[P’agina intencionalmente en blanco |

\DJERSI PONTIFICIA UNIVERSIDAD CATOLICA DE CHILE

OL

ESCUELA DE INGENIERIA
[Hﬂﬂ

"

O?;%;H\U@

APPLICATIONS OF ANNOTATED
PREDICATE CALCULUS AND LOGIC
PROGRAMS TO QUERYING INCONSISTENT
DATABASES

PABLO BARCELO BAEZA

Tesis para optar al Grado de

Magister en Ciencias de la Ingenieria

Profesor Supervisor:
LEOPOLDO BERTOSSI D.

Santiago de Chile, 2002

PONTIFICIA UNIVERSIDAD CATOLICA DE CHILE
ESCUELA DE INGENIERIA
Departamento de Ciencia de la Computacion

APPLICATIONS OF ANNOTATED
PREDICATE CALCULUS AND LOGIC
PROGRAMS TO QUERYING INCONSISTENT
DATABASES

PABLO BARCELO BAEZA

Tesis para optar al Grado de

Magister en Ciencias de la Ingenieria

Profesor Supervisor:
LEOPOLDO BERTOSSI D.

Santiago de Chile, 2002

PONTIFICIA UNIVERSIDAD CATOLICA DE CHILE
ESCUELA DE INGENIERIA
Departamento de Ciencia de la Computacion

APPLICATIONS OF ANNOTATED
PREDICATE CALCULUS AND LOGIC
PROGRAMS TO QUERYING INCONSISTENT
DATABASES

PABLO BARCELO BAEZA

Tesis presentada a la Comision integrada por los profesores:
LEOPOLDO BERTOSSI D.

ALVARO CAMPOS U.

RENATO LEWIN R.

CLAUDIO GUTIERREZ G.

ANDRES GUESALAGA M.

para completar las exigencias del grado de

Magister en Ciencias de la Ingenieria

Santiago de Chile, 2002

Para Pedro y Mateo, y para mis abuelos.

II

ACKNOWLEDGMENTS

Quiero agradecer a mi profesor Leopoldo Bertossi y a su familia en Canad4,
por hacerme sentir tan bien durante los dos meses que pasé con ellos en Ottawa. Real-
mente disfruté el vivir esos momentos y seguramente tal estadia influyé de manera

decisiva en mi vida. Gracias.

II1

CONTENTS

Page
DEDICATORY e i
ACKNOWLEDGMENTS o e 111
LIST OF FIGURES e \%!
SUMMARY e VII
I.. INTRODUCTION ettt 1

II.. APPLICATIONS OF ANNOTATED PREDICATE CALCULUS

TO QUERYING INCONSISTENT DATABASES 4
2.1. Preliminaries 4
2.2. Annotated Predicate Calculus 7
2.3. Embedding Databases in APC 11
III.EXISTENTIAL CONSTRAINTS 17
3.1. Annotating Referential Integrity Constraints 17
3.2. Annotating General Database Constraints 22
IV..ANNOTATION OF QUERIES 24

V.. SPECIFICATION OF REPAIRS WITH LOGIC PROGRAMS . 28

5.1. Logic Programming Specification of Repairs 28
5.2. The Interpretation Program 46
5.3. Computing from the Program 47
5.4. Head Cycle Free Programs o7
5.5. The Query Program 61
VI.PROGRAMS WITH REFERENTIALICS. 64
VILRELATED WORK e 69

v

Page

VIICONCLUSIONS e 71

BIBLIOGRAPHY 73

LIST OF FIGURES

Page

Figure 2.1. Typical Belief Semilattices. 8
Figure 2.2. The lattice £% with constraints values, database values and

advisory values. e 12

Figure 5.1. Directed graph of program in example 16. 99

Figure 5.2. Directed graph of program in example 17. 60

VI

SUMMARY

A database instance that is not a Herbrand model of its integrity cons-
traints is said to be inconsistent. Anyway, most of its tuples continue being useful for
us. We say that an answer to a query is a consistent answer if it holds in every repair
of the original instance, i.e. in every instance of the same schema that satisfies the
integrity constraints and that differs from DB by a minimal (under set inclusion) set
of inserted or deleted tuples.

Since the database instance DB and the set of integrity constraints /C
are mutually inconsistent, and given that classical logic trivializes logical inference
in the presence of inconsistencies, we choose Annotated Predicate Calculus (APC)
to specify the repairs of the original instance. The reason why APC' is useful in
analyzing classically inconsistent logical theories is because classical theories can be
embedded in APC in various ways. The most useful types of embeddings are those
where theories that are inconsistent in classical logic become consistent in APC. It
then becomes possible to reason about the embedded theories and gain insight on
them. It was shown in previous work there is a one to one correspondence between
some distinguished models of an annotated embedding in APC' of the database
instance and the constraints, and the repairs of the database for universal ICs.

This work extends the previous one to handle referential integrity cons-
traints. Then, it deals with the problem of consistent query answering as a problem
of non-monotonic entailment from the annotated theory. Finally, first order disjunc-
tive programs are introduced, motivated by the annotated theory, in such a way that
certain distinguished stable models correspond to the repairs of the original instan-
ce. An implementation of these programs in DLV is given, and a extension of the
programs to consider referential integrity constraints is sketched.

VII

I. INTRODUCTION

Integrity constraints (ICs) are important in the design and use of a re-
lational database. They embody the semantics of the application domain and help
maintain the correspondence between that application domain and its model pro-
vided by the database. Nevertheless, it is not strange for a database instance to
become inconsistent with respect to a given, expected set of ICs. This could happen
due to different factors, being one of them the integration of several data sources.
The integration of consistent databases may easily lead to an inconsistent integrated

database.

An important problem in databases consists in retrieving answers to que-
ries that are consistent with given ICs, even when the database as a whole does
not satisfy those ICs. Very likely most of the data is still consistent. The notion of
consistent, answers to a first order (FO) query was defined in (Arenas et al. 1999),
where also a computational mechanism for obtaining them was presented. Intuitively
speaking, a ground tuple ¢ to a first order query Q(Z) is a consistent answer in a,
possibly inconsistent, relational database instance DB if it is an (ordinary) answer
to Q(Z) in every minimal repair of DB, that is in every database instance over the
same schema that differs from DB by a minimal (under set inclusion) set of inserted

or deleted tuples.

That mechanism presented in (Arenas et al. 1999) has some limitations
in terms of the ICs and queries it can handle. In (Arenas et al. 2000b), a more general
methodology based on logic programs with a stable model semantics was introduced.
More general queries could be considered, but ICs were restricted to be “binary”,

i.e. universal with at most two database literals (plus built-in formulas).

For consistent query answering to deal with all the repairs of a database
is required. In consequence, a natural approach consists in providing a manageable
logical specification of the class of database repairs. The specification must include
information about (from) the database and the information contained in the ICs.
Since these two pieces of information are mutually inconsistent, a logic that does not

collapse in the presence of contradictions is required. A “paraconsistent logic”, for

which an inconsistent set of premises could still have a model, is a natural candidate.
In (Arenas et al. 2000a), a new declarative semantic framework was presented for
studying the problem of query answering in databases that are inconsistent with
integrity constraints. This was done by embedding both the database instance and
the integrity constraints into a single theory written in Annotated Predicate Calculus
(APC) (Kifer et al. 1992a) with an appropriate non classical truth-values lattice
Latt.

In (Arenas et al. 2000a) it was shown that there is a one to one corres-
pondence between some minimal models of the annotated theory and the repairs
of the inconsistent database for universal ICs. In this way, a logical specification of
the database repairs was achieved. The annotated theory was used to obtain some

algorithms for obtaining consistent answers to some simple first order queries.

This work is structured as follows:

. In chapter 2 the basic notions are presented, corresponding mainly to those in
(Arenas et al. 2000a). In particular, the correspondence between repairs of the

original instance and minimal models of an annotated theory are stated.

. In chapter 3 the methodology presented in (Arenas et al. 2000a) is extended
in order to consider referential integrity constraints. The correspondence bet-
ween repairs of the original database instance and the minimal models of the
annotated theory is established. Then, it is shown that a more general kind of
constraint, including both universal and referential integrity constraint, can be

considered.

. In chapter 4, it is shown how to annotate queries and the formulation of the
problem of consistent query answering as a problem of non-monotonic (mini-

mal) entailment from the annotated theory.

] In chapter 5, on the basis of the generated annotated theory, disjunctive first
order logic programs with annotation arguments to specify the database repairs
are presented. It is also shown the correspondence between some well-identified
models of the program and the repairs of the original database instance. A

way to obtain consistent answers from these models is also stated. Finally, an

implementation of these programs in DLV is shown and an extension of the

programs to consider referential integrity constraints.

In chapter 7 some related work is mentioned. In chapter 8 the conclusions of

the work are presented, together with some possible future work.

II. APPLICATIONS OF ANNOTATED PREDICATE CALCULUS
TO QUERYING INCONSISTENT DATABASES

The aim of this section is to present the main definitions and underlying
semantics that will be used in the rest of the work. As our framework leads to the
declarative and query semantics presented in (Arenas et al. 2000a), what is stated in
this section corresponds exactly to what was stated there. It includes the fundamental
results about the biunivocal correspondence between minimal models of the new APC
theory (obtained from the original database) and the repairs of the original database.
Notice every definition, construction and result stated in this chapter is taken from
(Arenas et al. 2000a).

2.1 Preliminaries

The signature ¥ = (D, P U B, d) for the first order language consists of
a fixed domain D = {¢y, ¢y, ...}, a fixed database schema P = {py,...,p,}, denoting
the database relations, a fixed set of built-in predicates B = {ey,...,e,} and a

function d : P U B — N specifying the cardinality of the predicates.

Definition 1. (Databases and Constraints) A database instance DB is a finite
collection of facts, i.e., of statements of the form p(cy, ..., ¢,), where p is a predicate

in P and ¢y, ..., ¢, are constants in D.

An integrity constraint is a clause of the form

pl(Tl)V "'vpn(Tn)V_'QI(Stl)V"'V_'Qm(gm) (2'1)

where each p; (1 < i < n) and ¢; (¢ < j < m) is a predicate in P U B and
Ty, ..., T,,S1,...,Sm are tuples (of appropriate arities) of constants or variables. As
usual, it is assumed that all variables in a clause are universally quantified, so the

quantifiers are omitted. O

When considered in isolation, that DB and IC are consistent theories
will be assumed. Nevertheless, that might not be the case with DB U IC'. The notion
of sentence satisfaction in a database used in this work is the usual one. It will be

denoted by [y, to differentiate it from other entailment relations used here.

Definition 2. (Sentence Satisfaction) It is used =y to denote the usual notion of

formula satisfaction in a database. In other words,

. DB k=5 p(¢), where p € P, iff p(¢) € DB;

. DB k5 q(c), where ¢ € B, iff ¢(c) is true;

» DB =y ~yp iff it is not true that DB =y, ¢;

« DBEy ¢ Ay iff DB =5 ¢ and DB =y, 4;

« DBEs (VX)p(X) iff for all d € D, DB =5 ¢(d);

and so on. Notice that the domain is fixed, and it is involved in the above definition.
O

Definition 3. A database instance DB satisfies a set of integrity constraints IC iff
it is a model for every ¢ € IC. If DB does not satisfy IC, it is said that DB is

inconsistent with IC. a
Next the relevant definitions from (Arenas et al. 1999) are recalled.
Definition 4. Given two database instances DBy and D Bs, the distance A(D By, DBs)

between them is their symmetric difference: A(DB;, DBs) = (DB;— DBy)U(DBy —
DBy). O

Definition 5. The partial order <pp between instances under the same schema is
defined as:

DB, <pgp DB, iff A(DB,DB,)C A(DB,DB,). O

That is, <pp determines the “closeness” to DB. The notion of closeness

forms the basis for the concept of a repair of an inconsistent database.

Definition 6. Given database instances DB and DB’, it is said that DB’ is a repair
of DB with respect to a set of integrity constraints IC iff DB’ satisfies IC' and DB’

is <pp-minimal in the class of database instances that satisfy IC. O

Clearly if DB is consistent with respect to IC', then DB is the only repair
of itself.

Example 1. Consider the relational schema:
Book(author, name, publYear)
a database instance
DB = {Book(kafka, metamorph, 1915), Book(kafka, metamorph,1919)}
and the functional dependency
FD : author, name — publYear

that can be expressed by IC : —Book(x,y,z)V —Book(x,y,w)V z = w. Instance
DB is inconsistent with respect to /C'. The original instance has two possible repairs:

. DB, = {Book(kafka, metamorph, 1915)}, and

. DBy = {Book/(kafka, metamorph, 1919)}.

Definition 7. (Consistent Answers) Let DB be a database instance, IC be set of
integrity constraints and Q(Z) be a query. It is said that a tuple of constants ¢ is a
consistent answer to the query, denoted DB =, Q(t), if for every repair DB’ of DB,

DB’ =5 Q).

If @ is a closed formula, then true (respectively, false) is a consistent
answer to @, denoted DB =, Q, if DB’ =5 @@ (respectively, DB’ 5 Q) for every
repair DB’ of DB. |

Example 2. (example 1 continued) The query @ : Book(kafka, metamorph, 1915)
does not have true as a consistent answer, because it is not true in every repair.
Query Q2(y) : Fr3zBook(z,y, z) has y = metamorph as a consistent answer. Query

Qs(x) : 3zBook(x, metamorph, z) has x = kafka as a consistent answer. a

2.2 Annotated Predicate Calculus

Annotated predicate calculus (APC) (Kifer et al. 1992a) is a generaliza-
tion of annotated logic programs introduced in (Blair et al. 1989). It was introduced
in order to study the problem of “causes of inconsistency” in classical logical theories,
which is closely related to the problem of consistent query answers being addressed

in the present work.

The syntax and the semantics of APC is based on classical logic, except
that the classical atomic formulas are annotated with values drawn from a belief

semilattice (abbr. BSL) — an upper semilattice! with the following properties:

BSL contains at least the following four distinguished elements: t (true), f

(false), T (contradiction), and L (unknown);
For every s € BSL, 1 < s < T (< is the semilattice ordering);

lub(t,f) = T, where lub denotes the least upper bound.

As usual in the lattice theory, lub imposes a partial order on BSL: a < b
iff b = lub(a,b) and a < b iff a < b and a is different from b. Two typical examples
of BSL (which happen to be complete lattices) are shown in Figure 2.1. In both of
them, the lattice elements are ordered upwards. The specific BSL used in this paper

is introduced later, in Figure 2.2.

IThat is, the least upper bound, lub(a, b), is defined for every pair of elements a,b € BSL.

4-valued Lattice Lattice with Defaults

Figure 2.1 Typical Belief Semilattices

Thus, the only syntactic difference between APC and classical predicate
logic is that the atomic formulas of APC' are constructed from the classical atomic
formulas by attaching annotation suffixes. For instance, if s, ¢, T are elements of the
belief semilattice, then p(X) : s, ¢: T, and 7(X, Y, Z) : t all are atomic formulas in
APC.

Only Herbrand semantics of APC is defined (this is all that is needed
here), and it is also assumed that the language is free of function symbols (aince
only relational databases are studied in this work). The Herbrand universe is D, the
set of all domain constants, and the Herbrand base, HB, is the set of all ground (i.e.,

variable-free) atomic formulas of APC.

A Herbrand interpretation is any downward-closed subset of HB, where
a set I C HB is said to be downward-closed iff p : s € I implies that p: s’ € I for
every s' € BSL such that s’ < s. Formula satisfaction can then be defined as follows,

where v is a variable assignment that gives a value in D to every variable:

. I =, p:s, where s € BSL and p is a classical atomic formula, if and only if
p:sel.

= Ik, Ay ifandonly if I |=, ¢ and I |=, ;
. I =, — if and only if not I =, ;

. I'=, (VX)9¥(X) if and only if I =, 9, for every u that may differ from v only

in its X-value.

It is thus easy to see that the definition of = looks very much classical. The only
difference (which happens to have significant implications) is the syntax of atomic
formulas and the requirement that Herbrand interpretations must be downward-

closed. The implication a < b is also defined classically, as a V —b.

It turns out that whether or not APC has a complete proof theory de-
pends on which semilattice is used. It is shown in (Kifer et al. 1992a) that for a very
large and natural class of semilattices (which includes all finite semilattices), APC

has a sound and complete proof theory.

The reason why APC is useful in analyzing inconsistent logical theories is
because classical theories can be embedded in APC' in various ways. The most useful
types of embeddings are those where theories that are inconsistent in classical logic
become consistent in APC'. It then becomes possible to reason about the embedded

theories and gain insight into the original inconsistent theory.

