
1

Linked Lists

COMP 1002/1402

Using Defined Types

Data Structures are key to Computer Science

Think of the JAVA libraries:

Vector,

ArrayList,

Hashtable…

2

Lists of Information

Begin with a basic concept: A List

Has a first element

second element

third element…

Could be arbitrary length

Singly Linked Lists

3

Single link per element

So what is in a NODE?

Each element (NODE) in a list contains:

Data

and a pointer to another NODE

How will we define the NODE type?

4

Global Declarations!

typedef int KEY_TYPE; /*applic dependent*/

typedef struct {
KEY_TYPE key;
… /* other data */

} DATA;

typedef struct {
DATA data;
struct nodeTag *link;

} NODE;

List Orderings

Three main types of lists:

• First in First out (queue)

• Last in First out (stack)

• Key Sequenced (sorted list)

5

Keeping a List

Keep a pointer to the first NODE
NODE * pList;

All functions modifying a list:

Take pList as a parameter

Return the “new” pointer to the first NODE

e.g.: NODE *insertNode(...);

Lists Versus Arrays

Arrays

Elements are consecutive in memory

Easy to determine location in memory

Access a single element quickly

Cannot change size (must declare new space)

6

Lists Versus Arrays

Lists

Elements are in arbitrary location

Must view all predecessors to find one

Grows to arbitrary size

Massive re-orderings possible quickly

Insert a Node

• Allocate memory

• Locate predecessor (pPre)

• Point new node to its successor

• Point predecessor to new node

7

Meanings of pPre

Insert into Empty List

8

Insert Node at Beginning

Insert Node in Middle

9

Insert Node at End

Inserting a Node

NODE * insertNode(NODE *pList,

 NODE *pPre,

 DATA data) {

.

.

.

}

10

Deleting a Node

Still requires the predecessor’s location!

Cut out the node

Free the memory space!

Delete First Node

11

Delete General Case

Deleting a Node

NODE * deleteNode(NODE *pList,

 NODE *pPre) {

.

.

.

}

12

Searching Through a List

Search should return:

0 if no match exists

1 if pCur is a match

Search Returns:

13

searchList

int searchList (NODE *pList,

 NODE **pPre,

 NODE **pCur,

 KEY_TYPE target) {

.

.

.

}

Traverse Linked Lists

printList, averageList, …

