we need to check if its DECs are being satisfied. If they are not, the conflicts

can be solved by modifying the data in P1 or in P2. Here, Σ(P1, P2) is not satisfied,

because (a, e) ∈ R2, but it does not belong to R1. In order to restore consistency

with a minimal set of modifications, we can add (a, e) from R2 or add it to R1. This

alternatives are dealt with in ΠI(P1,P) through the rule:

R2(x, y, fa) ∨R1(x, y, ta)← R2(x, y, t⋆), R1(x, y, f⋆), x 6= null , y 6= null .

From the stable models of the program we get SG(P1) = {{R1(c, d), R1(f, g), R1(a, e),

R2(c, d), R2(a, e)}, {R1(c, d), R1(f, g), R2(c, d)}}. By projecting the elements in

SG(P1) onto P1’s schema, we get S(P1) = {{R1(c, d), R1(f, g), R1(a, e)}, {R1(c, d),

R1(f, g)}}.

The peer consistent answers to a query posed to P1 are the answers we will get

from all the different solutions. For query Q : R1(c, y), we get (d) from both the first

and second solution for P1, therefore (d) is the peer consistent answer for Q.

For P2, AC(P2) = {P2}, and since P2 has no local ICs, the solution for P2 corre-

sponds exactly to the data already stored in it. 2
Example 7.13 (example 7.9 continued) For this P2P system, the program ΠI(P1,P)

coincides with Πdirect(P1,P) since N (P1) = AC(P1). 2
Computation of PCA under Semantics I

In order to give peer consistent answers under semantics I, each peer in the system

should be capable of answering queries from users (user-queries) and from peers (peer-

queries) and process each of them in a different way 5. Answers to user-queries are peer

consistent answers and answers to peer-queries are data, mappings, trust relationships

and ICs.

5The differentiation between user and peer queries is also used in [Calvanese et al., 2004b;
Calvanese et al., 2005].
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The following procedure is a naive implementation of semantics I: when a user-

query is posed to a peer P, it will need to get all the data, mappings and ICs of all the

peers accessible from it. As we will later show, this data can be obtained by the peer

by sending a peer-query to its neighbors which will query their neighbors and so for.

They will return their data, mappings, trust relationships and ICs. This information

is then used in peer P to compute all its local solutions. The solutions are then used

to get the peer consistent answers to the user-query and are returned to the user.

Example 7.14 (example 7.11 continued) Consider a user-query Q : R1(x, y) posed

to peer P1. In order to answer the query we need the information of all the accessible

peers. Peer P1 send a peer-query to its only neighbor P2 requesting all its information

and the ones of its neighbors. Then, peer P2 send a peer-query to P3 which has no

neighbors and therefore returns only its own data (if it had had ICs it would have

also returned them). Peer P2 gets the answer from P3 and sends to peer P1 the data

of P3 and the mappings, trust relationships and data of P2. Now, P1 has all the data

needed to write Π(P1,P) as shown in Example 7.11. The peer consistent answers to

the user-query Q are {(a, 2), (d, 5)}. 2
In this process we need to have a way to deal with cycles of the accessibility graph.

A technique used in a similar context consists of using a unique code [Calvanese et

al., 2004a]. All the peer-queries sent as a consequence of the same user-query should

be marked with a unique code so that if a peer receives a query with a code that it

has already processed, i.e., there is a cycle, it gives an empty answer to the query it

received. The following example shows how to answer a query in the presence of a

cycle in the accessibility graph.

Example 7.15 Consider a P2P data exchange system with a cycle in the accessibility

graph (see Figure 7.4):
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P1: R(P1) = {R1(·, ·), S1(·)}, D(P1) = {R1(2, b), S1(a), S1(b), S1(h)},

P2: R(P2) = {R2(·, ·)}, D(P2) = {R2(a, 6), R2(b, 4), R2(c, 6)},

P3: R(P3) = {R3(·, ·)}, D(P3) = {R3(a, 6), R3(h, 8), R3(g, 2), R3(b, 4), R3(a, 1)},

Σ(P1, P2) = {∀xy(R2(x, y) → ∃zR1(z, x))},

Σ(P2, P3) = {∀xy(R2(x, y) → R3(x, y))},

Σ(P3, P1) = {∀xy(R3(x, y)→ S1(x)},

trust = { (P1, less, P2), (P2, less , P3), (P3, less, P1) }.

P2

P1

P3

<
<

<

Figure 7.4: Accessibility graph of Example 7.15

If the user-query Q0 : ∃xR1(x, y) is posed to peer P1, it will need to create a unique

ID for the query, e.g. A11, and send a peer query to P2 requesting its DECs, trust

relationships, ICs and data and the ones of its accessible peers (see Figure 7.5(a)).

Peer P2 would first check if a query with ID = A11 has already been processed. Since

it has not, it will proceed to send a peer-query to P3 requesting their information (see

Figure 7.5(b)). After receiving the peer-query, P3 will check if it has processed a

query with ID = A11 . Since it has not, it will send a request to its only neighbor,

peer P1, a request for its mapping, constraints and data (see Figure 7.5(c)). Now,

P1 will check if it has processed a query with ID = A11 . Since it has, it will not

send any peer-queries to its neighbors, and it will send an empty answer to P3 (see

Figure 7.5(d)). Now P3 will send to peer P2: Σ(P3, P1), (P3, less, P1) and D(P3) (see

Figure 7.5(e)). Now P2 has all the needed information to reply to peer P1, and will

send Σ(P3, P1), IC (P3), (P3, less, P1), D(P3), Σ(P2, P3), (P2, less , P3) } and D(P2)

(see Figure 7.5(f)).
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P2

P1

P3

ID=A11

(a) P1 leaves the user-
query pending and send
a peer-query to P2

P2

P1

P3

ID=A11

(b) P2 leaves the peer-
query from P1 pending
and send a peer-query to
P3

P2

P1

P3ID=A11

(c) P3 leaves the peer-
query from P2 pending
and send a peer-query to
P1

P2

P1

P3

(d) P1 sends an empty
answer to P3

P2

P1

P3

(e) P3 sends an answer
containing its DECs, ICs,
trust relationships and
data to P2

P2

P1

P3

(f) P2 sends an answer
containing the DECs,
ICs, trust relationships
and data of itself and of
P3 to P1

Figure 7.5: Dealing with cycles in the accessibility graph

Peer P1 has now all the needed information to write ΠI(P1,P). The rules that

enforce the satisfaction of the DECs are:

R1(null , x, ta)← R2(x, y, t⋆), not aux (x), x 6= null .

aux (x)← R1(y, x, t⋆), x 6= null , y 6= null .

aux (x)← R1(null , x), not R1(null , x, fa), x 6= null .

R2(x, y, fa)← R2(x, y, t⋆), R3(x, y, f⋆), x 6= null , y 6= null .

R3(x, y, fa)← R3(x, y, t⋆), S1(x, f⋆), x 6= null .

The program ΠI(P1,P) has only one stable model: M = {R2(c, 6, fa), aux (b), R3(g, 2,

fa), S
1(b, t⋆⋆), S1(a, t⋆⋆), S1(h, t⋆⋆), R3(b, 4, t⋆⋆), R3(a, 1, t⋆⋆), R3(a, 6, t⋆⋆), R3(h, 8,

t⋆⋆), R2(b, 4, t⋆⋆), R2(a, 6, t⋆⋆), R1(null , a, ta), R
1(null , c, ta), R

1(2, b, t⋆⋆), R1(null , a,

t⋆⋆), R1(null , c, t⋆⋆)}. Thus, there is one solution for peer P1, S(P1) = {{S1(b),

S1(a), S1(h), R1(2, b), R1(null , a), R1(null , c)}}. The peer consistent answers for Q0
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are {(a), (b), (c)}. 2
Example 7.16 Consider the following P2P data exchange system:

P1: R(P1) = {R1}, D(P1) = {R1(a, b)},

P2, R(P2) = {R2}: D(P2) = {},

Σ(P1, P2)= Σ(P2, P1) : {∀xy(R1(x, y) → R2(x, y))}.

P2P1
<

<

Figure 7.6: Accessibility graph of Example 7.16

If peer P1 receives a user-query, it will need to send a query to P2 to get its DECs,

ICs, trust relationships and data. Peer P2 will send a query to P1 to get its data.

Since the query that P1 received from P2 has the same unique ID, P1 will provide an

empty answer to P2. Peer P2 will now send Σ(P2, P1), (P2, less , P1) and DP2 to peer

P1. Now P1 has all the information to write ΠI(P1,P).

If a user-query is posed to P2, the process would be analogous. The rules to

enforce the satisfaction of DECs in programs ΠI(P1,P) and ΠI(P2,P) are the same

and equal to:

R2(x, y, ta) ← R1(x, y, t⋆), R2(x, y, f⋆), x 6= null , y 6= null .

R2(x, y, fa) ← R1(x, y, t⋆), R2(x, y, f⋆), x 6= null , y 6= null .

Using ΠI(P1,P) and ΠI(P2,P) we can compute S(P1) = {}, and S(P2) = {R2(a, b)}.2
The implementation of the semantics can be optimized in several ways. For example

we can reduce the amount of data sent between peers by sending only the data of the
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accessible peers that is relevant to answer the user-query and check the satisfaction

of the relevant DECs.

Example 7.17 (example 7.15 continued). If a user poses query Q1 : S1(x) to peer

P1, there is no need to use program ΠI(P1,P) to obtain the peer consistent answers.