The two embeddings defined in (Kifer et al. 1992a) are called epistemic
and ontological. Under the epistemic embedding, a (classically inconsistent) set of
formulas such as S = {p(1), —p(1), ¢(2)} is embedded in APC as S¢{p(1) : ¢, p(1) :
f, q(2) : t} and under the ontological embedding it is embedded as S° = {p(1) :
t, =p(1) : t, q(2) : t}.? In the second case, the embedded theory is still inconsistent
in APC, but in the first case it does have a model: the downward closure of {p(1) :
T, q(2) : t}. In this model, p(1) is annotated with T, which signifies that its truth
value is “inconsistent.” In contrast, the truth value of ¢(2) is t. More precisely, while
both ¢(2) and —¢(2) follow from S in classical logic, because S is inconsistent, only
q(2) : t (but not ¢(2) : f!) is implied by S¢. Thus, ¢(2) can be seen as a consistent

answer to the query ? — ¢(X) with respect to the inconsistent database S.

In (Kifer et al. 1992a), epistemic embedding has been shown to be a sui-
table tool for analyzing inconsistent classical theories. However, this embedding does
not adequately capture the inherent lack of symmetry present in the actual setting,
where inconsistency arises due to the incompatibility of two distinct sets of formu-
las (the database and the constraints) and only one of these sets (the database) is

allowed to change to restore consistency. To deal with this problem, a new type of

2-p : v is to be always read as —(p : v).

10

embedding into APC' is developed. It uses a 10-valued lattice depicted in Figure 2.2,
and is akin to the epistemic embedding of (Kifer et al. 1992a), but it also has certain

features of the ontological embedding.

The above simple examples illustrate one important property of APC": a
set of formulas, S, might be ontologically consistent in the sense that it might have a
model, but it might be epistemically inconsistent (abbr. e-inconsistent) in the sense
that S = p: T for some p, i.e., S contains at least one inconsistent fact. Moreover, S
can be e-consistent (i.e., it might not imply p : T for any p), but each of its models in
APC might contain an inconsistent fact nonetheless (this fact must then be different

in each model, if S is e-consistent).

It was shown in (Kifer et al. 1992a) that ordering models of APC theories
according to the amount of inconsistency they contain can be useful in the study
of the problem of recovering from inconsistency. To illustrate this order, consider
S={p:t,p: fVq:t, p: fVq:f} and some of its models:

] M, where p: T and ¢ : T are true;
. Moy, where p: T and ¢ : L are true;

. M3, where p: t and ¢ : T are true.

Among these models, both My and M3 contain strictly less inconsistent information
than M does. In addition, My and M3 contain incomparable amounts of infor-
mation, and they are both “minimal” with respect to the amount of inconsistent

information that they have. This leads to the following definition.

Definition 8. (E-consistency Order) Given A € BSL, a semantic structure I; is
more (or equally) e-consistent than I, with respect to A (denoted I, <A I) if and
only if for every atom p(ty,...,tx) and A € A, whenever I = p(t1,...,tx) : A then
also Iy = p(t1, .-, tk) : A

11

I is A-minimal in a class of semantic structures, if no semantic structure
in this class is strictly more e-consistent with respect to A than I (i.e., for every J
in the class, I <a J implies J <a I). a

2.3 Embedding Databases in APC

One way to find reliable answers to a query over an inconsistent database
is to find an algorithm that implements the definition of consistent answers. While
this approach has been successfully used in (Arenas et al. 1999), it is desirable to see
it as part of a bigger picture, because consistent query answers were defined at the
meta-level, without an independent logical justification. A more general framework
might (and does, as it will be seen) help study the problem both semantically and
algorithmically.

This new approach was given in (Arenas et al. 2000a), and its goal is to
embed inconsistent databases into APC and study the ways to eliminate inconsis-
tency there. A similar problem was considered in (Kifer et al. 1992a) and some key
ideas from that work are going to be adapted. In particular, an embedding 7 was
defined, such that the repairs of the original database are precisely the models (in
the APC sense) of the embedded database. This embedding is described below.

First, a special 10-valued lattice , £% , was built, which defines the truth
values appropriate for the present problem. The lattice is shown in Figure 2.2. The
values L, T, ¢t and f represent undefinedness, inconsistency, truth, and falsehood, as

usual. The other six truth values are explained below.

Informally, values ¢, and f. represent the truth values as they should be
for the purpose of constraint satisfaction. The values t; and f; are the truth values
as they should be according to the database DB. Finally, ¢, and f, are the advisory
truth values. Advisory truth values are intended as keepers of the information that

helps resolve conflicts between constraints and the database.

Notice that lub(fq, t.) is t, and lub(tg, f.) is f,- This means that, in case of

a conflict between the constraints and the database, the advise is to change the truth

12

fa ta

Figure 2.2 The lattice £% with constraints values, database values and advisory

values.

value of the corresponding fact to the one prescribed by the constraints. Intuitively,
the facts that are assigned the advisory truth values are the ones that are to be
removed or added to the database in order to satisfy the constraints. The gist of
the actual approach is in finding an embedding of DB and IC into APC to take

advantage of the above truth values.

a. Embedding the ICs: Given a set of integrity constraints IC, a new theory,
T (IC), is defined, which contains three kinds of formulas:

1) For every constraint in IC":

pi(T1) Ve NV pu(Th) V =qi(S1) VeV =g (Si),

T (IC) has the following formula:

pl(Tl) :tc V-V pn(Tn) :tc V QI(SI) : fc V-V Qm(gm) : fc-

In other words, positive literals are embedded using the “constraint-true”
truth value, ., and negative literals are embedded using the “constraint-

false” truth value f,.

13

2) For every predicate symbol p € P, the following formulas are in T (IC):
p(Z):te V p(T): fe, 7 p(@):t. V 2 p(T): fe.

Intuitively, these say that every embedded literal must be either constraint-

true or constraint-false (and not both).

Embedding database facts: 7(DB), the embedding of the database facts
into APC is defined as follows:

1) For every fact p(a), where p € P: if p(a) € DB, then p(a) : t; € T(DB);
if p(a) ¢ DB, then p(a) : fy € T(DB) (maybe implicitly).

Embedding built-in predicates: 7(B), the result of embedding of the built-

in predicates into APC is defined as follows:

1) For every built-in fact p(a), where p € B, the fact p(a) : t is in 7(B) iff
p(a) is true. Otherwise, if p(a) is false then p(a) : f € T(B).

2) - p(z): T € T(B), for every built-in p € B.

The former rule simply says that built-in facts (like 1=1) that are true in classical
sense must have the truth value ¢ and the false built-in facts (e.g., 2=3) must have
the truth value f. The second rule states that built-in facts cannot be both true
and false. This ensures that theories for built-in predicates are embedded in 2-valued
fashion: every built-in fact in 7(B) is annotated with either ¢ or f, but not both.

Finally, 7(DB,IC) is defined as 7(DB) U 7 (IC) U T(B). Now it can
be stated the following properties that confirm the intuition about the intended

meanings of the truth values in £% .

Lemma 1. If M is a model of 7 (DB, IC), then for every predicate p € P and a
fact p(a), the following is true: (a) M = - p(a) : T (b) M =p(a):tVp(a):fVp(a):
ta V p(a):fa. 0

The first part of the lemma says that even if the initial database DB is

inconsistent with constraints IC', every model of the embedded theory is epistemically

14

consistent in the sense of (Kifer et al. 1992a), i.e., no fact of the form p(a) : T is
true in any such model.® The second part says that any fact is either true, or false,
or it has an advisory value of true or false. This indicates that database repairs can
be constructed out of these embeddings by converting the advisory truth values to

the corresponding values ¢ and f. This idea is explored next.

Definition 9. Given a pair of database instances DB; and DB, over the same
domain, M(DBy, DB,) is the Herbrand structure < D, Ip, Iz >, where D is the
domain of the database and Ip, Ig are the interpretations for the predicates and the

built-ins, respectively. Ip is defined as follows:

. If p(a) € DB, and p(a) € DBy, then p(a):t € Ip.

. If p(a) € DBy and p(a) ¢ DBs, then p(a):f, € Ip.

. If p(a) ¢ DB, and p(a) ¢ DBy, then p(a):f € Ip.

. If p(a) ¢ DB, and p(a) € DBy, then p(a):t, € Ip.

The interpretation Ip is defined as expected: if ¢ is a built-in, then g(a):t € Ip iff
g(a) is true in classical logic, and ¢(a):f € Ip iff ¢(a) is false. O

Notice that M (DB, DB,) is not symmetric. The intent is to use these
structures as the basis for construction of database repairs. In fact, when DB, is
inconsistent and DB, is a repair, Ip shows how the advisory truth values are to be

changed to obtain a repair.

Lemma 2. Given two database instances DB and DB, if DB’ =5, IC, then M(DB,
DB') = T(DB,IC). O

The implication of this lemma is that whenever IC' is consistent, then the

theory 7 (DB, IC) is also consistent in APC. Since in this work just consistent sets

3Note that an APC theory can entail p(a) : T and be consistent in the sense that it can have a
model. However, such a model must contain p(a) : T, which makes it epistemically inconsistent.

15

of integrity constraints are considered, the conclusion is that 7 (DB, IC) is always a
consistent APC theory.

Next is shown how to generate repairs out of the models of 7 (DB, IC).
Given a model M of 7(DB,IC), DBy, is defined as:

{p(@) | pe Pand M = p(a):tVp@a):t.} (2.2)

Note that DBy can be an infinite set of facts (but finite when M corresponds to a

database instance).

Lemma 3. If M is a model of 7(DB,IC) such that DB, is finite, then DBy Ex
IC. O

Theorem 1. Let M be a model of 7 (DB, IC). If M is A-minimal, with A = {t,, fa}
(see Definition 8), among the models of 7 (DB, IC) and DBy, is finite, then DBy,
is a repair of DB with respect to IC. O

Theorem 2. If DB’ is a repair of DB with respect to the set of integrity cons-
traints IC, then M(DB, DB') is A-minimal, with A = {#,, f,}, among the models
of T(DB,IC). O

Example 3. (example 1 cont.) The embedding 7 (DB) of DB into APC'is given by

the following formulas:

1. Book (kafka, metamorph, 1915)ta, Book(kafka, metamorph, 1919):t4.

2. Predicate closure axioms:

((z = kafka)ta A (y = metamorph)ta A (z = 1915)tq) V
((x = kafka)tq A (y = metamorph)tq A (z = 1919)tq) V Book(z,y, z)14.

16

The embedding 7 (IC) of IC into APC is given by:

3. Book(x,y, z):£. V Book(z,y, w)f. V (2 = w):te.

4. Book(x,y, 2)f. V Book(z,y, 2)t. , ~Book(z,y, z)£. V = Book(z,y, 2)te.*

Furthermore

5. For every true built-in atom ¢, ¢:t is in T (B), and ¢:f for every false built-in
atom, e.g. (1915 = 1915):t but (1915 = 1919)f.

The A-minimal (from now on, simply minimal models) of 7(DB,IC) =
T(DB)UT((IC)U T(B) are:

My = {Book(kafka, metamorph, 1915):t, Book (kafka, metamorph, 1919)£,},
My = {Book (kafka, metamorph, 1915)£,, Book(kafka, metamorph, 1919):t},

plus annotated false DB atoms and built-ins in both cases . The corresponding

database instances, DB, , DB\, are the repairs of DB shown in example 1. O

From the definition of the lattice and the fact that no atom from the
database is annotated with both t4 and fg, it is possible to show that, in the minimal
models of the annotated theory, a DB atom may get the annotations either t or f, if
the atom was annotated with tq, and either f or t, if the atom was annotated with fg.
In the transition from the annotated theory to its minimal models, the annotations
ta,fa “disappear”, as the atoms are wished to be annotated in the highest possible
layer in the lattice, except for T if possible. Actually, in the minimal models T can

always be avoided.

4 As just atomic formulas are annotated, the non-atomic formula —p(Z):s is to be read as —(p(Z):s).

The parenthesis will be omitted in this work.

17

ITI. EXISTENTIAL CONSTRAINTS

The way the theory T (DB, IC) annotates the constraints is defined for
the case the constraints are clauses. The inclusion dependency Vz (p(z) — Jyq(T,y))

can not be expressed as a clause. This implies that a different way to embed it in
APC must be found.

3.1 Annotating Referential Integrity Constraints

A referential integrity constraint (RIC) like

VT (p(z) = Jyq(z',y)) (3.1)

where the variables in Z’' are a subset of the variables in Z, cannot be expressed as
an equivalent clause of the form (2.1). For that reason, to extend the methodology
for embedding formulas is required. A RIC like (3.1) will be embedded into APC by

means of:
p(T)fe V Iy(q(T', y)te). (3.2)

Now IC is allowed to contain, in addition to ICs of the form (2.1), RICs like (3.1). The
one-to-one correspondence between minimal models of the new theory 7 (DB, IC)

and the repairs of DB still holds. This is proved as follows:

Lemma 4. Given two database instances DB and DB', if DB’ =5, IC, then M(DB,
DB') = T(DB,IC).

Proof: We have to show M(DB,DB') = p(z):f. vV Jy(q¢(z',y) : tc). The rest of
the proof was considered in (Arenas et al. 2000a). We have that IC' contains the
formula p(Z) — Jyq(Z',y). As DB’ =5 IC we must analyze two cases. The first one
is DB’ =5, —p(a). Then Ip(p(a)) = f or Ip(p(a)) = fa, so M(DB, DB') = p(a):f..
The second case is DB’ 5, q(@', by), ..., q(@',b,) for elements by, . .., b, in the domain
(n > 1). Hence, Ip(q(a',b;)) = t or Ip(q(a',b;)) = ta, for every 1 < i < n. Then,

18

M(DB, DB') = 3y(q(@,y)te). Since the analysis was done for an arbitrary value @,
we have that M (DB, DB') = T (DB, IC). 0

Lemma 5. If M is a model of 7(DB,IC) such that DB, is finite, then DB, =5
IC.

Proof: We have to show DB Ex p(Z) — Jyq(Z',y). The rest of the proof was
given in (Arenas et al. 2000a). Let us suppose first M = p(a):f.. Then, we either
have M = p(a):f or M = p(a)f,. Hence, DBy =y, —p(a), and from there DBy =y
p(a) — Jyq(a’,y). Let us suppose now M = Jy(q(a@', y):tc). Therefore, M = q(@', b):t
or M = q(@,b):t, for some element b in the domain. Hence DBy =5 ¢(@',b), and
from there DB =5 p(@) — Jyq(@,y). Since this is valid for any value @, we have
that DBy s p(z) — Jyq(', y). O

The following results shows the one-to one correspondence between most
e-consistent models of 7 (DB, IC) and repairs of DB.

Proposition 1. If DB’ is a repair of DB with respect to the set of integrity cons-
traints IC, then M(DB, DB') is A-minimal among the models of 7 (DB, IC).

Proof: By Lemma 4, we conclude that M (DB, DB') = T (DB, IC). Let us assume
that M(DB, DB') is not A-minimal in the class of models of 7(DB,IC). Then,
there exists M | T(DB,IC), such that M <x M(DB, DB'). By using this it is
possible to prove that A(DB, DBy C A(DB, DB').

Let us suppose that p(a) € A(DB, DB,,). Then p(a) € DB and p(a) ¢ DB,
or p(a) ¢ DB and p(a) € DB 4. In the first case we can conclude that p(a):
tq € T(DB,IC) and M = p(a):f V p(a):f,. If we suppose that M = p(a):f,
then M [~ p(a):tq, a contradiction. Thus, we have that M E p(a):f,. But
M <A M(DB, DB'), and therefore M (DB, DB') |= p(a@)-£,. Then, we conclude
that p(@) € DB', and therefore in this case it is possible to conclude that p(a) €
A(DB, DB'). In the second case we can conclude that p(a):fg € 7(DB,IC)
and M E p(a):t V p(a):ta. If we suppose that M = p(a):t, then M (= p(a)fy,

19

a contradiction. Thus, we have that M = p(@):t.. But M <A M(DB, DB'),
and therefore M(DB, DB') = p(a):ta. Then, we conclude that p(a) € DB,
and therefore p(a) € A(DB, DB'). Thus, we conclude that A(DB, DB) C
A(DB, DB').

Since M(DB, DB') £ M, there exists p(a) such that M(DB, DB') = p(a):
ta V p(a):f, and M = p(a):t V p(a):f. By using the first fact it is possible
to conclude that p(a) € A(DB,DB'). If we suppose that p(a) € DB, then
p(a)tq € T(DB,IC), and therefore by considering the second fact it is possible
to deduce that M must satisfy p(a):t. Thus, we can conclude that in this
case p(a) € DBy, and therefore p(a) ¢ A(DB, DB ,,). By the other hand,
if we suppose that p(a) ¢ DB, then p(a):fq5 € T(DB,IC), and therefore by
considering the second fact it is possible to deduce that M must satisfy p(a):f.
Thus, in this case p(a) ¢ DB, and therefore p(a) ¢ A(DB, DB y,). Finally,
we conclude that A(DB, DB') € A(DB, DB).

We know that DB’ is a database instance, and therefore A(DB, DB') must be a finite
set. Thus, A(DB, DB) is a finite set, and therefore DB, is a database instance.
With the help of Lemma 5, we deduce that DB = IC. But this a contradiction,
since DB’ is a repair of DB with respect to IC and A(DB, DBx,) C A(DB, DB') O.

Proposition 2. Let M be a model of 7(DB,IC). If M is minimal and DB, is
finite, then DB 4 is a repair of DB with respect to IC.

