
Location Verification on the Internet:
Towards Enforcing Location-aware Access Policies Over Internet Clients

AbdelRahman M. Abdou
Carleton University, Ottawa

Email: abdou@sce.carleton.ca

Ashraf Matrawy
Carleton University, Ottawa

Email: amatrawy@sce.carleton.ca

Paul C. van Oorschot
Carleton University, Ottawa

Email: paulv@scs.carleton.ca

Abstract—Over the Internet, location-sensitive content/service
providers are those that employ location-aware authentication or
location-aware access policies in order to prevent fraud, comply
with media streaming licencing, regulate online gambling/voting,
etc. An adversary can configure its device to fake geolocation
information, such as GPS coordinates, and send this information
to the location-sensitive provider. IP-address based geolocation
is circumvented when the adversary’s device employs a non-
local IP address, which is easily achievable through third party
proxy and Virtual Private Network providers. To address the
issue that existing Internet geolocation techniques were not
designed with adversaries in mind, we propose Client Presence
Verification (CPV), a delay-based verification technique designed
to verify an assertion about a device’s presence inside a prescribed
triangular geographic region. CPV does not identify devices
by their IP addresses, thus hiding the IP does not evade it.
Rather, the device’s location is corroborated in a novel way
by leveraging geometric properties of triangles, which prevents
an adversary from manipulating the delay-sampling process to
forge the location. To achieve high accuracy, CPV mitigates
path asymmetry by introducing a new method to deduce one-
way application-layer delays to/from the adversary’s participating
device, and mines these delays for evidence supporting/denying
the asserted location. We implemented CPV, and conducted
real world extensive experimental evaluation on PlanetLab. Our
results to date show false reject and false accept rates of 2% and
1.1% respectively.

I. INTRODUCTION

Over the Internet, Location-Sensitive Providers (LSPs)
are content/service providers that customize their services
based on the geographic locations of their clients (the soft-
ware that communicates with the LSP, typically a web-
browser). Some LSPs make their services available only to
certain geographic regions, such as media streaming [1] (e.g.
hulu.com); others restrict certain operations to a specific loca-
tion, such as online voting (e.g. placespeak.com), online gam-
bling (e.g. ballytech.com), location-based social networking
[2] (e.g. foursquare.com), or fraud prevention (e.g. optimal-
payments.com). LSPs may also use location information as an
additional authentication factor to thwart impersonation and
password-guessing attacks (e.g. facebook.com). Privacy laws
differ by jurisdiction, which allows/bans contents based on
region [3]. The nature of the provided services may motivate
clients to forge their locations to gain unauthorized access.

Various technologies exist for geolocating clients, such as

The final version of this paper is published in the proceedings of IEEE
Conference on Communications and Network Security (CNS), October 2014.

measurement-based techniques [4] or requesting the user’s
GPS coordinates [5]. Measurement-based geolocation tech-
niques exploit the correlation between Internet delays and
geographic distances to determine clients’ locations [6]. It was
shown that those techniques can be evaded through IP address
hiding [7], submitting forged information [2], or corrupting the
delay-measuring process [8]. Because of the stochastic nature
of Internet delays [9], location-verification solutions designed
for single-hop wireless networks [10], [11] may not be directly
adopted for the Internet.

Considering the mentioned circumvention tactics, verifying
locations of Internet clients becomes a challenging problem
[12]. To devise a practical verification approach, a number of
questions must be answered, such as: How will IP address-
masking be handled? How will the false rejects and false
accepts be quantified? To answer these questions, we present
and evaluate Client Presence Verification (CPV), a delay-based
technique designed to verify a client’s geographic location to
∼104-105km2 granularity. CPV resists traditional geolocation-
circumvention as it (1) does not rely on the client’s IP address,
(2) does not rely on client-submitted information, and (3) is
designed such that manipulating the delays is not in the client’s
favour. CPV takes as an input the client’s asserted location, and
maps it to a [0, 1] confidence scale which, under appropriate
calibration, can then be translated to an accept/reject decision.
To mitigate path asymmetry, CPV introduces a new method
to deduce one-way delays (OWDs) to/from a potentially
dishonest client. To the best of our knowledge, CPV is the
first technique that leverages the relationship between delays
and distances to corroborate (instead of determine) clients’
locations, taking into account adversarial environments.

In §II, we provide a summary of the literature that stud-
ied delay behavior over the Internet, and its relationship to
geographic distances. We discuss the threat model in §III,
and explain CPV in §IV. Our empirical evaluation of CPV
and a discussion about its security are presented in §V and
§VI respectively. Other work related to location verification is
discussed in §VII. We conclude in §VIII.

II. BACKGROUND

Delay characterization between Internet hosts plays a
prominent role in numerous applications such as distributed
web-caching, server placement in Content Distribution Net-
works, clock synchronization, overlay Peer-to-Peer networks,
geolocation, application-layer mutlicast, and timeout estima-
tions in TCP. Due to its inherent sensitivity, factors affectingThis is the authors’ copy for personal use. c©2014 IEEE.

delays between Internet nodes have been well studied includ-
ing the spanned geographic distances, routing policies, etc.

Delay-based IP geolocation is a broad class of techniques
that aim at calculating the geographic location of a client
based on the observed delays between the client and a set
of landmarks with known locations [13]. Most techniques
apply regression analysis to find a function that best describes
the relationship between the measured delays and geographic
distances [4]. Others use machine learning to achieve the
same objective [14]. Multilateration is then used on the pair-
wise estimated distances between the landmarks and the client
to constrain the region where the client is located. Some
efforts were proposed to enhance the delay sampling process
by removing buffering delays in the routers along the path
[15], or utilizing that—even in regions with moderate Internet
connectivity—the shortest delay comes from the closest dis-
tance [16], [4]. Recent delay-based IP geolocation techniques
incur a median error of as low as a few kilometres [17]. To
infer distances from delays, the speed at which packets are
transmitted over the Internet has been approximated to 4/9
the speed of light in vacuum, a ratio coined as the Speed of
the Internet (SOI) [18]. However, the actual speed is affected
by several factors such as time of the day, region and the
underlying network. Landa et al. [19] evaluated the conditional
entropy of the delays between two hosts in a study derived
from 19 million round-trip time (RTT) measurements all over
the globe. They found that the knowledge of the geographic
distance between two nodes, their /8 IP prefixes, and their
countries scopes down their expected delay to within ∼22ms.