This is because none of the DECs in P1 are related to S1 and therefore the data in the

rest of the peers will have no impact on the data in S1. The peer consistent answers

can be obtained by directly querying the D(P1). 2
Other optimization consist can be based on caching part of the data, solutions or

partial solutions. Several optimization used in the context of CQA can be used for

PDM [Caniupan, 2006].

7.3.2 Solutions under Semantics II

The second semantics consists in modifying the local specification in such a way

that it considers the data in peer P, the solutions (under the same semantics) of

the neighboring peers and peer P’s DECs and ICs. In this semantics, the transitive

information is gathered in the solutions of the neighboring peers.

Example 7.18 (example 7.2 and 7.11 continued) Figure 7.7 shows the accessibility

graphs for peers P1, P2 and P3. Under solution semantics II, the solutions for peer

P1 will only be affected by its own data, the solutions of peer P2, the DECs between

them and the ICs of P1. Therefore, in order to compute the solutions for peer P1 the

peer will need to request the solutions of peer P2. Now, P2 will need the solutions

of P3. Peer P2 will request the solutions of P3. Since P3 has no DECs nor ICs, its

solution is D(P3). This solution will be sent back to P2. Having the solution of P3,

peer P2 is able to compute its own solutions and send them to P1. It might be the
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case that peer P2 returns more than one solution to P1. If that is the case, S(P1) will

be the union of the solutions obtained by using, one-by-one the solutions of P2. 2
P1 P2

P3

<
=

(a) GA(P) restricted to AC(P1)

P2

P3
=

(b) GA(P) restricted to AC(P2)

P3

(c) GA(P) restricted to AC(P3)

Figure 7.7: Accessibility graphs of Example 7.18

Note, that as described in Example 7.18, a peer P might receive more than one solution

from each neighboring peer. In that case, the solutions of P have to be computed by

taking all the possible combinations of solutions of the neighbors (using one solutions

from each peer).

If we have a peer data exchange system with cycles through trust relationships, it

would not be possible to directly apply this semantics for solutions, as shown in the

next example.

Example 7.19 Consider a P2P data exchange system with the following DECs:

Σ(P1, P2) : ∀xy(R2(x, y) → R1(x, y)),

Σ(P2, P3) : ∀xy(R3(x, y) → R2(x, y)),

Σ(P3, P1) : ∀xy(R1(x, y) → ∃zR3(x, z)).

P2

P1

P3

<
<

<

Figure 7.8: Accessibility graph of Example 7.19

The trust relationships for these peers are shown in Figure 7.8. If we want the

solutions of peer P1, the situation would be the following: S(P1) needs S(P2), S(P2)

needs S(P3), S(P3) needs S(P1), S(P1) needs S(P2), . . . . 2
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Definition 7.14 Consider a P2P data exchange system P = 〈P,Σ, IC , trust〉, a

peer P ∈ P, and a set S = {sP1, . . . , sPn}, where N (P) = {P, P1, . . . , Pn} and sPj

is a database with the same schema as Pj. The solution program for semantic II,

ΠII(P,S,P) is:

1. dom(x), for every x ∈ (U r {null}).

2. R(ā), for each atom R(ā) ∈ D̄(P).

3. R(ā), for each R(ā) ∈ s with s ∈ S.

4. For every UDEC ψ ∈ Σ(P, Pj) of the form (7.5) such that Pj ∈ N (P) and there

exists an (P, {same or less}, Pj) ∈ trust , the rules:

∨

R∈RP

R(x̄i, fa) ∨
∨

Q∈QP

Q (ȳj , ta) ←
n
∧

i=1

Ri (x̄i, t
⋆),

m
∧

j=1

Qj (ȳj, f
⋆),

∧

xl∈A(ψ)

xl 6= null , ϕ̄.

Here, A(ψ) is the set of relevant attributes for ψ, and ϕ̄ is a conjunction of

built-ins that is equivalent to the negation of ϕ. RP is defined as follows, for

R = {Ri | i ∈ {1, . . . , n}}:

RP =

{

R∩R(P), if (P, less, Pj) ∈ trust

R, if (P, same, Pj) ∈ trust

QP is defined analogously.

5. For every RDEC ψ ∈ Σ(P, Pj) of the form (7.6) such that Pj ∈ N (P) and there

exists an (P, {same or less}, Pj) ∈ trust :

(a) If (P, same, Pj) ∈ trust , the rules:

R (x̄, fa) ∨Q (x̄′, null , ta)← P (x̄, t⋆), not auxψ(x̄′), x̄′ 6= null .

(b) If (P, less , Pj) ∈ trust and R ∈ R(P), the rules:

R (x̄, fa)← P (x̄, t⋆), not auxψ(x̄′), x̄′ 6= null .
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(c) If (P, less , Pj) ∈ trust and Q ∈ R(P), the rules:

Q (x̄′, null , ta)← P (x̄, t⋆), not auxψ(x̄
′), x̄′ 6= null .

Plus the auxiliary rules:

auxψ(x̄′)← Q(x̄′,null), not Q (x̄′,null , fa), x̄′ 6= null ,

auxψ(x̄′)← Q (x̄′, ȳ, t⋆), not Q (x̄′, ȳ, fa), x̄′ 6= null , yi 6= null , for every yi ∈ ȳ.

6. For every UIC ψ ∈ IC (Pi) of the form (2.2) and such that Pi ∈ N (P), the rules:

n
∨

i=1

Pi (x̄i, fa) ∨
m
∨

j=1

Qj (ȳj, ta) ←
n
∧

i=1

Pi (x̄i, t
⋆),

m
∧

j=1

Qj (ȳj, f
⋆),

∧

xl∈A(ψ)

xl 6= null , ϕ̄.

Here, A(ψ) is the set of relevant attributes for ψ, and ϕ̄ is a conjunction of

built-ins that is equivalent to the negation of ϕ.

7. For every ψ ∈ IC (Pi) of the form (2.3) and such that Pi ∈ N (P), the rules:

P (x̄, fa) ∨Q (x̄′, null , ta)← P (x̄, t⋆), not auxψ(x̄′), x̄′ 6= null .

auxψ(x̄
′)← Q(x̄′, null), not Q (x̄′, null , fa), x̄

′ 6= null .

For every yi ∈ ȳ:

auxψ(x̄
′)← Q (x̄′, ȳ, t⋆), not Q (x̄′, ȳ, fa), x̄

′ 6= null , yi 6= null .

8. For each predicate R ∈ R(N (P)), the annotation rules:

R (x̄, f⋆)← dom(x̄), not R(x̄).

R (x̄, f⋆)← R (x̄, fa).

R (x̄, t⋆)← R(x̄).

R (x̄, t⋆)← R (x̄, ta).

9. For each predicate R ∈ R(P), the interpretation rule:

R (x̄, t⋆⋆) ← R (x̄, t⋆), not R (x̄, fa).
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10. For each predicate R ∈ R(N (P)), the program denial constraint:

← R (x̄, ta), R (x̄, fa). 2
The facts in this new solution program are those in the instance of P and, those in

one instances of each neighbor P’ of P (not necessarily equal to D(P’)). In Definition

7.19 the instance offered to P by neighbor P’ will be a solutions of peer P’ (under the

same semantics).

Definition 7.15 The P2P instance associated to a stable model M of program

ΠII(P, S, P) is DM = {R(ā) | R(ā, t⋆⋆) ∈ M and R ∈ R(N (P))}. 2
Notice that if a peer P has no DECs, then ΠII(P,S,P) is reduced to Π(D(P), IC (P))

(see Definition 5.6). This implies that the P2P instances associated to the stable

models of ΠII(P,S,P) correspond to the repairs of the database in peer P with respect

to its ICs.

Proposition 7.2 Given a peer P in a P2P data exchange system P = 〈P,Σ, IC , trust〉,

if there is no peer Pi such that Σ(P, Pi) ∈ Σ and Σ(P, Pi) 6= ∅, then the set of P2P

instances associated to ΠII(P, S, P) is the same as the set of repairs obtained from

Π(D(P), IC (P)) (see Definition 5.6). 2
The following is a recursive definition of a global solution for P under semantics II

for a peer that uses the solution program with S being the solutions, under the same

semantics, of the neighboring peers.

Definition 7.16 (transitive case, semantics II) Given a peer P in a P2P data ex-

change system P = 〈P,Σ, IC , trust〉, where the graph GA(P)[AC(P)] is acyclic and
⋃

Pi∈N (P)(Σ(Pi) ∪ IC (Pi)) is RIC-acyclic; an instance D over R(N (P)) is a global so-

lution under semantics II for P if there exist solutions sP1, . . . , and sPn (also under
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semantics II) for P1, . . . , and Pn in N (P); and a stable model M of Π(P, {sP1, . . . ,

sPn},P), such that D = DM. SII
G (P) is the set of global solutions for peer P under

semantics II.

An instance s is a solution under semantics II for peer P if there is a global

solution D for P such that s = D|P. S(P) is the set of solutions for P. As in the local

case, P’s peer consistent answers (PCA) are those answers that can be retrieved from

every solution for P. 2
For a peer P we need one program Π(P, {sP1, . . . , sPn},P), for each combination {sP1,

. . . , sPn} of solutions of the neighboring peers. The solutions of P are the union of

the solutions obtained from each program.