Proof: By Lemma 5, we conclude that DBy, =5 IC. Now, we need to prove that

DB, is minimal. Let us suppose this is not true. Then, there is a database instance
DB* such that DB* =5, IC and A(DB, DB*) C A(DB, DB).

From Lemma 4, we conclude that M(DB, DB*) = T (DB, 1C).

Now, we are going to prove that M(DB, DB*) <a M.

If M(DB, DB*) = p(a):ta, then we can conclude that p(a) ¢ DB and p(a) €
DB*, and therefore p(a) € A(DB, DB*). But A(DB,DB*) C A(DB, DB),
and therefore p(a) € DB . Thus, we can conclude that M = p(a)t V p(a@):t,.

20

If we suppose that M [p(a):t, then M ¥ p(a):fq, but we know that
M E T(DB,IC) and p(a)fy € 7T (DB, IC), since p(a) ¢ DB, a contradiction.
Therefore, M = p(a)ta.

If M(DB, DB*) = p(a):f,, then we can conclude that p(@) € DB and p(a) ¢
DB*, and therefore p(a) € A(DB, DB*). But A(DB, DB*) C A(DB, DB),
and therefore p(a) ¢ DB 4. Thus, we can conclude that M = p(a):f V p(a)f,.
If we suppose that M = p(a):f, then M [~ p(a):tq, but we know that
M = T(DB,IC) and p(a)tq € T(DB,IC), since p(a) € DB, a contradiction.
Therefore, M = p(a):fa. Thus, we deduce that M(DB, DB*) <A M.

Finally, we know that there exists p(a) such that it is not in A(DB, DB*)
and it is in A(DB, DBy,). Thus, p(a) € DB and p(a) € DB*, and therefo-
re M(DB,DB*) = p(a):t, or p(a) ¢ DB and p(a) ¢ DB*, and therefore
M(DB, DB*) = p(a):f. Then, we have that M(DB,DB") £ p(a):t. and
M(DB, DB*) = p(a)fa. Additionally, since p(a) € A(DB, DB,), we can con-
clude that p(a) € DB and p(a) ¢ DB, or p(a@) ¢ DB and p(a) € DB y. In
the first case we conclude that M = p(a):f,. In the second case we conclude
that M = p(a@):ta. Thus, M = p(@):t, V p(a):fa. Therefore we deduce that
M La M(DB, DB").

Finally, we deduce that M is not A-minimal in the class of the models

of T(DB,IC), a contradiction. O

Example 4. Consider the relational schema of Example 1 extended with table

Author(name, citizenship). Now, IC also contains the RIC:

VaVyVz(Book(z,y, z) — JwAuthor (z, w))

expressing that every writer of a book in the database instance must be registered

as an author. The theory 7 (IC) now also contains:

Book(z,y, z)£f. V Fw(Author(z, w):t,),

Author(z, w)f. vV Author(z,w)t. , —Author(z,w)f. V ~Author(z, w):t..

21

It might also be possible to have the F'D : name — citizenship, and thus to have a
foreign key constraint. The database instance { Book(neruda, 20lovepoems, 1924)} is

inconsistent wrt the given RIC. If the following subdomain was given
D(Author.citizenship) = {chilean, canadian}

for the attribute “citizenship”, the following database theory is obtained:

T(DB) = {Book(neruda, 20lovepoems, 1924)tq, Author(neruda, chilean)fy,

Author(neruda, canadian)fy, ... }.

The minimal models of 7 (DB, IC) are:

M = {Book(neruda, 20lovepoems, 1924)fa, Author(neruda, chilean)f,
Author(neruda, canadian)f, . ..}

My = {Book(neruda, 20lovepoems, 1924)t, Author(neruda, chilean):ta,
Author(neruda, canadian)f, . ..}

M3z = {Book(neruda, 20lovepoems, 1924)t, Author(neruda, chilean)f,

Author(neruda, canadian)ta,, ... }.

It is obtained DBy, = 0, DB, = {Book(neruda, 20lovepoems, 1924), Author
(neruda, chilean)} and DB 4, similar to DB ,,, but with a Canadian Neruda. Ac-
cording to proposition 2, these are repairs of the original database instance, actually

the only ones. O

As in (Arenas et al. 2000a), it can be proved that when the original ins-
tance is consistent, then it is its only repair and it corresponds to a unique minimal
model of the APC theory.

22

3.2 Annotating General Database Constraints

The class of ICs found in database praxis is contained in the class of

constraints of the form:
VI (p(7) — I79(7)) (3-3)

where ¢ and 9 are (possibly empty) conjunctions of literals in PU B, and zZ = § — Z.
This class includes the ones identified in (Abiteboul et al. 1995, chapter 10), and
all those of the form (2.1). In this class are found, among others, range constraints
(e.g. Vz (p(x) — x > 30)), join dependencies, functional dependencies, inclusion

dependencies and referential integrity constraints.

If o(@) is Niypi(@i) A NP prr —0i(@), with 2 = (U, %, and () is
/\;:1 qi(U;) N Nj=i41 793 (95), with § = (Jj_, 7;, the annotation methodology can be

extended, embedding these constraints into APC' as follows:

k m l r
Vei@E)tev \/ pi@)te v 32\ ¢@)ten)\ ¢(@)E)-
i=1 i—k+1 j=1 j=l+1

Now, if the given set of ICs is allowed to contain any constraint of the form (3.3),
then it is possible to prove that the one-to-one correspondence between minimal
models of 7(DB,IC) and the repairs of DB still holds. The following results are

equal to lemmas 4 and 5, but for the case IC contains constraints of the form 3.3.

Lemma 6. Given two database instances DB and DB', if DB’ =, IC, then M (DB,
DB') = T(DB,IC).

Proof: We have to show M(DB,DB') = V' pi(7):f. Vv Vi1 0i(Zi) 1 te V
EIZ(/\;.Zlqj(g-):tc A Nj=1419(F):£c). As DB' =y IC, we must analyze some ca-
ses. The first one is DB’ s —p;(a), for some 1 < i < k. Then Ip(p;(a)) = f or
Ip(pi(a)) = fa, so M(DB, DB') = p;(a):f.. Another case is DB' =y, p;(a), for some
k+1 <1< m. Then Ip(p;(a@)) =t or Ip(p;(a)) = ta, so M(DB, DB') = p;(a):te..
The last case is DB’ =5 /\i.:1 ;(¢;) N Nj—i11 765(¢5)- As g;(y;) can be written as

q;(Z;', Z;), where ;' are the variables in Z and in gj;, and Z; are the rest of the variables

23

in g, we have that Ip(q;((@;)’,b;)) =t or Ip(q;((@;)',b;)) = ta, for every 1 < j <1,
and Ip(q;((@;)',b;)) = £ or Ip(g;((a;)',b;)) = fa, for every | +1 < j < r. Then,
M(DB,DB') & Elz(/\J 145 ((a7)', 2) 6 A Nj—iy1 45((a)'s 25):£c). Since the analysis
was done for an arbitrary value @, we have that M(DB, DB') = T (DB, IC). O

Lemma 7. If M is a model of 7(DB,IC) such that DB, is finite, then DB, =5
IC.

Proof: We have to show DBy =5 Vi, —pi(%:) V VI k1 Di(T3) V El,z(/\;.:1 q;(7;) A
Nj—i1179;(Y;)). The rest of the proof was given in (Arenas et al. 2000a). Let us
suppose first M |= p;(a)f., for some 1 < i < k. Then, we either have M |= p;(a)f or
M = pi(a)fa. Hence, DBy, =5 —p;(a@). Let us suppose now M [= p;(@):te, for some
k+1 <14 < n. Then, we either have M = p;(@):t or M |= p;(@):ta. Hence, DB =5

pi(@). Finally, let us suppose M = Elz(/\] 14 ((@5)", Z5) e A N 45((a5)', 25)).
Therefore, M [¢;((@;)",b;):t or M = ¢;((@;)",b;) :ta, for every 1 < j < [, and
M E q¢;((a;),b;): f or M E q;((a;),b;): fa, for every | +1 < j < r, . Hence
DBp Ex Elz(/\] 145 ((a3)'s 2) A Nj—iy1—45((a5)'s 25))- Since this is valid for any
value @, we have that DBy, =y IC. a

The proofs of propositions 1 and 2, stating the biunivocal correspondence
between minimal models of 7 (DB, IC) and the repairs of the original instance, also

hold now and can be proved in the same way that for referential integrity constraints.

24

IV. ANNOTATION OF QUERIES

According to chapter 2, a ground tuple £ is a consistent answer to a FO
query Q(z) iff Q(%) is true of every minimal model of 7 (DB, IC). However, to pose
the query directly to the theory, it is necessary to reformulate it as an annotated

formula.

Definition 10. Given a FO query Q(Z) in language X, the annotated formula ob-
tained from @) by simultaneously replacing, for p € P, the negative literal —p(3) by
the APC formula p(3):f V p(5):fa, and the positive literal p(5) by the APC formula
p(5):t V p(5):ta, is denoted by Q**(z). For p € B, the literal p(5) is replaced by the
APC formula p(3):t. O

According to this definition, logically equivalent versions of a query could
have different annotated versions, but in proposition 3 we prove that they retrieve

the same consistent answers.

Example 5. (example 1 cont.) In order to consistently answer the query Q(z) :
—JyIz3w3t(Book(z,y, z) ABook(z, w, t) ANy # w), asking for those authors that have
at most one book in DB, the annotated query Q**(z) : —=IyIzIwIt((Book(z,y, 2):
t V Book(z,y, z):ta) A (Book(z,w,t):tV Book(z,w,t)ts) A (y # w):t) is generated,

to be posed to the annotated theory with its minimal model semantics. O

Definition 11. If ¢ is a sentence in the language of 7 (DB, IC), then 7 (DB, IC)
A-minimally entails ¢, written 7 (DB, IC) =a ¢, iff every A-minimal model M of
T (DB, IC), such that DB, is finite, satisfies @, i.e. M = . a

Now the characterization of consistent query answers with respect to the

annotated theory is stated.

25

Proposition 3. Let DB be a database instance, IC' a set of integrity constraints and
Q(Z) a query in FO language 3. Then, it holds that: DB =, Q(t) iff T(DB,IC) Ea
Qan (E) .

Proof: We first need the following lemma:

Lemma 8. For a minimal model M of 7(DB,IC) and formula ¢(Z) in our first
order language, we have M = (—¢)*"(t) iff M E - ().

Proof: By induction on ¢.

Initial step: ¢(#) = p(t). Trivial, by the fact that every model of 7(DB,IC) anno-

tates atoms either with t, f, t, or f,.

Inductive step:

= o) = maft). M (o)1) HE M = (o)™ () i M E (a)™(0) iff
M £ (—a)* (1) (by induction hypothesis) iff M E —(—a)*" (7).

. o(t) = a(t1) V B(t2) = (aV B)(t), where t; is the restriction of ¢ to a (the same
for #, and 8). M = (=(aV B))* (%) iff M = (-a)*(t1) and M = (=5)*(2)
iff M = —(a)(t1) and M = —(8)*"(t2) (by induction hypothesis) iff M =
—(av B)™(1).

= p(t) = Fzalt). M E (-Fwa)™ (@) if M = (Voma)™ (1) iff M = Ve(-a)™ (1)
iff M = =3z(a)*(t) (by induction hypothesis) iff M E —(Jza)* (7).

We will prove proposition 3 by induction on ¢.

Initial step: ¢(z) = p(z). DB k=, p(t) iff for every repair DB’ of DB, DB’ =5 p(t)
iff for every minimal model M of 7 (DB, IC), such that DB, is finite, M = p(?):
tV p(t)ta iff T(DB,IC) Ea p(t)t V p(t)ta.

26

Inductive step:

= (%) = -a(z). DB =, —a(t) iff for every repair DB’ of DB we have that
DB' £s aft) iff for every minimal model M of 7(DB,IC), M = o (%) (by
induction hypothesis) iff for every minimal model M of T (DB, IC), such that
DB is finite, M = —a®(t) iff M = (-a)*(¢) (by Lemma 8).

g o(Z) = a(d1) V B(52) = (aV B)(Z). DB . (aV B)(t) iff for every repair
DB' of DB it is true that DB' =5 «a(f;) or DB' =5 [(f2), where #; is the
restriction of substitution ¢ to the variables z;, iff for every minimal model
M of T(DB,IC), such that DBy, is finite, M E a®({;) or M £ % (is)
(by induction hypothesis) iff 7(DB,IC) Ea (a® V %) (t) iff T(DB,IC) =a
(v B)*" ().

g ©(Z) = Jya(z). DB =, Jya(t) iff for every repair DB’ of DB there exists an
element b in the domain such that it is true that DB’ =5 a(f){%}, where {%}
is the substitution of y for b, iff for every minimal model M of T (DB, IC),
such that DB, is finite, there exists element b in the domain such that M =
(oz(f){g})“" (by induction hypothesis) iff 7(DB,IC) E=a (Jya(t))*".

Example 6. (example 5 continued) For consistently answering the query Q(z), the
query Q%*(x) is posed to the minimal models of 7 (DB, IC). The answer obtained

from every minimal model is z = kafka. O

According to this proposition, in order to consistently answer queries, the
problem of evaluating minimal entailment with respect to the annotated theory must
be faced. In (Arenas et al. 2000a) some limited F'O queries were evaluated, but no
annotated queries were generated. The original query was answered using ad hoc
algorithms that were extracted from theory 7 (DB,IC). No advantage was taken
from a characterization of consistent answers in terms of minimal entailment from
T (DB, IC). In the next chapter it will be addressed this issue by taking the original

27

DB instance with the ICs into a logic program that is generated taking advantage of
the annotations provided by 7 (DB, IC). The query to be posed to the logic program
will be built from Q°".

28

V. SPECIFICATION OF REPAIRS WITH LOGIC PROGRAMS

The idea of this chapter is to present, based on the generated annotated
theory, disjunctive first order programs, in such a way that some identified models
of these correspond to the repairs of the original instance. Also, a methodology is
developed for obtaining consistent answers from these models. Finally, an implemen-
tation in DLV of the programs and an extension to consider referential integrity

constraints are presented.

5.1 Logic Programming Specification of Repairs

At first ICs of the form (2.1) will be considered, more precisely of the

form
m

Voor@) vV a5) Ve, (5.1)

j=1
where, for every ¢ and j, p; and g¢; are predicates in P, and ¢ is a formula containing

predicates in B only.

In order to generate a first order logic program that gives an account
of annotations, for each predicate p(Z) € P, a new predicate p(Z,-), with an extra
argument for annotations, is introduced. This defines a new F'O language, X%, for
extended Y. The repair logic program, I[I(DB, IC), for DB and IC, is written with

predicates from ¢ and contains the following clauses:

1. For every atom p(a) € DB, [I(DB, IC) contains the fact p(a, tq) «.
2. For every predicate p € P, I[I(DB, IC) contains the clauses:

p(:f,t*) (_p(j’td)a p(:f,t*) (—p(i‘,ta), p(f,f*) <_p(i"fa)>

where t*, f* are new, auxiliary elements in the domain of annotations. It is not

necessary to specify how they interact with the previous annotations.

29

3. For every constraint of the form (5.1), II(DB, IC) contains the clause:

n m n m
\/pz(fl; \/ 8]7 — /\pz(fut /\ SJ: (;5’
i=1 j=1 j=1

=1

where @ represents the negation of ¢.

Intuitively, the clauses in 3. say that when the IC is violated (the body), then the
DB has to be repaired according to one of the alternatives shown in the head. Since
there may be interactions between constraints, these single repairing steps may not
be enough to restore the consistency of the DB. It is mandatory to make sure that
the repairing process continues and stabilizes in a state where all the ICs hold'. This
is the role of the clauses in 2. containing the new annotation t*, that groups together
those atoms annotated with tq and t,, and the new annotation f*, that does the
same with fq and f,, but with the help of Definition 12 below, since there are no

atoms with annotation argument fg in the program.

The following example shows the interaction of a FD and an inclusion
dependency. When atoms are deleted in order to satisfy the FD, the inclusion de-
pendency could be violated, and in a second step it should be repaired. At that
second step, the annotations t* and f*, computed at the first step where the FD
was repaired, will detect the violation of the inclusion dependency and perform the

corresponding repairing process.

Example 7. (example 1 cont.) The schema is extended with table
Eurbook(author, name, publYear),

for European books. Now, DB also contains the literal Eurbook(kafka, metamorph,
1919). If in addition to the ICs stated before, the set inclusion dependency

Vayz (FBurbook(z,y,z) — Book(z,y,z))

In (Arenas et al. 2000b) a direct specification of database repairs by means of disjunctive logic
programs with a stable model semantics was presented. Those programs contained both repair
triggering rules and “stabilizing rules”.

