
1

Introduction to C in Linux/Unix

COMP 1002/1402

Machine Languages

• Basic instructions sets of chip

• Unique to manufacturer

• Each instruction is a circuit

• Examples
– Add, subtract, shift bits, load bits into cpu…



2

High Level Languages

• Pascal, C, C++, Java, Cobol

• Must be translated into Machine Language

• Need translation programs (e.g. compilers)

• Machine Code is executed

History of C



3

C Language

• Ken Thompson invents B (1967)

• Dennis Ritchie develops C (1970)

• C is high level language but

• Contains low level abilities

Creating a Program

• Create a text file with .c extension

• “compile” the program

• An executable program is the result

• Compiling is a multi-stage process

(many stages are sometimes automatic)



4

Compiling

Preprocessing

• Takes human source code
• Outputs machine readable code
• May rely on specific files (-I includes)

– Inserts “#include”
– Uses “#defines”
– Processes “#if”
– Eliminates comments



5

Compiling

• Compiles the preprocessed code into
assembler

• This is machine dependent
– Certain options occur here (-c -o -Wall)

• Output is fed into the Assembler

Assembling

• The assembler converts assembler into
object files (.o files)

• .o files are
– Machine dependent

– Not executables (unresolved calls)

– Can act as libraries of code



6

Linking

• Linking produces executable from object files

• Object files are:
– The assembler output

– Necessary libraries

• Normal executable output is: a.out

Stages

• Compiling is either a:
– Single stage process
– Two stage process

• Many programs compile in one stage

• Usefulness of .o files:
– Implies two stage process
– (Preprocess, compile and assemble) then link later



7

Compiling in Linux

• cc is the default compiler for Sun

• gcc is the compiler from Gnu

gcc hello.c

Results in a.out

Compiling hello.c

gcc –o hello hello.c

-o is output

creates hello executable file

May not compile if there are errors

(spelling, brackets, semi-colons…)



8

Running hello

After compiling you can run the program:

./hello

If “.” is in your PATH then you can type:
hello

Compiling hello.c

gcc –g –o hello hello.c

-g creates symbol table in hello executable

Allows debugging programs to use hello!

Remember compiler only does basic checks



9

Debugging with gdb

• When programs don’t work:
e.g. produces Segmentation fault

• Runtime error doesn’t say anything

• Program may not output anything

gdb commands

gdb <executable>

help – get help

list – lists program

run – runs program

break <line> -- sets a breakpoint

backtrace – shows where program ended

quit – end the program



10

Compiling Multiple Programs

example2a.c example2b.c
example2c.c

All three at once:

gcc –g –o example2 example2a.c
example2b.c example2c.c

Compiling Multiple Programs

Two stages:

1) to objects first
gcc –g –c example2a.c

gcc –g –c example2b.c

gcc –g –c example2c.c

2) Link objects
gcc –g –o example2 example2a.o
example2b.o example2c.o



11

Using make

Step 1: Create a file called Makefile.
Step 2: Add the example as given
Step 3: When finished save the file and exit.
Step 4: At the command line, type the

following command to build the hello
executable file:

make

Rules for make

• Lines with : are dependency lines
– Left of : is the target

– Right of : are the dependencies

• After each line use a carriage return

• Tab on second line for command

• Lines are continued with \

• Comments begin #