Example 7.20 If a peer P has two neighbors, P1 and P2, such that S(P1) and S(P2)

are of cardinality two and four respectively, there will be eight possible combinations

of solutions, and therefore eight programs ΠII. The solutions of P will be the union

of the solutions obtained from each of the eight programs. 2
Since Definition 7.16 is recursive, it can only be used for a peer P for which the graph

GA(P)[AC(P)] is acyclic. If the graph is acyclic, the recursion will reach the peers

in the leaves of GA(P)[AC(P)]. Since those peers will have no outgoing edges, their

solutions can be obtained without the need for solutions of other peers. In this way

the recursive definition will always terminate.

Example 7.21 Definition 7.16 does not define the solutions for peer P1 for the peer

data exchange system shown in Figure 7.9, since there is a cycle in GA(P)[AC(P1)]

between peers P2, P3 and P4. However, for peer P5, GA(P)[AC(P5)] is acyclic and

therefore we would only need to check if
⋃

Pi∈N (P5)(Σ(Pi)∪ IC (Pi)) is RIC-acyclic in

order to use semantics given by Definition 7.16 for peer P5. 2



214

P1

P4

P2

P3

<
=

<
<

P5

Figure 7.9: Cyclic accessibility graph of Example 7.21

Computation of PCA under Semantics II

Like for semantics I, each peer should be capable of answering queries from users

(user-queries) and from peers (peer-queries). Answers to user-queries are PCAs and

answers to peer-queries are solutions.

The following procedure is a naive implementation of semantics II: when a user-

query is posed to a peer P, it will need to compute its solutions. In order to do

this, it needs the solutions of its neighboring peers. They can be obtained by peer

P by sending a peer-query to its neighbors. Each neighboring peer will need the

solutions of its neighbors to calculate its solutions. Since the accessibility graph

is acyclic, this recursion will, at some point, reach peers that have no DECs and

therefore, by Proposition 7.2, the solutions of this peers can be calculated by using

only local information. The solutions obtained are returned to the peer Pj that sent

the peer-query. Peer Pj takes the solutions sent by all its neighbors and construct a

program ΠII(Pj,Sk,P) for every combination Sk of solutions of the neighbors (using

one solutions from each peer). The solutions of Pj are the union of the solutions

obtained from each program ΠII(Pj,Sk,P). The solutions are sent again to the peer

that posed the peer-query to Pj. This process continues until P is reached. Finally, P

computes its own solutions and with them the PCAs to the user-query.

Example 7.22 (example 7.11 and 7.18 continued) GA(P) has no cycle and the set

of DECs and IC is RIC-acyclic, as a consequence, the solutions are defined for all

peers. If a user-query is posed to peer P1, P1 will need to send a peer-query to
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P2 to get its solutions. In turn, P2 will need send a peer-query to P3 to get its

solutions. Since P3 has no DECs, it can obtain its solution by running the program

ΠII(P3, ∅,P) = Π(D(P3), IC (P3)):

dom(c). dom(d). . . .

R3(c, 4).

R3(x, y, t⋆)← R3(x, y, ta).

R3(x, y, t⋆)← R3(x, y).

R3(x, y, f⋆)← R3(x, y, fa).

R3(x, y, f⋆)← dom(x), dom(y), not R3(x, y).

R3(x, y, t⋆⋆)← R3(x, y, t⋆), not R3(x, y, fa).

← R3(x, y, ta), R
3(x, y, fa).

The only model of this program gives the solution sP3 = {R3(c, 4)} = D(P3). Peer

P3 sends this solution to peer P2. Now, the solutions of P2 are computed using the

unique solution of P3. ΠII(P2, {sP3},P) is:

dom(c). dom(d). . . .

R2(c, 4). R2(d, 5). R3(c, 4).

R2(x, y, fa) ∨ R3(x, y, fa)← R2(x, y, t⋆), R3(x, y, t⋆), x 6= null , y 6= null .

R2(x, y, t⋆)← R2(x, y, ta).

R2(x, y, t⋆)← R2(x, y).

R2(x, y, f⋆)← R2(x, y, fa).

R2(x, y, f⋆)← dom(x), dom(y), not R2(x, y).

R2(x, y, t⋆⋆)← R2(x, y, t⋆), not R2(x, y, fa).

← R2(x, y, ta), R
2(x, y, fa).























































(Similarly for S2 and R3)

The models of this program give SG(P2) = {{R2(d, 5), R2(c, 4)}, {R2(d, 5), R3(c, 4)}}.

As a consequence, the solutions are sP21
= {R2(d, 5)} and sP23

= {R2(c, 4), R2(d, 5)}.

The solutions to P2 are separately sent to P1 and its solutions are computed with the
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two programs ΠII(P1, {sP21
},P) and ΠII(P1, {sP22

},P). The first program leads to

global solution {{R1(a, 2), R2(c, 4), R2(d, 5), R1(c, 4), R1(d, 5)}, and the second one

to {R1(a, 2), R2(d, 5), R3(c, 4), R1(d, 5)}. Therefore, SII
G (P1) = {{R1(a, 2), R2(c, 4),

R2(d, 5), R1(c, 4), R1(d, 5)}, {R1(a, 2), R2(d, 5), R3(c, 4), R1(d, 5)}} and SII(P1) =

{{R1(a, 2), R1(c, 4), R1(d, 5)}, {R1(a, 2), R1(d, 5)}}. 2
In some cases, such as Example 7.22, the same solutions would have been obtained

by putting together all the programs run in each peer. In fact, this unified program

would coincide with the program for semantics I. In Section 7.4 we study conditions

under which semantics I and II coincide.

Since semantics II requires the accessibility graph to be acyclic (no cycles through

trust relationships), a unique ID has to be created for each user-query, and kept in

all the peer-queries that originate from it. In this way, if a cycle through trust

relationships is found, an error should be given as an answer to the user-query.

The implementation of the semantics can be optimized in several ways. For ex-

ample we can calculate only the portions of the solutions that are relevant to the

user-query and DECs.

7.3.3 Solutions under Semantics III

The third semantics consists of modifying the local specification in such a way that it

considers the data in peer P; and in the intersection of all its solutions for each for each

neighboring peer; and peer P’s DECs and ICs. Under this semantics, the transitive

information is gathered in the intersection of the solutions of the neighboring peers.

Example 7.23 (example 7.2, 7.11 and 7.18 continued) Under semantics III, the

solutions for peer P3 will only be affected by its own data, the intersection of the

solutions of peer P2, the DECs between them and the ICs of P3. Therefore, in order
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to compute the solutions for peer P3, the solutions of P2 are needed. In its turn, the

solutions for P2 will be affected by its own data, the intersection of the solutions of

peer P3, the DECs between them and the ICs of P2. Finally, since P3 has no DECs

nor ICs, its solution is D(P3). 2
Definition 7.17 Consider a P2P data exchange system P = 〈P,Σ, IC , trust〉, a

peer P ∈ P and the set S = {sP1, . . . , sPn}, where N (P) = {P, P1, . . . , Pn} and sPj

is a database with the same schema as Pj. The solution program for semantic III,

ΠIII(P,S,P) is:

1. dom(x), for every x ∈ (U r {null})

2. R(ā), for each atom R(ā) ∈ D̄(P).

3. R(ā), for each R(ā) ∈ s with s ∈ S.

4. Same as rules 4. to 10. of ΠII(P,S,P) in Definition 7.14. 2
The facts in this new solution program are those in the instance of P and, those in

one instances of each neighbor P’ of P (not necessarily equal to D(P’)). In Definition

7.19 the instance offered to P by neighbor P’ will be the intersections of the solutions

of peer P’ (under the same semantics). If there are cycles through constraints, i.e.,

Σ∪ IC is RIC-cyclic, the solutions given by the semantics can be counterintuitive as

shown in Example 5.12.

Definition 7.18 The P2P instance associated to a stable model M of program

ΠIII(P, S, P) is DM = {R(ā) | R(ā, t⋆⋆) ∈M and R ∈ R(N (P))}. 2
Notice that if a peer P has no DECs, then ΠIII(P,S,P) is reduced to Π(D(P), IC (P))

(see Definition 5.6). This implies that the P2P instance associated to the stable

models of ΠIII(P,S,P) correspond to the repairs of the database in peer P with

respect to its ICs.
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Proposition 7.3 Given a peer P in a P2P system P = 〈P,Σ, IC , trust〉, if there is

no peer Pi such that Σ(P, Pi) ∈ Σ and Σ(P, Pi) 6=, then the set of P2P instances asso-

ciated to ΠIII(P, S, P) is the same as the set of repairs obtained from Π(D(P), IC (P))

(see Definition 5.6). 2
The following is a recursive definition of a solution under semantics III for a peer

that uses the solution program for semantics III with S being the intersection of the

solutions, under the same semantics, of the neighboring peers.

Definition 7.19 (transitive case, semantics III) Given a peer P in a P2P data ex-

change system P = 〈P,Σ, IC , trust〉, where the graph GA(P)[AC(P)] is acyclic and

⋃

Pi∈N (P)(Σ(Pi) ∪ IC (Pi)) is RIC-acyclic; an instance D over R(N (P)) is a global so-

lution under semantics III for P if there exist a stable modelM of ΠIII(P, {sP1, . . . ,

sPn},P), such that D = DM and sPi =
⋂

SIII(Pi) for i = 1, . . . , n. SIII
G (P) is the set

of global solutions for peer P under semantics III.