30

is included in IC, the following program II(DB, IC) is obtained:

1. EurBook(kafka, metamorph, 1919,tq) <—, Book(kafka, metamorph, 1919,tq) <,
Book (kafka, metamorph, 1915, t4) .

2. Book(z,y,z,t*) < Book(z,y,z,tq), Book(z,y,z,t*) <+ Book(z,y,z,ta),
Book(z,y, z,f*) < Book(z,y, z,f.), Furbook(z,y,z,t*) < Eurbook(z,y, z,ta),
Eurbook(z,y, z,t*) < Eurbook(z,y, z,ta), Eurbook(z,y,z,f*) < Eurbook(z,y, z,1,).

3. Book(z,y, z,f,)V Book(z,y, w,f,) < Book(z,y,z,t*)ABook(z,y, w,t*) Az # w,
Eurbook(z,y, z,£a) V Book(z,y, z,ta) < FEurbook(z,y,z,t*) A Book(z,y,z,£*). O

A semantics for the repair programs is required. First, it is necessary
to define the models of the program. Since the negative information in a database
instance is only implicitly available and it is wished to avoid representing it, it is

required to specify when negative information of the form p(#, f*) is true of a model.

Definition 12. (a) Let I be a Herbrand structure for X% and ¢ a FO formula in
Yot The definition of x-satisfaction of ¢ by I, denoted I =, ¢, is as usual, except
that for a ground atomic formula p(a,f*): I &, p(a,f*) iff p(a,f*) € I or
p(a,ta) & I, holds.

(b) A Herbrand structure M is a x-model of II(DB, IC) if for every (ground instantia-
tion of a) clause (Vi_, a; < Aj_, b;) € II(DB, IC), M £, NiLy bj or M =, Vi, ai,
O

Definition 13. (a) An atom p(a) in a model M of a program is plausible if it belongs
to the head of a clause in TI(DB, IC) such that M x-satisfies the body of the clause.
A model of a program is plausible if every atom in it is plausible.

(b) A model is coherent if it does not contain both p(a, t,) and p(a, f,). O

The interest will be centered only in the Herbrand x-models of the pro-

2

gram that are minimal with respect to set inclusion® and plausible and coherent.

Notice that in a coherent model both atoms p(a,t*) and p(a,f*) could still be

2To distinguish them from the A-minimal model of the annotated theory.

31

found. Notice also that a plausible atom may belong to a supported disjunctive
head (Lobo et al. 1998), without the other disjuncts being forced to be false.

It is easy to see from the definition of a x-model of a program that the
classical notion of satisfaction could be kept by including in the program the additio-
nal clauses p(z,f*) < not p(x,tq), that would include in the models all the negative
information that is usually kept implicit via the closed world assumption. Moreover,
a normal disjunctive program would be obtained, for which a stable model semantics
could be used (Lifschitz 1996), as it will be seen later.

Example 8. (example 7 cont.) The coherent plausible minimal x-models of the

program presented in example 7 are:

My ={Eurbook (kafka, metamorph, 1919,tq4), Eurbook(kafka, metamorph, 1919,t),
Book (kafka, metamorph, 1919, tq4), Book(kafka, metamorph, 1919,t%),
Book (kafka, metamorph, 1915, t4), Book(kafka, metamorph, 1915,t%),
Book (kafka, metamorph, 1915, 1,), Book(kafka, metamorph, 1915,1%)}

My ={Eurbook (kafka, metamorph, 1919,tq4), Eurbook(kafka, metamorph, 1919,t),
FEurbook (kafka, metamorph, 1919 ,1,), Furbook(kafka, metamorph, 1919, 1%),
Book (kafka, metamorph, 1919, tq), Book(kafka, metamorph, 1919,t%),
Book (kafka, metamorph, 1919, £,), Book(kafka, metamorph, 1919, %),
Book (kafka, metamorph, 1915, tq), Book(kafka, metamorph, 1915,t*)}.

|

Notice, that in contrast to the minimal models of the annotated theory
T (DB, IC), the x-models of the program will include the database contents with its
original annotations (tq). Every time there is an atom in a model annotated with tq4
or t,, it will appear annotated with t*. From these models it should be possible to

“read” database repairs. Every x-model of the logic program has to be interpreted.

32

Definition 14. Given a coherent plausible x-model M of TI(DB, IC), its interpre-

tation, i(M), is a new Herbrand interpretation obtained from M as follows:

If p(a, fa) belongs to M, then p(a, £**) belongs to i(M).
. If neither p(@, tq) nor p(a, t.) belongs to M, then p(a, f**) belongs to i(M).

. If p(@,tq) belongs to M and p(a,f,) does not belong to M, then p(a,t*)
belongs to i(M).

. If p(a, ta) belongs to M, then p(a, t**) belongs to i(M).
O

Notice that the interpreted models contain two new annotations, t**, f**
in the last arguments. The first one groups together those atoms annotated either
with t, or with tq but not f,. Intuitively, the latter correspond to those annotated
with t in the models of 7(DB,IC). A similar role plays the other new annotation
with respect to the false annotations. These new annotations will simplify the ex-
pression of the queries to be posed to the program (see section 5.5). Without them,
instead of simply asking p(Z, t**) (for the tuples in a repair), it would be required to
ask for p(Z,ta) V (p(Z,ta) A p(Z,1a)).

Example 9. (example 8 cont.) The interpreted models are:

i(My) ={Eurbook (kafka, metamorph, 1919,t*), Eurbook (kafka, metamorph, 1915,),
Book(kafka, metamorph, 1915, £**), Book(kafka, metamorph, 1919,t)}

i(Ms) ={Eurbook (kafka, metamorph, 1919,), Eurbook (kafka, metamorph, 1915,),
Book (kafka, metamorph, 1919, £**), Book (kafka, metamorph, 1915,t™)}.

|

The interpreted models could be easily obtained by adding new rules to
the program II(DB,IC). This will be shown in section 5.5. From an interpreted

model of the program a database instance can be obtained:

33

Definition 15. DB%%M) = {p(a) | i(M) = p(a,t*™)}. O

Example 10. (example 9 cont.) The following database instances obtained from

definition 15 are the repairs of DB:
DBZH(Ml) = { Eurbook (kafka, metamorph, 1919), Book(kafka, metamorph, 1919)},

DBZH(MZ) = {Book(kafka, metamorph, 1915)}. O

Definition 16. From two database instances DB; and DB, over the same domain,
M*(DBy, DBy) is the Herbrand structure < D, Ip,Ip >, where D is the domain
of the database ® and Ip, Iy are the interpretations for the database predicates
(extended with annotation arguments) and the built-ins, respectively. Ip is defined

as follows:

If p(a) € DB, and p(a) € DBs, then p(a,tq) and p(a,t*) € Ip.

= Ifp(a) € DBy and p(@) ¢ DBy, then p(a, ta), p(a,t*), p(a, f.) and p(a, £*) € Ip.
. If p(a) ¢ DB, and p(a) ¢ DB,, then for any annotation value v, the atom
p(@,v) & Ip.

. If p(a) ¢ DB, and p(a) € DBy, then p(a,t,) and p(a,t*) € Ip.

The interpretation Ip is defined as expected: if ¢ is a built-in, then ¢(a@) € Ip iff ¢(a)

is true in classical logic, and ¢(a) ¢ Ip iff ¢(a) is false. O

As with M(DBy, DB,) (definition 9), the intent here is to use these
structures as the basis for construction of database repairs. In fact, when DB, is
inconsistent and DBy is a repair, M*(D By, DB;) contains the facts that are neces-
sary for satisfying the program. Notice that the definition of M*(DB;, DBy) is not

symmetric in the arguments.

It can be shown (lemmas 12 and 13) that there is a one-to-one corres-

pondence between the coherent plausible x-models of the program II(DB, IC) and

3Strictly speaking, the domain D now also contains the annotations values.

34

some distinguished instances of the database schema, called pseudo-repairs of the
original instance (definition 20). As the process of repairing an inconsistent database
instance considers interactuation between constraints and is not always solvable in
one step, it can be seen as a finite chain of different instances, where one step solves
the constraints the previous instance did not satisfy. This is the intuitive idea behind
the notion of pseudo-repair that will be defined next. The fact that the chain is finite
is very important: since database instances are always finite, a repair can be obtained
from its original instance in a finite number of steps of deletions and insertions of

tuples.

Definition 17. From two database instances DB and DB’', DB ~ DB’ holds iff:

. For all ¢ in IC, if DB {5, ¢ then DB’ =5 .

. For every atom ¢(b) in (DB’ — DB), there is a ground instance of a constraint
¢ = Vit (@) V Vi, a(b) V ¢ in IC such that DB 5 ¢ and ¢(b) is (b)),
for some 1 <[<.

. For every atom p(a) in (DB — DB'), there is a ground instance of a constraint
¢ =\Vi, —pi(@)VV_, a(b)V ¢ in IC such that DB Wy ¢ and p(a) is p;(a),
for some 1 <7 < m.

|

Intuitively, DB ~ DB' says that DB’ repairs DB with respect to the set
of constraints that DB did not satisfy. It is still possible DB’ }£x, IC, but this is
due to a different set of constraints than the previous one. Moreover, every element
in A(DB, DB') must be justified in terms of the violation of a constraint by DB
(but possibly not the same). Although, the next example shows that not every chain
built step by step, where one step solves the constraints the previous instance did

not satisfy, is finite:

Example 11. Consider the database instance DB = {p(@)} and the set of cons-
traints IC = {p(Z) — ¢(Z), ¢(Z) — p(Z)}. For the chain of instances {p(a)}, {q(a)},

35

{p(a)},{q(a)},... ad infinitum, it is true that every instance is in the relation ~

with the previous one. O

The problem with the previous example is that atoms deleted (inserted)
in one step of the chain are inserted (deleted) later. This is solved by the next
definition. Moreover, definition 18 excludes as a possible pseudo-repair any finite

subchain contained in the previous infinite one, if its length is n > 2.

Definition 18. A chain DBy,---, DB, (n > 0) of database instances satisfies the
plausibility relation iff either n = 0 or, when n > 0, the following conditions are
satisfied:

n DB; 1~DBj, for1 <j<n.

. For all 1 < j <, if p(a) € (DB; — DB;_1), then p(a) ¢ (DBy_1 — DBy,) for
j<k<n.

. For all 1 < j < n, if p(a) € (DBj_1 — DBj), then p(a) ¢ (DB, — DBy_;) for
j<k<n.

|

This means that for a chain of instances to satisfy the plausibility relation
it must be true that an element is not inserted in a step of the chain and then deleted
in a successive step (or viceversa). This represents the fact that the models that are
being considered are the coherent ones. The relation is called plausibility, as it is
closely related to the notion of plausibility in the models of the program I1(DB, IC)
due to the last two conditions in definition 17. In the plausible models an atom
is deleted or inserted from the original instance only when it participates in the
violation of a constraint. Note from definition 18 that a single database instance

(when n = 0) always satisfies the plausibility relation.

Definition 19. The database instances DB and DB’ satisfy the pseudo-repair rela-
tion, written PS(DB, DB'), iff there is a finite chain DB = DB,,--- ,DB,, = DB’
(n > 0) that satisfies the plausibility relation. O

36

Definition 20. A database instance DB’ is a pseudo-repair of a database instance
DB with respect to IC, if DB’ =5 IC and it is the case that PS(DB, DB'). 0

Lemma 9. Consider a database instance DB that is consistent with respect to IC,
i.e. DB =5, IC. Then, DB is the only pseudo-repair of itself.

Proof: Consider a database instance DB', such that DB # DB’ and DB ~ DB'.
Then, there is at least one atom p(a) € A(DB, DB'). Let us suppose, without loss
of generality, that p(a) € (DB — DB'). Then, there must be a ground instance of
a constraint ¢ = \/i*, (@) V _; (b)) V ¢ in IC such that DB F¥s ¢ and p(a)
is pi(@;), for some 1 < i < m. This is a contradiction, since DB is consistent with
respect to IC. Hence, it is not possible that, if DB" # DB, the pair (DB, DB")
satisfies the relation PS.

Consider now DB = DB'. Since a single database instance always satisfies
the plausibility relation, and given DB = DB' =y IC, it is the case that DB’ is a
pseudo-repair of DB with respect to IC. O

Example 12. Consider the instance DB = {p(a)} and the set inclusion dependency
Vz(p(z) — q(z)). Then, instance DB’ = {q(a)} is a pseudo-repair of DB with
respect to IC, as the chain DB,DB' satisfy the plausibility relation and DB’ =y IC.
However, DB' is not a repair of DB with respect to IC because it is not minimal. The
genuine repairs DB, = () and DB, = {p(a),q(a)} are also pseudo-repairs, because
the chains DB,DB', and DB,DB), satisfy the plausibility relation. O

We can say that a pseudo-repair DB’ of a database instance DB is an
instance that satisfies the ICs, such that every insertion or deletion performed on
DB to obtain DB’ is made in order to satisfy a constraint. However, as the previous
example shows, a pseudo-repair does not necessarily differ in a minimal way from
the original instance. The next lemma shows that every repair of a database instance

is also a pseudo-repair of the same instance.

Lemma 10. Consider two database instances DB and DB’ and a set of integrity
constraints IC. If DB’ is a repair of DB with respect to IC, then it is also a pseudo-
repair of DB with respect to IC.

37

Proof: First of all, DB' =y IC. If DB = DB’, the chain DB satisfies the plausibility
relation and DB’ is pseudo-repair. If DB # DB', consider the chain DBy, --- , DB,
where DBy = DB and, for 1 < j <n, DB; = (DB;_, U {q(b) € (DB’ — DB) | there
is a ground instance of some constraint ¢ = \/;~, =p;(a;) V Vi, ¢:(b;) V ¢ in IC, such
that DB;_1 #sx ¢ and q(b) is qi(b), for 1 <1 <r}) — {p(a) € (DB — DB') | there
is a ground instance of some constraint ¢ = \/" | =p;(a@;) V V_; ¢:(b;) V ¢ in IC, such
that DB;_; s ¢ and p(a) is p;i(@;), for 1 < 4 < m}. The chain stops when, for
some ¢ > 1, DB;y1 = DB;, that is when the least fixpoint of the operator is reached.
Given DB’ and DB are database instances, the construction of the chain here shown

is always finite.

We will first show show that DB, = DB’. Let us suppose first there
is an atom p(a) € DB, and p(a) ¢ DB'. Therefore, two possibilities arise: either
p(@) € (DB' — DB), meaning p(a) € DB', a contradiction, or p(a) € DB and p(a) ¢
(DB — DB'), meaning again that p(a) € DB’ a contradiction. Then, DB,, C DB'.
We will prove now that DB, Ex IC. If this was not true, there would be a ground
instance of some constraint ¢ = \/i", —p;(@) V Vi, @(b) V ¢ in IC, such that
DB, s ¢. But DB’ =5 ¢. Then, four possibilities arise:

1. There is an element p(a) € (DB — DB'), such that p(a) is p;(a;), for some
1 <i < m. Hence, DB,, # DB, 1, a contradiction.

2. There is an element g(b) € (DB’ — DB), such that q(b) is q(b;), for some
1 <1 <r.Hence, DB,, # DB, 1, a contradiction.

3. There is an element p(@), such that p(a) ¢ DB, p(a) ¢ DB’ and p(a) is pi(a),
for some 1 < i < m. Then, p(a) ¢ DB,. Hence, DB,, =5 ¢, a contradiction.

4. There is an element g(b), such that q(b) € DB, q(b) € DB' and q(b) is q/(b;),

for some 1 <1 < r. Then, ¢(b) € DB,. Hence, DB,, =5, ¢, a contradiction.

Then, if DB" € DB, it would be the case that DB, G DB’ and DB, Fx IC. A
contradiction, given that DB’ is a repair of the original instance. Therefore, DB,, =
DB', since DB' C DB,, and DB, C DB'.

38

We will now prove that DB, 1 ~ DB;, for 1 < j < n. Let us suppose
there is a ground instance ¢ of a constraint in IC, such that DB,_; 5 ¢ and
DB; Wy, ¢, for 1 < j < n. Then, by the construction of the instances in the chain,
¢ is not going to be satisfied by any other instance in the chain moving upwards.
In particular, DB, does not satisfy ¢, which is a contradiction, since DB, = DB’
and DB’ is a repair of the original instance. Of course, by the way the instances in
the chain were constructed, every insertion or deletion of an atom in one step of the
chain is justified in terms of the violation of some constraint by the first instance in
that step.

Since an atom p(a) cannot belong to both (DB’ — DB) and (DB — DB'),
it is true that if it is inserted in a step of the chain it cannot be deleted later,
and viceversa. Then, the chain DBy, ---, DB, satisfies the plausibility relation and

DB, = DB’ is a pseudo-repair of the original instance. O

The following results show the one to one correspondence between cohe-
rent minimal plausible x-models of the program II(DB, IC) and the repairs of the

original instance.

Lemma 11 shows that the possibilities in definition 14 are mutually ex-
clusive when considering coherent and plausible models of II(DB, IC). This is, a
plausible and coherent model of II(DB, IC') can be univocally interpreted.

Lemma 11. If M is a coherent plausible x-model of II(DB, IC'), then for a database

predicate p and ground tuple @, exactly one of the following cases holds:
. p(a,tq) and p(a,t*) belong to M, and no other p(a,v), for v an annotation
value, belongs to M.