Network topology has been extensively leveraged to devise
delay estimators without active probing [20]. Network Coor-
dinates System (or NCS), such as GNP [21], Vivaldi [22],
and Meridian [23], model a network as a geometric space
by assigning coordinates to each node in the network. The
coordinates denote a node’s position relative to other nodes in
the network space, i.e. according to its delay to/from them.
The Euclidean distance can then be calculated between pairs
of nodes to estimate their delays. One essential advantage of
NCSs is the ability to locate a node’s network position relative
to almost all other nodes without overwhelming the network
with storms of delay sampling [24]. Unfortunately, NCSs are
vulnerable to an adversary falsifying its coordinates [25], [26].

The aforementioned delay studies reflect solid evidence of
a strong correlation between Internet delays and geographic
distances [27], which is commonly speculated to be stemming
from the improved global network connectivity [13]. We take
these studies a step forward, and devise CPV to address the
problem of location verification. We now detail the threat
model considered in CPV.

III. THREAT MODEL

The adversary is a (human) user that programs its client
(software) to evade a geolocation process, thus misrepresenting
its location. We assume the adversary is in physical possession
of the device running the client, and that the client contacts the
LSP through a regular Internet connection. CPV is designed
to verify the output of a geolocation technique. However, we
assume that the geolocation step prior to the operation of

CPV is an unverified assertion, e.g., from the client. CPV
is then to verify this assertion. Note that such assumption
is one of convenience, and does not pose implications on
the operation of CPV if a geolocation technique is otherwise
used. On the contrary, allowing the case of a client asserting
a location addresses a sophisticated adversary that can evade
a geolocation technique.1

The adversary could be unaware of the target location
(the location where it is trying to appear to be at). This is
commonly the case when the adversary executes a “trawling”
online password-guessing attack (attacking multiple accounts
at once) on a location-aware authentication server that restricts
a user’s login to location(s) associated with the user’s ac-
count. We also consider an adversary that knows the target
location—commonly the case with location-sensitive multime-
dia providers that announce their broadcasting regions (e.g.
hulu.com). We assume that the adversary has full control over
its own device, it can install/uninstall any software. We also
consider within scope an adversary that uses generic proxies,
Virtual Private Networks (VPNs) and/or anonymizers to hide
its IP address or to hide any other identifying information that
may reveal its true location, as well as an adversary capable of
adding artificial delays to Internet Control Message Protocol
(ICMP) packets, as outlined by Gill et al. [8].

IV. CPV: CLIENT PRESENCE VERIFICATION

CPV builds on the established correlation between Internet
delays and geographic distances [28] (see §II). The adversarial
environment that we consider introduces a new challenge while
mapping delays to distances: filtration of noisy delay measure-
ments (e.g. removal of delay outliers) could be exploited by an
adversary for its advantage. As such, instead of mapping delays
into distances, we escalate an important implication of their
correlation: standard geometric theories apply to delays (as
they do to distances) with some error margin. By the end of this
section, we summarize how CPV manages the delay-sampling
process to diminish this error margin without jeopardizing the
integrity of the verification process.

In CPV, the client provides evidence, through delay mea-
surements, of its presence inside a triangle determined by
three verifiers.2 The size of that triangle is the verification
granularity. The verifiers are chosen according to the client’s
asserted location. The locations of the verifiers should be con-
sistent with the LSP’s Permitted Geographic Regions (PGRs),
which are regions where clients are permitted to receive
services/content or carryout location-specific tasks. We assume
these verifiers are trustworthy, and that the adversary has
absolutely no control over any of them. To successfully enforce
the LSP’s location-aware access policies, the verifiers must:

1) Be publicly reachable over the Internet.
2) Have a public-private key pair and each verifier must

be aware of the public keys of all other verifiers
in the set, possibly through a closed Public Key
Infrastructure (PKI).

1Some geolocation techniques are harder to evade than others [8].
2In practice, verifiers could be dedicated servers maintained by an indepen-

dent party, which provides location verification as a service.

Fig. 1. Notations of OWDs between client c and verifiers v1, v2 and v3.

3) Synchronize their clocks to the nearest ms to measure
OWDs (One-Way Delays) among themselves [29].

4) Their convex hull encapsulates the LSP’s PGR.

1) Notations and definitions: The union set of all geo-
graphic coordinates belonging to all of the LSP’s PGRs is
denoted L. We refer to the set of verifiers available to the LSP
by V. The set of all triangles determined by the verifiers in V is
TV, where |TV| =

(|V|
3

)
. For any triangle 4 ∈ TV, V4 ⊂ V is

the set of the three verifiers determining4. For any geographic
location l = {x, y}, El ⊂ TV is the set of triangles enclosing
l, such that all 4l ∈ El are near equilateral in the network
space (see §II), and no 4l ∈ El crosses the LSP’s PGR border
(PGR border crossing is discussed in §VI-3).

There are three edges joining a client with three verifiers,
and three edges joining the three verifiers. Each of the six
edges has two OWDs in opposite directions as shown in
Figure 1. The set D• holds an approximation to the smaller
OWD at each of the six edges, where the superscript • is
the method at which this approximation was obtained. A
client and three verifiers make four triangles. The function
valid(D) checks if the four triangles, whose side lengths are
the six OWDs in D, satisfy the triangle inequality. That is,
the summation of each two sides is greater than the third for
each of the four triangles. The delay-based area is the area of a
triangle whose side lengths are the delays between its vertices.
The function ar v(D) calculates the delay-based area of the
triangle determined by the three verifiers whose side lengths
are the OWDs in D that belong to the edges between the
verifiers. The function ar c(D) calculates the summation of
the delay-based areas of the three remaining triangles, the ones
determined by each pair of verifiers and the client.

2) CPV description: CPV’s verification process begins by
having the client asserting its location. Assuming the client
asserts to be at location l = {x, y}, the LSP chooses a triangle
4l ∈ El, and informs the client of the IP addresses of the
verifiers in V4l

. The client connects to the verifiers3 and the
verification process begins. First, the verifiers calculate an
approximate to the smaller OWD at each of the six edges
linking the verifiers with each other and with the client.
Second, they use these OWDs to verify the client’s asserted
location. These two steps are detailed in the following two
sections respectively.