An instance s is a solution under semantics III for peer P if there is a global

solution D for P such that s = D|P. S(P) is the set of solutions for P. As in the local

case, P’s peer consistent answers (PCA) are those answers that can be retrieved from

every solution for P. 2
Note that since this is a recursive definition, it can only be used for peers P such

that GA(P)[AC(P)] is acyclic, i.e. without cycles through trust relationships. If the

graph is acyclic, the recursion will terminate when a peer with no outgoing edges in

GA(P)[AC(P)] is reached, since its solution can be computed without the need of the

intersection of solutions of other peers.
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Computation of PCAs under Semantics III

In order to compute solutions under semantics I and II each peer had to be capable

of answering queries from users (user-queries) and from peers (peer-queries). Under

semantics III we only have one type of queries, this is, the peer answers in the same

way user and peer queries. In both cases it returns peer consistent answers. As it will

be explained later, the only difference between queries between peers and between

a user and a peer, is that in a naive implementation, the queries between peers will

request whole tables. On the other hand, a query between a peer and a user can be

more specific.

The following procedure is a naive implementation of semantics III: when a query

is posed to a peer P, it will need to compute its solutions. In order to do this, it needs

the intersection of the solutions of its neighboring peers. They can be obtained

by posing several query to its neighbors requesting all the data in each table that

is needed to check the satisfaction of the DECs. The neighbor might have other

neighbors that it will need to query too. Since the accessibility graph is acyclic,

this recursion will, at some point, reach peers that have no DECs and therefore,

by Proposition 7.2, the PCAs of this peers can be calculated by using only local

information. The PCAs obtained are returned to the peer that sent the query. The

PCAs are used to construct a program ΠIII(Pj,S,P). The PCAs are sent again to

the peer that posed the query to Pj. This process continues until P is reached. Finally,

P computes its own solutions and with them the PCAs to the query that originated

the process.

Since semantics III requires that the accessibility graph is acyclic, for each query

a unique ID has to be created and kept in all the queries that originate from it. In

this way, if a cycle is found, an error should be given as an answer to the all the

related queries.
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Example 7.24 (example 7.11 and 7.22 continued) If a user poses queryQ0 = R1(x, y)

we will need to compute the solutions of peer P1 in order to compute the PCAs. To

get the solutions of P1 we need the intersection of the solutions of peer P2. The inter-

section can be obtained from the PCAs of the queries Q1 : R2(x, y) and Q2 : S2(x, y)

posed to P2.

In order to answer these queries, peer P2 needs the intersection of the solutions

of peer P3 which corresponds to the PCAs of query Q3 : R3(x, y). Since P3 has

no neighboring peers, ΠIII(P3, ∅,P) = Π(D(P), IC (P)) by Proposition 7.3. The only

model of this program gives the solution sP3 = {R3(c, 4)} = D(P3). Now since P3 has

a unique solution, the PCAs to query Q3 sent to peer P2 is {(c, 4)}.

Peer P2 now knows that the intersection of the solutions of P3 is {R3(c, 4)}.

The model of program ΠIII(P2, {{R3(c, 4)}},P) gives SG(P2) = {{R2(d, 5), R2(c, 4)},

{R2(d, 5), R3(c, 4)}}. As a consequence, the solutions for peer P2 are SIII(P2) =

{{R2(d, 5)}, {R2(c, 4), R2(d, 5)}}. The PCAs to queries Q1 and Q2 sent to peer

P1 are {(d, 5)} and ∅ respectively. With this information P1 now knows that the

intersection of the solutions of P2 is {R2(d, 5)}. Now, ΠIII (P1, {{R2(d, 5)}}, P):

dom(c). dom(d). . . . R1(a, 2) R2(d, 5).

R1(x, y, ta)← R2(x, y, t⋆), R1(x, y, f⋆), x 6= null , y 6= null .

R1(x, y, t⋆)← R1(x, y, ta).

R1(x, y, t⋆)← R1(x, y).

R1(x, y, f⋆)← R1(x, y, fa).

R1(x, y, f⋆)← dom(x), dom(y), not R1(x, y).

R1(x, y, t⋆⋆)← R1(x, y, t⋆), not R1(x, y, fa).

← R1(x, y, ta), R
1(x, y, fa).























































(Similarly for R2)

The program leads to two global solutions: SIII
G = {{R1(a, 2)}, {R1(a, 2), R2(d, 5),
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R1(d, 5)}}. Therefore, SIII(P1) = {{R1(a, 2)}, {R1(a, 2), R1(d, 5)}}. From the solu-

tions we get that the PCA to Q0 is {(a, 2)}. 2
The implementation of the semantics can be optimized in several ways. For example

we can make more specific queries to the neighboring peers in such a way that only

the relevant portion of the intersection of the solutions is retrieved.

Example 7.25 (example 7.24 continued) In order to get the PCAs of peer P1 we

do not need the whole intersection of the solutions of peer P2. In fact, the DEC

Σ(P1, P2) = {∀xy(R2(x, y) → R1(x, y))} shows that we only need relation R2 and

therefore query Q1 : R2(x, y) was enough to check the satisfaction of the DEC. 2
Example 7.26 For a DEC Σ(P1, P3) = {R1(x, y)→ R2(x, y, a)}, peer P1 needs only

the data in table R2 to check the satisfaction of the DEC. In the naive algorithm we

explained above we would request the whole table (and any other table in P2. An

alternative would be to obtain only the information that will be needed to check the

constraint. In this case, peer P1 could send to P2 the query Q1(x, y) : R2(x, y, a).

Using the answers to Q1 instead of the intersection of all the solutions would give the

same PCAs to any query posed to P1.

Now, for a DEC Σ(P1, P3) = {R1(x, y) → R3(x, z)}, it is not the same to pose

query Q2(x) : ∃zR3(x, z) to P3 than using the intersection of the databases. For

example, if S(P3) = {{R3(a, b)}, {R3(a, c)}}, the intersection of the solutions would

be empty and the answer to query Q2 would be {(a)}. 2
If the DECs were defined in terms of queries, then it would be possible to use PCA

of specific queries instead of the intersection of the solutions.
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P2P3 P1< <

Figure 7.10: Accessibility graph of Example 7.27

7.4 Comparison of Semantics for the Transitive Case

The different semantics can be useful depending on the characteristics and architec-

ture of the PDMs.

Semantics I is seeing the P2P system as a database containing all the data in the

system subject to a set of ICs that contain the ICs of all the peers and the DECs.

On the other hand, Semantics III is in the other end, where we see each peer as an

individual database that interacts with other peers only through PCAs. Semantics

II would be somewhere in the middle of Semantics I and III, since the computation

is distributed over the network, but the data being send between peers are solutions

to the peers instead of PCAs.

Example 7.27 Consider a query Q : Citizen3(x) posed to peer P3 in the P2P data

exchange system P:6

P1: R(P1) = {Citizen(·)}, D(P1) = {Citizen1(125)},

P2: R(P2) = {Man2(·),Woman2(·)}, D(P2) = {Man2(562),Woman2(167)},

P3: R(P3) = {Citizen3(·)}, D(P3) = {},

Σ(P2, P1) = {∀x(Citizen1(x) → (Man2(x) ∨Woman2(x)))},

Σ(P3, P2) = { ∀x(Man2(x) → Citizen3(x)) , ∀x(Woman2(x) → Citizen3(x))},

trust = { (P2, less, P1), (P3, less , P2) }.

Figure 7.10 shows the accessibility graph of this system.

The global solutions obtained from ΠI(P3,P) are SI
G(P3) = {{Citizen1(125),

Man2(562), Woman2(167), Man2(125), Citizen3(562), Citizen3(167), Citizen3(125)},

6The same example is used in [Franconi et al., 2004b]
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{Citizen1(125),Man2(562),Woman2(167),Woman2(125),Citizen3(562),Citizen3(167),

Citizen3(125)}}. Therefore, there is only one solution for P3: SI(P3) = {{Citizen3(562),

Citizen3(167), Citizen3(125)}}. The PCAs under semantics I are {562, 167, 125}.

Now, under semantics II, in order to compute the solution of P3, we need the solu-

tions of P2, which need the solutions of P1. Since P1 has no DECs, its solutions can be

computed from ΠII(P1, ∅,P). Since there are no ICs in P1, the solution obtained from

the program coincides with DP1, SII(P1) = {{Citizen1(125)}}. Using this solution we

can compute the solutions of P2 with the program ΠII(P2, {{Citizen1(125)}},P). The

solutions obtained from it are SII(P2) = {{Man2(562), Woman2(167), Man2(125)},

{Man2(562), Woman2(167), Woman2(125)}}. Using these solutions we can com-

pute the solutions to peer P3 from programs ΠII(P3, {{Man2(562), Woman2(167),

Man2(125)}},P) and ΠII(P3, {{Man2(562), Woman2(167), Woman2(125)}},P). In

this case, the same solution for peer P3 is obtained from both programs and SIII =

{{Citizen3(567), Citizen3(167), Citizen3(125)}}. The PCAs under semantics II are

{562, 167, 125} and coincide with those obtained under semantics I.

Finally, under semantics III, in order to compute the solution of P3, peer P3 needs

the intersection of the solutions of P2, which needs the intersection of the solutions

of P1. Since P1 has no DECs, its solutions can be computed from ΠIII(P1, ∅,P).

