Bit Manipulation (Cont'd)

Comp 1002/1402

Masking and Finding a bit

All zero except the bit to test

1010101x 110011x0 <u>&0000001</u> Mask <u>&00000010</u> Mask 0000000x 000000x0

Note: either the result = Mask or Zero

Masking and Finding a bit (2)

All ones except the bit(s) to test

1010101x	110011x0
<u> 11111110</u> Mask	<u> 111111101</u> Mask
1111111x	111111x1

Note: either the result = all ones or not!

Masking to clear a bit

All ones except the bit to clear

11101111	11001110
<u>&11111101</u> Mask	<u>&10111111</u> Mask
11101101	10001110

Bit is set to zero

Masking to set a bit

All zeroes except the bit to clear

111011x1	1x001110
<u> 00000010</u> Mask	<u> 01000000</u> Mask
11101111	11001110

Bit is set to one

Masking to flip a bit

All zeroes except the bit to flip

11101101		11001110	
<u>^00000010</u>		^01000000	Mask
11101111		10001110	

Bit is flipped

Set, Flip, Get groups

Masks can be more than one bit

Bitwise Independence is crucial

Allows arbitrary bits to be manipulated

Inside one integer we can store a database!

Inside one integer

4 bytes on some machines

Q: Which of the first 32 numbers>1 are prime?

Ans: rightmost bit is 2

0010 1000 0010 0010 1000 1010 0010 1011