3) OWD estimation: If the verifiers settle for sampling the
RTT and taking its half as an approximation to the OWD

3The client may use websockets [30] to connect to the verifiers, as they are
a stable means of delay measurement through the browser [31].

(which is the average of the actual two OWDs), they endure
the negative effect of including a spike that occurs in one
of the two directions. The verifiers can’t ask the potentially
dishonest client to synchronize its clock with theirs, and
exchange timestamps with the client to measure the OWD [32].
So, while approximating the OWD, the verifiers must assume
the client may:

• Drop/reject timestamp messages.
• Refrain from appropriately synchronizing its clock

with the verifiers.
• Forge the calculated OWD.
• Falsify the timestamp before sending it to the verifiers.

To account for these threats, we devise what we refer to
as the minimum pairs (mp) method for OWD calculation.
To obtain Dmp, the three verifiers take turns to create and
send a probing message to the client. A probing message is a
digitally signed timestamp with the most recent system time of
the message creator (verifier). The client is required to echo
back this message, and forward it to the other two verifiers
once it receives the message.4 This enables the verifiers to
obtain nine delay values corresponding to dic + dcj for all
1 ≤ i, j ≤ 3 (see Figure 1), which is possible because their
clocks are synchronized. Note that the verifiers can’t tell the
values of dic and dcj independently. Algorithm 1 details how
the nine values are used to obtain Dmp. The notation Sa(m)
means message m digitally signed by a; ta refers to the most
recent timestamp according to a’s clock; the arrow A

m−→ B
means A sends message m to B. As shown in lines 11 through
13, the verifiers also use the average method, to obtain Dav ,
which will then be used (later in Algorithm 2) as a fallback if
the mp method violates the triangle inequality [33]. During this
process, the verifiers periodically calculate the OWDs between
themselves [34] (line 10).

Because the mp approximation method excludes the larger
delay-summation as outlined by lines 15 through 17 of Al-
gorithm 1, it is better in excluding delay-spikes than the
av method. For instance, assuming that the probability of
occurrence of a spike is equal at the three edges linking the
client with the verifiers in both directions, the mp method will
surely exclude the occurrence of one spike. The av method
will include it. As more spikes occur, the probabilities to
include them by the mp method increase, but the probability
the mp method includes all spikes never hits 1 except when
six spikes occur, one in each direction of the three edges. The
av method includes every spike that occurs with a probability
of 1 regardless of the number of spikes that occurred.

4) Accept/Reject Decision: We now explain how Dmp and
Dav are used to corroborate locations. The verifiers obtain
new OWD samples iteratively to account for possible delay
instability [35], and calculate Dmp and Dav at each iteration.
Their confidence of the truthfulness of the asserted location is
the proportion of iterations where the values of ar c(Dmp)
and ar v(Dmp) almost match. If at some iteration, the delays
in Dmp violate the triangle inequality for any of the four
triangles determined by the verifiers and the client, the set Dav

is used instead for that iteration. Dmp is checked first because

4This behavior can be implemented in the browser through javascript.

Algorithm 1: One-Way Delay approximation between a
client asserting to be at l and the verifiers in V4l

.
Output: Dmp and Dav

begin
1 foreach v in V4l

do
2 v captures its current system time k1 = tv

3 v
k1,Sv(k1)−−−−−−→ client

4 foreach u in V4l
do

5 client
k1,Sv(k1)−−−−−−→ u

6 u captures its current system time k2 = tu
7 u validates Sv(k1)
8 u calculates e = k2 − k1
9 u

e−→ y ∀y ∈ V4l
|y 6= u

10 The verifiers measure dvi ∀i = {1..6} (see Figure 1)
11 γci = (dic + dci)/2 ∀i = {1..3}
12 γvi = (dvi + dvi+3)/2 ∀i = {1..3}
13 Dav = {γci , γvi } ∀i = {1..3}
14 The verifiers solve simultaneously for β1, β2, β3:
15 β1 + β2 = min(d1c + dc2, d2c + dc1)
16 β2 + β3 = min(d2c + dc3, d3c + dc2)
17 β3 + β1 = min(d3c + dc1, d1c + dc3)
18 ηci = min(βi, γ

c
i) ∀i = {1..3}

19 ηvi = min(dvi , d
v
i+3) ∀i = {1..3}

20 Dmp = {ηci , ηvi } ∀i = {1..3}
21 return Dmp and Dav

it is more resilient to delay spikes, as discussed earlier (§IV-3).
Algorithm 2 details this process.

It is important to introduce the error tolerance, ε (line 7),
to account for route circuitousness [36], congested routes, or
other factors that contribute to the imperfect delay-distance
mapping over the Internet. However, such error tolerance may
mislead the verifiers to falsely accept a distant adversary
because if the adversary is far enough that the inner triangles
(those having the client as one of their vertices) are obtuse,
those triangles become flattened and their areas decrease. To
mitigate this effect, we include the acceptable(D) function
(line 7), which checks that the OWD between verifier v
and the client is not larger than the OWDs between v and
the other two verifiers. The function returns true only if the
previous condition is true for all three OWDs in D between
the client and the verifiers. Finally, the confidence scale (cs) is
calculated, and the assertion is rejected if the confidence scale
is below some predefined threshold, τ4l

.5

The input parameters of Algorithm 2 should be calibrated
independently for each4 ∈ TV, where the number of iterations
n4 as well as the threshold τ4 should reflect the variance
in delays sampled over a relatively long period of time in
the region spanned by 4. Intuitively, if the regional delay is
highly constant over time, no need to take numerous delay
samples. The tolerance of the area inequality ε4 should reflect
the regional variance in the delay-to-distance ratio. We are

5The cs is calculated in every iteration in Algorithm 2 because we study
its changing behavior in §V. In practice, it is sufficient to calculate it once at
the end of all iterations.

Algorithm 2: Executed by the verifiers in V4l
when a

client asserting to be at l connects to them.
Input: n4l

, ε4l
, τ4l

Output: Accept/Reject client’s assertion
begin

1 pass = 0
2 for i = 1 to n4l

do
3 Di = NIL
4 Use Algorithm 1 to obtain new OWD samples

for Dmp and Dav .
5 if valid(Dmp) then Di = Dmp

6 else if valid(Dav) then Di = Dav

7 if Di 6= NIL and ar c(Di)− ar v(Di) ≤ ε4l

and acceptable(Di) then
8 pass = pass+ 1

9 csi = pass/i

10 if csn4l
< τ4l

then Reject client’s assertion
11 else Accept client’s assertion

currently investigating the calibration process, and will present
our outcomes in future extension to this work.

