
1

Deriving Types II

COMP 1002/1402

Nesting Structures

So far, only basic types appeared in struct

Q.

Why not defined types?

Ans.

No reason but simplicity of presentation



2

Nesting Structures

Define a STAMP to contain:
 a DATE and a TIME

How to do it

Use one struct or type in the struct

(examples to follow)

Style: Declare every structure separately!

Necessity: Declare before use.



3

Bad Style
typedef struct {

struct {

int month;

int day;

int year;

} date;

struct {

int hour;

int min;

int sec;

} time;

} STAMP;

STAMP aStamp;

Good Style
typedef struct {

int month;
int day;
int year;

} DATE;
typedef struct {

int hour;
int min;
int sec;

} TIME;
typedef struct {

DATE date;
TIME time;

} STAMP;

STAMP aStamp;



4

Referencing Nested Structures

aStamp
aStamp.date
aStamp.date.month
aStamp.date.day
aStamp.date.year
aStamp.time
aStamp.time.hour
aStamp.time.min
aStamp.time.sec

Nested Structure Initialization

Initialize each structure with:

Nested {} :
STAMP aStamp = {{05,10,1936},{23,45,00}};

Or predefined variables:
DATE aDate = {05,10,1936};
TIME aTime = {23,45,00};
STAMP aStamp = {aDate, aTime};



5

Arrays in Structures

Defined like any other element

Accessed with indices

Initialized like a nested (sub)structure

Arrays in Structures



6

Accessing Elements

STUDENT aStudent;

aStudent

aStudent.name

aStudent.name[1]

aStudent.midterm

aStudent.midterm[j]

aStudent.final

Accessing Elements

STUDENT *paStudent;

paStudent = &aStudent;

paStudent->name

paStudent->name[1]

paStudent->midterm

paStudent->midterm[j]

paStudent->final



7

Accessing pointers

STUDENT aStudent={"John Smith",{92,80,70},87};

int *pScores = student.midterm;

int totalScores = *pScores + *(pScores+1) +
*(pScores+2);

Pointers, Structures and Memory

Consider the DATE structure

Months should be strings!

Should we store the string in every month?

Store one pointer in every structure



8

The New Structure

typedef struct {

char *month;

int day;

int year;

} DATE;

The New Structure

Every "December" points to the same spot!



9

Array of Structures

STUDENT stuAry[50];

Array of Structures
int totScore = 0;

float average;

STUDENT *pStu;

STUDENT *pLastStu;

…

pLastStu = stuAry + 49;

for (pStu = stuAry; pStu <= pLastAry;pStu++)

totScore += pStu->final;

average = totScore / 50.0;



10

Structures and Functions

• Pass individual members (fields)

• Pass entire structure by value

• Pass address to structure

Passing Individual Members



11

Sending the Whole Structure

Careful Passing by Value!

Any pointers in the structure?

What about that new DATE class…

Pass a DATE to a function by value,

In the function change the contents of month,
What happens?



12

Passing Whole Structures

Unions

union like enum & struct allow:

• A single variable

• Multiple variables

• New type definition



13

Union

A union variable allows:

more than one type of data

to occupy its memory!

Big enough for the largest of them.

Accessed with . Operator
(data.num or data.chAry[0])

union



14

Unions in Structures

Initializing Unions
Only the first type declared in union!

typedef union {
short num;
char ch[2];

} SH_CH2;

SH_CH2 data = 16706;
printf("%d\n%c\n%c\n",num,ch[0],ch[1]);



15

Little Endian, Big Endian

Q. What does this code produce?
SH_CH2 data = 16706;
printf("%d\n%c\n%c\n",num,ch[0],ch[1]);

Ans. Two possible outputs!
16706 16706
A B
B A

Why?

(16706)10 = (0100 0001 0100 0010)2

Big Endian buts msw before lsw

Little Endian puts lsw before msw

(Most Significant Word & Least Significant Word)

Word is 2 bytes (usually)!


