
GeoP2P: an Adaptive and Fault-tolerant Peer-to-peer Overlay for Location

Based Search

Shah Asaduzzaman and Gregor v. Bochmann

School of Information Technology Engineering

University of Ottawa

Ottawa, ON, Canada K1N 6N5

{asad,bochmann}@site.uottawa.ca

Abstract

This paper proposes a fully decentralized peer-to-peer

overlay structure GeoP2P, to facilitate geographic location

based search and retrieval of information. Certain limita-

tions of centralized geographic indexes favor peer-to-peer

organization of the information, which, in addition to avoid-

ing performance bottleneck, allows autonomy over local

information. Peer-to-peer systems for geographic or mul-

tidimensional range queries built on existing DHTs suffer

from the inaccuracy in linearization of the multidimensional

space. Other overlay structures that are based on hierar-

chical partitioning of the search space are not scalable be-

cause they use special super-peers to represent the nodes in

the hierarchy. GeoP2P partitions the search space hierar-

chically, maintains the overlay structure and performs the

routing without the need of any super-peers. Although sim-

ilar fully-decentralized overlays have been previously pro-

posed, they lack the ability to dynamically grow and retract

the partition hierarchy when the number of peers change.

GeoP2P provides such adaptive features with minimum per-

turbation of the system state. Such adaptation makes both

the routing delay and the state size of each peer logarithmic

to the total number of peers, irrespective of the size of the

multidimensional space. Our analysis also reveals that the

overlay structure and the routing algorithm are generic and

independent of several aspects of the partitioning hierarchy,

such as the geometric shape of the zones or the dimension-

ality of the search space.

1 Introduction

Location-based information search has become a very

popular and useful service in recent years. Almost all ma-

jor web search engines [1, 2] provide location-based search

tools for finding businesses and services at or around any

particular geographic location. However, information re-

trieved by these tools are limited to relatively static ones

such as name and category of a restaurant. This is be-

cause all the information is stored and indexed in central-

ized databases. Frequently updated information, such as the

number of patients currently waiting in a clinic, or real time

information such as video streams from monitoring cam-

eras, are hard to provide in such centralized architecture

due to the huge aggregate volume of updates. Moreover

arrival or departure of local entities are not readily reflected

in the centralized index. This demands a fully decentralized

self-organizing architecture, also known as a peer-to-peer

architecture, where each local entity (called peer) maintains

its own local information. Such architecture allows auton-

omy over local information, removes performance bottle-

necks, distributes and balances operational load and avoids

any single point of failure.

In essence, locality-based search is realized by range

queries and nearest neighbor queries in the 2-dimensional

metric space of the earth surface. Techniques for resolv-

ing range and nearest neighbor queries in multidimensional

metric space have been extensively studied and are well

understood for centralized databases [3]. With recent ad-

vances in peer-to-peer systems, several approaches have

been proposed in the literature to accommodate such func-

tionalities in distributed databases with peer-to-peer organi-

zation.

In the peer-to-peer literature, originated from the study

of decentralized file-sharing systems, peers or Internet-

connected end-hosts communicate through a self-organized

network of acquaintances, called overlay network. In a class

of overlay networks, called structured overlays, the over-

lay neighborhood follows a certain pattern to facilitate effi-

cient routing of query and update messages to the respon-

sible peers. Peers are usually assigned randomized unique

numerical identifiers and the structure is defined over the

identifier space which is one-dimensional in nature. They

are also called distributed hash tables (DHT) for the hash-



table-like put and get interface they provide. Like regular

hash tables, DHTs are designed for storage and retrieval of

a single data item at a time and it is hard, though not im-

possible, to accommodate complex queries such as range

queries in such systems.

Nevertheless, there exist several systems that are built

on top of DHTs to accommodate range queries, even for

multi-dimensional data sets [18, 7, 15, 5]. Due to the one-

dimensional nature of the identifier space upon which the

overlay structure is built, it is relatively easier to resolve

range queries over a one-dimensional object space, if ob-

jects are hashed into numerical keys in the same space

as identifiers using a proximity-preserving hash function.

A common approach for serving multi-dimensional range

queries over the DHTs is to encode the coordinates in multi-

dimensional space into one-dimensional keys, using space

filling curves. However, all known space filling curves

have the problem of translating points of close proximity

in multi-dimensional space into relatively distant points in

the single dimension. This makes accurate resolution of the

range queries harder and inefficient.

It may be noted that DHTs work well for resolving

range queries, if the overlay structure is based on the ob-

ject space, instead of the randomly assigned identifier space.

It is not usually practical to create a customized DHT for

every possible multi-dimensional object space. However,

the unique combination of widespread interest in location-

based search and the geographic distribution of information

providing peers, suggests the development of customized

overlay structures based on the geographic neighborhood.

Indeed there have been several proposals for creat-

ing overlay structures based on geographic proximity of

peers or proximity of geographic locations represented by

peers [8, 17, 6, 12, 16, 9]. The common feature of all such

proposals is that the 2-dimensional geographic space is hi-

erarchically partitioned into zones and the overlay struc-

ture allows routing of the queries along the depth of the hi-

erarchy. Such idea of hierarchical partitioning originated

from the well-known indexing data structures for multi-

dimensional data-sets such as R-tree [4], widely used in the

realm of centralized databases. One common problem in

most of the distributed implementations of hierarchical par-

titioning schemes is that they assign special roles to some

peers to represent different levels of zones in the hierarchy.

This results in peers representing higher level zones becom-

ing bottlenecks for query routing and single points of fail-

ure.

In this paper, we propose a fully decentralized peer-

to-peer overlay structure named GeoP2P with hierarchi-

cal partitioning of 2-dimensional geographic space, where

the maintenance of the overlay structure and the routing

of queries are performed without any special peers in the

zones. In fact, a very similar fully decentralized overlay

structure, named P2PR-tree [11] was described previously.