. p(a,ta), p(a,t*), p(a,f.) and p(a, f*) belong to M, and no other p(a,v), for v

an annotation value, belongs to M.

. p(a,ta) and p(a,t*) belong to M, and no other p(a,v), for v an annotation
value, belongs to M.

. for every annotation value v, p(@,v) does not belong to M.

39

Proof: For an atom p(a) we have two possibilities:

p(a,ta) € M. Then, p(a,t*) € M. Two cases are possible now: p(a,f,) € M
or p(a,fa) ¢ M (in this case p(a,ta) ¢ M, since M is plausible). For the first
one we also have p(a, f*) € M and p(a, t.) ¢ M (because M is coherent). This

covers the first two items in the lemma.

p(a,ta) ¢ M. Since the model is plausible, we have two possibilities now:
p(a,ta) € Mor p(a,t,) ¢ M (in this case p(a, fa) € M, since M is plausible).
For the first one we also have p(a,t*) € M and p(a,f,) ¢ M (because M is

coherent). This covers the last two items in the lemma.

|

The next lemma shows that some coherent and plausible x-models of
the program II(DB, IC') have associated a database instance that satisfies the cons-

traints.

Lemma 12. Let us suppose M is a coherent plausible x-model of II(DB, IC) and
DBZ(M) is finite!, then DB M) Ex 1C.

Proof: We want to show DBj{,y Ex Vie —pi(%i) V V=, 4;(7;) V ¢, for every cons-
traint in /C. Since M is a x-model of II(DB, IC), we have that M =, \/}_, p;(Z;, fa)V

Vis1 45 (T ta) < NiZy pil @i, t%) A Nj, 05(75, £%) A . Then, at least one of the follo-
wing cases are satisfied:

] M =, pi(@,f,). Then, i(M) = pi(a, f**) and p;(a) ¢ DBz(M (by Lemma 11).

Hence, DB)Zz —p;(@). Since the analysis was done for an arbitrary value
M):Z Vi:1 —pi(Zi) V V;n:1 qj (y}) V ¢ holds.

= M =, g(a, ty). Then, i(M) = ¢;(a, t™) and ¢;(a) € DBz(M) (by Lemma 11).
Hence DB) Ex g;(@). Since the analysis was done for an arbitrary value a,
z(./\/[):E Vizl —pi(T;) V V;"Zl ¢;(y;) V ¢ holds.

“Remember that this means that the extensions of the database predicates are finite.

40

. It is not true that M }—* @. Then, M =, ¢. Hence, ¢ is true, and DB{%M) =5

- M £, pi(@,t*). As the model is coherent and plausible, just the last item in
lemma 11 holds. This means i(M) = p;(a, £**), p;(a) ¢ DBH) and DBZT{M Es

—p;(a). Since the analysis was done for an arbitrary Value a, DB e
Ve, =pi(#i) V Vi, 4;(75) V @ holds.

. M =, gj(a, £*). Hence, M =, ¢;(a,ta), and given the model is coherent and
plausible, just the first item in lemma 11 holds. Then, i(M) = g;(a,t*),
g;(a) € DBI%M) and DB{{M =y g;(a@). Since the analysis was done for an
arbitrary value @, DBj(Fx Viey ~pi(%:) V V2, ¢; () V ¢ holds.

|

Lemma 13 shows that every pseudo-repair of the original instance is as-

sociated with a x-model of the program that is coherent and plausible.

Lemma 13. If DB' is a pseudo-tepair (definition 20) of DB with respect to IC, then
M*(DB, DB') is a coherent plausible x-model of II(DB, IC).

Proof: We first need the following lemma:

Lemma 14. If DB and DB’ are two different database instances such that DB’ is a
pseudo-repair of DB with respect to IC, then:

. For every p(a) such that p(a@) € DB and p(a) ¢ DB’, there is a ground instance
of a clause, /i, pi(di, fa) V Vé’:1 4; (b_aa ta) < AiZi pi(@i, t*) A /\;:1 4; (b_aa)N
in II(DB, IC), such that M*(DB, DB') =, A, pi(ai, t*) A Ni_y 4;(b;, £) A @
and p(a) is p;(a;) for some 1 < i < m.

. For every ¢(b) such that q(b) ¢ DB and ¢(b) € DB’, there is a ground instance
of a clause, \/7, pi(d, £ V VL, 45(65,) A 21, € A ALy 05065, £) A3
in II(DB, IC), such that M*(DB, DB') =, N pi(ai, t*) A N\._y ¢;(b;, £*) A @
and ¢(b) is g;(b;) for some 1 < j < 1.

41

Proof: Since DB’ is a pseudo-repair of DB, and DB [£s IC, we have DB’ can
be built from DB as a chain DB = DBy, ---,DB, = DB' (n > 1) satisfying
the plausibility relation. Then, p(a) € A(DB,_1,DB;), for 1 < j < n. For the
first part of the lemma (the other part is symmetrical), this means that there is a
constraint instance \/J", —pi(@) V V_, (b)) V ¢ that it is not satisfied by DB;_q,
and p;(a;) = p(a) for 1 < i < m. Then, for every p;(a;), we have either it is in DB
or it belongs to (DBy, — DBj,_1), for some k < j — 1. In the first case, M*(DB, DB’)
satisfies p;(@;, t*). In the second case, given that for satisfying the plausibility relation
an atom inserted in one step cannot be deleted in a posterior step, p;(a;) € DB’
and M*(DB, DB') satisfies p;(@;, t*). We also have that, for every ¢;(b;), either it is
not in the DB or it belongs to (DBy 1 — DBy), for some k < j — 1. In the first
case M*(DB,DB') =, q(b;,f*). In the second case, given that for satisfying the
plausibility relation an atom deleted in one step cannot be inserted in a posterior
step, we have that M*(DB, DB') k=, q,(b;, f*). Finally, we also have ¢ is false, then
M*(DB, DB') =, . 0

We now continue the proof of lemma 13. Since DB’ 5 \/i, —pi(a;) V

\/;.”:1 ¢;(bj) V ¢, we have three possibilities to anlyze with respect to the satisfaction
of this clause. The first possibility is DB’ =5 —p;(@). Then, two cases arise

. pi(a) € DB. Then, p;(a,f*), p;(a,ta), pi(a, fa) and p;(a, t*) belong to M*(DB,
DB'), and the program II(DB, IC') contains the following clauses: p;(a, tq) -,
pi(a, t*) < pi(a,ta), pi(a,t*) < pi(a,ta), pi(a, f*) < p;(a,fa). Then, all these
formulas are satisfied by M*(DB, DB') (satisfaction with respect to =,) and
pi(@,ta), pi(a, t*) and p;(a, f*) are shown to be plausible. The program also con-
tains the clause \/i_, pi(a, fa) V3L, ¢j(a, ta) < AL pi(a, t*) A NS, g;(a, £4) A
@, which is satisfied since p;(@,fa) belongs to M*(DB, DB'). It rests to show
that p;(a,fa) is plausible, but this is precisely what Lemma 14 states.

. pi(@) ¢ DB. Then, for every annotation value v, p;(a;,v) ¢ M*(DB,DB').
Then, p;(a,t*) < pi(a,ta), pi(@,t*) < pi(@,ta), pi(@ f*) « pi(a,fa) are in
II(DB, IC). All these are trivially satisfied because the falsity of the body. The
clause \/i, pi(@, fa) V V2, 4;(@, ta) < AiZy pi(@, t*) A A\JZ, ¢;(@, %) A @ is also
in II(DB, IC), and it is trivially satisfied since p;(a, t*) ¢ M*(DB, DB').

42

The second possibility is DB’ =y, ¢;(@). The following cases arise:

. gj(a) € DB. Then, M*(DB, DB') contains g;(a,tq) and g;(a,t*), and the
program II(DB, IC) contains the formulas ¢;(a,tq) <, ¢;(a,t*) < ¢;(a,ta),
¢;(@,t*) <+ ¢;(@,ta), ¢;(@f*) < ¢;(@fa). M*(DB,DB’) satisfies all these
clauses (satisfaction with respect to =), and ¢;(a, tq) and g¢;(a, t*) are shown
to be plausible. The clause \/i_, pi(@,fa) V Vjo, (@, ta) + AL, pi(@ t*) A
/\;.n:1 ¢;(a,f*) A @ is also in the program, and is satisfied trivially since it holds
that M*(DB, DB') |, ¢;(a, f*).

= ¢;(@) ¢ DB. Then, ¢;(a,t.) and g;(a,t*) are in M*(DB,DB’), and the fo-
llowing formulas are in II(DB, IC): ¢;(a,t*) < ¢;(a,ta), g;(a,t*) < g;(a,ta),
q; (@, £*) < q;(a, fa). These are satisfied by M*(DB, DB'), and ¢;(a, t*) is plau-
sible. The program also contains the clause \/;_, pi(a,fa) V V}., ¢;(@,ta) <
Nizi pi(a, t*) A AT gi(a, £) A @, which is satisfied as g;(a,ta) belongs to
M*(DB, DB'). 1t rests to show ¢;(a, ta) is plausible, but this is exactly what

Lemma 14 states.

The third possibility is DB’ =5 . Then, ¢ is true. The program II(DB, IC) contains

the clause /i, pi(a, fa) V V7o, ¢j(a, ta) = Al pi(a, t%) A AjL, g5(a, £%) A ¢, which
is satisfied since M*(DB, DB') [, .

Since the analysis was done for an arbitrary value @, then M*(DB, DB')
is a plausible x-model of II(DB, IC). Obviously, it is also coherent, as M*(DB, DB')
was defined for not containting both p(a, f,) and p(a, t.). O

Theorem 3. If M is a coherent, minimal and plausible x-model of II(DB, IC), and
DBZH(M s finite, then DBg M) 18 a repair of DB with respect to IC. Furthermore, all

the repairs are obtained in this way.

Proof: From Propositions 4 and 5 below. a

Propositions 4 and 5 differ from lemmas 12 and 13 in that only a subset
of the pseudo-repairs (the repairs), and a subset of the coherent plausible x-models

(the minimal under set inclusion) are considered.

43

Proposition 4. If M is a coherent, minimal and plausible x-model of I[I(DB, IC),
and DBZ-T%M) is finite, then DB?(M) is a repair of DB with respect to IC.

Proof: From Lemma 12, we have that DBZ-T{M) =y IC. We just have to show

minimality. Let us suppose there is a database instance DB*, such that DB* =y, IC
and A(DB, DB*) S A(DB, DBj{).

We will show M*(DB, DB*) is a x-model of [I(DB, IC). Since DB* =y,
Vie, —pilai) v Vi<, qj(b;) V ¢, we have three possibilities to analyze with respect to
the satisfaction of this clause. The first possibility is DB’ =5 —p;(a). Then, two cases

arise

. pi(a) € DB. Then, p;(a,f*), p;(a,ta), pi(a, fa) and p;(a, t*) belong to M*(DB,
DB*), and the program II(DB, IC) contains the following clauses: p;(@, tq) <,
pi(@, t*) < pi(a,ta), pi(a,t*) < pi(a,ta), p;(a, £*) < p;(a,fa). Then, all these
formulas are satisfied by M*(DB, DB*) (satisfaction with respect to =,). The
program also contains the clause \/i_, p;(a, fa)VV/', (@, ta) < AiL, pi(@, t*)A
Nj=1 4;(@,£*) A @, which is satisfied since p;(a, fa) belongs to M*(DB, DB*).

. pi(@) ¢ DB. Then, for every annotation value v, p;(a;,v) ¢ M*(DB, DB*).
Then, p;(a,t*) < pi(a,ta), pi(@,t*) < pi(@,ta), pi(@ f*) « pi(a,fa) are in
II(DB, IC). All these are trivially satisfied because the falsity of the body. The
clause \/;_, pi(a,fa) V Vi2, ¢;(@, ta) < ALy pi(@ t*) A AL, g;(a, £) A @ is also
in II(DB, IC), and it is trivially satisfied since p;(a,t*) ¢ M*(DB, DB*).

The second possibility is DB’ =y ¢;(a). The following cases arise:

. ¢j(@) € DB. Then, M*(DB, DB*) contains ¢;(a,tq) and g¢;(a,t*), and the
program II(DB, IC) contains the formulas ¢;(a,tq) <, ¢;(a,t*) < g¢;(a,ta),
g;(a,t*) « q;(a, ta), gj(a, f*) < g;(a,fa). The structure M*(DB, DB*) satisfies
all these clauses (satisfaction with respect to |=,). The clause \/]_, p;(a,f.) V
Vit 4i(@ ta) < ALy pi@, t%) A AjZ, ¢;(@ %) A @ is also in the program, and
is satisfied trivially since it holds that M*(DB, DB*) ¥, ¢;(a, f*).

44

g g;(@) ¢ DB. Then, ¢;(a,t.) and ¢;(a,t*) are in M*(DB, DB*), and the fo-
llowing formulas are in II(DB, IC): ¢;(a,t*) < ¢;(a,ta), ¢;(@, t*) < g¢;(a, ta),
g;(a,f*) < ¢;(a, fa). These are satisfied by M*(DB, DB*). Also in the program
is the clause /i, pi(a, fa) V V52, ¢;(a, ta) < AiZy pi(@, t) A AJL, g5(a, £%) A @,
which is satisfied since g;(a, ta) belongs to M*(DB, DB”).

The third possibility is DB’ =5, ¢. Then, ¢ is true. The program I1(DB, IC) contains
the clause /i, pi(a, fa) V Vo) ¢;(@, ta) = AiLy pi(@, t*) A AL, 45(a, £%) A @, which
is satisfied since M*(DB, DB*) ¥, ¢.

The previous part of the proof shows that M*(DB, DB*) is a model of
II(DB, IC). We are going to prove now it is strictly contained in M. By lemma 11,

for an atom p(a) just four cases are possible in a coherent and plausible x-model of
II(DB, IC). This fact will be used in the rest of the proof.

We will first show M*(DB, DB*) C M. Let us suppose just p(a, t*) and
p(@,ta) belong to M*(DB, DB*). Then p(a) € DB and p(a) € DB*. Since, p(a) ¢
A(DB, DB*), we have two possibilities. The first one is p(a@) ¢ A(DB, DBj(,,).
Then, p(a,t*) and p(a,tq) also belong to M. The second possibility is that p(a) €
A(DB, DB{{M)). Again, p(a,t*) and p(a,tq) belong to M.

Let us suppose now that, for every annotation value v, p(a,v) does not
belong to M*(DB, DB*). Then, as the empty set is a subset of every other set, we

have our fact trivially satisfied.

Consider now just p(a,t*), p(a,tq), p(a,fa.) and p(a,f*) are in the Her-
brand structure M*(DB, DB*). Then, p(a) € DB and p(a) ¢ DB*. Hence, p(a) €
A(DB, DB*), and due to our assumption p(a) € A(DB, DB{{M)). Therefore, p(a, t*),
p(a,ta), p(a, fa) and p(a, f*) belong to M.

Finally, we will suppose just p(a,t,) and p(a,t*) are in M*(DB, DB*).
Then, p(a) ¢ DB and p(a) € DB*. Hence, p(a) € A(DB, DB*), and due to our
assumption p(a) € A(DB, DBZI{M)). Therefore, p(a,t*) and p(a, t.) belong to M.

We will now show M*(DB, DB*) & M. We have assumed there is an
element of A(DB, DB%}M)) that is not an element of A(DB, DB*). Thus, for some

45

element p(a), either p(a) € DB, p(a) € DB* and p(a) ¢ DB{%M), or p(a) ¢ DB,
p(@) ¢ DB* and p(a) € DB?(M). For the first one we have M*(DB, DB*) satisfies
p(a,ta) and p(a, t*), and M satisfies p(a, tq) and p(a,t*), but it also satisfies p(a, fa)
and p(a, f*). In the second one, M*(DB, DB*) does not satisfy any fact related to
p(a) and M satisfies p(a, t.) and p(a, t*).

Then, M is not a minimal model; a contradiction. O

Proposition 5. If DB’ is a repair of DB with respect to IC, then M*(DB, DB') is
a coherent, minimal and plausible x-model of II(DB, IC).

Proof: By lemmas 10 and 13 we have M*(DB, DB') is a coherent plausible x-model
of II(DB, IC). We just have to show it is minimal. Let us suppose first there exists
a x-model M of TI(DB, IC) such that M G M*(DB, DB') and M is plausible (it
is also coherent since it is contained in M*(DB, DB')). We will prove DB’ is not

minimal.

Let us suppose p(a) € A(DB,DB?(M)). Then, either p(a) € DB and
p(a) ¢ DBRM) or p(a) ¢ DB and p(a) € DBZI%M). In the first case, p(a,taq), p(a, t*),
p(a,fy) and p(a, f*) are in M (by lemma 11, since M is coherent and plausible).
By our assumption these are also in M*(DB, DB'). Hence, p(a) € A(DB,DB'). In
the second case, p(a,t,) and p(a,t*) are in M (by lemma 11, since M is coherent

and plausible). By our assumption these are also in M*(DB, DB'). Hence, p(a) €
A(DB, DB') and it has been proved that A(DB, DBj{,) C A(DB, DB').

