
A Survey on Forensic Event Reconstruction Systems

Abes Dabir∗, AbdelRahman Abdou†, and Ashraf Matrawy‡
Carleton University, Ottawa, Canada

Email: ∗abes.dabir@magorcorp.com, †abdou@sce.carleton.ca, ‡ashraf.matrawy@carleton.ca

Abstract—Security related incidents such as unauthorized sys-
tem access, data tampering and theft have been noticeably
rising. Tools such as firewalls, intrusion detection systems and
anti-virus software strive to prevent these incidents. Since
these tools only prevent an attack, once an illegal intrusion
occurs, they cease to provide useful information beyond this
point. Consequently, system administrators are interested in
identifying the vulnerability in order to (1) avoid future
exploitation (2) recover corrupted data and (3) present the
attacker to law enforcement where possible. As such, forensic
event reconstruction systems are used to provide the admin-
istrators with possible information. We present a survey on
the current approaches towards forensic event reconstruction
systems proposed over the past few years. Technical details are
discussed, as well as analysis to their effectiveness, advantages
and limitations. The presented tools are compared and assessed
based on the primary principles that a forensic technique is
expected to follow.

1. Introduction

A forensic event reconstruction systems system is a tool
to help administrators and forensic analysts investigate a
security breach that has occurred in a computer system.
They achieve this by assisting the forensic analyst in re-
constructing the sequence of events that led to the security
breach, rather than having the analyst attempt to manually go
through a plethora of evidences and logs in order to perform
this step. Such systems can be used to help in the analysis
of a variety of security breaches such as an intrusion, or
a worm infection. The remainder of this paper will mainly
use intrusions as a specific type of security breaches in the
discussions, although the material is valid for other similar
forms of attacks as well.

Some of the more recent forensic event reconstruc-
tion systems proposed can automatically reconstruct the
sequence of events leading to the intrusion and present this
information using graphical output. The actual detection of
an intrusion however is done independently of these tools
either manually, or with the aid of another tool such as

. Version created on: 16th August, 2016.
The final version of this paper will appear in the International Journal of
Information and Computer Security (IJICS). This is the authors’ copy for
personal use. c© 2016 Inderscience.

an intrusion detection system (IDS). We present a detailed
discussion on the importance and challenges of automatic
event reconstruction systems, the current state of the art in
this field and the various solutions proposed.

Once an intrusion has been detected, investigators are
generally interested in finding out:

• The initial point of intrusion on the system
• How to prevent further intrusions using the same

attack vector
• What information has been accessed by the intruder

and the damage inflicted
• How to undo the damage and modifications made

by the intruder

An event reconstruction system is intended to help in-
vestigators and administrators answer some or all of the
concerns listed above, depending on which specific system
is being discussed. These systems should be installed on the
target machine before it is exposed to a hostile environment
and subject to attacks. Once installed, such systems typically
initiate extensive logging of system activity on the machine.
This logging is done by the forensic reconstruction system
itself and is independent of any logs kept by the operating
system of the machine, or the logs generated by other
applications running on it. The exact nature of the data
logged depends on the proposed reconstruction system being
used.

The more recent event reconstruction systems proposed
typically take as input a specific intrusion detection point
that has been identified by an administrator, such as a new
file appearing in the system or a suspicious process. The
tool would then analyze the extensive logs at its disposal
to backtrack the events that have influenced the intrusion
detection point and present the investigator with one or
more possible sequences of events that could have lead to
the intrusion. The sequences of events identified by the
tool would contain the initial source of the attack, thus
helping the investigator understand where the attacker first
penetrated the system and also how to prevent future attacks
using the same technique. There are issues of false positives
to be taken into consideration as the tool tries to relate the
different events in the logs and identify the attack sequence.

Once the source of an intrusion has been identified, some
event reconstruction systems are capable of analyzing the
logs onward from that point to determine all the modifica-
tions that have been made to the file-system by the attacker.
The system may also support the ability to automatically



rollback the malicious modifications it has identified and
restore the system to a state where only legitimate operations
persist. In doing so, there are potential conflicts to sort out
between legitimate and malicious operations that will be
discussed.

We present a survey of the state of the art “event recon-
struction systems" proposed in the literature or commercially
available. An event reconstruction tool is a special class of
forensic systems. It aims to reconstruct the series of events
that occurred during an attack incident. Such reconstruction
provides the forensic analyst with better understanding to
the system state, the damage that occurred, the exploited
set of vulnerabilities and how to avoid similar future attacks.
These systems have special requirements that we highlight
in this paper.

The rest of this paper is organized as follows. Section 2
introduces basic principles that a forensic event reconstruc-
tion system should follow. Section 3 presents the currently
existing tools that carryout forensic investigations. Counter
forensic tools are also discussed. Next, in Section 4, the
general theory of operation of forensic logging systems is
described and the two main approaches towards forensic
event reconstruction are overviewed; virtual machine and
instrumented kernel. Sections 5 and 6 show the current
research progress in forensic tools that are categorized as
virtual machine based and instrumented kernel based re-
spectively. The proposed solutions are assessed in Section
7. Finally, a conclusion is provided in Section 8.

2. Principles to Follow in Forensic Analysis
Tools

[1] devised a set of high-level principles and qualities
for forensic analysis in general. These principles are appli-
cable to forensic event reconstruction systems, and are as
follows:

1) Take the entire system into consideration rather
than just certain subsystems or components.

2) Log information irrespective of any assumptions
made about the threats, policies, or trust in users.

3) The logging process should not be limited to the
actions driving the events. Rather, it should include
the effects of these events as well.

4) Context, such as the state of the objects involved
or the parameters being passed, is helpful in un-
derstanding and interpreting an event, therefore it
should be considered.

5) Data should “be processed and presented in a way
that can be analyzed and understood by a human
forensic analyst." [1, p. 86].

Following all of these principles in a forensic event
reconstruction system is impractical however, as they require
the recording of a tremendous amount of data. Instead, a
practical trade off has to be made between accuracy and the
amount of data recorded [2]. How to achieve the perfect
balance between these two factors is still an open research
question.

[2] tried to advance their work on these principles by ad-
vocating a set of qualities for a good forensic model to have.
They also proposed a forensic model that has the qualities
they identified. Their proposed model requires identifying
the ultimate goals an attacker may have on the system, as
well as the intermediate goals and the starting goals. The
attacker has to achieve a starting goal to begin the attack.
Starting goals lead to numerous potential intermediate goals
that an attacker has to achieve to get to the ultimate goal. It
is likely that there are simply too many intermediate goals
to take into consideration, therefore the model supports the
use of metrics such as the severity of the resulting attack to
filter out some of the intermediate goals. This reduces the
amount of data that needs to be captured. In order to identify
what data needs to be logged, the model works backwards
from the ultimate goal to the starting goal, and identifies
the pre-conditions and post-conditions of each goal. The
data that needs to be logged is that which corresponds to
the pre-conditions and post-conditions identified.

None of the forensic event reconstruction systems dis-
cussed in this paper fully adhere to the principles of the
forensic model mentioned, perhaps for practical reasons.
However, they represent advancements and could prove
useful in the design of future forensic event reconstruction
systems.

3. Current Approaches Towards Forensic
Analysis

The current approaches (such as EnCase, SMART,
Sleuth kit, Live View, and SIFT which are discussed later in
this section) towards forensic analysis in practice are mainly
oriented towards post incident analysis of a compromised
host. On the other hand, the forensic event reconstruction
systems being proposed and discussed in this paper aim to
perform extensive logging of events on the host prior to the
occurrence of a security breach. These logs would then be
used after the attack to analyze and understand the intrusion.