One problem of P2PR-tree is that it does not properly ac-

commodate dynamic formation and adjustment of partitions

in the presence of large-scale peer joins and departures,

or churn. The main contribution of this paper is to show

how information about dynamically formed zone bound-

aries can be maintained without significant overhead, allow-

ing growth and retraction of the zone-hierarchy following

the growth and reduction in the number of peers. This al-

lows us to keep both the query routing time and the size

of the state information maintained at each peer, within an

average logarithmic bound of the number of peers in the

system, irrespective of the size of the 2-dimensional space.

Our analysis also reveals that several aspects of the zon-

ing hierarchy such as geometric shape of the zones or di-

mensionality of the space, have minimal or no impact on

the overlay structure and routing algorithms. Moreover, we

have defined detailed mechanism for maintaining the over-

lay structure in the presence of churn.

The rest of the paper is organized as follows. Section 2

defines the problem and clarifies our assumptions. Section 3

introduces the overlay structure of GeoP2P based on hier-

archical space partitioning and specifies the data structure

(routing table) maintained by each peer. Section 4 explains

how messages are routed for different types of queries, us-

ing the overlay structure introduced before. Correctness and

complexity of the routing algorithms are also analyzed in

the same section. Section 5 describes how the overlay struc-

ture adapts to the peer dynamics. In particular, this section

describes how a newly joining peer initializes its routing

table (Section 5.1), how the zone hierarchy is grown and

retracted with change in the number of peers (Section 5.2

and 5.3), and how the correctness of the routing table en-

tries is maintained in presence of churn (Section 5.4). Fi-

nally, we conclude with a discussion of our contributions

compared to existing works in Section 6.

2 System Model and Assumptions

The system consists of large number of peers, distributed

across a 2-dimensional space with rectangular boundary.

Each peer resides in and a point in the 2 dimensional space

and responsible for providing information relevant to that

point. A peer can be a data collection sensor such as a

surveillance camera or a database regarding a particular ob-

ject related to the point such as a hotel or gas station. The

data stored in each peer is updated independently. Also, any

peer can be interested in any region in the space and launch

a query. The purpose of the overlay network is to route the

query to all relevant peers.

Although the earth surface is not 2-dimensional or rect-

angular, it can be projected as a rectangular region in a

2D plane, albeit with some distortion. Each peer is as-

sumed to know its coordinates in the 2D plane from some



off-the-shelf method such as Global Positioning System

(GPS). Note that although we restrict our discussion in 2-

dimensional space, the the proposed scheme can be easily

generalized for spaces with 3 or more dimensions. Also,

application of the proposed scheme is not limited to geo-

graphical space, it can be used for location based searches

in virtual worlds as well as for range queries over search

spaces of multiple continuous attributes.

We assume that each peer is connected to the an under-

lying network such as Internet and can potentially commu-

nicate with any other peer in the system using transport pro-

tocols in the underlay, as long as address of the target peer

in the underlay is known. We denote the address as network

address. Peers can arbitrarily join and leave the system.

Thus it is practically impossible for a peer to know the net-

work address and Cartesian coordinate of all peers in the

system to resolve the query locally. Hence, the geographic

space is indexed and the query is resolved in a distributed

manner. Two important design criteria of the system are

(i) to avoid assigning any special role to any peer and (ii)

to allow peers to arbitrarily join and leave the system with

minimum perturbation in the system.

The focus of this paper is to design the overlay network

that facilitates different location based queries. By ‘resolv-

ing queries’, we mean routing an application defined mes-

sage to the peers responsible for taking action on and/or

sending reply of the message. We leave the exact semantics

of the message and response to the application and concen-

trate on the routing mechanism. Example message seman-

tics could be sending some commands to the peers at par-

ticular location, sending some database queries to the peers

in a location to retrieve some information regarding the lo-

cation or asking for handles for accessing some resources in

the peers in a location.

3 Overlay Structure

In this section we discuss the structure of the GeoP2P

overlay network that routes the geographic queries to rele-

vant peers.

3.1 Structured Zoning

The universe is hierarchically divided into zones. At the

top level of the hierarchy, the zone representing the universe

is divided into a number of sub-zones, each of the sub-zones

being further divided into sub-sub-zones at the next level of

the hierarchy, and so on. Thus the zones can be concep-

tually organized into a tree, where the root of the tree rep-

resents the universe and each tree-node represents a zone.

The zone represented by a tree-node completely contains

all the sub-zones represented by the children of that node

and the zones represented by the children completely cover

the zone represented by the parent tree-node. Also, a zone

is always divided into non-overlapping sub-zones. The leaf

nodes of the tree represent the zones that are not divided any

further, which we denote as leaf zones. Each peer belongs to

a leaf zone at its deepest level, to successively larger zones

at higher levels, and to the zone covering the universe at the

top level. Figure 1(a) illustrates an example division of the

universe and the corresponding tree representation is shown

in Figure 1(b).

The division is performed dynamically according to the

number and geographic distribution of the peers. The num-

ber of divisions and number of hierarchical levels of divi-

sions may grow or shrink as peers join or depart from the

system. The division of a zone into sub-zones is motivated

by the number of peers in the zone and not by the area cov-

ered. Thus, after division, each of the sub-zones contains

roughly an equal number of peers, but the amount of area

covered by different sub-zones may vary widely. The max-

imum out-degree of the zoning hierarchy, i.e. maximum

number of sub-zones under a zone is limited by a system-

defined constant k. The number of peers in each leaf zone is

maintained roughly uniformly across the universe and kept

within two system-defined thresholds – a higher threshold

θH and a lower threshold θL. Division of a zone into sub-

zones is triggered when the number of peers in the zone is

above θH . A leaf zone may merge with one of its sibling

zones if the number of peers in the zone goes below θL.