We will now prove A(DB, DBj() & A(DB, DB'). We know for some
fact p(a) there is an element related to it which is in M*(DB, DB') and which is
not in M. One possible case is p(a, f.) and p(a, f*) are in M*(DB, DB') and not in
M. Then, p(a) € A(DB, DB'), but p(a) ¢ A(DB, DBRM))- The other possible case
p(@,ta) and p(a,t*) are in M*(DB, DB') and not in M. Then, p(a) € A(DB, DB'),
but p(@) ¢ A(DB, DBj{,y)).-

By Lemma 12, we have DB?(wmy s IC (since M is coherent and plausi-
ble). Also, DBZH(w is finite. This contradicts our fact that DB’ is a repair.

Let us suppose now there is a x-model M of I[I(DB, IC), such that M g
M*(DB, DB'), but M is not plausible (it must be coherent anyway). If we delete

46

every atom in M which is not plausible, a model M’ of II(DB, IC) is obtained
which is plausible and coherent. Then, the argument above can be used to obtain a

contradiction. O

5.2 The Interpretation Program

The interpretation of the models specified in definition 14 could be ob-
tained by adding to the program, for every predicate p, the following interpretation

clauses:

p(Z, ™) + p(Z, ta), p(Z,t") < p(Z,ta), not p(z,1a),
p(z,) « p(7,1,), p(Z,) «+ not p(Z,tq), not p(T,t,).

Now, the facts with annotations other than t** and f** are not deleted from the
model, but this is not a problem if the attention is concentrated in the double-
starred annotations. It can be seen that the atoms in a model M with annotation
value t**, when the previous clauses are inserted to the program, are exactly those
with annotation value t** in the intrepretation i(M) of that model. Then, if for any
model M of a program II(DB, IC) extended with the previous clauses it is defined
that:

DBY, = {p(a) | M = p(a,t*)}

the following re-statement of theorem 3 can be given:

Theorem 4. If M is a coherent minimal plausible x-model of II(DB, IC) extended
with interpretation clauses, and DBR/1 is finite, then DBf\IA is a repair of DB with

respect to IC. Furthermore, all the repairs are obtained in this way.

The program, now extended with interpretation clauses, will continue
being denoted by II(DB, IC).

47

5.3 Computing from the Program

The repair programs II(DB, IC) introduced in section 5.1 are based on
a non classical notion of satisfaction (definition 12). In order to compute from
the program using a stable model semantics for disjunctive programs, a new pro-
gram II7(DB, IC) is presented, obtained from the original one by adding the clause

p(Z,*) < not p(Z,tq) that gives an account of the closed world assumption.

From now on, M*(DB, DB') will be redefined with the following state-
ments:
= Ifp(a) ¢ DB and p(a) ¢ DB’', p(a,f*) € Ip.

. If p(@) ¢ DB and p(a) € DB’, then p(a, f*), p(a, t.) and p(a,t*) € Ip.

The other two cases in definition 16 do not change.

The following results will show there is a one to one correspondence bet-

ween some stable models of II"(DB, IC) and the repairs of the original instance.

Definition 21. A model M of a disjunctive program P is stable iff M is a minimal
model of PM, where PM™ is defined as {Ay,..., Ay < Bi,...,B, | A1,..., Ay +
By,...,B,,notCy,...,notC,, is a ground instance of a clause in P and, for every
1<i<m, M Ci} O

The next lemma shows that the possibilities in definition 14 are mutually
exclusive when M is a coherent and plausible model of (ITI"(DB, IC))™M.

Lemma 15. If M is a coherent plausible model of (II"(DB, IC))™, then exactly

one of the following cases holds:
. p(a,tq) and p(a,t*) belong to M, and no other p(a,v), for v an annotation
value, belongs to M.

. p(a,ta), p(a,t*), p(a,f.) and p(a, f*) belong to M, and no other p(a,v), for v

an annotation value, belongs to M.

48

. p(a,ta), p(a, f*) and p(a, t*) belong to M, and no other p(a, v), for v an anno-

tation value, belongs to M.

. p(a, f*) belongs to M, and no other p(a,v), for v an annotation value, belongs
to M.

Proof: Similar to that of lemma 11. Just the last two cases are different, but this

is due to the inclusion of the negative information of the database explicitly. O

The next lemma shows that if M is a coherent plausible model of the
program (I17(DB, IC))M, such that M represents a finite database instance, then
that instance satisfies the constraints.

Lemma 16. Let us suppose M is a coherent plausible model of (IT"(DB, IC))™ and
DBjy is finite, then DBj(, =5 IC.

Proof: We want to show DB?(M) Fs Vi (@) vV Vi, 4i(y5) V @, for every
constraint in IC. Since M is a model of (II"(DB,IC))M, we have that M |

Vici pi(Zi, £a) V V;n:1 05 (F5: ta) = Niy Pi(T3, £%) A /\;n:1 q;(75,£*) A @. Then, at least
one of the following cases is satisfied:

. M E pi(a,fa). Then, i(M) = pi(a,) and p(a) & DB{%M) (by lemma 15).
Hence, DBZH(M) Fx —pi(a). Since the analysis was done for an arbitrary value
a, DB{%M) =s Vie, —pi(#) V V2, ¢;(7;) V ¢ holds.

. M E g¢(a, ta). It is symmetrical to the previous one.

. It is not true that M = @. Then M = ¢. Hence, ¢ is true, and DBZ-T{M) Es
V?:1 —pi(Ti) V V;nzl ¢;(;) V ¢ holds.

. M~ p;i(a, t*). As the model is coherent and plausible, just the last item in lem-
ma 15 holds. This means i(M) [p;(a,), p;(a) ¢ Dle'_{M) and Dle'_{M) =,
—p;(a). Since the analysis was done for an arbitrary value a, DB%% M) Fs
Vi, —pi(@) v VI, 4;(75) V @ holds.

49

= M - gj(a, £*). Given the model is coherent and plausible, just the first item
in lemma 15 holds. Then, (M) = g;(a,t*), ¢;(a) € DBH) and DB M) Fs

g;(a). Since the analysis was done for an arbitrary value a, DB):E \/z)
—pi(Ti) V V), ¢;(75) V ¢ holds.

|

The next lemma shows that every pseudo-repair of the original instance

has associated a structure M, such that M is a coherent and plausible model of
(IT(DB, IC))

Lemma 17. If DB' is a pseudo-repair (definition 20) of DB with respect to IC, then
M*(DB, DB') is a coherent plausible model of (IT"(DB, IC))M"(PB.DE),

Proof: We first need the following lemma:

Lemma 18. If DB and DB’ are two different database instances such that DB’ is a
pseudo-repair of DB with respect to IC, then:

. For every p(a) such that p(a) € DB and p(a) ¢ DB', there is a ground instance
of a clause, /i, pi(d;, fa) V V; 165(bj,ta) = ALy pil @i, t%) A /\;':1 g;(bj, £*) A
@ in (II"(DB, IC))M"(PEDE) guch that M*(DB,DB') & A, pi(a@,t*) A
/\j 19 (b;,) A @ and p(a) is p;(a;) for some 1 < i < m.

. For every ¢(b) such that ¢(b) ¢ DB and ¢(b) € DB’, there is a ground instance
of a clause, V/iZ; pi(a;, fa) V V; 165(bj,8a) < ALy pil i £9) A /\;':1 gj(bj, £*) A
@ in (II"(DB, IC))M"(PE.DE) " guch that M*(DB,DB') & A, pi(ai,t*) A
/\;Zlqj(bj,f) A gand q(b) is q;(b;) for some 1 < j < L.

Proof: Exactly that of lemma 10, since the programs II(DB, IC) and II"(DB, IC)

have exactly the same rules for representing the constraints. O

We now continue the proof of lemma 17. We wll prove first M (DB, DB’)
is a coherent plausible model of (II" (DB, IC))M"(PE:PEY) Since DB’ =5 \/1_, —pi(a@;)

20

V \/;n:1 ¢;(bj) Ve, we have three possibilities to analyze with respect to the satisfaction

of this clause. The first possibility is DB’ =5 —p;(a@). Then, two cases arise

» pi(a) € DB. Then, the p;(a,f*), pi(a,ta), pi(a,f.) and p;(a,t*) belong to
M*(DB, DB'), and the program (IT"(DB, IC))M (PB:PE) contains the follo-
wing: p;(@, ta) <, pi(@,t*) < pi(a@,ta), pi(a@,t*) < pi(@,ta), pi(a,) < pi(a, fa)-
Then, all these formulas are satisfied by M*(DB, DB') and p;(a, tq), pi(a, t*)
and p;(a,f*) are shown to be plausible. The program also contains the clause
VI (3 £) V V™ 50 0) + Ay 21, £ A A, 05(@,) A 3, which s sa-
tisfied since p;(a, fa) belongs to M*(DB, DB'). It rests to show that p;(a, f,) is

plausible. But this is precisely what Lemma 18 states.

» p(a) & DB. Just p(a, f*) belongs to M*(DB, DB'). Then, p;(a, t*) < pi(a, ta),
pi(@,t*) < pi(a,ta), pi(a,f*) < pi(a,f.) and p(a,f*) < are in the program
(II"(DB, IC))M (PBDEY) Al these are satisfied and p(a, f*) is shown to be
plausible. The program also contains the clause \/i_, pi(a, fa) V-, ¢;(a, ta)
Nizi i@,) A A\jZ, g;(a, £) A @, which is trivially satisfied since p;(a, t*) ¢
M*(DB, DB').

The second possibility is DB’ =y g;(@). The following cases arise:

. ¢;j(@) € DB. Then, M*(DB, DB') contains ¢;(a, tq4) and ¢;(a, t*), and the pro-
gram (I17(DB, IC))M"(PB:PE) contains the formulas ¢;(a, ta) <, ¢;(a@,t*) +
g;(@,ta), ¢;(a,t*) < ¢;(a,ta), ¢;(a,f*) < g;(a,f,). All these are satisfied by
M*(DB, DB'), and ¢;(@, ta) and ¢;(a, t*) are shown to be plausible. The clause
Vie pi(@, £a) VL, g(a, ta) < Aizy pi(@,t*) AL (@,) A ¢ is also in the
program, and is satisfied trivially since M*(DB, DB') ¥ g;(a, f*).

- ¢;j(@) ¢ DB. Then, g¢;(a,f*), ¢;(a,t.) and ¢;(@,t*) are in M*(DB, DB'), and
the following formulas are in (II"(DB, IC))M" (PELE): g.(a@,£*) «, ¢;(a,t*) <
g;(a,ta), ¢j(a,t*) < g;(a,ta) and g;(a, f*) < ¢;(a,f,). These are satisfied by
M*(DB, DB'), and g;(a,t*) and ¢;(a, f*) are plausible. The program also con-
tains the clause \/i_, pi(a, fa) V V7., ¢j(a, ta) < AL pi(a, t*) A AT, g;(a, £5) A
¢, which is satisfied as g;(a,ta) belongs to M*(DB, DB'). It rests to show

¢;(@,ta) is plausible, but this is exactly what Lemma 18 states.

o1

The third possibility is DB’ =5 ¢. Then, ¢ is true. The clause \/I_, pi(a,fa) V
Vi ¢i(@ ta) — Aipi(a,t*) A AL ¢,) A @ s in (IT" (DB, IC))M*(PB.DB),
This clause is satisfied since M*(DB, DB') i .

As the analysis was done for an arbitrary value a, it holds that the Her-
brand structure M*(DB, DB') is a plausible model of (II"(DB, 1C))M"(PB.LE") Oh-
viously, it is also coherent, since M*(DB, DB') was defined for not containig both

p(@,ta) and p(a, f,) at the same time. O

Note that in the following theorem, the notion of plausibility is no longer
treated. However, it can be proved (lemma 19) that the stable models of a disjunctive

program are exactly those models that are plausible and minimal.

Theorem 5. If M is a coherent stable model of 11" (DB, IC), and DB, is finite,
then DB, is a repair of DB with respect to IC. Furthermore, the repairs obtained

in this way are all the repairs of DB.

Proof: We will first show that the stable models of the program are the models
that are plausible and minimal. The theorem then follows from propositions 6 and
7 below. O

Lemma 19. Consider a database instance DB and a set IC of constraints. A model
M of the program IT"(DB, IC) is stable iff it is plausible and minimal.

Proof: A model M of [I"(DB, IC) is stable iff it is a minimal model of [I" (DB, IC)™
iff it is a minimal model of every clause in the program II" (DB, IC) which is not of
the form p(z, f*) < not p(Z,tq) and it is a model of the clause p(a, f*) <, for every

p(a@) ¢ DB. This is equivalent to be a minimal and plausible model of the program
I1™(DB, I1C). O

Proposition 6. If M is a coherent, minimal and plausible model of (II" (DB, IC))M,
and DBZ-T%M) is finite, then DBZ-I{M) is a repair of DB with respect to IC.

52

Proof: From Lemma 16, we have DB}%M) =y IC We just have to show minima-
lity. Let us suppose there is a database instance DB*, such that DB* =y IC and
A(DB,DB*) G A(DB, DB%}M)). The Herbrand structure M*(DB, DB*) is a model
of (II"(DB, IC))M"(PE:DE™) by the same reason given in the proof of proposition 4.
Then, it is also a coherent plausible model of (II"(DB, IC))M. We will first show
M*(DB, DB*) C M. By lemma 15, for an atom p(a) just four cases are possible in
a coherent and plausible model of II7(DB, IC). This fact will be used in the rest of
the proof.

Let us suppose only p(a, t*) and p(a, tq) belong to M*(DB, DB*). Then
p(a) € DB and p(a) € DB*. As, p(a) ¢ A(DB, DB*), we have two possibilities. The
first one saying p(a) ¢ A(DB, DB?(M)). Then, p(a, t*) and p(a, tq) also belong to M.
The second one saying p(a) € A(DB, DB%%M)). Again, p(a, t*) and p(a, tq) belong to
M.

Let us suppose now, just p(a,f*) belongs to M*(DB, DB*). Again, we
have two possibilities. The first one says p(a) ¢ A(DB, DB%%M)). Then, p(a, f*) also
belongs to M. The second one says p(a) € A(DB, DB?(M)). Again, p(a, f*) belongs
to M.

Let us suppose p(a, t*), p(a, ta), p(a, fa) and p(a, £*) belong to the model
M*(DB, DB*). Then, p(a) € DB and p(a) ¢ DB*. Hence, p(a) € A(DB, DB*), and
due to our assumption p(a) € A(DB, DB{{M)). Therefore, p(a, t*), p(a,ta), p(a,fa)
and p(a, f*) belong to M.

Finally, we will suppose p(a, f*), p(a, ta) and p(a, t*) belong to the model
M*(DB, DB*). Then, p(a) ¢ DB and p(a) € DB*. Hence, p(a) € A(DB, DB*),
and due to our assumption p(a) € A(DB, DBHM)). Therefore, p(a, f*), p(a, t*) and
p(@,ta) belong to M.

We will now show M*(DB,DB*) & M. We have assumed there is an
element of A(DB, DB%%M)) that is not an element of A(DB, DB*). Thus, for some
element p(a), either p(a) € DB, p(a) € DB* and p(a) ¢ DBZ-I{M), or p(a) ¢ DB,
p(a) ¢ DB* and p(a) € DBj(yy. For the first one we have M*(DB, DB*) satisfies
p(a,ta) and p(a,t*), and M satisfies p(a, tq) and p(a, t*), but also satisfies p(a,fa)

93

and p(a, f*). In the second one, M*(DB, DB*) satisfies p(a,f*) and M satisfies
p(a, f*), but also p(a, t.) and p(a, t*).

Then, M is not a minimal model; a contradiction. O

Proposition 7. If DB’ is a repair of DB with respect to IC, then M*(DB, DB’) is
a coherent minimal and plausible model of (II™(DB, IC))M"(PB.DE)

Proof: By Lemma 17 we have M*(DB,DB') is a coherent plausible model of
II" (DB, IC)M*(PB.DB') e just have to show it is minimal. Let us suppose first
there exists a model M of (II"(DB, IC))M " (PB:DE) guch that it is the case that
M G M*(DB,DB') and M is plausible (it is also coherent since it is contained
in M*(DB, DB')). We will prove A(DB, DBj{,,) & A(DB, DB'). We will begin
proving A(DB, DBz(M)) C A(DB, DB").

Let us suppose p(a) € A(DB, DBZ(M)) Then, either p(a) € DB and
p(a) & DBjpy or p(a) ¢ DB and p(a) € DBjjy. In the first case, p(a, ta), p(a, t*),
p(a,f,) and p(a, f*) are in M. By our assumption these are also in M*(DB, DB’).
Hence, p(a) € A(DB, DB'). In the second case, p(a, f*), p(a, t.) and p(a,t*) are in
M. By our assumption these are also in M*(DB, DB'). Hence, p(a) € A(DB, DB').