Since there are no ICs in P1, there is only one solution and it coincides with DP1,

SII(P1) = {{Citizen1(125)}}. Since there is unique solution, the intersection is the

same as the solution. This intersection is sent to peer P2 and is used to com-

pute the solutions of P2 with the program ΠII(P2, {{Citizen1(125)}},P). The so-

lutions obtained from it are SII(P2) = {{Man2(562), Woman2(167), Man2(125)},

{Man2(562), Woman2(167), Woman2(125)}}. The intersection of the solutions is

sP2 = {Man2(562), Woman2(167)} and is send to peer P1. Using the intersection of

the solutions we can compute the solutions to peer P3 from program ΠII(P3, {{Man2
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(562),Woman2(167)}},P). A unique solution is obtained from the program: SIII(P3)

= {{Citizen3(562), Citizen3(167)}}. The PCAs under semantics III are {562, 167}.

The PCAs for semantics I and II coincide in this case. The PCAs under seman-

tics III do not coincide with the other ones since we only send between peers the

information that we are certain of. 2
In Examples 7.22 and 7.27 the solutions under semantics I coincide with those under

semantics II, but this is not always the case as the following example shows.

Example 7.28 Consider a P2P data exchange system P:

P1: R(P1) = {R1(·, ·)}, D(P1) = {},

P2: R(P2) = {S2(·, ·), T 2(·, ·)}, D(P2) = {S2(a, d), R2(a, d)},

Σ(P1, P2) = { ∀xy(S2(x, y)→ R1(x, y))}

IC (P2) = { ∀xy(T 2(x, y)→ S2(x, y))}

Figure 7.11 shows the accessibility graph for P.

P1 P2
=

Figure 7.11: Accessibility graph of Example 7.28

For semantics I, there are two global solutions for P1, SI
G(P1) = {{S2(a, d), T 2(a, d),

R1(a, d)}, ∅} and, therefore SI = {{R1(a, d)}, ∅}.

On the other hand, for semantics II we need first to compute the solutions of peer

P2. Since they have no DECs and the only IC is satisfied by P2’s instance, SII
G (P2) =

SI(P2) = {{S2(a, d), T 2(a, d)}}. The set of global solutions for P2 under semantics

II is SII
G (P1) = {{S2(a, d), T 2(a, d), R1(a, d)}}, and therefore SI = {{R1(a, d)}}.

Under semantics I, peer P1 has two solutions and under semantics II it has only

one. Therefore, semantics I and II do not necessarily coincide. 2
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The following propositions state that if there are only less relationships in trust and

there are no cycles in the DECs, then solution semantics I and II coincide.

Proposition 7.4 Given a peer P and a P2P system P = 〈P,Σ, IC , trust〉 such that

P ∈ P, GA(P)[AC(P)] has no cycles that include P and trust has only relations of type

less for peers in AC(P), it holds

• For every stable model M of ΠI(P, P) there exists a set S = {sP1, . . . , sPn} for

N (P) = {P1, . . . , Pn}, and a model M′ of ΠII(P, S, P), such that each sPi is a

solution under semantics II for Pi and DM|R(N (P)) = DM′.

• For every stable model M of ΠII(P,S,P), where S = {sP1, . . . , sPn}, N (P) =

{P1, . . . , Pn} and sPi is a solution under semantics II for Pi, there exists a model

M′ of ΠI (P, P), such that DM′|R(N (P)) = DM.

Proof: Program ΠI(P,P) can be replaced by a group of programs of the type ΠII(P,

S, P), by using the splitting theorem [Lifschitz and Turner, 1994]. The theorem can

be applied because:

• There are no cycles through the DECs of the peers in AC(P)

• The repairs performed to restore the consistency of any DEC or IC of a peer P

will only affect the data in itself. This is a consequence of all trust relationships

being of type less . 2
A direct consequence of Proposition 7.4 is the following corollary.

Corollary 7.1 For a P2P data exchange system P = 〈P,Σ, IC , trust〉 such that the

graph GA(P)[AC(P)] has no cycles that include P, and trust has only relations of type

less , it holds that SI(P) = SII(P), i.e., the solutions provided by both semantics are

the same. 2
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Intuitively this can be explained as follows: since AC(P) is acyclic we can see the graph

as a tree with P as the root. Since the trust relationships are always less , the repairs

will only have effects under Semantics I and II going from leaf to root. This implies

that we can separate the solution program under semantics I into several layers. On

the other hand, if we had trust relationships of the type same, the modifications could

also move in the direction root to leaf. In the case of semantic II, the impact of those

modifications would be contained in the neighborhood, but in the case of semantics I

it could go as far as the peer in the leaf. Therefore, for RDECs and UDECs, if there

is a trust relationship same, semantics I and II do not necessarily coincide.

The following example shows that it is also possible that the three semantics

coincide. This can happen if there are no cycles in the accessibility graph and there is

only one way to solve inconsistencies with respect to DECs and ICs (no disjunctions

in the head of the rules that restore consistency).

Example 7.29 Consider the P2P system P:

R(P1) = {R1(·, ·), S1(·, ·, ·)}, D(P1) = {S1(a, b, c)}

R(P2) = {R2(·, ·), S2(·)}, D(P2) = {R2(e, f), S2(f)}

R(P3) = {R3(·, ·, ·)}, D(P2) = {R3(b, e, e)}

Σ(P1, P2)= {∀xy(R2(x, y) ∧ S2(y)→ R1(x, y))},

Σ(P2, P3)= {∀xyz(R3(x, y, z)→ R2(x, y)), ∀xy(R3(x, y, y)→ S2(x))},

trust = {(P1,less,P2), (P2,less,P3)}.

In this case, semantics I, II and III coincide. The solutions are: S(P1) = {{S1(a, b,

c), R1(e, f)}}, S(P2) = {{R2(e, f), R2(b, e), S2(f), S2(b)}}, S(P3) = {{R3(b, e, e)}}.2
In [Calvanese et al., 2004b; Calvanese et al., 2004a; Calvanese et al., 2005], the se-

mantics of a P2P system is given in terms of epistemic logic. They consider that each
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peer is a data integration system and that there are no trust relationships between

the peers. Since the DECs only modify the data of the peer that owns the DEC, they

implicitly are assuming that the trust relationship between all peers is less. Another

restriction of their setting is that every DEC in Σ(Pi, Pj) can be written as cqj → cqi,

where cqi and cqj are conjunctive queries over peers Pi and Pj respectively. Therefore,

their mappings can only add elements to another peer but not delete them.

The theory in epistemic logic is close in spirit to our semantics III, in the sense

that only the data that is known to be true by a peer is used by the other peers to check

the satisfaction of their DECs. However, in [Calvanese et al., 2004b; Calvanese et al.,

2004a; Calvanese et al., 2005] for a DEC cqj → cqi the data of peer Pj is obtained

with the conjunctive query cqj, whereas in our case, we ask for intersection of the

complete solutions. If cqj has no existential quantifiers, the solutions for Pi computed

by using the answers to cqj coincide with those obtained with the intersection of the

solutions Pj.

Example 7.30 (example 7.29 continued) The PDMs P can be adjusted to the set-

tings in [Calvanese et al., 2005] by transforming the database of every peer into a

data integration system. Each peer P is replaced by a DIS where:

• The global schema is R(P).

• There is a unique source with a schema obtained from R(P) by adding to the

name each relation an s subscript. The source instance is D(P) where the

subscript s is added to all the relations.

• For each R ∈ R(P) add the GAV mapping ∀x̄(Rs(x̄)→ R(x̄)).

Therefore, peer P1 has {R1(·, ·), S1(·, ·, ·)} as global schema, {R1
s(·, ·), S

1
s (·, ·, ·)} as

the source, the mapping {∀xy(R1
s(x, y) → R1(x, y)), ∀xyz(S1

s (x, y, z) → S1(x, y, z))}



228

and the source instance {S1
s (a, b, c)}. The DISs for the other peers are obtained

analogously.

The theory in epistemic logic, as defined in [Calvanese et al., 2005], is:

K1(∀xy(R1
s(x, y)→ R1(x, y)))

K1(∀xyz(S1
s (x, y, z)→ S1(x, y, z)))

∀xy(K2(R
2(x, y) ∧ S2(y))→ K1(R

1(x, y)))















Specification of P1

K2(∀xy(R2
s(x, y)→ R2(x, y)))

K2(∀x(S2
s (x)→ S2(x)))

∀xy(K3(R
3(x, y, y))→ K2(S

2(x)))}

∀xyz(K3(R
3(x, y, z))→ K2(R

2(x, y)))































Specification of P2

K3(∀xyz(R3
s(x, y, z)→ R3(x, y, z))) } Specification of P3

In this theory, Kiφ can be interpreted as φ is known by peer Pi. A tuple t̄ is a peer

consistent answer to a query Q posed to peer Pi if KiQ(t̄) is a logical consequence

of the theory above [Calvanese et al., 2005]. What is known by the peers under the

epistemic logic semantics coincides, in this case, with the PCAs under semantics I,

II and III. 2
Even though the semantics for peer consistent answers in [Calvanese et al., 2005] is

similar to our semantics III, theirs is able to deal with cycles in the accessibility

graph.

Example 7.31 (example 7.29 and 7.30 continued) By adding DEC ∀xyz(S1(x, y, z)→

R3(x, y, z)) to peer P3 with trust relationship (P3, less, P1), the accessibility graph is

now cyclic. Thus, semantics III is not defined.

The epistemic logic semantics in [Calvanese et al., 2005] can still be applied, since

we can get the information of all the peers using a unique code to identify a query and
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cut the cycle, and construct the epistemic logic theory in the peer that got the user

query. This technique is the same as the one described in Section 7.3.1 for semantics

I.