In summary, CPV manages potential errors while pro-
cessing the measured delays to verify a client’s location by
utilizing the following precautions: (1) two methods are used
to approximate the OWDs, with one (the mp) being more
resilient to delay spikes; (2) active delay sampling is used
with each client, which reflects the most recent delay status
in the region [35]; (3) no static delay-to-distance mapping is
required; (4) many delay samples are taken instead of one
to better converge to the expected delay value [37]; and (5)
verification occurs in localized geographic regions to reflect
regional delay status [9], span few Autonomous Systems which
reduces route circuitousness [28], suffer less triangle inequality
violations (TIVs) [33], and exhibit higher positive correlation
[19]. Next, we evaluate CPV by checking the existence of
regional values for the input parameters of Algorithm 2 that
will enable the verifiers to partition clients inside a triangle
(legitimates) from outside ones (adversaries).

V. EMPIRICAL EVALUATION

We use the rates of false rejects (FRs) and false accepts
(FAs) as the evaluation metrics. Assuming a client asserting to
be at l, a FR happens if the verifiers in V4l

reject this client’s
assertion, and the client was geographically present somewhere
inside 4l. By contrast, a FA happens if the verifiers accept the
assertion, and the client was geographically absent from 4l.

We used ∼80 PlanetLab [38] nodes located within USA
and Canada, and identified 34 different sized triangles sat-
isfying the requirements stated in §IV. The areas of these
triangles ranged from ∼32,000km2, close to the size of the
state of Maryland, to ∼500,000km2, close to the size of
Spain. We assumed that each triangle is a PGR, i.e. the
PGR is a triangular-shaped region that happens to perfectly
coincide with the dimensions of the triangle. We considered

one triangle at time. For each triangle, all nodes—except the
three determining the triangle—acted as clients; all clients
asserted to be inside that triangle regardless of whether they
were actually inside or not. Combining clients of all triangles
together, legitimates (clients actually inside) totalled 146 and
adversaries (clients actually outside) totalled 2,301 giving
a total of 2,447 experiment. The verifiers determining each
triangle were verifying assertions of all clients concurrently.
Knowing the ground truth of legitimates and adversaries with
respect to each triangle, our objective is to identify the optimal
ε4 and τ4 values for each of the 34 triangles, and quantify
the FRs and FAs at these values.

Experiments were run over the course of a month (April
2013) and at different times of the day. The number of
iterations (Algorithm 2) was fixed at n4 = 600 for all 4 in
our 34 triangle set to study the behavior of the factors affecting
CPV over a relatively long period of time (a total of ∼13.3
million delay samples were taken between all nodes). We show
in §V-C that fewer iterations are needed to judge a client.

A. Distinguishing Legitimates from Adversaries

We detail the results of one of the triangles in our 34
triangle set, and three of the clients being verified by that
triangle. One of the clients was legitimate (i.e. inside), the
other two were adversaries (i.e. outside). Figure 2(a) shows the
location of that triangle and the three clients labelled D, E and
F. To study the delay-based area difference (line 7 of Algorithm
2) when areas are calculated by the mp method, we plot the
area difference only when Di = Dmp, i.e. as if line 6 of
Algorithm 2 was completely omitted. This is shown in Figure
2(b). There are some few iterations that has no corresponding
values for the area difference (visible in high resolution).
Those are the ones where the function valid(Dmp) returned
false. Because F is relatively faraway from the triangle, its
average area difference is larger than those of D and E. The
smallest recorded area difference for F is approximately 100.
Therefore, setting ε4 in the range ε4 < 100 makes pass = 0
(Algorithm 2) for all iterations, which will result in F ’s csi = 0
for all 1 ≤ i ≤ 600. Consequently, at ε4 < 100, any value
of τ4 > 0 will reject F ’s assertion. E was less than 50km
away of the triangle’s nearest side AC, thus the average area
difference of E is close to that of D. However, at ε4 = 45,
there is a visible distinction between both nodes. That is, there
existed a value for ε4 that enabled the verifiers partition those
two nodes despite being geographically collocated.

Figure 2(c) shows the progress of the confidence scale (cs)
throughout the iterations for the three nodes at ε4 = 45.
Despite the relatively close values in the area difference
between D and E, their confidence scale greatly differs at
this value of ε4. The confidence scale at i = 100 is 0.86 and
0.3 for D and E respectively. Therefore, after 100 iterations,
any value for τ4 in the interval]0.3,0.86] enables the verifiers
detect that D is a legitimate client and that E is an adversary.
At i = 600, D and E’s confidence scale becomes 0.84 and
0.2 respectively, showing no significant change from the 100th

iteration. The cs plotted in Figure 2(c) considers Dav at the
iterations where the function Dmp returned false (i.e. same
behavior as that described by Algorithm 2).

(a) This triangle’s area is ∼230,000km2. Clients E and F are
outside, whereas D is inside. Map data: Google, INEGI.

1 300 600

0

200

400

45

Iteration number (i)

a
r
c
(D

m
p

i
)
−
a
r
v
(D

m
p

i
)

D E F

(b) At ε = 45 (the dashed line), D
and E are almost partitioned.

1 300 600

0

0.5

1

Iteration number (i)

C
on

fid
en

ce
sc

al
e

(c
s
i
)

D E F

(c) cs at ε = 45.

Fig. 2. An example from our experiments showing a triangle and three clients
(better viewed in colour).

B. Proximity to Triangle’s Sides

We study the effect of the proximity of a legitimate client
(i.e. inside the triangle) to the sides of its enclosing triangle.
For any point g = {x, y} inside 4, the function awy(4, g)
(short for away) returns the ratio of the distance between g and
the side zg4 to the length of zg4, where zg4 is the closest side
to g. If awy(4, g) = 0, then g lies on one of the three side
of 4. To study the effect of the client’s proximity on CPV,
we evaluate CPV’s behavior when less legitimates with small
awy() values are included in the experiments.