With the current approaches, the first goal is to preserve
both the non-volatile persistent data on the host’s hard drive,
as well as the volatile data in the RAM. The proper way
to analyze the hard disk contents is to make a duplicate
image of the disk first and perform analysis on this copy.
Traditionally, the focus of forensics has been on capturing
the hard disk image, while analysis of the RAM contents
has only been gaining momentum over the past few years
[3] as the tools and techniques in this area mature.

There are many forensics tools that are designed to help
the analyst extract useful data from a hard disk and ana-
lyze it. Some of these include Guidance Software’s EnCase
Forensic [4], ASR Data’s SMART [5], and The Sleuth Kit
[6]. These tools may be able to recover deleted files, show
files hidden by rootkits, access data stored stealthily on
the disk in unconventional ways, and much more. Another
interesting tool called Live View [7, ], which is developed by
CERT, can take a physical disk or a disk image and mount it
in a VM in a read-only manner such that all modifications to



the image are written to a separate file instead of the actual
disk to preserve its original state, therefore eliminating the
need to make duplicate copies of the disk prior to analysis.
The value of the results obtained by these forensics tools is
dependent on the sophistication of the attacker in terms of
how much data useful to investigating the attack has been
left on the hard disk in a retrievable way.

SIFT [8] is an opensource forensics toolkit with a wide
range of capabilities. It works in a similar manner as Live
View, where the analyst should extract a memory image and
plug it into a VM for analysis. In addition to the capabilities
of commercial forensic tools, SIFT can carry out a larger
view of investigation through network forensics. It can also
perform malware analysis as well as a timeline generation,
which includes a vast amount of metadata. This metadata
contains details about the contents of the examined file and
the actions performed on it (for instance, the last time the
file was modified and who modified it) [9].

There is a number of anti-forensics tools designed to
counter forensics tools by eliminating useful forensics data
from the disk, or just make the task of forensic analysis more
difficult on the data that remains. Examples of these include
Timestomp [10], which allows the attacker to modify all the
NTFS timestamps of many files at once, and the Defiler’s
Toolkit [11] which can be used to delete records of file I/O
activity. Forensic event reconstruction systems can help in
this area by incrementally recording modifications to the
disk and files as they occur, and storing these logs in an
immutable fashion for later analysis.

The RAM could contain valuable state-related informa-
tion, or other data such as cached unencrypted file contents
that may be very helpful during the attack investigation.
More modern sophisticated attacks tend to try and stay
resident in the memory, as opposed to touching the hard
disk. Therefore, it is important to capture the contents of
the RAM since the hard disk may not contain any evidence
of the attack. Reliably capturing the contents of the RAM
is somewhat difficult though. Using software for this task
has the potential problem of having malware running, at the
same privilege level, feed it incorrect information, as well
as the issue of causing modifications to the system through
the act of running this software [12]. Using pre-installed
hardware in the form of a PCI card is the preferred solution
for acquiring the RAM contents since it neither requires any
software to be run on the machine, nor does it involve the
CPU. However, even this technique is not fully reliable and
could be subject to attacks [12]. Forensic event reconstruc-
tion systems might be able to help in this area by potentially
being able to log activity that loads malicious code into the
RAM. By incrementally logging system activity during and
after the attack, they lessen the need to have to obtain the
RAM contents for forensic analysis.

The main issues with both the hard disk image and
RAM contents available to the forensic analysts is that
even though they might contain valuable information about
the final state of the machine, they typically don’t contain
detailed information regarding what occurred in the system
during the attack. This is what forensic event reconstruction

systems try to address by capturing data that would tell the
analyst exactly what happened during the attack.

It is also possible that network logs may be available
to the forensic analyst. One of the tools in this area that
supports capturing network traffic and provides powerful
analysis features is CA Network Forensics [13]. Amongst
its features, CA Network Forensics is able to reconstruct
instant messaging streams, emails, file transfers, chat ses-
sions and more based on the captured packets. Its other
features include the ability to play back captured packets,
correlate network activity with security events received from
other systems such as an IDS or firewall, pattern analysis
to identify unusual traffic patterns, packet content analysis,
and powerful visualization capabilities. The challenge with
logged network data pertaining to an attack is that they may
contain encrypted data, or be obfuscated by the attacker to
prevent easy analysis.

4. Logging Events in Forensic Reconstruction
Systems

The logging components of current operating systems
typically log an insufficient amount of information to answer
all the questions outlined in the beginning of this paper.
As such, logging is a major component of any forensic
event reconstruction system. Such tools must be able to
collect accurate and detailed information on a wide range of
system activities so that these logs can be used during the
investigation phase to understand the nature of a security
incident and its consequences. It is helpful to consider the
principles outlined in Section 2 when designing the logging
component of an event reconstruction tool.

In order to be effective, the integrity of the logs must be
preserved. Since these logs serve as evidence, their value is
diminished should they be tampered with. Securing the logs
involves securing the logging facility, logging messages, as
well as the log storage location. This is another area where
the logging components of current operating systems are
somewhat lacking. They generally store logs on the local
file-system and put a lot of faith in the security of the kernel.
Should the kernel be compromised, the logs stored on the
local file-system can be manipulated, as well the system can
be prevented from collecting useful logs after the point of
compromise.

Virtual Machine Approach versus Instrumented
Kernel Approach to Logging

The event reconstruction systems discussed in this paper
mainly follow two different approaches to logging system
activity. The first approach involves running the target op-
erating system and applications within a virtual machine
and logging the execution of that virtual machine at a very
detailed level. The second approach tries to introduce a
secure logging component into the kernel of the operating
system to be monitored.

The next two sections will address logging integrity for
each approach, where some of the more prominent event



reconstruction systems proposed by the research community
over the past several years are presented. Different ap-
proaches to logging in forensic event reconstruction systems
are discussed as well. The two main solutions discussed are
BackTracker [14] and Forensix [15], while the majority of
the other solutions presented are variations or evolutions of
these two.

5. Virtual Machine Approach

In general inspecting a virtual machine from the outside
in order to analyze the software executing within it is
called Virtual Machine Introspection (VMI) [16]. ReVirt
[17], DACSA [18] and BackTracker [14] use this VMI
approach to monitor a system and log its events. This
approach involves running the operating system (guest op-
erating system) and applications (guest applications) to be
monitored inside of a virtual machine (VM) which is run on
the host operating system and managed by a virtual machine
monitor (VMM). The attacker’s primary targets are the guest
applications and guest OS. The host operating system is the
one which runs natively on the actual physical hardware.
The guest operating system does not need to be the same as
the host operating system. Similarly, the emulated hardware
does not have to be exactly the same as the actual physical
hardware present. The VMM is primarily responsible for
emulating the hardware that the virtual machine will see.

For the purposes of forensic event reconstruction, a new
security service can be added to the VMM to monitor and
log the execution of the VM. Alternatively the VMM code
itself could be modified to perform the logging. The virtual
machine based approach provides a good level of isolation
between the logging system and the operating system be-
ing monitored along with its applications. Effectively, the
logging software is placed at a layer beneath the guest
OS. The log files could be placed on the file-system of
the host OS which is not visible to the guest OS. This
isolation ensures that if the guest OS gets compromised,
the integrity of the logging component is not easily compro-
mised. This is not to say the VMM itself cannot be subject
to a security compromise. It is possible for a malicious
program to recognize that it is running inside a VM, then
proceed to exploit a bug in the VMM implementation in
order to ‘escape’ that environment and try affect the host
OS environment [19]. However, because VMMs generally
have a small code size and a narrow interface that only
provides critical functionality, it is much easier to validate
their security than that of an operating system. The work
done by [16] contains a number of suggestions on how
to harden a kernel against attacks. Ideally, these should be
followed to harden the guest OS kernel.