If peer P1 receives a user-query, it will first assign an ID to the query, e.g. ID =

A12 , and then send a peer-query with ID = A12 to peer P2 asking for its metadata

(mappings, DECs and ICs) and data. Peer P2 will check if it has processed a peer-

query with that ID. Since it has not, it will send a peer-query to P3. Peer P3 has

not processed a query with that ID , therefore it will send a peer-query to P1. Peer

P1 has processed this ID and therefore will not execute any peer-queries. Now peer

P3 sends its information and data to P2, which in its turn, send the information and

data to P1. Now peer 1 has all the needed data of the peers and the metadata needed

to construct the epistemic logic theory:

K1(∀xy(R1
s(x, y)→ R1(x, y)))

K1(∀xyz(S1
s (x, y, z)→ S1(x, y, z)))

∀xy(K2(R
2(x, y) ∧ S2(y))→ K1(R

1(x, y)))















Specification of P1

K2(∀xy(R2
s(x, y)→ R2(x, y)))

K2(∀x(S2
s (x)→ S2(x)))

∀xy(K3(R
3(x, y, y))→ K2(S

2(x)))}

∀xyz(K3(R
3(x, y, z))→ K2(R

2(x, y)))































Specification of P2

K3(∀xyz(R3
s(x, y, z)→ R3(x, y, z)))

∀xyz(K1(S
1(x, y, z))→ K3(R

3(x, y, z)))}

}

Specification of P3

By using this theory, and the data brought from the accessible peers, P1 is now ready

to answer the user-query.

We cannot use the same technique for our semantics III, since in order to get

S(P1) we need S(P2), which needs S(P3), which needs S(P1), etc. 2
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In [Calvanese et al., 2005], it is also note that it should be possible, in some cases, to

use Datalog¬ to obtain the answers of a peer under their epistemic logic semantics.

Example 7.32 (example 7.31 continued) The queries to peer P1 can be answered by

using the following Datalog program:

S1(a, b, c). R2(e, f).

S2(f). R3(b, e, e)

R1(x, y, z)← R2(x, y), S2(x, y).

R2(x, y)← R3(x, y, z).

S2(x)← R3(x, y, y).

R3(x, y, z)← S1(x, y, z)

The answers to a query obtained using this program coincide with those obtained

under the epistemic logic semantics. 2
The algorithm in [Calvanese et al., 2005] is distributed only in the sense that it has to

traverse the network to get the mappings, DECs, ICs and data of the peers in order

to construct the epistemic theory. The actual evaluation of the query is done by a

single peer.

Another difference between the approach in [Calvanese et al., 2005] and ours,

is how they deal with inconsistencies with respect to ICs. If for a peer P, D(P)

is inconsistent with respect to IC (P) the peer is discarded and not considered. The

inconsistency can be detected when peer-queries are being sent to answer a user-query.

Example 7.33 (example 7.31 continued) If we add IC (P2) = {∀xy(R2(x, y) →

S2(x))}, peer P2 would be inconsistent. Therefore, when computing the solutions

for peer P1 under the semantics in [Calvanese et al., 2005], the data of P2 is not

considered. Since P3 was reachable from P1 through P2, its data will also not be

considered. Thus, S(P) = D(P). 2
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Also, if data needed in a peer to restore consistency with respect to a DEC creates

an inconsistency, then it will not be added to the peer. Our setting solves the incon-

sistencies in both cases without discarding whole peers and by restoring consistency

for all DECs.

In [Calvanese et al., 2005], it is shown, under the assumption that if the epistemic

logic theory can be rewritten as a program in Datalog¬, then the data complexity

of determining if a tuple is an answer is coNP-hard.7 Also, under certain conditions

over the mappings, the data complexity is in PTIME [Calvanese et al., 2004a]. In

our case, since we use the stable models semantics for disjunctive logic program, we

have an upper bound of ΠP
2 -hard, and clearly we can find situations with a ΠP

2 lower

bound. However, as we know from previous chapters, for certain classes of programs

the complexity can be decreased. The identification of such cases is still a matter of

current research.

[Franconi et al., 2004b; Franconi et al., 2004a] introduce a semantics that coincide

with the epistemic logic used in [Calvanese et al., 2004a]. They provide a distributed

algorithm, were the data in the peers is updated by instruction of a super peer [Yang

and Garcia-Molina, 2003]. When a query is possed to a peer, it can answer the query

right away with the data store in the peer since the P2P system is already updated.

7.5 Conclusions

In this chapter, we have provided a framework for P2P exchange systems with trust

relationships. In this setting, each peer solves its conflicts at query time, when it

queries its own and other peers’ databases.

For the local or direct case, in which the solution of a peer is only affected by the

data in neighboring peers and its own DECs and ICS, we first provide a semantics

7It is not discussed in [Calvanese et al., 2005] under which condition this assumptions apply.
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for peers without null and explore logic program specification of it. Then, we extend

the solution semantics to the case where peers may contain null and also use null to

enforce the satisfaction of DECs and ICs. We provide a general logic program spec-

ification for this semantics when RDECs and UDECs are considered. This program

can be used to retrieve the peer consistent answers.

For the transitive case, in which the solution of a peer is not only affected by its

neighbors, but also by their interactions with other peers, we propose three alternative

semantics. Under semantics I, the solution of a peer P is obtained by integrating the

local specification of each of the peers that affect P. Under semantics II the solutions

of a peer are defined using the solutions of the neighbors under the same semantics

and its DECs and ICs. Finally, under semantics III the solutions are obtained with

the data of the neighbors obtained as PCA, also under semantics III and its own

DECs and ICs. We also identify some cases in which the semantics coincide.

The different semantics can be useful depending on the characteristics and ar-

chitecture of the PDMs. For example, some P2P systems have so-called super peers

[Yang and Garcia-Molina, 2003] that store information about the other peers and the

data stored in them and also route queries. In this type of architecture, the super

peer could get all the information it needs from the peers and implement the solution

semantics I. In this setting, the super peer could also detect the presence of cycles and

choose a way to break them in order to use semantics II or III. If, on the other hand,

there are no super peers, we could use semantics II or III and if a cycle through trust

relationships is detected, return an error. The cycles can be easily detected by adding

a unique ID to identify the query and all its sub-queries. We are currently studying

the use of the solution program as an immediate consequence operator, in order to

extend semantics II and III to PDMs with cycles through trust relationships.

The choice of the semantics for the solution will also depend on the type and
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granularity of data that is allowed to be sent between peers. If only queries and peer

consistent answers can be exchanged between peers, the only possible semantics is

solution semantics III. Solution semantics II can be used in settings where solutions

can be exchanged, but the data exchange constraints and ICs of a peer are not shared

with other peers. Finally, the solution semantics I corresponds to a setting in which

peers can share the data, the DECs, the ICs and the trust relationships.

The programs for the solutions under semantics I, II and III, with stable model

semantics, allow as to obtain the solutions of a peer, and with them, the set of

peer consistent answers for UDECs and RDECs. Since we are not interested in the

solutions per se, but in the PCA, techniques to partially compute them are useful.

Techniques used in CQA, such as magic sets, could also be used in this setting to

restrict the amount of data considered to run the programs [Caniupan and Bertossi,

2005; Caniupan, 2006]. In [Caniupan and Bertossi, 2005; Caniupan, 2006], many other

optimizations can be found that allow for a more efficient evaluation of programs for

CQA; they could be explored in the P2P setting.

Obtaining peer consistent answers has at least the data complexity of consistent

query answering (CQA), for which some results are known [Chomicki and Marcinkowski,

2002; Chomicki and Marcinkowski, 2005b; Fuxman and Miller, 2003; Cal̀ı et al., 2003a;

Chomicki and Marcinkowski, 2005a; Fuxman and Miller, 2005]. With CQA, for com-

mon database queries and ICs, ΠP
2 -completeness is easily achieved. On the other

hand, the problem of skeptical query evaluation from the disjunctive programs we are

using for P2P data exchange systems is also ΠP
2 -complete in data complexity [Dantsin

et al., 1997]. In this sense, the logic programs are not contributing with additional

complexity to our problem.

With respect to related work, peer-to-peer data exchange systems have been an-

alyzed in [Halevy et al., 2003; Franconi et al., 2004b; Kementsietsidis et al., 2003;
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Halevy et al., 2004; Franconi et al., 2004a; Calvanese et al., 2004b; Calvanese et al.,

2004a; Calvanese et al., 2005; Fagin et al., 2005] without considering trust relation-

ships. In them, if there is a DEC from P to Q then, implicitly, peer P is assumed to

trust itself less than Q. If we restrict ourselves to their setting, the solution semantics

I coincides with the solution semantics II. Also, in all the research so far, DECs are

considered to force the addition of data to peers. In our setting we also consider that

a DEC can restrict the data that can belong to the peer.

Solution semantics I is close in spirit to the semantics in [Halevy et al., 2003] in

the sense that both give the semantics putting together the specification of all peers.

However, in [Halevy et al., 2003] the specification is done in first-order logic, where

each database is a theory and the DECs are first-order formulas.

Solution semantics III can be compared to the semantics in [Franconi et al.,

2004b; Franconi et al., 2004a; Calvanese et al., 2004a; Calvanese et al., 2005] in the

sense that only the data that the peer is certain of is given to other peers. Their

semantics is based in epistemic logic and is able to deal with cyclic DECs.