Figure 3 shows the rates of FRs and FAs when the only
legitimates experimented are those at g, such that awy(4, g) ≥
λ for all 4 in our 34 triangles set. The number of remaining
legitimates is shown on the same chart.6 All adversaries are
included in the plot regardless of their triangle proximity. As
more legitimates get excluded, the effect of the remaining ones
on the FRs increases. When remaining clients suffer higher
network delays than the average, the FRs oscillate as shown
in the plot. Of our chosen PlanetLab nodes, we noticed three
suffering exceptionally high delays for unknown reason. Their
proximity is in the range 0.002 ≤ awy() ≤ 0.28. Those nodes
contribute to the oscillation intensity occurring in Figure 3 as λ

6Most of the used PlanetLab nodes are located within cities, which explains
the relatively large number of nodes that are close to triangles’ sides.

0

50

100

150

R
em

ai
ni

ng
cl

ie
nt

s

Legitimates

0 0.05 0.1
0

5

10

15

20

λ

%
FR FA

Fig. 3. FRs and FAs when legitimates at location g = {x, y} are excluded
from the experiments, such that awy(4, g) < λ. The shaded region shows
the number of remaining legitimates. None of the adversaries where excluded
regardless of their triangles’ proximity.

1 10 100

0

20

40

60

n

%

FR at λ = 0.1

FA at λ = 0.1

FR at λ = 0

FA at λ = 0

Fig. 4. FRs and FAs when only n iterations are performed.

increases, and become very hard to partition from adversaries
as more legitimates get excluded. At λ = 0.1, the FRs were
2% versus 12.3% at λ = 0. This improvement emphasizes the
importance of appropriate triangle choice. For an assertion l, it
is recommended that El is to be chosen such that awy(4l, l) ≥
0.1 for all 4l ∈ El (recall that El is the set of triangles
that can verify clients at l). Despite the unchanged number of
legitimates over the spectrum of λ (Figure 3), the FAs improve
as λ increases, falling from 9% at λ = 0 to 1.1% at λ = 0.1.
That is because of the ability to utilize smaller ε values.

C. Number of Iterations

The outcome of every iteration contributes equally to
the client’s confidence scale. However, the weight of this
contribution changes whenever a new iteration is performed.
Upon making iteration i, the weight of contribution of each
iteration becomes 1/i. Therefore, more iterations lessen the
impact of delay outliers sampled during, for example, route
congestion. Because the contribution’s weight of each iteration
is dependent on the number of performed iterations (n), the
choice of n affects the final value of the confidence scale and
hence, the verifiers’ judgement.

Figure 4 shows the number of FRs and FAs at different
values of n. For both, FRs and FAs, a generally decreasing
behavior is visible as more iterations are performed at both
values of λ = 0.1 and λ = 0 (see §V-B). The results for
λ = 0.1 are quite sensible: FRs and FAs almost decrease
monotonically when more iterations are performed. Performing
2 iterations (at λ = 0.1) dropped the FAs to ∼9% from over
50% when only 1 iteration was performed. Fewer than 10

iterations did not enable the verifiers to realize legitimates
appropriately as the FRs were between 6-22%, i.e. no val-
ues for ε4 and τ4 existed to well-partition legitimates and
adversaries. However, between 10 and 20 iterations, the FRs
and FAs at λ = 0.1 almost levelled at ∼2% and ∼1%
respectively. Note that our experiments involved a wait-period
of 2 seconds between sending probing messages; an iteration
took 6 seconds. Therefore, 10-20 iterations took 1-2 minutes.
One way to reduce the overall verification time is to decrease
this wait-period.

At λ = 0, the FAs dropped from ∼56% when 1 iteration
was performed to ∼10% when 9 iterations were performed.
It then oscillated between ∼10% and ∼6% when fewer than
100 iterations are performed, climbing steadily to ∼8% for
the remaining values of n. This rise happened simultaneously
with an improvement in the FRs (at λ = 0). As more iterations
are performed, it becomes more feasible to find ε4 values
(i.e. for each 4) that partition legitimates from adversaries.
To accommodate very close legitimates to the triangles’ sides,
all ε4 were slightly relaxed (increased) for each 4, which
resulted in falsely accepting more adversaries. This explains
the rising FAs (at λ = 0) with increasing n. Over the entire
range of n, the FRs at λ = 0 decreased from ∼34% at n = 1 to
∼12% at n = 600. Even when legitimates are highly adjacent
to their enclosing triangles’ sides, large number of iterations
improves the ability of finding ε and τ values to better partition
them from adversaries. This highlights the importance of
iterative delay-sampling, specially when a triangle is used to
corroborate highly-adjacent location assertions to its sides.

VI. SECURITY DISCUSSION

1) Classical Geolocation Attacks: Although submitting
false information may mislead some geolocation processes
[12], such simple attack does not defeat CPV because the
verification process (Algorithm 2) is independent of any infor-
mation submitted by the client. Experiments in §V show that
CPV is able to catch false location assertions (Figure 5(a))
most of the time due to delay-based area mismatch or large
delays between the client and the verifiers.

IP geolocation techniques can be circumvented if a client’s
IP address is concealed using generic middleboxes such as
proxies, anonymizers, or VPNs [12]. Because probing mes-
sages in CPV are sent to the client’s application layer, middle-
boxes that blindly relay application-layer traffic (Figure 5(b))
will relay the probing messages to the client [7]; they do not
threaten the integrity of the verification process of CPV. Even
a customized middlebox, one that inspects application-layer
traffic searching for probing messages, could be mitigated by
leveraging a proof-of-work mechanism [39].

Measurement-based geolocation is vulnerable to increased
delays between the client and the measuring party, when the
adversary delays the echo-reply messages [8]. Such delay-
adding attacks can be attempted on CPV by an adversary
inserting a delay before forwarding the probing messages as
soon as it gets them. Assuming a probing message created
by verifier i, not sending this message promptly to verifier j
elongates the edges dic and dcj together, i.e., increases the
summation dic + dcj (see Figure 1 for notations). Note that

(a) (b)

Fig. 5. An adversary asserting a false location (a) without using a middlebox,
and (b) using a middlebox at the asserted location. •=true location; ◦=asserted
location; M=middlebox; PGR=Permitted Geographic Region.

because the verifiers, when using the mp method, approximate
the smaller OWD at each edge by solving simultaneous
equations, delaying the probing messages from a subset of the
three verifiers can cause the calculated OWD of an edge to
be less than the actual.7 However, the adversary cannot reduce
the summation of any two edges dic + dcj , as this requires
speeding up the traffic propagating in the paths between the
adversary and the verifiers [8]. From a geometric perspective,
increasing the summation of any pairs of edges does not help
an adversary outside a triangle to forge its location to inside it.
Formally, using the notation AB for the length of line segment
AB, we have (see proof in the Appendix):

Claim 1: Let P be a point in the Cartesian plane, and let
4XY Z be the triangle determined by the points X , Y and Z.
If P is strictly outside 4XY Z, then increasing the summation
XP + PZ, XP + PY or Y P + PZ without reducing at least one
of the other pairs cannot place P inside 4XY Z.