VMMs have three properties that make them particu-
larly useful for the purpose of inspecting an application’s
execution [16]:

• Isolation: Software running in one VM cannot ma-
nipulate the software running in another VM, or the
VMM.

• Inspection: The VMM has access to the entire state
of a VM.

• Interposition: The VMM has the ability to interpose
on certain events, or operations being carried out by
the VM. For example, the ability to interpose on an
interrupt in order to log it (this may require adding
hooks in the VMM code).

One of the downsides of this approach is the poten-
tial overhead introduced by additional logging activities.
ProTracer [20] however is a recently proposed system that
can reduce logging overheads by refraining from blindly
logging all system calls. Rather, it logs only when changes
to the external environment or to the permanent storage are
made. Another downside is that since the logging component
is running at a lower layer than the guest OS, it gener-
ally doesn’t have access to high-level information and data
structures in the guest OS. Rather, it has access to low-
level information such as the memory address space and IO
operations. Such a gap between the host and the guest OS
is called the “semantic gap". There are ways to overcome
the limitations caused by semantic gaps. For instance, Back-
Tracker’s logging component is compiled with headers from
the guest kernel and is able to read kernel data structures
from the guest operating system’s physical memory. The
Plato project [21], discussed in Section 5.5, is specifically
aimed at bridging this “semantic gap" [22] between the low-
level view a VMM has of the guest OS activity, and the high-
level state information present in the guest OS environment.

5.1. ReVirt

ReVirt [17] is one of the earlier works in the field of
forensic event reconstruction systems. It was worked on by
some of the same authors as the BackTracker system and has
also served to influence the Forensix project. ReVirt utilizes
single processor virtual machine monitoring techniques, as
discussed in Section 5, to facilitate detailed logging of a
system while trying to ensure a high level of integrity for
those logs. These logs can then be used at a later time
to perform replays of the virtual machine execution at an
instruction-by-instruction level. The ability to replay the
virtual machine execution at time points before, during, and
after the attack, allows investigators to recreate and better
understand an attack. ReVirt has been further extended to
support multiprocessor VM logging as will be seen later on.

ReVirt’s logging component utilizes the concepts of log-
ging, checkpointing and roll-forward recovery to enable re-
playing virtual machine execution. A checkpoint is a previ-
ous state of the system that has been recorded. Roll-forward
recovery involves starting from a checkpoint and resuming
execution of the virtual machine. In order to replay virtual
machine execution properly, certain non-deterministic events
must be logged so that they can be reproduced during
replay. Deterministic events such as (arithmetic, memory
and branch instructions) are not logged by ReVirt since
they are expected to be re-executed by the virtual machine
during replay just as before. ReVirt authors classify non-
deterministic events into two categories: time and external



input. An example of a time event would be an interrupt,
in which case ReVirt records the instruction at which the
interrupt occurs so that it can be reproduced at the same
instruction during replay. Many non-deterministic events
occurring on the host machine that affect the operating
system do not affect the execution of the virtual machine
and are thus not recorded. Sources of external input include
peripherals such as keyboard, mouse, CD-ROM, and the
network interface card. Network messages are typically the
largest type of data that gets logged. All relevant events
are incrementally logged during the execution of the virtual
machine.

ReVirt performs checkpointing by copying the virtual
disk being used by the virtual machine while it is still
powered off. The virtual disk contains the entire state while
the virtual machine is powered off. Replays must begin with
the virtual machine in a powered off state, and are initiated
from a checkpointed state.

During a replay, ReVirt prevents new asynchronous in-
terrupts from interfering with the replaying. An investigator
can step into the virtual machine environment at any point
during a replay to investigate its state by issuing commands.
The ability to perform such an action greatly aids the
investigator in analyzing the intrusion. However, this does
perturb the replay and it is not possible to resume replaying
the execution without going back to a checkpointed state
first. It is also possible for an investigator to run tools such
as debuggers and disk analyzers from outside the virtual
machine environment during a replay to check its state
information such as address space, registers, and disk data.
Tools run from outside the virtual machine generally only
have low-level access to state information, and they lack
the flexibility of high-level commands one can run from
inside the virtual machine. However these tools are still
very useful. This is due to the fact that should the virtual
machine itself be compromised by an attacker, the validity
of any output obtained by running commands from within
that environment is suspect.

The additional overhead introduced by ReVirt, as a
result of running tasks in a virtual machine and logging,
are important factors to take into consideration. The tests
run by the ReVirt researchers reveal that the processing
overhead and space requirements of ReVirt can vary greatly
depending on the type of applications being executed. Run-
ning applications that have heavy dependencies on the guest
kernel can incur an overhead of up to 58%, while the over-
head for applications that constitute normal desktop usage
are not significant [17]. The researchers believe that the
security value added by ReVirt can outweigh the processing
overheads observed. The logging action itself does not incur
much of an overhead. The space requirements for logging
can add up to a few gigabytes per day, with the largest logs
being attributed to network traffic.

ReVirt’s biggest shortcoming perhaps is the lack of any
automated analysis tools to aid in the investigation process.
Revirt fails to satisfy the fifth principle discussed in Section
2. The investigator still has to do a lot of manual work
in order to identify the attack route and actions taken by

the attacker after the intrusion. DACSA [18] on the other
hand was recently proposed, overcoming that limitation by
providing the ability of automated analysis. Yet this analysis
is decoupled from the captured information (e.g., system
calls), and could be done offline for preserving efficiency.

SMP-ReVirt. SMP-ReVirt is a modified version of Re-
Virt [23], which aims to log and reconstruct system state
for multiprocessor VMs. The authors of SMP-ReVirt were
motivated by the modern large-scale deployment of multi-
core processors. The logging process on a single processor
VM system differs from the one that uses multi-processor
[23]. In multi-processor systems, processors compete for
resources, particularly the memory. SMP-ReVirt advocates
logging such race conditions in the proper manner for future
retrieval when required.

5.2. BackTracker

The BackTracker [14] system is one of the prominent
forensic event reconstruction systems proposed and has
served as a solid foundation to a plethora of subsequent
work in this area. It was worked on by two researchers
from the ReVirt team, however BackTracker is not a direct
continuation of that project.

The goal of BackTracker is to provide useful information
to the forensic analyst in order to more easily understand
the chain of events involved in an attack sequence. When an
administrator detects a malicious modification to the system,
he can feed this information into the BackTracker system.
BackTracker would then try to go backwards from this de-
tection point based on the logs it had collected and identify
all the possible chains of events that could have led to this
modification. This feature is in accordance with the fifth
principle in Section 2 and should make the job of a forensic
analyst much easier. In order to satisfy reasonable overhead
and space requirements, BackTracker tries to collect enough
information to cover most types of attacks as opposed to
every possible attack.

There are two components to the BackTracker system:
online event logging component called EventLogger, and an
offline event analysis component called GraphGen, which
generates dependency graphs. EventLogger is implemented
using the virtual machine based approach. The log file is
saved in the file-system of the host operating system. The
VMM notifies EventLogger whenever a guest application
process exits, or if it invokes or returns from a system call.
The EventLogger then examines the state of the virtual
machine and reads guest kernel data structures from its
physical memory to collect the information it is interested in.
EventLogger is able to access this high-level information in
the guest kernel environment because it has been compiled
with headers from the guest kernel. There is a downside to
this approach that involves having to rely on large amounts
of source code for the guest kernel; this could get very
complicated [21].

