|ntroduction to C in Linux/Unix

COMP 1002/1402

Machine Languages
Basic instructions sets of chip
Unique to manufacturer
Each instruction is a circuit

Examples
— Add, subtract, shift bits, load bitsinto cpu...

High Level Languages
Pascal, C, C++, Java, Cobol
Must be translated into Machine Language

Need trandlation programs (e.g. compilers)

Machine Code is executed

History of C

ALGOL |

BCPL ALGOL-68

Fascal

ALGOL-W Modula-2

\Q_ m

Traditional Modula-3 I

ANSI
c

C4++

C Language
Ken Thompson invents B (1967)
Dennis Ritchie develops C (1970)

C ishigh level language but

Contains low level abilities

Creating a Program

Create atext file with .c extension
“compile” the program

An executable program is the result

Compiling is a multi-stage process
(many stages are sometimes automatic)

Compiling

[] -
m LI/ Texn Editaer /'l
C J
‘E__-'_:‘Pi:h. I el |
LLLLLL
.“l ‘ |’J|.|1|’u|:1.:ﬂ|:ll
“F I'.- Translo \
r:__j Librury % fdin Huu
||||||||||
A‘ - | H ||
(Linker
1.l|_|
‘n fumlnlu:-l-::lulmu
[: 10T 1L 1]]
\N_ | FUOLD 4D RCrL D0
Preprocessing

 Takes human source code
 Outputs machine readable code
* May rely on specific files (-1 includes)

— Inserts“ #i ncl ude”
— Uses“ #def i nes”
— Processes“ #i f 7

— Eliminates comments

Compiling

» Compiles the preprocessed code into
assembl er

» Thisis machine dependent
— Certain options occur here (-c -o -Wall)

e Output isfed into the Assembler

Assembling

» The assembler converts assembler into
object files (.o files)

o .ofilesare
— Machine dependent
— Not executables (unresolved calls)
— Can act aslibraries of code

Linking
* Linking produces executable from object files

* Object filesare:
— The assembler output
— Necessary libraries

* Normal executable output is. a.out

Stages

o Compiling iseither &
— Single stage process
— Two stage process

» Many programs compilein one stage

o Usefulnessof .ofiles:
— Implies two stage process
— (Preprocess, compile and assemble) then link later

Compiling in Linux

 cc isthedefault compiler for Sun
» gcc isthe compiler from Gnu

gcc hello.c

Results in a.out

Compiling hello.c

gcc —o hello hello.c

- 0 isoutput
creates hello executablefile

May not compile if there are errors
(spelling, brackets, semi-colons...)

Running hello

After compiling you can run the program:

./hello

If “.” isin your PATH then you can type:
hel | o

Compiling hello.c

gcc —g -0 hello hello.c
-g creates symbol table in hello executable
Allows debugging programs to use hello!

Remember compiler only does basic checks

Debugging with gdb

* When programs don’t work:
e.g. produces Segnent ati on faul t

* Runtime error doesn’t say anything

» Program may not output anything

gdb commands

gdb <execut abl e>

hel p —get help

| i st —lists program

I un —runs program

break <l i ne> -- setsabreakpoint
backt r ace — shows where program ended
qui t —end the program

Compiling Multiple Programs

exanpl e2a. ¢ exanpl e2b. c
exanpl e2c. c

All three at once:

gcc —g —o0 exanpl e2 exanpl e2a. c
exanpl e2b. ¢ exanpl e2c. c

Compiling Multiple Programs

Two stages:
1) to objectsfirst
gcc —g —c exanpl e2a.c
gcc —g —c exanpl e2b.c
gcc —g —c exanpl e2c.c
2) Link objects
gcc —g —o0 exanpl e2 exanpl e2a. o
exanpl e2b. o exanpl e2c. o

10

Using make

Step 1: Create afile called Makefile.
Step 2: Add the example as given
Step 3: When finished save the file and exit.

Step 4: At the command line, type the
following command to build the hello
executable file:

make

Rules for make

Lines with : are dependency lines
— Left of : isthe target
— Right of : are the dependencies

After each line use a carriage return
Tab on second line for command
Lines are continued with \
Comments begin #

11