Finally, as shown in Algorithm 2, CPV holds the number of
TIVs (Triangle Inequality Violations) against the client (the
condition Di 6= NIL in line 7 means Di must not violate
the triangle inequality to increment pass). In conclusion,
manipulating the delays does not help the adversary, it divulges
the adversary’s evasion attempts.

2) Attempts to Evade CPV: To study potential vulnerabili-
ties in CPV, we review steps where the verifiers interact with
the adversary.

Connecting to the verifiers. Assuming the adversary’s target
location (the location where it is trying to appear to be at) is
l, connecting to a set of verifiers V4l′ 6= V4l

does not help
the adversary in pretending to be at l as those verifiers cannot
verify the adversary’s presence inside 4l.
Forwarding the probing message. Attempts to tamper with
the timestamp in the probing message will be caught by the
receiving verifiers when they validate the signature (step 7
of Algorithm 1). The adversary cannot generate fake probing
messages because it will not be possible to sign them using
a verifier’s private key. Delaying of probing messages is
discussed in §VI-1.

3) Poor Verifier Deployment and PGR Border Proximity:
Adversaries bordering the PGR (Permitted Geographic Re-

7As an example, solving a+ b = 7, a+ c = 8 and b+ c = 9 gives a = 3,
b = 4, and c = 5. Whereas a+ b = 7, a+ c = 8, and b+ c = 13 results in
a = 1, b = 6 and c = 7. Increasing b+ c resulted in a smaller value for a.

(a) (b) (c)

Fig. 6. (a) and (b) are examples of inappropriately-deployed verifiers; (c) is
an example of insufficient deployment. •=true location; ◦=asserted location;
PGR=Permitted Geographic Region.

gion) may be able to exploit inappropriate or insufficient
verifier deployment. Figures 6(a) and 6(b) show examples of
inappropriately-deployed verifiers with respect to the PGR,
where a triangle crosses the PGR border or encloses the PGR
inside it. As shown, a close adversary could be outside the
PGR but inside those triangles. Verifying the presence inside
the triangle does not ensure the presence inside the PGR in
those cases. Figure 6(c) shows potential vulnerability due to
insufficient verifiers/triangles: not all regions inside the PGR
are covered with triangles. The verifiers determining the shown
(solid) triangle should not overly relax ε4 to account for
the uncovered region (relaxing ε4 is depicted by the dashed
triangle in Figure 6(c)). Otherwise, the verifiers falsely accept
an adversary close to the PGR asserting to be at the uncovered
region of the PGR, as shown in Figure 6(c).

Despite potential vulnerabilities due to inappropri-
ate/insufficient verifier deployment, there are possible coun-
termeasures. To account for inappropriate deployment due to
border crossing, additional overlapping triangles should be
used to enclose the asserted location as long as a single
triangle, or the intersection of multiple triangles, crosses the
PGR border. The number of triangles must be such that their
intersection region does not cross the PGR border and encloses
the asserted location, as shown in Figure 7(a). The presence
inside the PGR is then verified only if the verifiers of each
triangle accept the assertion. For example, in Figure 7(a), if
the adversary’s true location was at any of the areas marked
with ×, two triangles may falsely accept the assertion. Two
triangles are insufficient in that case because the PGR border
crosses the overlapping areas of each two of the three triangles.
Verifying the presence inside all three suffices to verify the
correctness of the assertion.

As for insufficient deployment of verifiers, whenever an as-
sertion is made in a region not covered by any triangle, the LSP
(location-sensitive provider) must use a measurement-based IP
geolocation technique instead of relying on client-dependent
geolocation (such as GPS). A bordering adversary will have
to evade this geolocation technique prior to bypassing CPV. It
would then be challenging for the adversary to precisely target
a location that is not covered by any triangle only through
delay manipulation [8]. In such case, using a measurement-
based IP geolocation technique motivates the adversary to use
a middlebox inside the uncovered region of the PGR (Figure
7(b)). However, middleboxes tend to increase delays [7], which
helps the verifiers detect the adversary’s false assertion.

(a) ×=possible true locations. (b) M=middlebox;

Fig. 7. Defences against a bordering adversary exploiting inappropriate
or insufficient deployment of verifiers. •=true location; ◦=asserted location;
PGR=Permitted Geographic Region.

VII. RELATED WORK

We are not aware of any work in literature that leverages
delays for location corroboration. However, delay measure-
ments have been extensively used for location determination
[13], [36], [4]. Such difference in objective dictates different
evaluation criteria, and hence, it is unclear how our results can
be assessed relative to the field of location determination.

Delay-based proximity verification has been well studied
in contexts other than the Internet, such as single-hop wire-
less networks (e.g. Radio-Frequency Identifiers). Proposals
included distance bounding protocols [40], ultra-sound based
approaches [10], and region bounding through triangulation
[11]. The nature of delays over the Internet are different of
those in single-hop wireless networks. Internet delays alleviate
some of the challenging problems in the single-hop wireless
context (e.g. less sensitivity to processing delays), but intro-
duce new tough ones (e.g. stochastic queueing delays due to
traffic/route uncertainty [9]). Thus, location verification over
the Internet is (almost) a different research problem.

Privacy-aware location-proof architectures were proposed
in the literature; they enable users to obtain proofs of their
presence in a certain location, where a trusted access point
is available [41], [42], [43], [2]. A user would typically get
an access point, trusted by the LSP, to assert the presence
of their device within the access point’s proximity. This is
done by binding a secret and unique identifier of the user
to the access point’s location. These solutions assume that
users are unwilling to disclose this identification credential.
We do not make this assumption in our work and hence,
these solutions target a different class of applications than
the ones we address here. Such applications are when the
user’s motivation to preserve the confidentiality of their unique
identification credentials exceeds their motivation to forge their
location. If this is not the case, an adversary may—by the aid of
a remote colluding party—send their identification credentials
to get them bound to and endorsed by a remote access point,
thus forging their location.