We will now prove A(DB, DBZ(M)) A(DB,DB'). We know for some
fact p(a) there is an element related to it which is in M*(DB, DB') and which is
not in M. One possible case is p(a, f.) and p(a, f*) are in M*(DB, DB') and not in
M. Then, p(a) € A(DB, DB'), but p(a) ¢ A(DB, DB?(M)). The other possible case
p(@, ts) and p(a, t*) are in M*(DB, DB') and not in M. Then, p(a) € A(DB, DB’),
but p(a) € A(DB, DBj{,y)-

By Lemma 16, we have DB |:E IC. Also, DBH() 1s finite. This

contradicts our fact that DB’ is a repair.

Let us suppose now there is a model M of (II"(DB, IC))™ (PB:PB) such
that M ; M*(DB, DB'), but M is not plausible (it must be coherent anyway). If
every not plausible atom in M is deleted, a model M’ of (IT"(DB, IC))M"(PB.DE")
is obtained which is plausible and coherent. Then, the argument above can be used

to obtain a contradiction. O

o4

From theorem 5 it can be seen there is a one to one correspondence
between the coherent stable models of II"(DB, IC) and the repairs of the original
instance. Notice that a classical notion of satisfaction is now being considered in the
models of the program I17(DB, IC) that produce the repairs of the original instance.
This is not true of program II(DB,IC') when a non-classical notion of satisfaction
(E.) is considered.

In consequence, the database repairs could be computed using an imple-
mentation of the disjunctive stable models semantics with denial constraints, like
DLV (Eiter et al. 2000). In the actual case, it is also possible to prune out the mo-
dels that do not satisfy <+ p(Z,t,),p(Z,fa) (the non-coherent ones). Implementation
is the main reason why a first order logic representation of the theory through the
program was chosen. Most of the applications that compute stable models work with
first order logic. XSB works with annotated programs, but there is no reason to think

that an annotated program would have an easier implementation than this one.

Example 13. Consider the database instance {p(a)} that is inconsistent with respect
to the set inclusion dependency Vz (p(z) — ¢(z)). The program II"(DB, IC) contains

the following clauses:

The following rules do not depend on ICs
p(@, 1) < p(a,fa), p(z,t) < plz,ta), p(a,t%) < p(z, ta)
@z, %) < q(z,fa), q(z,t) < q(z,ta), q(@,t7) < q(z,ta)
A single rule capturing the IC

p(x,fa) V q(x, ta) < p(z,t%), ¢(z,)

Database contents

p(a’, td) —

The new rules for the closed world assumption

p(e,£) « not pla,ta), q(z,£) not g(z, ta)

95

e. Denial constraints for coherence
— p(Z,ta), p(7, fa), —q(Z,ta),q(7,fa)
f. Rules for interpreting the models

p(z,t7) < p(z,ta), plz,t™) < p(z,ta), not p(z,f,)

p(z,£7%) < p(z,fa), p(z,£%) < not p(z,ta), not p(z,t.)
q(z,t7) < q(z,ta), q(z,t) < q(z,ta), not q(z,fa)

q(z, £7) « q(z, f,), q(z,) < not q(z,tq), not q(z,t,).

|

The programs I17(DB, IC) with their coherence denials can be run with
DLYV.

Example 14. (example 13 continued) If the stable models of the program in example
13 are computed using DLV, by adding the extensional predicates for representing
the domain and the facts of the database:

domd(a). d(a,tq).
and the clause for representing the database facts as intensional predicates:
p(z,tq) < d(z,tq), domd(x).

the following is obtained:

M, = {domd(a),d(a,tq), p(a,tq), p(a,t*), q(a, *), q(a, ta), p(a, t*), q¢(a, t*), ¢(a, t**)}

M2 = {domd(a)’ d(a’ td)’p(aa td),p(a, t*)a p(a, f*)a Q(a’ f*)a p(a, f**)a q(a’ f**),p(a, fa)}

The first model says, through its atom g(a, t**), that ¢(a) has to be in-
serted in the database. The second one, through its atom p(a, £**), that p(a) has to

o6

be deleted.

The reason for considering the predicate domd(z) is that it is recommen-
dable for every clause in the program to include it in its body, as this implies the
program will be instantiated just in the domain values and not in the annotation

values. O

Example 15. In example 13 the coherence denial constraints did not play any role,
because the only models, without those constraints, are exactly the same obtained
with them. Since there is only one IC, to repair the database only one repair step
is needed, in consequence there is no way to get an incoherent stable model. Let us
add to that example a new inclusion dependency, Vz (¢(z) — r(z)), with the same
instance. One repair is obtained by inserting ¢(a), which causes the insertion of (a).

Now the program is as before, but with the additional rules:

r(z,£*) < r(z,fa), r(z,t*) < r(z, ta),
r(z,t*) < r(z,tq) r(z,f*) < not r(z,tq)
q(z,£a) Vr(z, ta) < q(z, t*), r(z, *)
r(z,) « r(z,ta), r(z,t*) « r(z,tq), not r(z,f,)
r(z,) r(z,fa), r(z,) < not r(x,tq), not r(z,t,)

r(z,ta), r(z, fa)-
After running the program the following models are computed

= {domd(a), d(a, ta), p(a, ta), p(a, t*), p(a, *), q(a, £*), r(a, £*), p(a,),
r(a,), q(a,), p(a,fa) }

M, = {domd(a),d(a, ta), p(a, tq), p(a,t*), q(a, £*),r(a, %), r(a, ta), ¢(a, ta),
p(a,t),q(a, t*), q(a,t),r(a, t*), r(a,)}

Nevertheless, if the coherence denial constraints are omitted, more preci-

sely the one for the table ¢, a third model is obtained, which is incoherent:

o7

M3 = {domd(a), d(a, ta), p(a, tq), p(a,t*), q(a, £*),r(a, *), r(a, £*), ¢(a, £**),
q(a, ta), p(a, t*), q(a, t*), q(a,t*), q(a, fa) }

It is known (Dantsin et al. 1997) that the complexity of computing the
stable models of a disjunctive logic program is I1}-complete in the size of the ground
program. For some specific cases, computing consistent answers for non-existential
conjunctive queries can be done more efficiently using the well-founded interpreta-

tion, that is computed in polynomial time (Arenas et al. 2000b).

As mentioned before, consistent answers can be obtained running a query
program together with the repair program I17 (DB, IC), under the skeptical stable

model semantics, that sanctions as true what is true of all stable models.

5.4 Head Cycle Free Programs

From (Ben-Eliyahu et al. 1994) and (Dantsin et al. 1997) it is known that
the Head Cycle Free (HCF) property of a disjunctive logic program is a sufficient
condition for this one to have exactly the same stable models than its related definite
program. An advantage of this transformation is the fact that the complexity of
computing the stable models of a normal definite program is co-NP-complete, i.e.
probably lower than the complexity of computing stable models for a disjunctive
logic program. The related definite program of a disjunctive program is constructed

by replacing every clause of the form 5:

n m
Ve A
i=1 j=1

5Considering, as in the case of the programs presented here, just positive literals belong to the

head of a clause.

o8

by the set of n definite clauses of the form:

bk<—/m\aj,/n\n0tbi, 1<k<n, i#k

j=1 i=1

With every program II a directed graph DGy =< N, E > is associated, such that:

1. every ground predicate of I is a node in N.

2. there is an arc in E directed from node a to node b iff there is a ground clause
r in II such that @ and b are the predicates of a positive literal appearing in

the body and the head of that clause, respectively.

A program II is HCF' iff there is no ground clause r in II such that two predicates

occuring in the head of 7 are in the same cycle of DGy (Leone et al. 1997).

Example 16. The program in example 13 satisfies the property of being HCF
property, as it can be easily shown by drawing the relevant part of the graph (figure
5.1) (there is no cycle involving p(z,f,) and ¢(z,t,)). The definite version of the
program in example 13 is exactly the same for every definite clause in that program.
The only disjunctive clause present there is the one for representing the IC. Then, it

can be transformed in two definite clauses:
p(z,fa) + p(z,t*), q(x, %), not q(x,ta)

q(z,ts) « p(z, t%), q(x, %), not p(z,f,)

If the stable models of this new program are computed using DLV, exactly those of
example 14 are obtained. This coincides with the fact that, for a HC'F' disjunctive
logic program, its stable models can be computed by computing the stable models

of its related definite program. O

99

/

Figure 5.1 Directed graph of program in example 16.

The question if every repair program considered in this work is HC'F
or has the same stable models of its related definite instance is answered by the

following example.

Example 17. Consider the instance DB = {p(a),r(a)} and the following set of ICs:

{—-w(z) VvV -r(z)Vq(z), plx)Vq(z)V-r), @) Vaelz)Vp)}

represented as clauses:

r(z,fa) Vp(z,fa) V q(z, ta) < p(x, t%), ¢(x, %), r(z, t¥)
r(z,fa) Vp(z,fa) Vq(z, f) « p(z, t*), ¢(z, t*), r(z, t*)
r(z,fa) Vp(z,ta) V q(2, ta) < p(z, £), q(z, £), 7 (z, t*)

The instance is inconsistent with respect to its constraints. As the pro-

gram [17(DB, IC) also contains the following clauses:
p(z, %) < p(z, fa) p(z,t*) < p(z, ta)
gz,) gz, fa) g, t7) < g(e, ta)

part of the directed graph is seen as in figure 5.2.

60

Figure 5.2 Directed graph of program in example 17.

Given p(z,f,) and ¢(z, ta) are in the same cycle and they are both in the
head of the first clause, the program under consideration is not HC'F. Anyway, since
the HC'F property is not a necessary condition for both the disjunctive program and
its related definite program to have the same stable models, it could still be possible

that this happens.

Using DLV for computing the stable models of this program, the follo-
wing is obtained:
M, = {domd(a),d(a,ta), e(a, ta),p(a,ta), p(a, t*),r(a,tq), r(a, t*), ¢(a, *),
r(a,), r(a,), q(a,), p(a, t**),r(a, fa) }
M, = {domd(a),d(a,ta), e(a, ta),p(a,ta), p(a, t*),r(a,tq), r(a, t*), p(a, £*),

Q(a'a f*),p(a, f**)a Q(aa ta): p(a, fa)a T(aa t**): Q(aﬂ t*)a Q(a'a t**)}

The related definite program from I17 (DB, IC') can be obtained by repla-

cing every disjunctive clause above by the following set of definite clauses:

r(z,fa) < p(a, t*), ¢(z, 1), r(z,t*), not p(z,fa), not q(z, ta)

p(z, fa) < p(z,t*), q(z, 1), r(x, t*), not r(z,), not q(x,t,)

61

q(z,ta) < p(z,t%), q(z, %), r(x, t*), not r(z,f.), not q(x,f,)
r(z,fa) « p(z, t*), q(z, t*), r(z, t*), not p(z,f,), not q(z,f,)
p(z, fa) < p(z,t*), q(z,t*), r(z,t*), not r(x,1s), not q(z, f,)
q(z,fa) < p(x,t*), q(z, t*), r(z, t*), not r(z,fa), not p(z, fa)
r(z,fa) < p(x, %), q(z, %), r(z, t*), not p(z,t.), not q(z,t.)
p(z,ta) « p(z,), q(z, %), r(z,t*), not r(x,fa), not g(x,t.)

q(z,ta) < p(x, %), q(x, %), r(z, t*), not r(z,f,), not p(z,ta)

This program just have one stable model. This is:

M, = {domd(a),d(a,ta),e(a, ta),p(a,ta), p(a, t*),r(a,tq), r(a, t*), ¢(a, *),
r(a, %), r(a, £*), q(a,), p(a, t**), r(a, fa) } O

It has been shown that not every program considered here can be trans-
formed to its related definite program for obtaining its stable models. Therefore the

complexity of the problem cannot be reduced to be co-NP-complete in this manner.

5.5 The Query Program

Given a first order query (), the consistent answers from DB are loo-
ked for. In consequence, those atoms that are simultaneously true in every inter-
preted coherent stable model of the program II7(DB, IC) are required. They are
obtained through the query Q**, obtained from () by replacing, for p € P, every
positive literal p(s) by p(s,t**) and every negative literal —p(s) by p(s, £**). This
query corresponds to the annotated version Q®* of @ (see section 4). Now Q**
can be transformed into a query program II(Q**) by a standard transformation
(Lloyd 1987; Abiteboul et al. 1995).

Example 18. (example 7 cont.) The program I1"(DB, IC) is the program I1(DB, IC)
of example 7, but extended with the interpretation program and rules for dealing

with negative information:

62

Eurbook(z,y, z,t**) < Eurbook(z,y, z,ta)
Eurbook(z,y, z,£*) < Eurbook(z,y, z,f,)

Eurbook(z,y, z,t*) < Eurbook(z,y, z,ta), not Eurbook(z,y, z,fa)
Eurbook(z,y, z,£*) < not Eurbook(z,y, z,ta), not Eurbook(z,y, z,ta)
Book(z,y, z,t*) < Book(z,y, z,t,)

Book(z,y, z,**) - Book(z,y, z,f,)

Book(z, y, z,t*) < Book(z,y, z,ta), not Book(z,y,z,f,)
Book(z,y, z,**) < not Book(z,y, z,ta), not Book(z,y, z,ts)
FEurbook(z,y, z,f*) < not FEurbook(z,y, z,tq)

Book(z,y, z,f*) < not Book(z,y,z,tq)

For the query
Q(y) : IzBook (kafka, y, z),

is generated
Q" (y) : 3zBook (kafka,y, z,t*),

that is transformed into the query program

Q™) : Answer(y) < Book(kafka,y, z,t*).

63

The coherent stable models of II"(DB, IC) UII(Q**) are:

M, ={ Eurbook (kafka, metamorph, 1919,t4), Eurbook(kafka, metamorph, 1919,t%),
Book (kafka, metamorph, 1919 ,t4), Book(kafka, metamorph, 1919,t%),
Book (kafka, metamorph, 1915, tq4), Book(kafka, metamorph, 1915,t%),
Book(kafka, metamorph, 1915, £,), Book(kafka, metamorph, 1915, £*),
FEurbook (kafka, metamorph, 1919,t*), Eurbook (kafka, metamorph, 1915,),
Book(kafka, metamorph, 1915, £*), Book(kafka, metamorph, 1919,t*),
Eurbook(kakfa, methamorph, 1915 ,£*), Answer(methamorph)}

My ={Eurbook (kafka, metamorph, 1919 ,tq4), Eurbook(kafka, metamorph, 1919, t*),
Eurbook (kafka, metamorph, 1919, 1,), Furbook(kafka, metamorph, 1919, f%),
Book (kafka, metamorph, 1919, tq), Book(kafka, metamorph, 1919,t%),
Book (kafka, metamorph, 1919, £,), Book(kafka, metamorph, 1919, %),
Book (kafka, metamorph, 1915, tq), Book(kafka, metamorph, 1915, t%)
Eurbook (kafka, metamorph, 1919 ,£*), Eurbook (kafka, metamorph, 1915,),
Book (kafka, metamorph, 1919, £**), Book (kafka, metamorph, 1915 ,t**)
Eurbook (kakfa, methamorph, 1915, £*), Answer (methamorph)}.

It can be seen that y = metamorph is a consistent answer to the query. a

64

VI. PROGRAMS WITH REFERENTIAL ICS

The repair program of section 5.1 was stated for universal ICs. Referen-
tial ICs of the form VZ(p(z) — Jy(q(z',y))), where ' C z, are now going to be
considered. It is assumed that the variables range over an underlying database do-
main D, that does not include the value null, nevertheless, a RIC can be repaired by
insertion of the null value, say ¢(@, null), or by elimination in cascade. If the repair
is by introduction of null, it is assumed that this change will not propagate to other
ICs, e.g. a set inclusion dependency like VZ(¢(Z',y) — 7(Z',y)). The program will

not detect such inconsistency.

The program II(DB, IC) is then extended with the following formulas:

auz(T) < q(T',y,ta), not q(T',y, fa). (6.1)
auz(Z) < ¢(@,y,ta). (6.2)
p(Z,fa) V q(z', null t,) <+ p(z,t*), not aux(z), not q(z', null,tq). (6.3)

Intuitively, clauses (6.1) and (6.2) detect if the formula Jy(q(@’,y):t Vv
q(@',y):ta)) is satisfied by the model. If this is not the case, and p(@,t*) belongs to
the model, and ¢(@', null) is not in the original instance, i.e. there is a violation of
the RIC, then, according to rule (6.3), the repair is done either by deleting p(a) or

inserting ¢(@’, null).

Notice that here the definition of repair given in section 2 has not been
followed, in the sense that repairs are obtained by deletion of tuples or insertion of null
values, the usual ways to maintain referential integrity constraints. For example, if the
instance is {p(@)} and IC contains only VZ(p(Z) — 3yq(Z,y)), then {p(a@),¢(a,b)},
with b € D, is not a repair, although it would be a repair according to the original

definition. In particular, this “repair”will not be captured by the program.

65

If we insist in keeping the original definition of repair, i.e. allowing {p(a),

q(a,b)} to be a repair for every element b € D, clause (6.3) could be replaced by:
p(7,) V (T, y,ta) + p(Z,t%), not auz(z'), not q(T', null, tq), choice(T',y). (6.4)

where choice(X,Y) is a static non-deterministic operator that selects one value for
attribute tuple Y for each value of the attribute tuple X (Giannotti et al. 1997). In
equation (6.4), choice(Z',y) selects one value from the domain. Then, this rule forces

the one to one correspondence between stable models and repairs.