The results presented in this chapter on local solutions have been published in

[Bertossi and Bravo, 2004a], and in a slightly extended version in [Bertossi and Bravo,

2004b]. There, the relationship between P2P systems and data integration systems

is also analyzed.



Chapter 8

Conclusions

In this thesis, we have studied consistent query answering from relational databases,

data integration systems and peer to peer systems. In all this settings we assume

that the databases (either stand-alone, part of a DIS or in a peer) may contain null

and that we may use it to repair with respect to inconsistencies.

We also analyze the semantics of query answering and satisfaction of integrity

constraints in the presence of null values. More specifically, we have proposed a

precise and uniform logical reconstruction of IC satisfaction for databases that is

compatible with the way null values are treated according to the SQL standard. We

also provide a semantics for query answering, called null query answering semantics,

that extends the one for IC satisfaction, but that does not always coincide with

the query answering semantics of SQL. These results are not only interesting to be

used for CQA, but they are interesting by themselves since it is the first logical

characterization that is homogenous and extends the portion of the SQL standard

implemented in databases. Further research is needed to identify more connections

between the null semantics and SQL query answering semantics.

The results obtained for CQA in relational databases assume not only that databases

may contain null in the form we find them present and treated in current commer-

cial implementations, but that we can also use null to restore the consistency of the

database. The provided repair semantics applies to a wide class of ICs, including

cyclic sets of referential ICs. The CQA can be obtained by using a disjunctive logic

235
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program with stable models semantics for RIC-acyclic set of constraints.

In the context of CQA for databases, further research is needed to modify the

disjunctive logic program in such a way that it can also provide the CQA for RIC-

cyclic set of constraints. It is also of interest, to use disjunctive logic programs with

preferences, so that the user can choose different preferences on how the database

should be repaired. For example, we might prefer to repair by deletion only certain

constraints, or prefer to repair by insertion and only delete if it is not possible to

insert.

The connections between CQA in databases with DIS and PDM, allow us to use

the results obtained for CQA to these other settings. Table 8.1 shows the parallelism

between them.

Database DIS PDM
ICs Mappings and ICs DECs and ICs
a single database several database sources one database per peer
centralized system centralized mediation system decentralized mediation system

Table 8.1: Parallel between databases, DISs and PDMs

For data integration systems, we have presented a general approach to specifying,

by means of disjunctive logic programs with stable model semantics, the database

repairs of a virtual DIS with open sources under the LAV and GAV approaches.

Consistent answers to queries posed to such a system are computed by running a query

program together with the specification of database repairs and the class of minimal

global legal instances of the integration system. To the best of our knowledge, this is

also the first specification, under the LAV paradigm, of the global minimal instances

in a logic programming formalism. The specification of the minimal legal instances

allows us to obtain the minimal answers to arbitrary queries; and the certain answers

to monotone queries, what extends previous results in the literature related to query

plan generation under the LAV approach. The specifications given for the GAV
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and LAV approaches can be easily combine to provide a specification for the GLAV

approach [Friedman et al., 1999].

Research related to the design of virtual data integration systems and its impact

on global query answering has been mostly neglected. Most of the research in the

area starts from a given set of view definitions, but the conditions on them hardly

go beyond classifying them as conjunctive, disjunctive, Datalog, etc. However, other

conditions, imposed when the systems is being designed, could have an impact on,

e.g. query plan derivation. Much research is needed in this direction.

In the context of P2P data exchange systems, we consider different trust relation-

ships between peers, where each peer solves its conflicts at query time, by querying

its own data and neighboring peers’ databases. The solution of a peer is not only

affected by its neighbors, but also by their interactions with other peers. Since the

semantics is given using disjunctive logic programs with stable model semantics, it is

possible to retrieve the peer consistent answers for UDECs and RDECs by rewriting

the query as a query program.

Further research is needed to determine classes of constraints, DECs, ICs and

trust relationships for which the problem of retrieving the PCA can be solved more

efficiently. Also research is needed to adjust the optimization techniques used in CQA

for stand-alone databases [Caniupan and Bertossi, 2005; Caniupan, 2006] so that they

can be used for PDMs.

Some of the results of this thesis have been published in [Barceló et al., 2003; Bravo

and Bertossi, 2003; Bravo and Bertossi, 2004; Bertossi and Bravo, 2004a; Bertossi and

Bravo, 2004b; Bravo and Bertossi, 2005; Bertossi and Bravo, 2005; Bravo and Bertossi,

2006].
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Beng Chin Ooi, editors, VLDB, pages 1354–1357. ACM, 2005.

[Fuxman et al., 2005c] Ariel Fuxman, Phokion Kolaitis, Renée J. Miller, and Wang-
Chiew Tan. Peer Data Exchange. In Proceedings of the ACM SIGACT–SIGMOD–
SIGART Symposium on Principles of Database Systems (PODS’05), pages 160–
171. ACM Press, 2005.

[Gelder and Topor, 1987] A. Van Gelder and R. Topor. Safety and Correct Trans-
lation of Relational Calculus Formulas. In Proceedings of the ACM SIGACT–
SIGMOD–SIGART Symposium on Principles of Database Systems (PODS’87),
pages 313–327. ACM Press, 1987.

[Gelder and Topor, 1991] Allen Van Gelder and Rodney W. Topor. Safety and trans-
lation of relational calculus. ACM Transactions on Database Systems, 16(2):235–
278, 1991.

[Gelfond and Leone, 2002] Michael Gelfond and Nicola Leone. Logic Programming
and Knowledge Representation—The A-Prolog Perspective. Artificial Intelligence,
138(1–2):3–38, 2002.



245

[Gelfond and Lifschitz, 1988] Michael Gelfond and Vladimir Lifschitz. The Stable
Model Semantics for Logic Programming. In Proceedings of the International Con-
ference on Logic Programming, pages 1070–1080. The MIT Press, 1988.

[Gelfond and Lifschitz, 1991] Michael Gelfond and Vladimir Lifschitz. Classical
Negation in Logic Programs and Disjunctive Databases. New Generation Com-
puting, 9(3/4):365–386, 1991.

[Giannotti et al., 1991] F. Giannotti, D. Pedreschi, D. Saccà, and C. Zaniolo. Non-
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Appendix A

Optimizations of Π(D , IC )

The logic programs used to specify database repairs can be optimized in several ways.

First, we should try to avoid the explicit computation of negative information, done

by rule P (x̄, f⋆)← dom(x̄), not P (x̄, td). We would like to calculate only the negative

information that is explicitly needed to find inconsistencies and solve them. Second,

we would like to get rid of unneeded predicates, such as dom(x). Finally we will

combine different rules to minimize also the number of rules.

In order to avoid the computation of negative information that is not needed, we

can modify the program by:

1. First, by unfolding, atoms of the form P (x̄, f⋆) that appear as subgoals in the

bodies are replaced by their definitions. More precisely, replace every rule that

contains an atom of the form P (x̄, f⋆) in the body, by two rules, one replacing

the atom by P (x̄, fa), and another replacing the atom by not P (x̄, td).

2. Next, eliminate from the repair program those rules that have atoms annotated

with f⋆⋆ or f⋆ in their heads, because they compute data that should not be

explicitly contained in the repairs.

Let Π⋆(D , IC) denote the program obtained after applying these two transformations.

Example A.1 Consider the database instance {P (a, b)} that is inconsistent with re-

spect to the constraint ∀x, y(P (x, y)→ P (y, x)). The program Π(D , IC) corresponds

to:
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dom(a). dom(b). P (a, b, td).

P (x, y, fa) ∨ P (y, x, ta) ← P (x, y, t⋆), P (y, x, f⋆), dom(x), dom(y).

P (x, y, t⋆) ← P (x, y, ta).

P (x, y, t⋆) ← P (x, y, td).

P (x, y, f⋆) ← P (x, y, fa).

P (x, y, f⋆) ← dom(x), dom(y), not P (x, y, td).

P (x, y, t⋆⋆) ← P (x, y, ta).

P (x, y, t⋆⋆) ← P (x, y, td), not P (x, y, fa).

P (x, y, f⋆⋆) ← P (x, y, fa).

P (x, y, f⋆⋆) ← dom(x), dom(y), not P (x, y, td), not P (x, y, ta).

← P (x, y, ta), P (x, y, fa).

The optimized repair program Π⋆(D , IC) is:

dom(a). dom(b). P (a, b, td).

P (x, y, fa) ∨ P (y, x, ta) ← P (x, y, t⋆), not P (y, x, td), dom(x), dom(y).

P (x, y, fa) ∨ P (y, x, ta) ← P (x, y, t⋆), P (y, x, fa), dom(x), dom(y).

P (x, y, t⋆) ← P (x, y, ta).

P (x, y, t⋆) ← P (x, y, td).

P (x, y, t⋆⋆) ← P (x, y, ta).

P (x, y, t⋆⋆) ← P (x, y, td), not P (x, y, fa).

← P (x, y, ta), P (x, y, fa).

Note that now we only use 5 annotation constants and no negative information is

materialized (there are no f⋆ and f⋆⋆). 2
Example A.2 (example 5.10 continued) The optimized program Π⋆(D , IC) is as

below and determines the same repairs as the original program. Notice that the

second disjunctive rule in the original program was replaced by two new rules in the

new program.



253

dom(a).

P (a, td).

P (x, fa) ∨Q (x, null , ta)← P (x, t⋆), not aux(x), dom(x).

aux(x)← Q (x, y, t⋆), not Q (x, y, fa), dom(x), dom(y).

aux(x)← Q(x, null), not Q (x, null , fa), dom(x).