EventLogger is mainly interested in tracking the flow
of information between OS level objects and high-control



events; It does not concern itself with tracking the flow of
information between application level objects and events.
High-control events are those which are easiest for an
attacker to use in order to exert some level of control
over the target object. These events are basically invoked
system calls. BackTracker observes the event type along
with information identifying the calling process and the
object affected by the event.

The following OS level objects are of interest to the
EventLogger [14]:

1) Processes
2) Files and named pipes
3) File names

The following high-control events, which may cause depen-
dencies between objects, are logged by EventLogger [14]:

1) Process creation through fork or clone
2) Load and store to shared memory
3) Load and store to mmap’ed files
4) Read and write of files and pipes
5) Opening a file
6) execve of files
7) Receiving data from a socket

In order for GraphGen to begin constructing chains of
events, the administrator must first identify a detection point
and feed this into it as input. A detection point has to be
in the form of one of the objects tracked by BackTracker.
Some possible detection points may be a modified, extra,
or deleted file, or a suspicious or missing process. If the
analysis is taking place a long time after the intrusion
occurred, it may not be very easy to come up with suspicious
files and PIDs. BackTracker doesn’t provide any aid in
identifying a detection point, which serves as one of its
weaknesses. Once it has been fed with a detection point,
GraphGen will analyze the log stored by EventLogger and
try to go backwards in the logs starting from the detection
point in order to build a dependency graph of all objects and
events that have causally affected the state of the detection
point. GraphGen does apply certain filters to take out objects
and events from the produced graphs which it considers as
not relevant.

5.3. Bi-directional Distributed BackTracker

The Bi-directional Distributed BackTracker (BDB) [24]
is an evolution of the BackTracker system. From a forensics
standpoint the goal of the BDB project is to extend Back-
Tracker’s capabilities beyond a single host in order to track
multi-host attacks within a single administrative domain.

In the original BackTracker system, once it was fed with
a detection point in the form of an OS level object, it would
generate a backward causality graph based on the logs,
showing all relevant objects and events that had causally
affected the detection point. The BDB system takes this a
step further and introduces forward graphs. As intuitively
expected, these graphs go forwards in the logs from the
detection point and display the relevant OS level objects that

have been causally affected by the detection point object.
Forward causality graphs can help the forensic analyst an-
swer the question of what actions were taken by the intruder
on the system. Both backward and forward causality graphs
are required tools in order to track multi-host attacks.

BDB’s multi-host forensic capabilities are limited to
machines that have the BDB system installed on them. These
machines would be in the same administrative domain since
typically an administrator would install the software only on
the machines he administers.

BDB extends BackTracker’s logging capabilities to track
packet sends and receives on the network. If a process on
one machine sends a packet to a process on another ma-
chine, this creates an inter-host causal dependency between
them. In order to associate a packet send event in one
host’s log with the packet receive event in another host’s
log, a mechanism is required to track packets. BDB only
tracks TCP packets. It does so by using their source and
destination IP address, as well as their sequence numbers.
BDB is capable of employing a number of different ways to
prioritize which packets to include and follow in its graphs.
This prioritization reduces the size of the graphs and speeds
up the tracking by weeding out packets that are unlikely to
be involved in the attack.

The proper way to use BDB in a network after a
detection point has been identified on a single host is to
generate the backward graph on that host in order to identify
the intrusion point. BDB should be able to identify the
packet that caused the intrusion on this host, and if it came
from another host within the same administrative domain,
BDB can continue the backward analysis on that host and
any other along the way until it finds the original point of
entry into the administrative domain. For every host that
was found to be infected or compromised, BDB’s forward
analysis should be run to identify all the other hosts these
machines may have also compromised.

One of the limitations of BDB is that if its tracking leads
to a host that doesn’t have BDB installed then the tracking
will not be able to proceed. Similarly to BackTracker, BDB
only follows certain types of dependency causing events
which are most likely to lead to attacks. This could lead
to certain weak spots where attacks would be missed. An
attacker may also try to cause a lot of dependency forming
events and thus create a lot of noise in the graphs which
will be generated. As well, an attacker could try to implicate
non-malicious processes and hosts in the causality graphs to
hide his actions and make the analysis much more difficult.

5.4. Improved BackTracker

[25] aim to improve upon the BackTracker system by
reducing the size of the dependency graphs it produces.
Their technique is referred to in this section as the Improved
BackTracker. Improved BackTracker adds two modifications
to the original BackTracker system in order to achieve its
goals. The first modification involves the logging component
which now also records the parameters and return values
of all system calls. This is done so that it can capture



the file offset information when a read or write operation
is perform. The second modification introduces data flow
analysis within processes to better identify relevant events
in the dependency graph. These improvements come at
the expense of larger log files and additional processing
overhead when generating the dependency graph.

A file offset interval identifies a specific portion of
that file. By recording file offset intervals, Improved Back-
Tracker is able to tell which location in a file was read
from, or where exactly data was written to in a file. The
purpose of this is to reduce the number of dependencies
BackTracker would identify when multiple processes are
interacting through the same file. For example, with the
original BackTracker if process A writes to a file from which
process B reads, BackTracker would form a dependency
between the two processes through the file in question.
BackTracker treats files as black boxes with no insight into
them, therefore even if the two processes in the previous
example write and read from completely different locations
in the file, they still get linked. Improved BackTracker would
be able to recognize that the two operations on the same file
do not interact with the same region of data in the file and
would not link the two processes. This feature should help
make the generated dependency graphs less crowded and
easier to analyze.

To achieve best results with the file offset tracking
feature of the Improved BackTracker, the analyst choosing
a detection point that is a file should also try to identify the
suspicious offset interval within that file. This may or may
not be possible for the analyst to do depending on the file
type (more difficult with binary files as opposed to text) and
how much information is available about the attack.

The data flow analysis improvements use program slic-
ing techniques on processes to better understand the execu-
tion paths within them. For example, if there are multiple
inputs from different sources into a process and it is un-
clear which has lead to a particular output, using program
slicing it may be possible to narrow down the set of input
sources that may have led to that particular output. In the
original BackTracker, processes are treated as black boxes
and any input into them could be the cause of the output,
therefore they are all further pursued in the event logs and
displayed in the graph. Applying program slicing techniques
could further prune irrelevant events and objects from the
generated dependency graph.

Program slicing is not very straight forward to apply
however. It may require access to the source code for the
programs being analyzed, as well as requiring object files
to have been compiled with special debugging parameters
beforehand. Depending on which particular program slicing
technique is being used, it may introduce large overheads
into the log analysis and graph generation phase.

5.5. Plato

Plato [21] is not a forensic event reconstruction sys-
tem on its own, rather it is platform that can help in the

development of VM-based tools such as event reconstruc-
tion systems. It has been developed by the BackTracker
researchers, as well as another researcher who worked on
ReVirt. The goal of Plato is to bridge the semantic gap
that exists between the low-level information that can be
accessed by a VM service regarding a guest OS, and the
high-level information that is accessible from within the
guest OS context. A VM service is software that runs outside
of the virtual machine and uses the VMM interface to access
information or manipulate a VM. The interface provided by
the VMM typically provides access to low-level hardware
events such as network packets and disk I/O, rather than
high-level information available within the guest OS context
such as sockets and files. This makes it difficult for VM
services to easily access the information they need. Plato
tries to address this problem in order to make VM services
more powerful and easy to develop.

Without using Plato, there are two alternate ways to
achieve similar end results. These are: copying or re-
implementing parts of the guest OS, as is done by the
BackTracker system, or to use debugging tools like gdb.
Copying or re-implementing guest OS code can quickly
become very complicated and difficult to do, both in terms
of the amount of code required, as well as getting that code
to run in the VM service process. Using a debugging tool
to directly call guest OS functions can incur very large
overheads. As well, both of these approaches could lead
to perturbing the sate of the virtual machine as a result of
trying to inspect it.

