
1

Data Representation

COMP 1002/1402

Representing Data

• A computer’s basic unit of information is:

a bit (Binary digIT)

• An addressable memory cell is a byte (8 bits)

• Capable of storing one character

10101010

2

Counting Bytes

The normal meanings of kilo, mega & giga don’t
apply

230=1024 Mb1 Gigabyte1 Gb

220=1024 kb1 Megabyte1Mb

210=1024 bytes1 kilobyte1 kb

Computer Memory

RAM – Random
Access Memory

Computer is an array
of bytes each with a
unique address

10000011A01C

10000010A01B

10000001A01A

00000001A019

11001010A018

00000000A017

11010101A016

ContentsAddress

3

Bits

All bits are numbered right to left:

For an 8 bit example:

10101010

76543210

Least signifcant bit (l.s.b.) is 0 & m.s.b. is 7

Information

All computer information is stored using bits

Pictures, moviesGraphics information

Computer instructions

Memory addresses

3.1415926535Floating point nums

2, 3, 5, 7, 11, 13Integers

A a < , ! #Characters

4

Sequences of bits…
Everything is encoded into a sequence of bits

Q. How many sequences of n bits exist?

{000,001,010,011,

 100,101,110,111}

83

{00,01,10,11}42

{0,1}21

Sequences# of
Sequences

N

Sequences of bits…
Mapping a bit sequence to an integer

4,29496729623232

65,53621616

256288

Range of integers# of
Sequences

N

5

Characters

ASCII – American Standard Code for
Information Interchange

128 characters (7 bits required)

Contains:

• Control characters (non-printing)

• Printing characters (letters, digits, punctuation)

ASCII – Characters

Space (blank)0010000020

Carriage return000011100D

Line feed000010100A

Horizontal tab0000100109

Bell0000011107

NULL0000000000

CharacterBinaryHex Equiv.

6

ASCII – Characters

b0110001062

a0110000161

B0100001042

A0100000141

90011100139

10011000131

00011000030

CharacterBinaryHex Equiv.

Alternative Representations

EBCDIC – Extended Binary Coded Decimal
Interchange Code

Unicode – 16 bit Java code for many
alphabets

7

Representations of Machine
Instructions

• Every processor is different

• Families include: Intel, Motorola

• Instructions are stored in memory

• Machine code is a series of instructions

Motorola Example

8B3103

1F3102A, DPRTFR

303101

863100#$30LDA

Machine CodeAddressOperandInstruction

8

How does the machine know?

Q. What is the difference between:

– A space (30 in hex)

And
– An Instruction (30 in hex)

Ans. Depends on how it is used.

Integer Representations

Remember machines are different!
Two possibilities:

• Unsigned Integers
– only positive numbers

• Signed Integers
– Negative numbers also allowed

9

Unsigned Integers

Representation of Unsigned integers in C:

Binary notation (different lengths possible)
8 bit (1 byte) unsigned char

25511111111

17010101010

700000111

000000000

IntegerBinary Rep.

Unsigned Integers

16 bit (2 bytes) unsigned int

655351111111111111111

1700000000010101010

70000000000000111

00000000000000000

IntegerBinary Rep.

10

Signed Integers

• Several methods of representation
– Signed Magnitude

– Ones Complement

– Twos Complement

– Excess-M (Bias)

Signed Magnitude

• The sign is the leftmost bit
– 0 is positive

– 1 is negative

-16384110000000000000000-710000111

+16384010000000000000000+700000111

16 bits8 bits

11

Signed Magnitude

Issues:

• Simple

• Equal number of positive and negatives

• Two zero values (8 bit example)
00000000 +0

10000000 -0

• Two bit types = messy arithmetic

Signed Magnitude

Adding two numbers:

if (signs are same)

add the two integers.

result’s sign is the sign of either.
else

 find the larger magnitude

subtract the smaller from the larger mag.

Result’s sign is the sign of the larger mag.
end if

12

Complements

Eliminate the explicit sign!