VIII. CONCLUSION

As location-oriented service/content providers are emerg-
ing over the Internet, verifying the geographic locations of
Internet clients is becoming increasingly crucial. A plethora
of security applications—such as fraud detection, location-
based authentication, and online voting—can benefit from a

realtime location-verification tool. Measurement-based Internet
geolocation approaches highlight a strong correlation between
the Internet’s delays and geographic distances, and provide
a strong evidence of the ability to utilize these delays to
locate clients, given appropriate delay processing. Despite
the achieved accuracy of recent techniques, the process of
refining the sampled delays could be exploited by an adversary
motivated to forge its location. Accordingly, any secure delay-
based geolocation approach has to consider both menaces: the
adversary and the Internet-added delay uncertainty.

We presented CPV, a delay-based technique which, to the
best of our knowledge, is the first to verify a client’s location
over the Internet without assuming the client’s possession of a
secret personal identifier. CPV mitigates delay spikes injected
by the Internet as it iterates the delay-sampling process, and
corroborates the client’s location based on the smaller one-
way delay. Accordingly, we devised a novel one-way delay
calculation method, which takes into consideration adversarial
clients. In CPV, delays are sampled between a client and
three verifiers, which enclose the client’s unverified location
within their convex hull. The verifiers sample the delays over
the client’s application layer to overcome IP hiding tactics,
typically carried out using middleboxes. CPV requires no
client-side changes, no extra software is needed; the client’s
current browsing experience is retained as the verification
process runs in the browser. Real-world experimentation of
CPV results in a 2% false accept and 1% false reject rates.
We plan to further inspect the calibration process prior to the
operation of CPV, and explore possible venues for enhancing
the performance of the location-verification process.

Acknowledgments. We thank the anonymous reviewers whose
comments helped improve the paper. We also thank Pat Morin
for help with the standard geometrical claims in the appendix.
This work was supported by Canada’s NSERC through the
Canada Research Chairs program (third author) and Discovery
Grants (second and third authors).

REFERENCES

[1] J. Burnett, “Geographically Restricted Streaming Content and Evasion
of Geolocation: the Applicability of the Copyright Anticircumvention
Rules,” MTTLR, vol. 19, no. 2, 2013.

[2] Polakis et al., “The Man Who Was There: Validating Check-ins in
Location-based Services,” in ACM ACSAC, 2013.

[3] M. Trimble, “The Future of Cybertravel: Legal Implications of the
Evasion of Geolocation,” Fordham IPLJ, vol. 22, 2011.

[4] Y. Wang, D. Burgener, M. Flores, A. Kuzmanovic, and C. Huang, “To-
wards street-level client-independent IP geolocation,” in NSDI, 2011.

[5] D. Hu and C.-L. Wang, “GPS-Based Location Extraction and Presence
Management for Mobile Instant Messenger,” in LNCS EUC, 2007.

[6] Ziviani et al., “Improving the accuracy of measurement-based geo-
graphic location of Internet hosts,” Comp. Netw., vol. 47, no. 4, 2005.

[7] M. Casado and M. Freedman, “Peering Through the Shroud: The Effect
of Edge Opacity on IP-based Client Identification,” in NSDI, 2007.

[8] Gill et al., “Dude, where’s that IP?: circumventing measurement-based
IP geolocation,” in USENIX Security, 2010.

[9] Dong et al., “Network measurement based modeling and optimization
for IP geolocation,” Computer Networks, vol. 56, no. 1, 2012.

[10] N. Sastry, U. Shankar, and D. Wagner, “Secure Verification of Location
Claims,” in 2nd ACM WiSe, 2003.

[11] S. Capkun and J.-P. Hubaux, “Secure positioning of wireless devices
with application to sensor networks,” in IEEE INFOCOM, 2005.

[12] J. A. Muir and P. C. van Oorschot, “Internet geolocation: Evasion and
counterevasion,” ACM Comput. Surv., vol. 42, no. 1, 2009.

[13] B. Gueye, A. Ziviani, M. Crovella, and S. Fdida, “Constraint-based
geolocation of Internet hosts,” Trans. Netw., vol. 14, no. 6, 2006.

[14] B. Eriksson, P. Barford, J. Sommers, and R. Nowak, “A Learning-Based
Approach for IP Geolocation,” in Springer PAM, 2010.

[15] B. Gueye, S. Uhlig, A. Ziviani, and S. Fdida, “Leveraging Buffering
Delay Estimation for Geolocation of Internet Hosts,” in IFIP-TC6, 2006.

[16] Li et al., “IP-Geolocation Mapping for Moderately Connected Internet
Regions,” IEEE TPDS, vol. 24, no. 2, 2013.

[17] S. Laki, P. Mátray, P. Hága, T. Sebók, I. Csabai, and G. Vattay, “Spotter:
A model based active geolocation service,” in IEEE INFOCOM, 2011.

[18] Katz-Bassett et al., “Towards IP geolocation using delay and topology
measurements,” in ACM IMC, 2006.

[19] Landa et al., “Measuring the Relationships between Internet Geography
and RTT,” in IEEE ICCCN, 2013.

[20] M. Szymaniak, D. Presotto, G. Pierre, and M. van Steen, “Practical
large-scale latency estimation,” Computer Networks, 2008.

[21] T. Ng and H. Zhang, “Predicting Internet Network Distance with
Coordinates-Based Approaches,” in IEEE INFOCOM, 2002.

[22] F. Dabek, R. Cox, F. Kaashoek, and R. Morris, “Vivaldi: A decentralized
network coordinate system,” in CCR, vol. 34, no. 4. ACM, 2004.

[23] Wong et al., “Meridian: A lightweight network location service without
virtual coordinates,” in CCR, vol. 35, no. 4. ACM, 2005.

[24] B. Donnet, B. Gueye, and M. A. Kaafar, “A survey on network
coordinates systems, design, and security,” in CST, vol. 12, no. 4, 2010.