Plato, which comes in the form of a C++ library, pro-
vides functionality beyond what is offered by a debugger at
a substantially reduced overhead. Plato’s capabilities can be
categorized as follows:

1) Interposition: Plato lets the VM service register
callback routines on VMM events such as I/O
activity, CPU exceptions, or on functions names
and source code line numbers. A callback routine
can monitor or modify the state of the virtual
machine. During the execution of a callback routine
the virtual machine is suspended.

2) Access to variables: During a callback routine Plato
allows the VM service to read or modify local
variables in the context of the guest OS.

3) Calling guest kernel functions: Plato allows the
calling of both exported and local functions in the
guest OS.

4) Checkpoint and rollback: Plato implements a
checkpoint and rollback feature in order to avoid
perturbing the VM state as a result of VM service
activity. This feature allows the VM to be rolled
back to a previous state before the VM service
caused any perturbations. There are some limita-
tions to this feature in the area of networking,
where rolling back may disrupt the state of network
connections and cause them to be dropped.



5.6. Trail of Bytes

Trail of Bytes [26] is a monitoring approach that, as with
Plato, takes into consideration and bypasses the “semantic
gap" challenge that exists between a VM and running ser-
vices. Trail of Bytes aims to reconstruct the events that occur
on multiple abstraction levels found in virtual machines
by implementing mechanisms for monitoring them. These
events are defined as operations (typically read/write) made
by entities to some locations. Obviously, these monitored
events tend to grow tremendously. As a result, Trail of Bytes
employs a query interface for the ease of manipulating the
stored events.

To achieve event monitoring, first an abstraction of fun-
damental system calls is created in order to implement rapid
and efficient event monitoring. Second, a logging frame-
work that consists of an array of modules is created. The
logging framework resides in the hypervisor, with none of
its modules running in the VM. However, to the hypervisor,
the internals of the VM are viewed as a black box, which
imposes some difficulties on the logging framework. To
solve this, the modules work cooperatively in an intelligent
manner to be able to track the events that traverse the
“semantic gap" between the virtual machine and the host
operating system.

Mining the stored events is essential for the forensic
analyst to understand the vulnerabilities and the exploits
which occurred during an attack. The query interface of Trail
of Bytes consists of four queries for mining the events:

• A two variable query that reports accesses to any
memory block within β blocks that occurred during
time range ω. The returned report shows the ID that
made the access.

• A two variable query that reports accesses to any
memory block done by ID during time range ω.

• A three variable query that reports all operations of
certain type access that were made to any block
within β blocks that occurred during time range ω.
This query can be either be given the range of blocks
required β or certain ID.

• A three variable query that reports all operations
caused by the same causal that are made to any
block within β blocks that occurred during time
range ω. This query can be either be given the range
of blocks required β or certain ID.

As Trail of Bytes fully resides in the hypervisor, it
suffers from its vulnerability to hypervisor-detection attacks.
Therefore, should the hypervisor get compromised, so will
the event monitoring process. This is considered one of
the shortcomings of Trail of Bytes. Also, Trail of Bytes
is built over Xen VMM [27], and hence it inherits its
vulnerabilities. In addition, Trail of Bytes can be hindered
when faced by a resource-exhaustion attack. If an attacker
executed high frequency operations that can overpass the
ability of the logging framework to report all such events, he
should succeed in escaping some events from being properly
logged. Finally, Trail of Bytes has another logging limitation

which is the lack of monitoring the outcomes of network
operations.

6. Instrumented Kernel Approach

In this approach, the kernel is instrumented to create logs
when certain events are observed. Since the logging compo-
nent is integrated with the kernel of the operating system to
be monitored, it has much better visibility into the system’s
activities compared with the virtual machine approach. One
of the downsides of this approach in comparison with the
virtual machine approach is the inferior isolation between
the logger and the operating system to be monitored, which
increases the risk of log integrity being jeopardized should
the kernel be compromised.

There are two ways to instrument the kernel to perform
the logging required. Either the kernel code can be modified
and have the logging capability built into it before compi-
lation, or the logging functionality can be implemented as
a separate loadable kernel module.

6.1. Forensix

Forensix [15] is another one of the prominent foren-
sic event reconstruction systems proposed. The goal of
Forensix is to allow reliable reconstruction of all system
activity. Forensix facilitates this by capturing system calls
and logging extensive information about these calls to a
secure remote backend system for storage. The reasoning
behind tracing only system calls in Forensix is based on
the research team’s observation that successful attacks can
only be caused by system calls issued by processes running
on that system. Forensix was further extended by the same
team to generate a timeline with the system state in order to
simplify the job of analysis queries that use the generated
log for event reconstruction.

The main component of Forensix is the logging facility
which is installed on the machine to be monitored. Forensix
uses the instrumented kernel approach towards logging. The
instrumentation is done through the use of a loadable kernel
module that traps system calls. Every time a system call
is executed on the system, the Forensix logger logs the
system call as well as other information relevant to it such
as its time-stamp, parameters, return value, PID and owner
of the calling process. This level of logging would store all
network traffic.

In order to reduce the possibility of a kernel compro-
mise, and thus losing log integrity, Forensix uses LIDS [28]
to disable the following functionalities [29]:

1) user-level writes to kernel memory
2) user-level writes via the raw disk interface
3) writing to the kernel or the Forensix binary files
4) loading kernel modules

Disabling these functionalities could prevent certain appli-
cations that rely on them from running, such as X11 [16].

The system call data collected by the Forensix logging
facility is periodically sent over a private network to a



secure backend system that will store this data in an append-
only fashion. While it is a good idea to store the logs on
another secure system rather than the target system itself, the
downside of this approach is that the network activity due to
the log transmissions could lower the overall throughput of
the target system. On the backend system, the incoming data
is stored in log files temporarily. Every 24 hours, the log file
contents are loaded into a MySQL database that has been set
up in such a way so as to provide easy and powerful query
access to the system call information for forensic purposes.
In order to ensure that the data being generated on the target
system does not overwhelm the backend system’s ability
to store logs, the backend system has been fitted with the
ability to throttle the activity on the target system.

The backend system comes with numerous scripted
queries and commands that allow a forensic analyst to easily
retrieve specific information from the system call logs. Some
examples of these scripted queries are:

• List all active processes during a given time interval
• List the children of a given process
• List the file descriptors written to by a given PID

during a specified time interval, as well as the time
of the write operation

• List all PIDs that wrote to a specific file descriptor
in a given time interval

While Forensix does not provide automatic forensic
analysis of an intrusion, the high-level queries it provides
can still be very helpful to a forensic analyst trying to
understand the activities that took place on the target system.
It is possible in Forensix to run a series of iterative queries
on the logged data and use the returned results to calculate
a dependency graph similar to those generated by Back-
Tracker [30]. As well, depending on the type of intrusion
being investigated, the analyst may be able to construct
a particular query in order to identify an exploit. As an
example, [15] were able to come up with a query that would
go through the database records and identify local privilege
escalation attacks. For the most part however, it is up to
the analyst to initially identify suspicious elements on the
system and then investigate these further using queries in
Forensix.

In order to get an idea of the performance overhead
and space requirements associated with Forensix, the re-
searchers ran two benchmarks. The first was a kernel build
benchmark, and the second was a webstone web server
throughput benchmark. With Forensix enabled, the kernel
build time increased by 8%, while the web server throughput
decreased by 36%. A large part of this decrease in the web
server throughput is probably due to the transmission of
logs from the target system to the backend system. The
size of the compressed log files were also measured during
the benchmarks. The compressed log file grew at a rate of
8.8GB/day for the kernel build benchmark, and 30GB/day
for the webstone test.