Division of a zone into sub-zones can be performed in

two different ways – i) splitting or ii) clustering. The choice

of the zoning scheme is a design parameter, and only one of

the zoning scheme is followed while constructing an over-

lay. In the splitting scheme, a rectangular zone is divided

into k rectangular sub-zones as shown in Figure 1(c). Divi-

sion is always performed along the longer dimension of the

rectangle, breaking the tie in favor of X-axis. In the clus-

tering scheme, non-overlapping rectangular areas within the

zone are determined using a clustering algorithm, such that

the number of peers in each rectangle is between θL and θH

(Figure 1(a)). Each of the rectangular clusters is considered

a sub-zone. The remaining non-rectangular area, which also

contains some peers that are scattered and do not belong to

any of the clusters, is considered as a sub-zone too. We de-

note the non-rectangular sub-zone as remainder zone. Note

that a remainder zone always remains as a leaf zone.

In both of the zoning schemes, it is possible to divide

a zone into k sub-zones at a time or to offshoot one sib-

ling at a time until the total number of siblings at that level

reaches k. For k-at-a-time division, which we denote as

complete division, θH needs to be at least k times of θL,

allowing a wide variation in the number of peers per leaf

zone. The other scheme, denoted as incremental division-

ing, does not require this and is more flexible in the sense

that a zone can be divided into any number of sub-zones

between 2 and k, depending on the availability and spatial

distribution of peers. This is more suitable for the cluster-

ing zoning scheme, where spatial distribution of peers may



0 = Universe

0.0

0.1

0.2

0.2.0

0.2.1

0.2.2

0.1.1
0.1.0

0.1.2

0.1.2.0

0.1.2.1 0.1.2.2
a b

c

d

e f
g

h
i

j

k

l

m

n

o

p

q

r

(a) Zoning by clustering

0

0.0 0.1 0.2

0.1.0 0.1.1 0.1.2

0.1.2.0 0.1.2.1 0.1.2.2

0.2.0 0.2.1 0.2.2
kj

d e a b c

f g h i

n o p q r l m

(b) Zoning hierarchy

0 = Universe

a b

c

d

e f
g

h

i

j

k

l

m

n

o

p

q

r

0.0.0

0.0.1

0.0.2

0.1.0

0.1.1

0.1.2

0.2.0

(c) Zoning by splitting

Figure 1. Hierarchical zoning of the universe

not be suitable for making k rectangular clusters. Incremen-

tal division, however, requires some additional messages to

perform the division, as explained in Section 5.2.

Regardless of the choice of any particular zoning

scheme, zones and peers may be identified using a struc-

tured naming system. The name would identify the path in

the zoning hierarchy from the root to the tree-node denoting

a zone or peer. Such a name can be represented by a string

of integers, which can be conveniently packed in a bit-string

of sufficient length. In fact, naming of the zones or peers is

not necessary for construction or evolution of the overlay

structure, or for the purpose of routing queries. However,

for the purpose of network management or maintenance of

some internal data structures, such naming will be useful to

identify the zones and peers. On such use is discussed in

Section 5.4, where trace of the query routing path is used

for maintaining the correctness of routing tables.

3.2 Routing Table

Each peer maintains a routing table that lists all the other

peers it knows. To resolve a query about any region in

the universe, a peer tries to find a peer that belongs to the

leaf zones intersecting the query region. To do that, each

peer needs to have some structured knowledge to cover the

globe, such that for any zone, it either knows all the peers

belonging to that zone, or at least knows some peer that

knows more about that zone. Any query can thus be either

resolved or forwarded to a peer that has better knowledge

of the queried region.

One way to cover the globe with minimum amount of

knowledge is that, for each level, a peer knows at least one

peer in all the sibling zones, except its own zone for that

level. At the deepest level, the peer knows all other peers

within its own leaf zone. So, if a peer belongs to a level d
leaf zone, its routing table contains (k − 1)d contact peers,

where k is the maximum number of divisions of a zone at

any particular level. Assuming the tree of divisioning to

be balanced, d = logkN , where N is the total number of

peers in the overlay. We will demonstrate later that it is not

expensive to maintain this information correctly in presence

of peer join and departure.

The routing table is organized in d rows, one for each

level of hierarchy from 1 to d. Each row maintains informa-

tion regarding k−1 sibling zones of that level, plus some in-

formation for the self-zone. For each sibling zone, the table

need to maintain the network address of one (or more) con-

tact peer, rectangular boundary (coordinates of bottom-left

and top-right corner) of the zone. Siblings can be organized

into columns based on the segment of the zone id that iden-

tifies the branching at that level. For the self-zone, only the

zone boundary need to be maintained, and it can be stored

in the corresponding column based the id of the self-zone.

Level d, stores the information regarding the leaf zone and

here the siblings are individual peers instead of zones. So,

coordinates of the peers are stored here instead of rectangu-

lar boundaries. Figure 2(b) shows an example routing table

of a peer. The same overlay neighborhood is illustrated in

Figure 2(a)

In Section 5.2 and 5.3, we explain how the boundary

information can be retained when the network grows or

shrinks due to peer join and departure.

In a sense, the structure of the routing table in GeoP2P is

very similar to many other distributed hash tables (DHTs)

such as Pastry [14] and Kademlia [10], that use Plaxton’s

prefix matching based routing [13]. We may think that at

each digit in the numerical identifier used in those DHTs,

from the most significant towards the least significant, the

identifier space is hierarchically divided into sub-regions,

and each node belongs to a region of the identifier space

at the deepest level of hierarchy. In that sense, the rout-

ing table of a peer in those DHTs also maintains pointers

to at least one peer in all other sibling sub-regions at each

level of the hierarchy. In fact, when zones are identified

by numbers, the same prefix-based routing works here too.