Example 19. Consider the database instance {p(@)} and the following set of ICs:

Yz (p(r) = Jyg(e,y)), Vavy(q(z,y) = r(z,y))-

The program II7(DB, IC) is written in DLV as:

Database contents

domd(a). d(a,tq). p(z,tq) « d(z,td), domd(x).

Rules not depending on ICs
p(z, £*) < not p(z,tq), domd(x).
p(z, £*) < p(z,fa), domd(x).
p(z,t*) < p(z,ta), domd(zx).
p(z,t*) « p(z,tq), domd(z).
q(z,y,£*) < not q(z,y,ta), domd(z), domd(y).
q(z,y,f*) < q(z,y,), domd(x), domd(y).
q(z,y,t*) < q(z,y,ta), domd(z), domd(y).

q(z,y,t*) < q(z, y, ta), domd(z), domd(y).

66

r(z,y,f*) < not r(z,y,ta), domd(z), domd(y).
r(z,y,£*) < r(z,y,f.), domd(z), domd(y).
r(z,y,t*) < r(z,y,ta), domd(z), domd(y).

7'(.’1), Y, t*) «— T(l‘, Y, td)a domd(m), domd(y)

Rules for the ICs
auz(z) < q(x,y,ta), not q(z,y,), domd(x), domd(y).
auz(z) < q(x,y,ta), domd(x), domd(y).
p(z, fa)Va(z, null, ta) < p(z,t*), not auz(x), not q(z,null, tq), domd(z).

q(z,y,fa) Vr(z,y, ta) < q(z,y,t*), r(z,y, £*), domd(x), domd(y).

Rules for interpreting the models

p(z,t**) < p(x,t,), domd(z).

p(z, t™) < p(z,tq), not p(z,f,), domd(x).
p(z, %) « p(x,f,), domd(x).

p(z, %) + not p(x,ta), not p(z,ta), domd(z).
q(z,t*) q(z,t,), domd(x).

q(z,t*) « q(z,tq), not q(z,f,), domd(x).

q(z,) « q(x,fs), domd(x).

q(z, %) < not q(x,ta), not q(z,ta), domd(x).
r(z,t*) « r(z,ts), domd(z).

r(z,t*) « r(z,tq), not r(z,f,), domd(x).

67

r(z,) « r(z,f,), domd(x).

r(z,) < not r(z,tq), not r(z,t,), domd(x).

Rules for interpreting the null values
q(z, null, t**) < q(z,null, t,).
q(z, null, t**) < q(z, null, tq), not q(z, null, £,).
r(z, null, %) < r(z,null, t,).

r(z, null, t**) < r(z, null, tq), not r(z,null, f,).

Denial constraints

—p(z,ta), p(r,fa). < q(z,y,ta),q(z,y,fa). < r(z,y,ta),7(z,y,fa).
The models obtained are:
Ml = {domd(a), d(a'a td)7 p(a'a td)7 p(a'a t*): p(av f*)a p(a'a f**): p(av fa)7 Q(a’a a, f*)a
r(a,a,t%),q(a,a,), r(a, a,)}
My = {domd(a), d(a, ta), p(a, ta), p(a, t*), p(a, t*), ¢(a, null, t,), ¢(a, a, £*), r(a, a, £*),

Q(a7 a/’ f**)7 r(a7 a/? f**)? q(a/? TLU”, t**)}

corresponding to the database instances) and {p(a), ¢(a,null)}. Notice the imple-
mentation does not consider the inclusion dependency VaVy (q(ac, y) — r(z, y)) to be
violated by the insertion of the tuple g(a,null).

What if the fact ¢(a, null) is added to the instance? Then, the following

clauses are in the program:
e(a, null, tq). q(z,null, tq) < e(x,null, tq), domd(x).

The only model obtained is

M, = {domd(a),d(a,ta), e(a, null, tq), p(a, ta), p(a, t*), g(a, null, tq), p(a, t**),
q(a,a,), r(a,a,*),q(a, a, t**),r(a, a, £*), g(a, null, t**) }

68

That is, the program considers the instance {p(a), g(a,null)} does not

violate the RIC, as its only repair is itself.
O

Let us suppose finally, that the policy of repairing the violation of a RIC
just deleting tuples and never adding information to the instance is desirable. Then,

equation (6.3) should be written as
(7, f,) < p(z,t*), not aux(Z), not q(T', null, tq).

That is, if the RIC is violated, detected by the body of the clause, the fact p(a) that
produces such violation must be eliminated (stated in the head).

69

VII. RELATED WORK

Closest related works are (Greco et al. 2001) and (Arenas et al. 2000b),
that present a general methodology to specify database repairs for universal I1Cs
by means of logic programs with stable model semantics. The programs presented
here are much simpler and shorter than those due to the simplicity of its stabilizing
clauses. In particular, in (Arenas et al. 2000b) and (Greco et al. 2001) an integrity
constraint involving n database predicates has n disjunctive clauses associated. The
approach in (Greco et al. 2001) concentrates mainly in producing the set of changes,
rather than the repaired instances directly. This implies the program cannot be used

directly to obtain consistent answers.

In (Blair et al. 1989; Kifer et al. 1992b; Leach et al. 1996) paraconsistent
and annotated logic programs are introduced. In (Subrahmanian 1994) those pro-
grams are used to integrate databases, a problem closely related to inconsistency
handling. It is not clear how to use those definitive non disjunctive programs to cap-
ture database repairs. Furthermore, notice that the programs presented in this work
have a completely classical semantics. However, in (Damasio et al. 2000) more classi-
cal semantics are proposed for general annotated logic programs (Kifer et al. 1992b),
and in (Damasio et al. 1999) some transformation methodologies for paraconsistent
logic programs (Blair et al. 1989) are shown that allow assigning to them extensions

of classical semantics.

Another approach to database repairs based on logic programming se-
mantics consists of the revision programs (Marek et al. 1998). The rules in those
programs explicitly declare how to enforce the satisfaction of an integrity constraint,

rather than explicitly stating the ICs, e.g.:
in(a) < in(ar), ..., in(ag), out(br),. .., out(by)

has the intended procedural meaning of inserting the database atom a whenever
ai,...,a are in the database, but not by,...,b,,. Also a declarative, stable model
semantics is given to revision programs. Preferences for certain kinds of repair actions
can be captured by declaring the corresponding rules in program and omitting rules

that could lead to other forms of repairs.

70

In (Gaasterland et al. 1994), annotated logic (programs) were used to
specify and obtain answers matching user needs and preferences. Deeper relationships

to this work deserve to be explored.

In general, the work done with inconsistent databases is very close to the
one for incomplete information, i.e. databases with null or missing values. A certain
answer to a query in a probably incomplete database, is an answer that holds in
every “model” of the instance, where a “model” could be understood as a notion
equivalent to the notion of repair in the context of incompleteness (Lipski 1979).
Under this framework it has also been proposed (Reiter 1978) to return disjunctive
answers. A disjunctive answer to the query Q(Z) is a set of tuples {as, ..., an,} such
that Q(a1) V ---V Q(ay,) is a certain answer and no proper subset of that set also
satisfies this condition. It seems interesting to study this possibility under the context

of inconsistency.

71

VIII. CONCLUSIONS

In this work a general treatment of consistent query answering for first
order queries and universal ICs was presented. It was shown, additionally, how to
annotate referential ICs, obtaining a correspondence between the minimal models of
the annotated first order specification and the database repairs. Then, the problem
of consistent query answering as a problem of non-monotonic entailment from the
annotated theory was formulated. Classical disjunctive logic programs, where anno-
tations are now arguments, that specify the database repairs in the case of universal
ICs were also formulated. In consequence, consistent query answers can be obtained
by “running”the program. The semantics of the programs is essentially stable model
semantics for disjunctive programs. Finally, an implementation of those programs in
DLV and an extension of the programs to consider referential integrity constraints

were presented.

Among the relevant advantages of having presented a first order program

such that its stable model semantics specifies the repairs of the original instance are:

] For the annotated theory 7 (DB, IC) it is necessary to select its minimal mo-
dels to obtain the repairs. Although, every coherent stable model of the pro-
gram II7(DB, IC) has associated a repair.

] The theory does not have a deductive system as it is needed to reason with a
subset of its models. It would be required a non-monotonic logic, and is usually
hard to work with non-monotonic logics. For a logic program there is a clear

way to deduce things. Maybe not very efficient but clear.

] After inserting and deleting tuples it is easy to change the program to obtain

the new repairs. This can be done just varying the facts the program possess.

] The stable models of a first order disjunctive logic program can be computed
with an application like DLV. It is not known any application to compute

disjunctive annotated programs.

72

An important problem that requires much more research by the logic
programming and database communities has to do with developing mechanisms for
query evaluation from disjunctive logic programs that are guided by the query, ho-
pefully for open queries containing free variables and asking for answers that are sets
of tuples. The current alternative is based on finding those ground query atoms that
belong to all the stable models once they have been computed via a complete ground

instantiation of the original program; obviously not a very appealing mechanism.

Ongoing work considers, among others:

. To find a natural representation of user preferences for choosing some repairs.
A consistent preferred answer would be an answer that holds in every preferred
repair. Also, it would be interesting to model the preferences in the style of

repair policies, e.g. the preference for deleting tuples before inserting tuples.

. To study the class of the programs presented here that are HC'F'. The compu-
tation of the semantics of these programs has (probably) a lower complexity
than that of disjunctive programs. Also, an implementation in X.SB can be
done for this kind of programs and its Oracle or ODBC(interface can become

useful.

= To study how previously computed repairs can be used for more efficiently
computing new repairs, once some information has been added or deleted from

the instance or once the integrity constraints have been changed.

] To characterize with a modal logic the notion of consistent query answering. In
this work that notion has been specified in the meta-language, as those answers
that holds in every coherent stable model of the program. Anyway, if it was
wanted to define it in the object language of a modal logic, it would be useful
to think in possible worlds as repairs, and to define a modal operator C for

representing being true in every possible world.

73

BIBLIOGRAPHY

[Abiteboul et al. 1995] ABITEBOUL, S.; HULL, R. and VIANU, V. (1995)
Foundations of Databases. Addison-Wesley, 1995.

[Arenas et al. 1999] ARENAS, M.; BERTOSSI, L. and CHOMICKI, J. (1999)
Consistent Query Answers in Inconsistent Databases. In Proc. ACM Sym-
posium on Principles of Database Systems (ACM PODS’99), Philadelphia),
pp. 68-79, 1999.

[Arenas et al. 2000a] ARENAS, M.; BERTOSSI, L. and KIFER, M. (2000) Ap-
plications of Annotated Predicate Calculus to Querying Inconsistent Data-
bases. In ‘Computational Logic - CL2000° Stream: 6th International Confe-
rence on Rules and Objects in Databases (DOOD’2000). Springer Lecture
Notes in Artificial Intelligence 1861, pages 926-941.

[Arenas et al. 2000b] ARENAS, M.; BERTOSSI, L. and CHOMICKI, J. (2000)
Specifying and Querying Database Repairs using Logic Programs with Ex-
ceptions. In Flexible Query Answering Systems. Recent Developments, H.L.

Larsen, J. Kacprzyk, S. Zadrozny, H. Christiansen (eds.), Springer, pp. 27—
41, 2000.

[Ben-Eliyahu et al. 1994] BEN-ELIYAHU, R.; and DECHTER, R. (1994) Pro-
positional Semantics for Disjunctive Logic Programs. Annals of Mathematics
in Artificial Intelligence, 12:53-87, 1994.

[Blair et al. 1989] BLAIR, H.A. and SUBRAHMANIAN;, V.S. (1989) Paraconsis-
tent Logic Programming. Theoretical Computer Science, 68:135-154, 1989.

[Buccafurri et al. 2000] BUCCAFURRI, F.; LEONE, N.; RULLO, P. (2000) En-
hancing Disjunctive Datalog by Constraints. IEEE Transactions on Know-
ledge and Data Engineering, 12(5) : 845-860, 2000.

[Damasio et al. 1999] DAMASIO, C. V.; PEREIRA, L.M. and SWIFT, T. (1999)
Coherent Well-founded Annotated Logic Programs. In Proc. LPNMR’99.
Springer Lecture Notes in Al 1730, pp. 262-276, 1999.

74

[Damasio et al. 2000] DAMASIO, C. V. and PEREIRA, L.M. (1998) A Survey
on Paraconsistent Semantics for Extended Logic Programas. In Handbook of
Defeasible Reasoning and Uncertainty Management Systems, Vol. 2, D.M.
Gabbay and Ph. Smets (eds.), Kluwer Academic Publishers, pp. 241-320,
2000.

[Dantsin et al. 1997] DANTSIN, E.; EITER, T.; GOTTLOB, G.; and VORON-
KOV A. (1997) Complexity and Expressive Power of Logic Programming.
In Proc. Twelfth Annual IEEE Conference on Computational Complezity,
CCC'97, Ulm, Germany, pages 82-101, 1997.

[Eiter et al. 2000] EITER, T.; FABER, W.; LEONE, N.; PFEIFER, G. (2000)
Declarative Problem-Solving in DLV. In Logic-Based Artificial Intelligence,
J. Minker (ed.), Kluwer, pp. 79-103, 2000.

[Gaasterland et al. 1994] GAASTERLAND, T. and LOBO, J. (1994) Qualified
Answers That Reflect User Needs and Preferences. In Proc. 20th Interna-
tional Conference of Very Large Databases (VLDB’94). Morgan Kaufmann
Publishers, pages 309-320, 1994.

[Gelfond et al. 1988| GELFOND, M.; and LIFSCHITZ, V. (1988) The Stable
Model Semantics for Logic Programming. In Logic Programming, Procee-

dings of the Fifth International Conference and Symposium, R. A. Kowalski
and K. A. Bowen (eds.), MIT Press, pp. 1070-1080, 1988.

[Giannotti et al. 1997] GIANNOTTI, F.; GRECO, S.; SACCA, D.; and ZANIO-
LO C. (1997) Programming with Non-Determinism in Deductive Databases.
Annals of Mathematics and Artificial Intelligence 19: 97-125, 1997.

[Greco et al. 2001] GRECO, G.; GRECO, S.; and ZUMPANO, E. (2001) A Lo-
gic Programming Approach to the Integration, Repairing and Querying of
Inconsistent Databases. In Proc. 17th International Conference on Logic Pro-
gramming, ICLP’01, Ph. Codognet (ed.), LNCS 2237, Springer, pp. 348-364,
2001.

[Kifer et al. 1992a] KIFER, M. and LOZINSKII, E.L. (1992) A Logic for Rea-
soning with Inconsistency. Journal of Automated reasoning, 9(2):179-215,
November 1992.

75

[Kifer et al. 1992b] KIFER, M. and SUBRAHMANIAN, V.S. (1992) Theory of
Generalized Annotated Logic Programming and its Applications. Journal of
Logic Programming, 12(4):335-368, April 1992.

[Leone et al. 1997] LEONE, N.; RULLO, P.; and SCARCELLO, F. (1997) Dis-
junctive Stable Models: Unfounded Sets, Fixpoint Semantics, and Compu-
tation. Information and Computation, 135(2):69-112, 1997.

[Lifschitz 1996] LIFSCHITZ, V. (1996) Foundations of Logic Programming. In
Principles of Knowledge Representation, G. Brewka (ed.), CSLI Publica-
tions, pp. 69-127, 1996.

[Lloyd 1987] LLOYD, J.W. (1987) Foundations of Logic Programming. Springer
Verlag, 1987.

[Leach et al. 1996] LEACH, S.M. and LU, J.J. (1996) Query Processing in An-
notated Logic Programming: Theory and Implementation. Journal of Inte-

lligent Information Systems, 6, pp. 33—-58, January 1996.

[Lipski 1979] LIPSKI, W. (1979) On Semantics Issues Connected with Incom-
plete Information Databases. ACM Transactions on Database Systems,
4(3):262-296, September 1979.

[Lobo et al. 1998] LOBO, J.; MINKER, J. and RAJASEKAR, A. (1998) Seman-
tics for Disjunctive and Normal Disjunctive Logic Programs. In Handbook of
Logic in Artificial Intelligence and Logic Programming, Vol. 5, D. Gabbay
et al. (eds.). Oxford University Press, 1998.

[Marek et al. 1998] MAREK, V.W. and TRUSZCZYNSKI, M. (1998) Revision
Programming. Theoretical Computer Science, 190(2):241-277, 1998.

[Reiter 1978] REITER, R. (1978) Deductive Question Answering on Relational
Databases. In Logic and Data Bases, H. Gallaire et al. (eds.), pp. 149-178.
Plenum, New York, 1978.

[Subrahmanian 1994] SUBRAHMANIAN;, V.S. (1994) Amalgamating Knowled-
ge Bases. ACM Transactions on Database Systems, 19(2):291-331, 1994.