Motivated by enhancing the performance of the recon-
structed system through querying the database of stored
events, the authors of Forensix have developed a tool [31]

to analyze queries before reaching the SQL server. With
this modification, Forensix is now considered a tool that
follows the fifth principle in Section 2; as it greatly refines
the way data is presented and manipulated by the forensic
investigator.

6.2. Taser

The Taser [29] intrusion recovery system has been devel-
oped on top of the Forensix project in order to help recover
file-system data that has been damaged due to an attack.
With some input from an analyst, Taser can identify which
file-system operations are due to the actions of an attacker
and can restore the disk to a legitimate state by rolling back
these malicious operations. There are several challenges in
carrying out such an operation, which will be explored fur-
ther in this section, such as legitimate operations interacting
and becoming dependent on malicious modifications to the
file-system. The Taser system consists of the following three
components: auditor, analyzer, and resolver.

The auditor component is exactly the same as the Foren-
six system. Its function is to collect and log information
regarding operations taking place on the system related to
files, processes, and sockets. As was explained in Section
6.1, Forensix does this by capturing system calls and addi-
tional information associated with them.

The goal of the analyzer component is to identify the
set of file-system objects tainted as a result of the intruder’s
activity so that they can be fed into the resolver for recovery.
The analyzer also reports the time point at which the objects
became tainted. In order to begin the analysis, the analyzer
needs to be fed with a set of detection point(s) from either
an IDS or by the analyst. This is somewhat similar to the
way BackTracker works. If the provided detection points are
not the source of the attack, then the analyzer needs to start
a tracing phase and go back in the auditor logs until it finds
the object(s) that are the source of the attack. It does this
by following the dependencies between the detection point
objects and other objects in the logs. The dependencies are
formed when information flows from one object to another
due to a system-call operation. After the analyzer identifies
the potential set of objects that are the source of the attack,
it requires manual feedback from the analyst to confirm this
set. The analyst could reduce this set for example if he
knows certain objects identified were not involved in the
attack.

Once the analyzer has finished the tracing phase, it will
begin the propagation phase. The propagation phase takes
the set of objects identified during the tracing phase as the
source of the attack and traces their dependencies forwards
in the auditor logs in order to identify all the tainted file-
system objects.

An analysis policy were all system-call operations that
could lead to dependencies are followed could result in a
large number of false positives. As such, Taser does allow
the analyzer to use a number of other, more relaxed and
optimistic policies, where certain potentially dependency
causing operations are ignored. This can significantly reduce



the number of false positives reported by the analyzer, but
it may also lead to conflicts occurring during the resolver’s
operation.

The purpose of the resolver component is to revert the
tainted file-system objects back to a legitimate state. The
inputs to the resolver are: the set of tainted objects identified
by the analyzer during the propagation phase, the logs stored
by the auditor component, a file-system snapshot, as well as
user preferences regarding certain recovery actions. There
are two algorithms that the resolver can use here. The
first is called the Simple Redo Algorithm. This algorithm
starts with a file-system snapshot from a time before the
objects identified by the analyzer became tainted. It then
uses the data in the logs to replay all successful legitimate
operations that caused modifications to the file-system from
the time the snapshot was taken onwards. Any operations
in the logs that were carried out on the tainted objects after
the time the object became tainted, as determined by the
analyzer, are considered malicious and not replayed. This
is a straightforward approach, but it may end up taking a
long time to replay all the operations on file-system objects
which have been modified since the snapshot was taken. The
other algorithm is called the Selective Redo Algorithm. This
algorithm starts with the file-system state at the recovery
time. At this point in time all the untainted objects are in
their final state and no action is required regarding them.
Only the tainted objects need to be recovered. The resolver
obtains untainted versions of the tainted objects from the
file-system snapshot and only performs the legitimate oper-
ations on these objects based on the logs. This approach is
generally preferred if the number of illegitimate operations
is small compared to the number of legitimate modifications
since the snapshot.

Depending on how optimistic and relaxed a policy is
used by the analyzer, the resolver may run into conflicts
while trying to recover file-system objects. Some examples
of these conflicts could be a legitimate file being created in
a directory created by the attacker, legitimate renaming of
a file created by the attacker, deleting a file renamed by the
attacker, a legitimate update to the tainted contents of a file
is made. The resolver may ignore some of these conflicts,
recreate and recover some of the files with special extensions
so that they can be manually inspected later, require manual
fixing, or use application-specific conflict resolvers.

The Taser researchers tested the tool by presenting it
with several different attack scenarios and then using Taser
to recover from the attacks. Their results can be summarized
as follows:

1) Taser analysis usually achieves high accuracy with
few false positives and negatives.

2) Performing recovery one day or one week after the
attack does not significantly affect the accuracy.

3) The selective redo algorithm is generally preferred
because attacks usually have small footprints in
comparison to the number of legitimate modifica-
tions to the file-system.

Figure 1. Flowchart for the SLog tool [32]

4) None of the analyzer policies perform ideally under
all circumstances.

6.3. The SLog tool

SLog [32] is a framework that is designed to process
huge amounts of logs into an abstracted view for analyzing
illegal system intrusion. It doesn’t employ any logging com-
ponent, rather, it is designed to be provided with different
types of logs that should be available with system adminis-
trators. The sources of these logs can be intrusion detection
systems, default system logging, network/application activ-
ity logging, etc. SLog is built upon three key assumptions:

1) An ease in distinguishing legitimate events from il-
legitimate ones out of huge log files should speedup
the recovery process.

2) The tool should be able to recover information
about an attack that happened prior to its instal-
lation.

3) The tool should be able to face and deal with huge
amounts of logs.

Figure 1 shows the sequential functionality for the op-
eration of SLog. All three steps are integrated together to
constitute a declarative tool that provides the forensic analyst
a simplified, yet comprehensive, interface to the enormous
amounts of logs.

As seen in Figure 1, the first step, namely information
extraction, is built over the extraction techniques made in
[33], where the Datalog –a prolog based nonprocedural
query language that simplifies writing queries– language is
modified to employ “embedded procedural predicates" [32,
p. 190]. With procedural predicates, arguments are passed
from Datalog programs and information is returned in the
same way. One advantage of this mechanism is the smooth
extraction of complex information from sources that lack
certain structure. This mechanism has the ability to scale
as the dataset grows, it has an understandable extraction
specification that is easy to construct and its results are
reliable and comprehensive as it extends the accurately
defined semantics of Datalog.



The next step after information extraction is correlation
and dependency analysis, which is to decide weather an
event, defined by a set of information, is relevant to the
intrusion or not. To decide this, the relation of data depen-
dence between events must be analyzed. Four factors are
primarily used to carryout the analysis:

• Value equivalence: identical values of events make
them correlated.

• Type information: if two events are of the same type,
they are considered correlated.

• Kill events: if the triggering of event A causes the
killing of event B, then A and B are said to be
correlated.

• Definition & use information: if event A used a data
location that is defined by B, then A and B are said
to be correlated.

Finally, before viewing the extracted events, refinement
is done to abstract the low-level data in the logs and present
a refined summary of information with the events that
occurred. The tool allows the forensic investigator to define
his preferred abstraction methodology.

7. Assessing the Proposed Solutions

7.1. Comparison

Amongst the proposed solutions discussed in Sections 5
and 6, the two competing camps are the BackTracker based
and the Forensix based systems. These two sets of solutions
are compared briefly in the remainder of this section in
addition to a quick comparison with other tools.