Example is base 10 using 2 digits:

100 numbers possible (50 pos, 50 neg)

Define 00-49 as the positives

Complements

Rule for Addition:

• Add the numbers

• Any carry is discarded

e.g.:
 99 -01

 01 +01

100 00
-496

-397

-298

-199

13

Complements

• Notation is consistent

• Get numbers without sign digit

• Used for negative numbers on a computer

Ones Complement

Complement with m.s.b. sign bit
– 0 is positive

– 1 is negative

Rule to change signs:

take the ones complement of the number

change 1’s to 0’s and vice versa

14

Ones Complement

-16384101111111111111111-711111000

+16384010000000000000000+700000111

16 bits8 bits

Ones Complement

Issues:

• Positives easy to interpret

• Negatives are difficult
– Have to take complement to see magnitude

11110000 = ? = -00001111 = -15

• Equal number of pos, neg

• Two zeroes (00000000 and 11111111)

15

Ones Complement

Rules for addition:

Add as usual for binary (include sign)

Add any carry to right side

Example: + 7 00000111

- 12 11110011

- 5 11111010

Ones Complement

Example: +127 01111111

- 63 11000000

100111111

 1

+64 01000000

16

Ones Complement

Overflow:

If the sum of two numbers is bigger or
smaller than can be expressed

Example: +127 01111111

+ 1 00000001

- 127 10000000

Ones Complement

Lastly Subtraction is simply addition with a
sign change

127 – 5 = 127 + (-5)

17

Twos Complement

• Sign bit is leftmost bit
– 0 is positive
– 1 is negative

• Positives:
– first bit is sign rest is binary

Rule to change sign:
Take ones complement and add one

(never subtract)

Twos Complement

-16384101000000000000000-711111001

+16384010000000000000000+700000111

16 bits8 bits

18

Two’s complement

Issues

• Positives are easy

• Negatives aren’t
– Always take to twos complement

• Only one zero!!

• But what about largest negative

Two’s Complement

Rule for addition:

do normal binary and throw away carry!

Example: +127 01111111

- 10 11110110

+117 101110101

19

Two’s Complement

• What is the range of 4 bit 2’s complement?

• Largest: 0111 = +7

• - 7 = 1001

• -7 - 1 = -7 + (-1) = -8 or overflow
-1 = 1111

Binary Coded Decimal

4 bits used to encode one decimal digit

(4321)10 = 0100 0011 0010 0001

Promotes easy conversion to decimal

Easy to convert to ASCII equivalent

20

Binary Coded Decimal

Issues

• Wasted space

• 1 byte is two digits

• Computations are more complex

Excess-M (Bias)

Consider 8 bits
– Stores up to 256 items

– Half negative half positive (within one)

Use unsigned binary and pick middle (M)

10000000 (128) or 01111111 (127)

If M=127 then excess 127 = (value of int) - 127

21

Excess-M (Bias)

Stores exponent in Floating point rep.

11111111 in excess 127: 255 - 127 = 128

10000000 128 - 127 = 1

01111111 127 - 127 = 0

00000000 0 - 127 = -127

Excess-M (Bias)

Convert decimal to binary Excess-M:

Convert 19 to Excess-127

19+127 = 146 which is 10010010

22

Excess-M (Bias)

• Addition and other arithmetic is not easy

• Recognizing anything is difficult

• One zero

• Full range of numbers

Floating Point

Floating points represent fractional numbers

• Overall Sign

• Fractional Part / Mantissa

• Exponent

• Base

23

Floating Point
The type float in C:

Float 32 bits or 4 bytes
Sign Exponent Mantissa
<1 bit> <-8 bits-> <- 23 bits ->
Sign is overall sign
Base is 2
Exponent is excess 127
Mantissa is 23 bits (about eight digits of accuracy)

Floating Point

Example: 01000000010000000000000000000000

sign bit =0 +
exponent = 10000000 = 1 in excess 127
mantissa 1 followed by zeros. We supply leading 1.

So number is +(1.1)2 *21 = 1.5*21 = 3.0

NOTE: Exception is 0.0 (all 0’s)

24

Floating Point
What is the representation of -.875 * 2-5?

Overall sign is "-" so bit =1
Mantissa = (.111)2 =(1.11)2 * 2-1

Number is:
+(1.11)2 * 2-1 * 2-5 = +(1.11)2 * 2-6

Exponent is -6 = -6 + 127 or 121 01111001
 10111100111000000000000000000000

Floating Point

0.6 in floating point?

Subtract largest possible power of two:

= 0.5 + 0.1

= 0.5 + 0.0625 + 0.0375

= 0.5 + 0.0625 + 0.03125 + 0.00625

= 0.5 + 0.0625 + 0.03125 + 0.00390625 +
0.00234375 …

= 0.100110011 = 1.00110011*2-1

