
1

Functions in C

Comp 1402/1002

A Quick Note on Data Types

In C there are two options if a specific data
type is provided and another is expected:

• The type is converted automatically

• The compiler insists you provide the right
type.

2

Automatic Conversion

Forced Conversion (Casting)

• To go down the promotion hierarchy:

int x;

double y = 5.0;

x = (int) y;

y = (double) ‘c;

3

Developing Large Programs

• Difficult to manage long code

• Teams of people or lots of time required

• Easy forget or never know something

Result: Code should be organized

Top Down Design

Begins with a main module and divides it into
related sub-modules. Each module is in
turn divided into sub-modules.

The process of subdivision stops when a
module is implicitly understood.

4

Module Example

Functions as Modules of Code

Functions are the modules in C

• Every program has a main function

• Sub modules are other functions

• Functions help organize and develop code

5

Functions Organize &
Aid Development

• Allow organized development

• Develop and test small pieces of code

• Functions assignable to team members

• Allows code reuse

Function and Organization

6

Calling Functions and Data

• Calling function passes zero or more

parameters to called function

• Called function “returns” only one item

e.g. main passes parameters to function1

A Function

7

Libraries of Code

• Often languages come with libraries of code

• Provided “free of charge”

• Beware of Copyrights and Copylefts!

• Use library code whenever possible

Using a Standard C Library

8

Three Important C Libraries

stdio - Standard IO library
– File manipulation, input, output, definitions and

manipulations of stdin stdout and stderr.

math – Math Library
– Defines most mathematical functions you

would need.

stdlib – Standard library
– Memory and miscellaneous (some math here).

math & stdlib

Math
#include<math.h>

sometimes requires –lm as compiler option

Stdlib
#include<stdlib.h>

9

Some Library Functions

log(127.5)doubledoublelog

sin(3.2)doubledoublesin

cos(3.2)doubledoublecos

ceil(1.7)doubledoubleceil

fabs(6.8)doubledoublefabs

abs(-10)intintabs

pow(2.0,3.0)doubledoublepow

sqrt(25.0)doubledoublesqrt

ExampleReturnsParameterName

ceil() and floor()

10

rand()

Getting Random Numbers

Seed the generator:
unsigned int s = 2990;

srand(s);

Get “random” number”
int x = rand();

/* returns 0 to RAND_MAX */

11

Nesting Function Calls

int i=10;

double y;

y = cos(pow((double) i, 2)));

Convert i to a double (unnecessary)

Compute i squared

Compute cosine of i square

User Defined Functions

Three places a function name is used:

• Declaration (prototype)

• Call

• Definition

12

Declarations, Calls & Definitions

Declarations (Prototypes)

• Inform the calling method of the function

• Otherwise “implicit declaration” warning
(may not be there on linking)

return_type function_name (parameter list);

13

Example Declarations

double area(double length, double width);

double perimeter(int radius);

Identical to:

double area(double, double);

double perimeter(int)

No Polymorphism!

C is unlike C++ and JAVA

Can only declare/define a function name once per
program

Parameters and return type are irrelevant

Name functions carefully (e.g. fabs, abs, labs)

14

Header Files

.h files usually contain function and constant
declarations

• Single include gives many declarations

• Important if functions are in another file

Function Definition

15

Return Type

Calling a Function

16

Calling a Function

Parameters

Parameters can be passed two ways:

• Pass by value

• Pass by address

17

Pass by Value

Copy the value:

From the caller

Into the formal parameter of the called

This is a one-way communication!

Pass by
Value

18

Parameters

• Copy of the value is placed on the stack

• Transfer of control goes to the function

• Function can pick the parameters off the stack

• Original variables are untouched by function

Pass by Address

Instead of copying a value:

Copy the memory address!!!

Then work with that address.

Variables containing addresses are: pointers

19

Pass by
Address

Address and Dereference

& is the address operator:
int a = 5;

&a /* is the address to an int */

/* type is (int *) */

* Is the dereference operator:

int *x; /* x is a pointer to an int */

x = 12; / contents of x equal 12 */

20

Scope and Duration

Global Scope

Anything defined is visible from its
definition to the end of the program.

Local Scope

Good from their definition to the end of
their block (normally a function)

Scope and Duration

Global Variables

• Placed outside the functions that use them

• Available to all functions

• Global variables should be avoided

21

Local Variables

• Scope is extent of their block

• Placed on the stack

• Destroyed on exit from function

22

static

If a local variable is modified with static then:

• Variable exists from program beginning to end

• Only available in the function

• Initialized with 0