7.1.1. Operation-based Comparison. The BackTracker
and Forensix systems share many similarities. Both systems
are primarily concerned with capturing and recording system
calls. Both systems do not consider user space, application
objects or events in their tracking. While BackTracker is
only interested in certain system calls, Forensix records
extensive information about all system calls, including their
parameters and return values which are not recorded by
BackTracker. This does allow much more detailed analysis
of system activity during the forensic investigation, but
comes at a cost of larger log file sizes. However, later
evolutions of BackTracker such as Improved BackTracker
and Bi-directional Distributed BackTracker do record more
information than their predecessor. Improved BackTracker
records the parameters and return values of system calls just
like Forensix so it can determine which file offsets were
involved in read and write operations. Bi-directional Dis-
tributed BackTracker derives information from the header
of each TCP packet and records it for later analysis. Trail
of Bytes has a slightly similar approach to Backtracker
where it operates on virtualized environments, though it
differs in its theory of operation. It focuses on recording
events of data access while residing in the hypervisor of the
virtual machine. SLog has a completely different approach.

It doesn’t perform any logging by itself, rather, it depends
on either the default system logging or any other logging
scheme that should be externally provided. Its main objec-
tive is to process huge sizes of logs from diverse sources
by: extracting data, correlating it and simplifying it without
loosing important information.

7.1.2. Goal-based Comparison. The main difference be-
tween these systems is their goals. The purpose of Back-
Tracker is to analyze causality information and generate
graphs which identify the source of an attack on a system.
Further work on the BackTracker project -which resulted in
the Bi-directional Distributed BackTracker- aims at extend-
ing the tracking of intrusions to multiple hosts so that the
initial source of an attack in a network, as well as other
hosts compromised can be identified. Trail of Bytes aims to
present the analyst with answers to three main questions
regarding a compromised system: what, when and how.
Forensix is somewhat more open-ended, and provides a set
of high-level SQL queries for the analyst to use in order to
investigate the system events in any way desired. The Taser
system which is an evolution of Forensix steers this project
towards identifying and recovering damage done to the file-
system rather than pinpointing the attack source. SLog aims
to provide an abstracted view of all the events that happened
on the system as well as identify the ones related to an
intrusion.

While SQL queries and logged data in Forensix can be
used in a similar manner to BackTracker in order to identify
the source of an attack on a system, Forensix does not come
with analysis tools that automatically perform this operation.
On the other hand, Forensix stores logged data in a MySQL
database and provides high-level SQL queries for analyzing
it which is much more user friendly than BackTracker.

In terms of logging, both BackTracker and Forensix
provide reasonable solutions. We believe that both logging
components in the instrumented kernel approach (such as
that of Forensix) and the virtual machine approach (such
as that of BackTracker) are vulnerable to attacks. Foren-
six transmits the logs to a backend system for immutable
storage [15]. As such, should the system being monitored
get compromised, at least the integrity of the logs from
the time before the attack could be maintained. Although
this technique isolates the logs, the transmission of the logs
to the backend system by Forensix tends to reduce the
throughput by a large amount on the system being monitored
[15]. With the virtual machine approach, in the event that
the attacker can exploit a vulnerability in the VMM from
inside of a VM and affect the native host OS, the entire set
of logs stored on the host OS could be compromised.

7.2. A summary of the Empirical Study by Jeyara-
man et al.

Although there have been quite a few event reconstruc-
tion systems proposed over the past several years, there
have not been many independent studies performed on their
effectiveness. One possible reason for this might be that it is



difficult to come up with a good suite of benchmarks for this
task. Since it is known that coming up with fair, accurate
and unbiased benchmarks for intrusion detection systems
is a difficult challenge [34], and since event reconstruction
systems do have somethings in common with IDSes, this
could be a plausible explanation for the lack of studies in
this area. Amongst the things IDSes and event reconstruction
systems have in common is that they are both complex
systems and their operating environment is a significant
factor in their effectiveness [35].

In this section, we summarize the work done by [35]
for general event reconstruction system evaluation. The
researchers broke down the mechanisms behind causal re-
lationships into two types: operating system and program
dependencies (PD). Operating system dependencies are easy
to spot because they are due to system calls whose semantics
are well defined [35]. On the other hand, when dealing
with the program dependence mechanism, if a dependency
is formed entirely in the context of a single process and
its address space, it is somewhat more difficult to analyze.
Therefore, the evaluation criteria was chosen as the ability to
infer causal relationships based on PDs. In particular, [35]
focused on evaluating Forensix and Backtracker based on
their rate of false positives in figuring out dependencies.

[35] used a suite of real-world applications including:
gnuPG, wget, find, locate, ls, cp, wc, tar, gzip,
grep. The reason for choosing such applications for testing
instead of coming up with intrusion scenarios, such as those
used by the researches of the proposed systems themselves,
was to avoid any inherent bias and inaccuracies that the
researchers themselves may unintentionally introduce. Also,
as previously mentioned, coming up with an all encompass-
ing set of fair and accurate attack scenarios for a benchmark
in this field is a difficult task. One of the downsides of this
choice is that these are not applications one would typically
encounter while investigating security incidents.

[35] note that all the event reconstruction systems con-
sidered are quite good at recognizing proper dependencies
resulting from operating system mechanisms. As such, they
focused their testing on the rate of false positives registered
by reconstruction systems when dealing with PD relation-
ships. BackTracker, Improved BackTracker, and Forensix
are conservative in their approaches towards tracking causal-
ity relationships, therefore they only result in false positives
and no false negatives.

Their results revealed that on average, the rate of false
positives for the technique used by BackTracker and Foren-
six is very high when dealing with PD relationships. The
false positive rate does vary greatly between different ap-
plications. The highest rate was 95.6% for gpg, while the
lowest was 31.78% for wget. Improved BackTracker also
has high false positive rates and in general does not provide
a significant improvement over BackTracker. While in most
tests its rate of false positives was slightly lower than that of
BackTracker, in one test it registered almost double the num-
ber of false positives. The researchers do acknowledge that
testing Improved BackTracker’s data flow analysis technique
is dependent on a variety of parameters and that testing using

a different implementation with different parameters could
return different results.

8. Conclusion

Forensic event reconstruction systems are aimed at help-
ing administrators and forensic analysts investigate a secu-
rity breach. A forensic event reconstruction system needs to
be installed on the target system before it has been exposed
to a hostile environment. These systems carry out their own
extensive logging of events on the target machine and it
is these logs which are used at a later stage in order to
understand the nature and consequences of the exploited
security breach.

We summarized the work done in the field of forensic
event reconstruction systems mainly by surveying the peer-
reviewed literature and other sources. This paper was not
intended to be a product evaluation study nor a comprehen-
sive survey that covers every publication in the area. Our
contribution is rather a survey covering basic principles, a
broad taxonomy of the techniques proposed in literature and
summary of some of their reported assessment.