The difference between those DHTs and GeoP2P is that in

our case we have zoned the geographic space instead of the

identifier space, and also our zoning is dynamic instead of

being pre-configured.



0 = Universe

0.0

0.1

0.2

0.2.0
0.2.1

0.2.2

0.1.1
0.1.0

0.1.2

0.1.2.0

0.1.2.1 0.1.2.2
a b

c

d

e f

g
h

i

j

k

l

m

n

o

p

q

r

(a) Overlay neighbors of peer f

0 1 2

1

2

3

4

0.0

k

0.1

self

0.2

l

0.1.0

e

0.1.1

c

0.1.2

self

0.1.2.0 0.1.2.1

self

0.1.2.2

h

0.1.2.1.0

g

0.1.2.1.1

self

boundary

contact

le
v
e
l

(b) Routing table of peer f

0 = Universe

0.0

0.1

0.2

0.2.0

0.2.1

0.2.2

0.1.1

0.1.0

0.1.2

0.1.2.0

0.1.2.1 0.1.2.2
a b

c

d

e
f
g

h
i

j

k

l

m

n

o

p

q

r

(c) Routing path of a range query

Figure 2. Routing table and routing

4 Routing Messages

As discussed in Section 2, the main purpose of the

GeoP2P overlay is to route messages targeted to peers in a

particular geographic location. Exact semantics of the mes-

sage, which can be a query or an update of information or

a command, is left to the application that uses the overlay.

The job of the overlay is to route the application defined

messages to the specified target peers and then deliver the

message to the same application in the target. Some of these

routing services are also used by some of the overlay man-

agement functions such as zone division or routing table

update. The target of a message may be defined in sev-

eral forms, e.g. all peers in a specified area (used for range

query), at least one peer in a specified area or the peer clos-

est to a specified point (used for nearest neighbor query).

The following text explains the routing methods for differ-

ent types of targets.

4.1 Messages Targeted to Peers in an Area

In this case a message is targeted to an area or range

of interest, and we denote them as area messages. Such

messages are used for querying information from peers in

a particular area or for updating or commanding the peers

in that area. We assume that the area of interest is specified

by an axis-parallel rectangle, although it could be any 2-

dimensional geometric shape. We chose axis-parallel rect-

angles, because our zoning scheme uses rectangular areas,

and it is slightly easier to decide whether a rectangular zone

in the overlay intersects with the area of interest. The mes-

sage may be targeted to all peers or at least one peer in the

specified area.

Algorithm 4.1 summarizes the protocol that a peer fol-

lows when it receives an area message targeted to all peers

in the specified area. Each peer forwards the message to all

sibling zones at all levels of the routing table, whose area in-

tersects with the target area, and to all peers within the leaf

level self-zone, which fall in the target area. While forward-

ing the message, the parameter level is determined based

Algorithm 1 Route message to all peers in area

Require: a routing message

areaMsgAll(area, level, appMsg) received by

a peer peer in the leaf zone lzone at depth d. The

message parameters are area = description of the area

of interest, level = hierarchical level at which query

need to be resolved and appMsg = content of the

applicaiton layer message

Ensure: message is forwarded to all known peers in area
and to contact peers for the zones that intersect area.

Message is delivered to this peer if it falls in area
1: if peer.coordinate falls in area then

2: Deliver appMsg to peer
3: end if

4: if level ≤ d then

5: for Each entry e in row d of the routing table do

6: if e.zone boundary falls in area then

7: Send new areaMsgAll(area, d + 1, appMsg)
to e.contactPeer

8: end if

9: end for

10: end if

11: for r = d − 1 down to level do

12: for each entry e in row r of the routing table, except

for the one denoting self zone do

13: if e.zone boundary intersects area then

14: Send new areaMsgAll(area, r + 1, appMsg)
to e.contactPeer

15: end if

16: end for

17: end for



on the row of the routing table in which the match is found.

This is necessary to avoid reaching the same zone from dif-

ferent paths. Initially, the routing engine of the source peer

receives the message with the parameter level = 1 from

the application. Figure 2(c) illustrates the routing path of a

message targeted to all peers in a specified area (dotted rect-

angle). Theorem 1 summarizes the properties of the routing

algorithm.

Theorem 1. Algorithm 4.1 delivers an area message to all

peers in the specified area and not to any other peer within

a finite number of hops, as long as the routing tables are

correct. In fact the number of hops is bounded by logkN .

Also each peer in the area receives the query exactly once

(no redundant transmission).

Proof. According to the construction, for each level l of the

zoning hierarchy, the routing table of a peer maintains con-

tact of at least one peer for each of the level l sibling zones

the peer does not belong to, under the peer’s own level l−1
zone. So, if the target area does not intersect the zone of

the current peer at level l, it can always travel to the match-

ing level l zones. If it matches the zone of the current peer

at level l, level l + 1 zones within this level l zones are

searched for match. Thus the target area is progressively re-

solved towards finer grain matching zones and the message

is not forwarded to any zone that does not intersect the target

area. The target area is resolved downwards for at least one

level of hierarchy at each hop, and it never travels to zones

at equal or higher level of hierarchy that have already been

resolved. So the resolution terminates after d hops, where d
is the maximum depth of the zoning hierarchy. According

to the zone construction, d = O(logkN). Since only one

copy of the message flows through each unique path of the

hierarchy, the message is delivered to relevant peers exactly

once.

