Introduction to Number Systems

COMP 1002/1402

Objectives

- Introduce basics of numbering systems
- Use decimal, octal, binary and hexadecimal
- Convert: standard notation expanded numbers
- Add octal, binary & hexadecimal numbers

Decimal Numbers

Q: How do we *interpret* the decimal number 1921?

Ans: Weigh each digit by its position

 $1000 \ 100 \ 10 \ 1$ $10^{3} \ 10^{2} \ 10^{1} \ 10^{0}$ $1 \ 9 \ 2 \ 1$ $1920 = 1* \ 10^{3} + 9* \ 10^{2} + 2* \ 10^{1} + 1* \ 10^{0}$

Fractional Decimals?

Q: How do we *interpret* the number **0.1921**?

Ans: Weigh each digit by its position

An Arbitrary Base (**b**)

- A sequence of digits represents a number
- Each location has a weight
- Positions are labelled **0-n** from right
- i^{th} position weight = b^i

An Arbitrary Base

A number in any "base" b is written: $d_n d_{n-1} d_{n-2} \dots d_2 d_1 d_0$

where $0 < d_i < b-1$ and d_0 is the Least Significant Digit.

The number represents the value: $d_n * b^n + d_{n-1} * b^{n-1} + \dots + d_1 * b^1 + d_0 * b^0$

Fractions in an Arbitrary Base

Extending fractional notation yields:

0. $d_{-1} d_{-2} d_{-3}$ represents the value

 $d_{.1}*b^{.1}+d_{.2}*b^{.2}+d_{.3}*b^{.3}$

Notation

Q: How do you know the base?

Ans: Label using a subscript, if not labelled assume decimal: e.g.: $(d_3d_2d_1d_0)_b$

Note: (10)_b=b

Binary Number System

Only two digits required *{1,0}*

21	20	Base 10 Equivalent
	0	0
	1	1
1	0	2
1	1	3

Binary Numbers

What is the following number? (*101101*)₂

 $=(1*64+0*32+1*16+1*8+1*4+0*2+1*1)_{10}$

=(**93**)₁₀

Binary Numbers

What is the following number? (*11011001*)₂

Fractions in Base 2

What is the following fraction? $(0.1101)_2$

 $=(1*.5 + 1*.25 + 0*.125 + 1*.0625)_{10}$

=(0.8125) 10

Fractions in Base 2?

What is the following fraction? $(0.011001)_2$

Addition in Base 2

Addition Table

Example:

+	0	1
0	0	1
1	1	10

Example.					
	1	1	1		
+	1	1	1		
1	1	1	0		

Multiplication in Base 2

N	Aulti	plica	tion	Table	;	
	*	0	1			
	0	0	0		*	
	1	0	1			
				-		1

			Example:		
			1	1	1
*			1	1	1
			1	1	1
		1	1	1	
	1	1	1		
1	1	0	0	0	1

Division in Binary

Don't worry about it.

It is in one of the notes but we will not test it.

Decimal to Binary Conversion

Algorithm generates binary digits from *0* to *n*:

```
Q = decimal number
While Q is not equal to 0 do the
following
     Binary digit = Q mod 2
     Q = Q / 2 (quotient)
End While
```

Conversion Example

Convert $(58)_{10}$ to $(?)_2$ 58 mod 2 = 0 29 29 mod 2 = 1 14 14 mod 2 = 0 7 7 mod 2 = 1 3 3 mod 2 = 1 1 1 mod 2 = 1 1 Ans: $(111010)_2$

Conversion:

Convert (271)₁₀ to (?)₂

Binary, Octal and Hexadecimal

Binary easily corresponds to the on/off state of electronics

Octal and Hexadecimal are often used due to ease of conversion to and from binary

Hexadecimal

In hexadecimal the base is $16=2^4$

16 digits are: *{*0,1,2,3,4,5,6,7,8,9,*A*,*B*,*C*,*D*,*E*,*F}*

 $(1AF)_{16}$ = $(1*16^{2}+10*16^{1}+15*16^{0})_{10}$ = $(431)_{10}$ What is: $(3A1F)_{16?}$

Hex to Binary

Converting from Hex to Binary is trivial:

Every hex digit becomes 4 binary digits

 $(1AF5)_{16}$ =(0001 1010 1111 0101)₂ =(1101011110101)₂

Binary to Hex

Just as simple, reverse to process

 $(111001010101011101)_2$ =(0011 1001 0101 0101 1101)_2 =(3955D)_{16}

Octal

In octal the base is $8=2^3$

8 digits are: *{*0,1,2,3,4,5,6,7*}*

 $(153)_8$ = $(1*8^2 + 5 * 8^1 + 3* 8^0)_{10}$ = $(107)_{10}$

Octal to Binary

Converting from Octal to Binary is trivial:

Every octal digit becomes 3 binary digits

 $(175)_{8}$ =(001 111 101)₂ =(1111101)₂

Octal to Hex

Just as simple, reverse to process

 $(11001010101011101)_2$ =(011 001 010 101 011 101)_2 =(312535)_8