[25] Girlich et al., “Bounds for the Security of the Vivaldi Network Coor-
dinate System,” in IEEE NetSys, 2013.

[26] M. A. Kaafar, L. Mathy, T. Turletti, and W. Dabbous, “Real attacks on
virtual networks: Vivaldi out of tune,” in ACM LSAD, 2006.

[27] S.-H. Yook, H. Jeong, and A.-L. Barabási, “Modeling the Internet’s
large-scale topology,” NAS of the USA, vol. 99, no. 21, 2002.

[28] L. Subramanian, V. N. Padmanabhan, and R. H. Katz, “Geographic
properties of Internet routing,” in USENIX ATC, 2002.

[29] MacGregor et al., “Precise measurement of one-way delays in an NTPv3
environment,” in Perf. Eva. of Comp. and Tel. Sys. Citeseer, 2004.

[30] I. Fette and A. Melnikov, “The WebSocket Protocol,” RFC 6455
(Proposed Standard), Internet Engineering Task Force, Dec. 2011.

[31] W. Li, R. K. Mok, R. K. Chang, and W. W. Fok, “Appraising the Delay
Accuracy in Browser-based Network Measurement,” in IMC, 2013.

[32] V. Smotlacha, “One-way delay measurement using NTP synchroniza-
tion,” CESNET, 2003.

[33] G. Wang, B. Zhang, and T. Ng, “Towards network triangle inequality
violation aware distributed systems,” in ACM IMC, 2007.

[34] S. Shalunov, B. Teitelbaum, A. Karp, J. Boote, and M. Zekauskas, “A
One-way Active Measurement Protocol (OWAMP),” RFC 4656, 2006.

[35] Y. Zhang and N. Duffield, “On the Constancy of Internet Path Proper-
ties,” in ACM IMW, 2001.

[36] B. Wong, I. Stoyanov, and E. G. Sirer, “Octant: a comprehensive
framework for the geolocalization of Internet hosts,” in NSDI, 2007.

[37] P. Hsu and H. Robbins, “Complete convergence and the law of large
numbers,” NAS of the USA, vol. 33, no. 2, 1947.

[38] “PlanetLab: An open platform for developing, deploying, and accessing
planetary-scale services.” Available: http://www.planet-lab.org/

[39] A. M. Abdou, A. Matrawy, and P. van Oorschot, “Taxing the Queue:
Hindering Middleboxes from Unauthorized Large-Scale Traffic Relay-
ing,” IEEE Commun. Lett. (to appear; accepted August 5, 2014).

[40] S. Brands and D. Chaum, “Distance-Bounding Protocols,” in Advances
in Cryptology–EUROCRYPT’93. Springer, 1994.

[41] Z. Zhu and G. Cao, “APPLAUS: A Privacy-Preserving Location Proof
Updating System for Location-based Services,” in INFOCOM, 2011.

[42] W. Luo and U. Hengartner, “VeriPlace: A Privacy-Aware Location Proof
Architecture,” in 18th ACM GIS SIGSPATIAL, 2010.

[43] F. Olumofin, P. Tysowski, I. Goldberg, and U. Hengartner, “Achieving
Efficient Query Privacy for Location Based Services,” in PET, 2010.

(a) (b) (c)

Fig. 8. (a) Regions A and B outside 4XY Z. (b) and (c) When P ∈ B3,
then 4XY Z ⊂ {©XY (XP + PY) ∪ ©XZ(XP + PZ)}.

APPENDIX

We use the notation ©XY (k) to refer to the ellipse
determined by the foci X and Y whose major axis is k meters
long; AB for the length of line segment AB; and ←→XY to refer
to the straight line passing by the points X and Y . Consider
4XY Z in Figure 8(a). Regions A1, A2 and A3 are those
outside 4XY Z delimited by the pairs (

←→
XZ,

←→
Y Z), (

←→
XY ,

←→
XZ)

and (
←→
XY ,

←→
Y Z) respectively, such that none of 4XY Z’s ex-

terior angles belong to A1, A2 or A3. Regions B1, B2 and
B3 are those outside 4XY Z delimited by the region pairs
(A1, A2), (A2, A3) and (A3, A1) respectively. A point P
outside 4XY Z will either fall in region A = A1 ∪ A2 ∪ A3

or B = B1 ∪B2 ∪B3. We split the proof of Claim 1 (§VI) to
two parts: when P ∈ A and when P ∈ B.

For the first part (P ∈ A), lets assume first that P ∈ A1.
In this case, according to the isoperimetric inequality, XP +

PY must be greater than XZ + ZY because they both have
the same starting and ending points, X and Y . Therefore, it
is impossible to move P inside 4XY Z without decreasing
XP + PY . Analogous argument applies for A2 and A3.

For the second part (P ∈ B), lets assume first that P ∈ B3

as shown in Figures 8(b) and 8(c). If we prove that 4XY Z ⊂
{©XY (XP +PY) ∪ ©XZ(XP +PZ)}, then P cannot move
to inside 4XY Z without reducing XP + PY or XP + PZ

because the sum of the lengths from any point on the ellipse to
its pair of foci is constant; hence, the sum of the lengths from
any point inside the ellipse to its pair of foci is less than that to
any point on the ellipse. We split 4XY Z int two, 4XYW
and 4XWZ, where W is the intersection of line segments
XP and Y Z. We prove that 4XYW ⊂ ©XY (XP +PY) as
follows (see Figure 8(b)):

Proof: Since X is a focus of the ellipse; P is a point on
the ellipse; X , W and P are collinear; and P /∈ 4XY Z
Therefore W is inside the ellipse.
Since Y is a focus of the ellipse
Therefore line segments XW , WY and XY are inside the
ellipse.
Therefore 4XYW ⊂ ©XY (XP + PY).

For 4XWZ, the claim 4XWZ ⊂ ©XZ(XP + PZ) can be
analogously proved (Figure 8(c)). Therefore, when P ∈ B3,
it is impossible to move P inside 4XY Z without reducing
the summation XP + PY or XP + PZ. The remaining regions
of B can be proved in the same manner. Therefore, whenever
P ∈ B, then 4XY Z ⊂ {©XY (XP + PY) ∪ ©Y Z(Y P +

PZ) ∪ ©XZ(XP + PZ)}.8 This concludes our proof.

8We say that 4 ⊂ © if ∀p ∈ 4, p ∈ ©.