One may note that Algorithm 4.1 can easily accommo-

date area definitions of any 2-dimensional geometric shape

other than axis-parallel rectangles, as long as the shape

meets two criteria – (i) the shape can be concisely repre-

sented in the message and (ii) there is a computationally ef-

ficient local algorithm to decide whether a rectangular zone

intersects (needed in Line 13) or a point falls in the speci-

fied region (needed in Line 6). For example, a circular shape

meets both the criteria. It can be represented with the cen-

ter and the radius parameters, and it is not computationally

hard to decide the intersection and the falls-in conditions.

Moreover, messages with a circular target area are useful,

e.g. to find a peer within certain distance or to find the near-

est peer (Section 4.2). In fact, following the same argument,

the zoning hierarchy itself can be defined based on zones of

any shape other than rectangles.

When the message is areaMsgAny, which is destined

for any peer in the area, instead of all peers, Algorithm 4.1

can be applied with simple modifications. The procedure

terminates after Line 2 if the current peer is a matching peer.

The loop in Lines 5- 9 terminates as soon as a matching peer

is found. The rest of the algorithm remains the same.

A special variant of area message is a message with a

target area defined by a zone in the zoning hierarchy. Such

zone broadcasting is used by some of the overlay manage-

ment operations described in Section 5. Although the same

Algorithm 4.1 can be used for this purpose, for efficiency it

may be implemented by avoiding the area intersection con-

ditions. Algorithm 4.1 summarizes the modified protocol

to forward a message targeted to all peers within the level l
self-zone of the peer.

Algorithm 2 Route message to all peers in self zone

Require: a message zoneBroadcast(level, appMsg) re-

ceived by a peer peer that resides in the leaf zone lzone
of depth d.

Ensure: Message is forwarded to all known peers in the

self leaf zone of the peer and to all the contact peer

responsible for a zone that are contained in the self zone

at level level.
1: Deliver appMsg to peer
2: if level ≤ d then

3: for Each entry e in row d of the routing table do

4: Send new zoneBroadcast(d + 1) to

e.contactPeer
5: end for

6: end if

7: for r = d − 1 down to level do

8: for each entry e in row r of the routing table, except

for the one denoting self zone do

9: Send new zoneBroadcast(r + 1) to

e.contactPeer
10: end for

11: end for

4.2 Message Targeted towards a Point

Messages whose target is defined by a point, denoted

as point message, may have several types of targets which

are useful for different purposes. One possible target is a

peer closest to the specified point. Another target of interest

would be all or any peer in a leaf zone where the specified

point falls in. Because it matches with the overlay structure,

routing to peers in the same leaf zone of the target point is

easier than routing to nearest peer. This message is useful

when a new peer wants to join the overlay. It can be routed

in almost the same way as the area message is routed using

Algorithm 4.1. Only the loop in Lines 11-17 terminates as

soon as one matching zone is found, because a point can-

not intersect more than one zones. In case any one peer

is sought instead of all peers in the leaf zone, the loop in



Lines 5-9 terminates as soon as one matching peer is found.

Routing a message to the nearest peer is little bit more

complex than routing to any peer in the same leaf-zone of

the point, because, the nearest peer may not reside in the

same leaf zone. Routing of this message is done in two

steps. First, using the same technique as described in pre-

vious paragraph, the message can reach at least one peer in

the leaf zone that contains the specified point. Since this

peer knows coordinates of all the peers in the leaf zone, it

can determine the in-zone candidate peer that is closest to

target point. To determine if any other peer exist in the uni-

verse which is closer to the target point, the current peer

performs a range search in the circular area centered at the

taget point and radius equal to the distance of the in-zone

closest peer from the point. Such search is performed by

sending an area-taregetd query message asking the peers to

respond with their coordinates and network addresses. Af-

ter receiving the response, the current peer can determine

the peer closest from the taeget point in the universe, and

forward the message to that peer for delivery.

5 Maintaining the Overlay Strucutre with

Peer Dynamics

5.1 Peer Join and Routing Table Creation

When a new peer wishes to join the overlay it needs to

initialize its routing table to get connected. We assume that

before joining the overlay, the new peer knows its own net-

work address and coordinate, and the network address of

some peer already participating in the overlay. First, the

new peer needs to find the leaf zone where its coordinate

belongs to. To do this, the new peer sends a join message

targeted to any peer in the leaf zone that contains its coordi-

nate (Section 4.2). The peer that receives the join message

informs all other peers in the same leaf zone of the exis-

tence of the new peer. It also replies back to the new peer

with a copy of its own routing table. This table is a valid

routing table for the new peer, except for adding the peer

that replied the join message, in the leaf zone.

After copying the routing table in the way described

above, the new peer is able to both route and receive mes-

sages. However, for the purposes of both reliability and load

balancing, it is important to have diversity in the routing ta-

bles among the peers in the same zone. To achieve this,

the new peer asks each peer in its routing table except those

in the last row (peers in the same leaf zone), to send back

copies of their routing tables. Say T is the routing table sent

back by the contact peer at row r and column c of the initial

routing table. Any entry of T found in any row greater than

r is a valid entry for the row r, column c of the routing table

of the new peer. A random sample of these entries may be

used by the new peer. In fact, to reduce message size, ran-

dom sampling is performed at the contact peer, with the row

and sample size being specified when the sample is sought.

Is the existence of the new peer known to the rest of the

universe? Right after join, all the peers in the same leaf

zone stores the address and coordinate of the new peer in

their last row of the routing table. Also, when the new peer

contacts other peers for diversification of its routing table,

those peers also become aware of the new arrival. They ac-

tually store the address of the new peer in their routing table,

because the routing table entries may be refreshed whenever

a message is received, as described later in Section 5.4. The

new peer will eventually be known to the remainder of the

universe too, either due to the application messages it will

generate or due to the periodic refresh performed by every

peer.