Q (x, y, fa) ∨R (x, y, ta)← Q (x, y, t⋆), R (x, y, fa), dom(x), dom(y).

Q (x, y, fa) ∨R (x, y, ta)← Q (x, y, t⋆), not R (x, y, td), dom(x), dom(y).

P (x, t⋆)← P (x, ta).

P (x, t⋆)← P (x, td).

P (x, t⋆⋆)← P (x, ta).

P (x, t⋆⋆)← P (x, td), not P (x, fa).

← P (x, ta), P (x, fa).











































(Similarly for Q and R)

This optimized repair program calculates negative information only when needed 2
After modifying the program not to materialize the negative, the only objective of

predicate dom(x) is to enforce that variable x cannot be null . Therefore, we could

avoid the use of this predicate by replacing every occurrence of dom(x) by x 6= null .

On the other hand, we would like to get rid of the annotation td. This would be

useful since it will allow to separate the intentional (the rules) from the extensional

database (the data itself). This can be simply done by replacing every predicate

P (x̄, td) by P (x̄). This simple change allows, for example, to include in DLV only

the rules and leave the facts in the database. The database will be accessed by DLV

to retrieve only the data that is needed.

Example A.3 (example 5.11 continued) The following corresponds to the optimized

repair program. For the sake of comparison, the same items as in Example 5.11 were

kept.
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1. There are no dom atoms.

2. Reg(21, C15). Reg(34, C18). Student(21,Ann). Student(45,Paul).

3. There is no UIC.

4. Reg (x, y, fa) ∨ Student (x, null , ta)← Reg (x, y, t⋆), not aux(x), x 6= null .

aux(x)← Student (x, y, t⋆), not Student (x, y, fa), x 6= null , y 6= null .

aux(x)← Student(x, null), not Student (x, null , fa), x 6= null .

5. Reg (x, y, t⋆)← Reg (x, y, ta).

Reg (x, y, t⋆)← Reg(x, y).

Student (x, y, t⋆)← Student (x, y, ta).

Student (x, y, t⋆)← Student(x, y).

6. Reg (x, y, t⋆⋆)← Reg (x, y, ta).

Reg (x, y, t⋆⋆)← Reg(x, y), not Reg (x, y, fa).

Student (x, y, t⋆⋆)← Student (x, y, ta).

Student (x, y, t⋆⋆)← Student(x, y), not Student (x, y, fa).

7. ← Reg (x, y, ta),Reg (x, y, fa).

← Student (x, y, ta), Student (x, y, fa). 2
Π⋆(D , IC) is the optimized program Π(D , IC ) modified so that the negative data

is not materialized, without predicate dom(x) and without annotation constant td.

Π⋆(D , IC) is described in Definition 5.9.

Example A.4 Consider D = {P (a, b), P (c, null)} and the UIC: ∀xy(P (x, y) →

R(x) ∨ S(y)). Then Π⋆(D , IC ) :

1. P (a, b). P (c, null).
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2. P (x, y, fa) ∨R (x, ta) ∨ S (y, ta)← P (x, y, t⋆), R (x, fa), S (y, fa), x 6= null , y 6= null .

P (x, y, fa)∨R (x, ta)∨S (y, ta)← P (x, y, t⋆), R (x, fa), not S(y), x 6= null , y 6= null .

P (x, y, fa)∨R (x, ta)∨S (y, ta)← P (x, y, t⋆), not R(y), S (x, fa), x 6= null , y 6= null .

P(x, y, fa)∨R (x, ta)∨S(y, ta)← P(x, y, t⋆), not R(y), not S(y), x 6= null , y 6= null .

3. There is no RIC

4. .P (x, y, t⋆)← P (x, y, ta).

P (x, y, t⋆)← P (x, y, td).

P (x, y, t⋆⋆)← P (x, y, ta).

P (x, y, t⋆⋆)← P (x, y, td), not P (x, y, fa).

← P (x, y, ta), P (x, y, fa).











































(Similarly for R and S)

The rules in 2. are constructed by choosing all the possible sets Q′ and Q′′ such that

Q′ ∪ Q′′ = {R(x), S(y)} and Q′ ∩ Q′′ = ∅. The first rule in 2. corresponds to Q′ =

{R(x), S(y)} and Q′′ = ∅, the second for Q′ = {R(x)} and Q′′ = {S(y)}, the third

for Q′ = {S(y)} and Q′′ = {R(x)}, and the fourth for Q′ = ∅ and Q′′ = {R(x), S(y)}2
Proposition A.1 Π⋆(D , IC) and Π(D , IC) produce the same database repairs, more

precisely, they compute exactly the same database instances in the sense of Definition

5.7. 2
Other possible optimizations, that are not further discussed here, have to do with

avoiding the complete computation of all stable models (the repairs) whenever a

query is to be answered. The query rewriting methodology introduced in [Arenas et

al., 1999] had this advantage: inconsistencies were solved locally, without having to

restore the consistency of the complete database. In contrast, the logic programming

base methodology, at least if implemented in a straightforward manner, computes each
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stable model completely. This issue is related to finding methodologies for minimizing

the number of rules to be instantiated, avoiding evaluation of irrelevant subgoals,

etc. These type of optimizations are addressed in [Caniupan and Bertossi, 2005;

Caniupan, 2006]. Also, results from evaluation of logic programs for data integration

systems [Eiter et al., 2003] can be applied in the context of single relations databases.



Appendix B

Simple Program obtained from the Refined Program

Under the hypothesis of Theorem 6.2, there is a simple syntactic transformation of

the refined program into a simple program (in the sense of Section 6.2.1) that has the

same stable models, and then, in particular, produces the same database instances.

Assume the hypothesis of Theorem 6.2 hold. We denote the view sections with Sli

as in Section 6.2.1. The sections Sli are all associated to the definition of view Vi. We

show now a syntactic transformation of the refined version of the program Π(G). We

justify each step of the transformation, so that at the end it will be clear that they

have the same models.

Since there is no admissible mapping, each Sli can only be generated by view Vi.

As a consequence, for every modelM of the refined version of Pi(G), it holds that for

all ā, varvijzl
(¯̄a) 6∈ M. This implies that for every model M and ā, auxvij

(ā) 6∈ M

and auxvijzl
(ā) 6∈ M. Since those atoms will never appear in a model of the refined

version of Pi(G), we can delete the rules with those predicates in their heads. We can

also delete them from the bodies of the rules where they appear negated. We obtain

the following program:

1. Fact dom(a) for every constant a ∈ U .

2. Fact Vi(ā) whenever ā ∈ vi for some source extension vi in G.

3. For every view (source) predicate Vi in the system with description Vi(x̄) ←

P1(x̄1), . . . , Pn(x̄n):
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(a) For every Pk with no existential variables, the rules

Pk (x̄k, to)← Vi(x̄).

(b) For every set Sij of predicates of the description’s body that are related

by common existential variables {z1, . . . , zm}, the rules,

Pk (x̄k,vij)← addvij
(x̄′),

∧

zl∈(x̄k\x̄′)
F l
i (x̄

′, zl), for Pk ∈ Sij .

addvij
(x̄′)← Vi(x̄), where x̄′ = x̄ ∩ {

⋃

Pk∈Sij
x̄k}.

4. For every predicate F l
i (x̄

′, zl) introduced in 3.b., the rules,

F l
i (x̄

′, zl)← addvijzl
(x̄′), dom(zl), choice((x̄

′), (zl)).

addvijzl
(x̄′)← addvij

(x̄′), for l = 1, . . .m.

5. For every global relation P (x̄) the rules

P (x̄,nvij)← P (x̄,vhk), for {(ij, hk)|P (x̄) ∈ Sij and Shk}.

P (x̄,nvij)← P (x̄, to), for {(ij)|P (x̄) ∈ Sij}.

P (x̄)← P (x̄,vij), for {(ij)|P (x̄) ∈ Sij}.

P (x̄)← P (x̄, to).

This is a positive program with choice. Because of the second rule in 3.(b) and the

second rule in 4., we can replace every occurrence of addvij
(x̄′) and addvijzl

(x̄′) by

Vi(x̄). Also from the third and fourth rules in 5., we can replace every occurrence of

P (x̄, to) and P (x̄,vij) by P (x̄). It is also easy to see that the first two rules in 5.

will generate atoms that are useless in the calculation of the global predicates; then

these rules can be deleted. We obtain the following program:

1. Fact dom(a) for every constant a ∈ U .

2. Fact Vi(ā) whenever ā ∈ vi for some source extension vi in G.
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3. For every view (source) predicate Vi in the system with description Vi(x̄) ←

P1(x̄1), . . . , Pn(x̄n):

(a) For every Pk with no existential variables, the rules

Pk(x̄k)← Vi(x̄).

(b) For every set Sij of predicates of the description’s body that are related

by common existential variables {z1, . . . , zm}, the rules,

Pk(x̄k)← Vi(x̄),
∧

zl∈(x̄k\x̄′)
F l
i (x̄

′, zl), for Pk ∈ Sij.

4. For every predicate F l
i (x̄

′, zl) introduced in 3.b., the rules,

F l
i (x̄

′, zl)← Vi(x̄), dom(zl), choice((x̄
′), (zl)).

By merging rules 3.(a) and 3.(b), the revised version of Π(G) is eventually syntactically

transformed into the simple version of the program.


