
1

Deriving Types I

COMP 1002/1402

Derived Types



2

The Type Definition

typedef

– complex types defined as a different name

typedef

Examples:
typedef unsigned int ASIZE;

char *stringPtrAry[20];

Replace with:
typedef char *STRING;

STRING stringPtrArray[20];



3

Enumerations

Identifies symbols with integers

Built on top of integers

enum



4

enum

Defining a single enumeration variable:

enum {sun, mon, tue, wed, thur, fri,
sat} days;

days = mon;

if (days == mon)
printf("I don’t like Mondays\n");

enum

Technically:
 sun is 0, mon is 1, tue is 2, …

Therefore:
days = 1; /* is valid */

Careful! No range checking!



5

enum

Want different numbers?
enum {sun=1, mon=2, tue=3, wed=4,
thur=5, fri=6, sat=7} days;

Or

enum {sun=1, mon, tue, wed, thur,
fri, sat} days;

Enumerations

Caution:
ISO/ANSI C is not strict with enum

Don’t mix enum symbols with integer variables

Even if possible (depends on compiler)

Use:
 enum symbols to replace constants!



6

enum

Defining Multiple enumeration variables with
the same values!

enum DaysOfWeek {sun=1, mon, tue,
wed, thur, fri, sat};

enum DaysOfWeek today;

enum DaysOfWeek yesterday;

typedef & enum



7

Structures

A structure is a collection of related elements

A field is the smallest element of named data that
has meaning

An array has elements of the same type

A structure can have elements of different types

Structure Examples



8

Defining a Single
Structure Variable

student Variable

struct {

char id[10];

char name[26];

int gradePoints;

} student;



9

Multiple Structure Variables

student Variables

struct student {
char id[10];
char name[26];
int gradePoints;

};

struct student aStudent;
struct student topStudent;

void printStudent (struct student Stu);



10

Defining Structure Types

STUDENT type

typedef struct {
char id[10];
char name[26];
int gradePoints;

} STUDENT;

struct STUDENT aStudent;
struct STUDENT topStudent;

void printStudent (STUDENT Stu);



11

struct
Summary

Initializing0



12

Accessing

Given the aStudent variable, access its parts:

Use the . Operator

aStudent.id

aStudent.name

aStudent.gradePoints

if (sam2.u == 'A')

sam2.x += sam2.y;

scanf("%d %d %f %c", &sam2.x,
&sam2.y, &sam2.t, &sam2.u);

sam2.x++;

sam2.y++;



13

Comments on Precedence

• The . Operator has a very high precedence

sam.x++    ++sam.x    &sam.x

Are equivalent to:

(sam.x)++  ++(sam.x)  &(sam.x)

example

#include<stdio.h>

typedef struct {

int numerator;

int denominator;

} FRACTION;

/* write multiplyFraction (...)*/



14

Structure Operations

Assignment works on whole structures!
sam2 = sam1;
/* copies contents of sam1 into sam2!! */

Can’t do Comparison

== would compare all bits in structure

But some hardware require items start on
word boundaries!

floats must start at address divisible by ?6?

ints must start at address divisible by ?4?



15

Thus structures aren’t packed!

A Structure and its bytes:

a string bytes 0-24

bytes 25-29 (nothing but noise)

a float in bytes 30-35

a char in byte 36

bytes 37-39 (nothing but noise)

an int in bytes 40-43

Pointers to Structures



16

Pointers to Structures

(*ptr).x

(*ptr).y

(*ptr).t

(*ptr).u

Don’t forget these parentheses!!!!

Common mistake and it’s deadly.

Pointers to Structures



17

An Easier Way (selection)

(*pointerName).fieldName

Is the same as:

pointerName->fieldName

Pointer Selection Operator



18

Precedence of Selection

Precedence of ->

Is identical to .

This implies they are equally high!

Example

typedef struct {

int hr;

int min;

int sec;

} CLOCK;

void increment(CLOCK *clock);

void show(CLOCK *clock);