5.2 Network Growth and Zone Creation

As mentioned before, an leaf zone is divided into sub-

zones, when the number of peers in the leaf zone grows

above the higher threshold θH . The task of dividing a leaf

zone can be performed by any peer within the zone. Ac-

cording to the construction of the routing table, each peer

in the zone is aware of the zone-boundary before the divi-

sion. Each peer is also aware of the coordinates and net-

work addresses of all other peers inside the leaf zone, as

well as the total number of peers in the zone. Since any

peers would follow the same zoning algorithm using the

same input information, they would result in the same zone

division. However, to avoid any inconsistency due to net-

work dynamics during the time when divisioning is done,

the operation is performed by exactly one of the peers in

the zone. To ensure this, the peer that first detects the ne-

cessity of dividing a leaf zone, invokes a simple one-round

leader election protocol among all the peers within the zone,

where the tie is broken in favor of higher numerical value

of the network address. After performing the division, the

leader communicates the new sub-zone boundaries to all

peers within the zone before division. Each peer can now

decide which of the sub-zones it belong to, based on the

sub-zone boundaries and its own coordinate.

Each peer updates its routing table based on the new in-

formation. After division of a level d zone into k sub-zones

of level d+1, each peer needs to update its routing table en-

tries for level d and d+1. The new level-(d+1) entries will

be a subset of the previous level-d entries, pointing to only

those peers that are located within the same level-(d + 1)
zone. k−1 entries from the remainder of the previous level-

d entries will fill the level d of the new routing table. Be-

cause the boundaries of the other k − 1 level-(d + 1) zones

are known, the peer can randomly choose one of the pre-

viously known peers for each of these zones. In addition,

zone boundaries of those k − 1 zones are stored in these

entries, instead of the point coordinates previously stored.

The remaining entries in the routing table can be discarded,

or, for reliability purpose, can be stored as backup entries,



as discussed later in Section 5.4.

From the procedure discussed above, it is obvious that

the routing tables of all the peers can be updated very easily

in only one round of message exchange, transmitting only

θH − 1 messages at most. The content of the messages is

also very small, only the boundaries of the k newly formed

zones need to be communicated. The routing table of only

those peers that belong to the divided zone need to be up-

dated, the maximum number of which is θH . Peers outside

the zone are not affected. The computation done at each

peer is also very simple and perturbs only the last two rows

of the routing table. To minimize alteration of the routing

tables, zone boundaries are not modified once zones are cre-

ated. The only permitted ways to adjust the number of peers

in a zone are dividing into sub-zones or merging with sib-

ling zones (as discussed below).

5.3 Peer Departure and Network Retraction

Besides growing due to newly joining peers, the overlay

may also shrink in size due to departure of peers. It is use-

ful to contract the zoning tree along with this shrinkage of

the network, so that the number of routing table entries are

reduced accordingly. Reducing the depth of the zoning tree

also reduces the number of overlay hops needed for mes-

sage routing. One way of contracting the zoning tree is to

merge a leaf zone that has very low number of peers with

some other zone.

Merger may be triggered when the total number of peers

in a leaf zone goes below the lower threshold θL. The ques-

tion is with which zone to merge. Because the peers in the

merging zone know about the boundary and at least one peer

of each of the sibling zones, those zones become natural

candidate for being merging partner. From the boundaries

of all the siblings, one zone can be selected such that the

resulting zone after merger will be a continuous rectangu-

lar region. This restriction may be relaxed, i.e. the merged

zone need not be rectangular, in case a clustering zoning

scheme is used and the merger is done with the remainder

zone. We denote the zone that initiates the merger as merg-

ing zone and the zone that is chosen as merging partner as

partner zone.

The merger is simple if the partner zone still is a leaf

zone, i.e. no further split has occurred in it. Any peer in the

merging zone may initiate the merger, we denote it as ini-

tiator. To avoid concurrent merger initiations, a the initiator

performs leader election among the peers in the leaf zone,

in the same way as done during zone divisions. Hereafter,

we denote the winner of the election as initiator. The ini-

tiator knows at least one peer in the partner zone (denoted

as partner peer). The partner peer knows all other peers

in the partner zone. The initiator sends the merger request

to the partner peer. The request contains the boundary of

the merging zone and address and coordinates of all peers

in that zone. On receiving the request, the partner peer re-

alizes that it needs to extend the boundary of its own leaf

zone and include the peers given in the message as neigh-

bors. Say both the merging and the partner zones are at level

d of the hierarchy. So, the partner peer also need to update

its level d − 1 of its routing table, by removing the entry

corresponding to the merging sibling.

Besides updating its own routing table, the partner peer

also forwards the merger request to all other peers in its

zone, so that all of them make the similar update in their

routing tables. The initiator on the other hand, need to send

a merger update message to each of the other siblings (ex-

cept the merging partner) so that peers in them remove the

merging zone from level d − 1 of their routing tables. The

initiator knows at least one peer in each sibling zone, so it

can transmit the message to the known peer, which in turn

can broadcast the message to all peers in its zone. Lastly,

the partner peer need to respond to the initiator peer, with

the address and coordinates of all other peers of the partner

zone, so that all other peers in the merging zone can add

them to their level d entries in the routing table.

In case the partner zone is not a leaf zone, there need to

be some additional steps of information propagation. The

partner peer, on receiving the merger request from a level d
sibling, will realize that it no longer belongs to a leaf zone

at level d. It may belong to a leaf zone at level d + x. It

then broadcasts a zone-collapse request to all the peers in

its own level-d zone. After collapse is complete, the contact

peer performs the rest of the merger procedure as described

before.

The zone collapse request asks for collapsing all the zon-

ing beyond level d. On receiving the collapse request, each

peer reply back with a collapse accept message. The reply

message includes the network address and coordinates of all

peers in the self leaf zone of the responding peer. The peer

that requested the collapse, then aggregates the peer infor-

mation and sends back that aggregated information to every

responding peer with an announcement of the completion

of the collapse.

