
1

Arrays, Pointers and Arithmetic

COMP 1402/1002

The Name of an Array

2

The Name of an Array

/* the name of an array is a pointer
value */

int a[5];

printf(“%p %p”, &(a[0]), a);

The two values printed are identical

The value depends on memory

Using Array Names

3

The Meaning of Indices

Computes appropriate address
Automatically dereferences (no need for *)

Contents at aa[0]

One element before address aa[-1]

i elements after address aa[i]

Four elements after address aa[4]

Access Array with any pointer!

#include <stdio.h>

int main (void)

{

 int a[5] = {2, 4, 6, 8, 22};

 int *p;

 p = &(a[1]);

 printf(“%d %d\n”,a[0],p[-1]);

} /* main */

4

Pointer Arithmetic and Arrays
Consider the following code:

char a[3];
int b[3];
float c[3];
char *pa = a + 1;
int *pb = b + 1;
float *pc = c + 1;

What is the meaning of +1 in each case???

Different Types and
Pointer Arithmetic

5

Pointer Arithmetic

C “knows” to add the correct number of bytes

Thus a[1] is always equivalent to *(a+1)

This is why type conversion is needed for pointers

Dereferencing arrays

6

What the C compiler does

a[i] is the pointer arithmetic (*a+i)

i=1 results in the following “assembler code”:

a + sizeof(one element)

Otherwise the “assembler code” is:
a + i * sizeof(one element)

Searching With Array Indices

/* ary is an array of arySize */

int walk, last, sm;

last = arySize –1;

sm = 0;

for(walk=1; walk<=last;walk++) {

if (ary[walk] < ary[sm])

sm = walk;

}

7

Searching With Pointers

/* ary is an array of arySize */

/* pwalk, plast, psm are pointers to type
in ary */

plast = ary + arySize –1;

psm = ary;

for(pwalk=ary + 1; pwalk<=plast;pwalk++){

if (*pwalk < *psm)

psm = pwalk;

}

Using Pointers

8

Comparing Pointers

p1 >= p2

p2 < p3

p1 != p2

ptr1 == ptr2

if(ptr==NULL) (same as) if (!ptr)

if(ptr!=NULL) (same as) if (ptr)

Passing Parameters
Consider the following code:

void f(int x) {x = x+1;}
int main (void)
{
int a=3;
f(a);
printf(“%d”,a); /* prints 3 */
return 0;

}

9

Passing Parameters
Consider the following code:

void f(int *x) { x = x+1;}
int main (void)
{
int a[]={1,2}, *pa=a;
f(pa);
printf(“%d”,*pa); /* prints 1 */
return 0;

}

Passing Parameters
Consider the following code:

void f(int **x) { *x = *x+1;}
int main (void)
{
int a[]={1,2}, *pa=a;
f(&pa);
printf(“%d”,*pa); /* prints 2 */
return 0;

}

10

C is pass by value!!

C even passes the pointer by value

The second code passes a copy of pointer

The third code passes the pointer to pa

Allows manipulation of pointers

What about 2D arrays?

A[i] is equivalent to *(a + i)

Q. What is b[i][j] equivalent to?

Ans. *(b[i] + j)

((b+i) + j)

11

2D Arrays

Passing Arrays as Parameters

The following are identical to C

int func1 (int array[]);

int func1 (int *array);

But not to the human reader!

12

Passing High Dimension Arrays

float funct (int big[][3][5]);

Suppose we have the following code:

int ***p;
p = big + 1;

How many bytes to add?
We only know because of the 3 and 5!

Passing High Dimension Arrays

float funct (int big[][3][5]);

…
int ***p;

p = big + 1;

15 bytes * 4 bytes per integer

13

Complex Declarations
What do these declarations mean:

float x;
float * p;
float arrayOne[5];
float arrayTwo[4][5];
float * arrayThree[5];
float (* arrayFour)[35];
float const * a;
float * const b;
const float * c;

Start at Identifier…

Start at Identifier

Alternate right then left

Brackets take priority over above rule

14

Complex Declarations

int x;

x is a int

int * p;

p is a pointer to an int

int aOne[5];

aOne is an array of ints

Complex Declarations

int aTwo[4][5];

aTwo is a an array of ints

int * aThree[5];

aThree is a an array of pointers to ints

int (* aFour)[35];

aFour is a pointer to an array of ints

15

Complex Declarations

int * const b;

b is a constant pointer to an int

int const * a;

a is a pointer to a constant int

(an unreliable declaration!!)

Memory Allocation

Types of Memory Allocation:

Static – done at compile time

Dynamic – get memory during runtime

COBOL, FORTRAN are Static only!!

C has two types of Dynamic: Stack and Heap

16

Dynamic Memory in C
Stack:

Declare arrays with variables of larger scope

Problem:
Only good in the current scope!

float * func(int n) {
float array[n]; /* good */
…
return array; /* severe mistake */

}

Heap Allocation

Ask the system for a portion of the memory

stdlib.h has 4 functions to deal with this

17

Conceptual View of Memory

malloc

void * malloc (size_t size);

malloc allocates number of bytes specified in size

size_t

an integer big enough to hold the max address

Normally this is an unsigned int

18

Casting and Error Check

pFloat = (float *)malloc (sizeof(float));

Cast to (float *) not required by ANSI

Error check also recommended:

calloc

void * calloc (size_t count,

size_t elem_size);

calloc allocates count elements of elem_size

Returns consecutive elements!
If unsuccessful returns NULL (like malloc)

19

calloc

realloc

Resizes old block

Or declares new, copies old and deletes old.

Often expensive operation

void * realloc (void * ptr,

size_t new_size);

20

realloc

free

void free(void *ptr);

21

calloc & Array of Pointers

The next slide details the full power

of an array of pointers

int table[4][5];

table is an array of pointers

each pointing to an array of the same size
calloc removes that restriction