Note that if the clustering zoning scheme is used instead

of splitting, then the remainder zone will always be there

as an leaf sibling zone at each level. Also the remainder

zone does not need to remain rectangular and it can form a

continuum with any of its siblings. So, in case of clustered

zoning, merging is always done with the remainder zone.

The routing table entry for the remainder zone is always

maintained even if there is no peer to represent that zone.

5.4 Refreshing Routing Table Entries

As we described the routing table structure in Sec-

tion 3.2, each peer maintains contact of at least one peer for

all the sibling zones at each level of the zoning hierarchy. In

presence of node join and departure, it is quite possible that



the peer that was chosen as a representative contact during

last update of the routing table is no longer there. So there

is a need for continuous refreshing of the routing table en-

tries, particularly of the representative contact peers. We

avoid modification of the zone boundaries other than those

during merger or division, so zone boundaries need not be

refreshed continuously.

One way of refreshing the entries is to use the existing

application traffic. If peer A forwards any message to peer

B at level d, B being an entry in level l of A’s routing table,

then peer A is also a valid entry for level l in B’s routing

table. To have peer A as a routing table entry, peer B needs

three information – network address of A and the row and

column of the routing table where A would fit in. We may

assume that whenever a message is sent from a source to

destination through the underlying network, the message is

tagged with the source address, which is true for Internet

protocol. Also, as we saw in the algorithms described in

Section 4, every routed message has a level information,

and this directly corresponds to the routing table row where

the update will be done. To resolve the column, we need

that a peer tags the message with its own zone id whenever

it forwards a message. The segment of the zone-id that iden-

tifies the zone at level l, corresponds to the column of the

routing table entry to be updated. This in turn implies that,

a peer does not need to tag messages with its fully-qualified

zone-id, only the segment of the id that corresponds to the

message level would suffice.

When storing some extra bits of information is not ex-

pensive, as is the case in present day desktop computers,

a bucket of peer-addresses can be stored for each entry of

the routing table for reliability purpose. The most recently

seen peer in the bucket would be used for routing. To im-

plement this policy, the peers in a bucket are maintained

in an ordered list with most recently seen peer at the front.

Whenever a new active peer is discovered, it is added in the

front of the list and the peer at the tail is discarded in case

of bucket overflow. Whenever an existing peer is found to

be active, it is brought to the front. Similar techniques have

been used by Kademlia DHT [10], which splits the id-space

in a binary hierarchy.

One may note that the routing table updates using appli-

cation messages is not sufficient to maintain the correctness

of the routing table. Some peers may not generate or for-

ward any message for a long period. Also, the knowledge

of a peer-departure is not disseminated in this way. For this

reason, each peer periodically refreshes its routing table by

explicit message exchanges. The refresh mechanism main-

tains the invariant that at least one peer in each bucket is

seen within the last t units of time. To aid the implementa-

tion, the timestamp of the most recently seen peer is main-

tained for each bucket. This timestamp is checked for all the

routing table entries at every t/2 units of time. If the elapse

time from the timestamp is found to be more than t/2 for

any entry, an explicit refresh is initiated for that.

To refresh an entry of row r and column c an echo mes-

sage (ping) is sent to the most recently seen peer. If no

response is found within a short timeout period, this is re-

peated for the subsequent peers in the bucket in order of

recency, until one of them responded. The responding peer

is moved to the front of the list and the timestamp of the

bucket is updated.

In case no peer in the bucket responded, the most re-

cently seen contacts of each of the sibling zones of row r
are asked to send its row r column c entry. If no new peer

is discovered or no other sibling exist, each of the peer in

the same leaf zone is requested for its routing table entry of

row r and column c. If no new peer is discovered even in

this phase, the zone corresponding to the routing table en-

try is considered out of contact until next refresh. In other

cases, when some new peers are discovered, they are con-

tacted sequentially to verify their liveness, until one of them

responds. To maintain the routing table diversity, while con-

tacting, the peer is also requested to send a random sample

of its routing table entries of all rows higher than r. The

contacted peer uses only the most recently seen peer in each

of its buckets in the sample. The refreshing peer stores the

sample in its bucket after the responding peer. The times-

tamp is set to current time.

For the entries of the last row, which are peers within

the same leaf zone, each bucket contains exactly one peer.

Their existence is also verified by echo messages at every

t/2 unit of time, excepting those which sent some message

within last t/2 time units. The peers that did not respond

to the echo within the short timeout period, are considered

to have departed. This allows detection of peer departure

within the same leaf zone. The knowledge of peer depar-

ture is eventually spread to the rest of the world, due to the

refresh mechanism. Also, when one peer departs gracefully

without crashing, it may inform all its contacts in the rout-

ing table.

The message overhead of the explicit refresh mechanism

is proportional to the bucket size and inversely proportional

to the refresh period, both of which are system design pa-

rameters. Appropriate bucket size and period may be de-

termined empirically, based on the typical messaging fre-

quency, message source distribution and reliability require-

ment of a particular application.

6 Discussion

The purpose of our work was to design a fully decentral-

ized peer-to-peer system based on hierarchical space par-

titioning, that would not rely on super-peers for support-

ing the area hierarchy, as used in other overlays such as

Globase [6] and EZSearch [17]. Globase uses the cluster-

ing based approach the zone hierarchy, which gives more



flexibility of space partitioning when geographic distribu-

tion of peers is non-uniform. However, Globase assigns

nodes in the area hierarchy to special super-peers, which

makes it less scalable. Because, the super-peers supporting

the area nodes near the top of the area hierarchy may get

overloaded from handling search queries. Also, failure of

higher level super peers may result in large scale network

partitioning. For these reasons, explicit reliability and load

balancing techniques e.g. back-up super-peers become nec-

essary in such systems.

P2PR-tree [11] is another hierarchical space portioning

based peer-to-peer overlay that does not rely on any special

nodes. However, it assumes a special kind of area hierarchy:

the first two levels of the hierarchy are defined in the form of

an R-tree by a pre-defined static grid; the lower levels of the

hierarchy are dynamically grown depending on the number

of peers that will enter into the different sub-areas. For this

dynamic part of the tree, a kind of clustering approach is

chosen. However, the paper remains vague about the ques-

tion how a new peer not falling into one of the clustered

sub-areas is integrated into the tree. Also the possibility of

loosing peers and the possible retraction of the area hierar-

chy is not considered in that paper.

The peer-to-peer overlay structure presented in this paper

has many similarities with the P2P-R-tree approach. The

main contributions of this paper are the following:

First, we have described a generalized overlay structure

based on hierarchical space partitioning, and demonstrated

that certain aspects of the zone hierarchy have only min-

imal impact on the data structure and algorithms required

for maintaining the overlay and routing different types of

queries. In particular, the following aspects do not have any

major effect on the structure and function of the overlay:

(a) space partitioning scheme such as clustering or splitting,

(b) dimensionality of the universe (c) geometry of the zones

and the query region (circular or rectangular) and (d) peer

representing a point or an area in the universe

Second, we have defined detailed algorithms for query

routing. In addition to the standard range query routed to

all peers associated with the search area, we have defined

algorithms for routing messages to a single peer in the area,

or to the peer that is closest to a given point in space.

Third, we have described detailed procedure for main-

taining the virtual zoning hierarchy in the presence of churn.

In addition to explaining how the virtual zoning hierarchy

may grow when the number of peers in a given zone in-

creases, we have also explained how the hierarchy may re-

tract when the number of active peers decreases.

Although we allowed dynamic growth and retraction of

the zone hierarchy in GeoP2P, we did not consider modify-

ing the zone boundaries once a zone is created. Allowing

such modifications will provide more flexibility in zoning

when the spatial distribution of peers rapidly changes. In

future we will study how to maintain the GeoP2P overlay

structure in presence of such modifications without large

scale propagation of information. Maintaining the overlay

structure in presence of mobile peers is another related is-

sue, which also remains to be considered in the future.

References

[1] Google Maps. http://maps.google.com.

[2] Yahoo Local. http://local.yahoo.com.

[3] R. H. Güting. An Introduction to Spatial Database Systems.

The VLDB Journal, 3(4):357–399, 1994.

[4] A. Guttman. R-Trees: A Dynamic Index Structure for Spa-

tial Searching. In SIGMOD’84, pages 47–57, Jun. 1984.

[5] V. Kantere, S. Skiadopoulos, and T. Sellis. Storing and In-

dexing Spatial Data in P2P Systems. IEEE Trans. Knowl-

edge and Data Engg., 2008. accepted to appear.

[6] A. Kovacevic, N. Liebau, and R. Steinmetz. Globase.KOM -

A P2P Overlay for Fully Retrievable Location-based Search.

In IEEE P2P-2007, pages 87–96, Sep. 2007.

[7] D. Li, X. Lu, B. Wang, J. Su, and J. C. Chan. Delay-Bounded

Range Queries in DHT-based Peer-to-Peer Systems. In 26th

ICDCS, page 64, Jul. 2006.

[8] M. Li, W. Lee, and A. Sivasubramaniam. DPTree: A Bal-

anced Tree Based Indexing Framework for Peer-to-Peer Sys-

tems. In 14th IEEE ICNP, pages 12–21, Nov. 2006.

[9] B. Liu, W. C. Lee, and D. L. Lee. Supporting Complex

Multi-Dimensional Queries in P2P Systems. Jun. 2005.

[10] P. Maymounkov and D. Mazières. Kademlia: A Peer-to-

Peer Information System Based on the XOR Metric. In 1st

IPTPS, pages 53–65, Mar. 2002.

[11] A. Mondal, Y. Lifu, and M. Kitsuregawa. PP2PR-Tree: An

R-Tree-Based Spatial Index for Peer-to-Peer Environments.

In EDBT 2004 Workshops, pages 516–525, Mar. 2004.

[12] B. Nam and A. Sussman. DiST: fully decentralized indexing

for querying distributed multidimensional datasets. In 20th

IPDPS, page 10, Apr. 2006.

[13] C. Plaxton, R. Rajaraman, and A. Richa. Accessing Nearby

Copies of Replicated Objects in a Distributed Environment.

In 9th ACM SPAA, 1997.

[14] A. Rowstron and P. Druschel. Pastry: Scalable, Decentral-

ized Object Location, and Routing for Large-Scale Peer-to-

Peer Systems. In IFIP/ACM Intl. Conf. on Distributed Sys-

tems Platforms, pages 329–350, 2001.

[15] W. Song, R. Li, Z. Lu, and G. Yu. FAN: A Scalable Flabel-

late P2P Overlay Supporting Multi-Dimensional Attributes.

In 22nd AINA, pages 1005–1012, Mar. 2008.

[16] E. Tanin, A. Harwood, and H. Samet. Using a Distributed

Quadtree Index in Peer-to-peer Networks. The VLDB Jour-

nal, 16(2):165–178, 2007.

[17] D. A. Tran and T. Nguyen. Hierarchical Multidimensional

Search in Peer-to-peer Networks. Computer Communica-

tions, 31:346–357, 2008.

[18] C. Zheng, G. Shen, S. Li, and S. Shenker. Distributed Seg-

ment Tree: Support of Range Query and Cover Query over

DHT. In 5th IPTPS, Feb. 2006.