We covered several systems proposed by the research
community over the past few years. All of the systems
discussed either use a virtual machine introspection
approach, or an instrumented kernel approach towards
monitoring the sequence of events on the system and
logging them for later analysis. ReVirt, along with
BackTracker and related projects all use the virtual
machine introspection approach towards logging, while
Forensix, Taser and SLog utilize the instrumented kernel
technique. The ReVirt system provides the analyst with
the ability to replay the execution on the system at an
instruction-by-instruction level from any time period during
which logging was taking place. ReVirt lacks any automatic
analysis tools. The BackTracker system is capable of taking
as input a suspicious process ID or file presented to it
by the analyst and based on the logs it had collected,
identify all the possible chains of events that could have
affected the given object and display these in the form
of a dependency graph. In doing so it would identify the
original source of the attack on the system. The other
proposed solutions which are based off of BackTracker try
to improve its accuracy, as well as extending its tracking
capabilities across multiple systems in an administrative
domain. Trail of Bytes is another solution underlying the
virtual machine approach. It employs some heuristics to
correlate the collected events and trace them to figure
out the process with the backdoor used by an attacker.
Forensix has somewhat similar, yet more in-depth, logging
capabilities compared to BackTracker, but instead of
focusing on presenting the analyst with possible chains of
events involved in an attack, it provides a high-level SQL
query interface to the logged system activities. The Taser
system builds on the work done in Forensix and focuses on
the ability to identify file-system objects tainted as a result
of the attack, as well as the ability to revert these objects
back to a clean state. Finally, SLog is a framework that



should allow external forensic tools to work on top of it.
The authors of SLog have designed the SLog programming
language with some rules in order to help the development
of forensic tools with the SLog framework.

Acknowledgments

Ashraf Matrawy acknowledges funding from NSREC
through the Discovery Grant Program.

References

[1] S. Peisert, M. Bishop, S. Karin, and K. Marzullo, “Principles-driven
Forensic Analysis,” in New Security Paradigms Workshop (NSPW).
New York, NY, USA: ACM Press, 2005, pp. 85–93.

[2] ——, “Toward Models for Forensic Analysis,” in Workshop on Sys-
tematic Approaches to Digital Forensic Engineering (SADFE). IEEE,
2007, pp. 3–15.

[3] T. Vidas, “The Acquisition and Analysis of Random Access Memory,”
Journal of Digital Forensic Practice, vol. 1, no. 4, pp. 315–323,
December 2006.

[4] “EnCase Forensic,” http://www.guidancesoftware.com/, September
2007. [Online]. Available: http://www.guidancesoftware.com/

[5] “ASR Data’s SMART,” http://www.asrdata.com/, September 2007.
[Online]. Available: http://www.asrdata.com/

[6] T. Sleuth Kit, “The Sleuth Kit (TSK) & Autopsy: Open Source
Digital Investigation Tools,” http://www.sleuthkit.org/, September
2007. [Online]. Available: http://www.sleuthkit.org/

[7] “CERT’s Live View,” http://liveview.sourceforge.net/, September
2007. [Online]. Available: http://liveview.sourceforge.net/

[8] “SANS SIFT,” https://computer-forensics.sans.org/, August 2011.
[Online]. Available: https://computer-forensics.sans.org/community/
downloads

[9] K. Guðjónsson, “Mastering the Super Timeline With
log2timeline,” https://computer-forensics.sans.org/, June 2010.
[Online]. Available: http://computer-forensics.sans.org/community/
papers/gcfa/mastering-super-timeline-log2timeline_5028

[10] Timestomp, “TimeStomp - Metasploit Un-
leashed,” http://www.offensive-security.com/metasploit-
unleashed/Timestomp, September 2007. [Online]. Available:
http://www.offensive-security.com/metasploit-unleashed/Timestomp

[11] “Defiler’s Toolkit,” http://www.phrack.org/issues.html? is-
sue=59&id=6&mode=txt, September 2007.

[12] J. Rutkowska, “Beyond The CPU: Defeating Hardware Based RAM
Acquisition,” in Proceedings of BlackHat DC 2007, ser. Black Hat
DC, February 2007.

[13] “CA Network Forensics,” http://www.ca.com/, September 2007.
[Online]. Available: http://www.ca.com/

[14] S. T. King and P. M. Chen, “Backtracking Intrusions,” in ACM
symposium on Operating Systems Principles. ACM Press, 2003,
pp. 223–236.

[15] A. Goel, W. chang Feng, D. Maier, W. chi Feng, and J. Walpole,
“Forensix: A Robust, High-Performance Reconstruction System,”
Workshop on Security in Distributed Computing Systems (ICDCSW),
pp. 155–162, 2005.

[16] T. Garfinkel and M. Rosenblum, “A Virtual Machine Introspection
Based Architecture for Intrusion Detection,” in Network and Dis-
tributed Systems Security Symposium (NDSS), 2003.

[17] G. W. Dunlap, S. T. King, S. Cinar, M. A. Basrai, and P. M.
Chen, “ReVirt: Enabling Intrusion Analysis Through Virtual-machine
Logging and Replay,” SIGOPS Operating Systems Review, vol. 36,
no. SI, pp. 211–224, 2002.

[18] J. Gionta, A. M. Azab, W. Enck, P. Ning, and X. Zhang, “Dacsa: A
decoupled architecture for cloud security analysis,” in Workshop on
Cyber Security Experimentation and Test (CSET). USENIX, 2014.

[19] D. Farmer and W. Venema, Forensic Discovery. Addison-Wesley
Professional, 2004.

[20] S. Ma, X. Zhang, and D. Xu, “Protracer: towards practical provenance
tracing by alternating between logging and tainting,” in Annual Net-
work and Distributed System Security Symposium (NDSS), 2016.

[21] S. T. King, G. W. Dunlap, and P. M. Chen, “Plato: A Platform for
Virtual Machine Services,” University of Michigan, Tech. Rep. CSE-
TR-498-04, 2004.

[22] P. Chen and B. Noble, “When Virtual is Better Than Real,” in
Workshop on Hot Topics in Operating Systems, 2001, pp. 133 – 138.

[23] G. W. Dunlap, D. G. Lucchetti, M. A. Fetterman, and P. M. Chen,
“Execution Replay of Multiprocessor Virtual Machines,” in SIG-
PLAN/SIGOPS international conference on Virtual Execution Envi-
ronments (VEE). ACM, 2008, pp. 121–130.

[24] S. T. King, Z. M. Mao, D. G. Lucchetti, and P. M. Chen, “Enriching
Intrusion Alerts Through Multi-Host Causality,” in Network and
Distributed System Security Symposium (NDSS), 2005.

[25] S. Sitaraman and S. Venkatesan, “Forensic Analysis of File System
Intrusions Using Improved Backtracking,” in International Workshop
on Information Assurance (IWIA). IEEE, 2005, pp. 154–163.

[26] S. Krishnan, K. Z. Snow, and F. Monrose, “Trail of Bytes: Efficient
Support for Forensic Analysis,” in Conference on Computer and
Communications Security (CCS). ACM, 2010, pp. 50–60.

[27] P. Barham, B. Dragovic, K. Fraser, S. Hand, T. Harris, A. Ho,
R. Neugebauer, I. Pratt, and A. Warfield, “Xen and the Art of Vir-
tualization,” in Symposium on Operating Systems Principles (SOSP).
ACM, 2003, pp. 164–177.

[28] H. Xie, “Linux Intrusion Detection System (LIDS) Project,”
http://www.lids.org. [Online]. Available: http://www.lids.org

[29] A. Goel, K. Po, K. Farhadi, Z. Li, and E. de Lara, “The Taser Intrusion
Recovery System,” in Symposium on Operating Systems Principles
(SOSP). ACM, 2005, pp. 163–176.

[30] A. Goel, W. chang Feng, W. chi Feng, and D. Maier, “Automatic
High-performance Reconstruction and Recovery,” Computer Net-
works, vol. 51, no. 5, pp. 1361–1377, 2007.

[31] A. Goel, K. Farhadi, K. Po, and W.-c. Feng, “Reconstructing System
State for Intrusion Analysis,” SIGOPS Operating Systems Review,
vol. 42, pp. 21–28, 2008.

[32] M. Fredrikson, M. Christodorescu, J. Giffin, and S. Jhas, “A Declara-
tive Framework for Intrusion Analysis,” in Cyber Situational Aware-
ness, ser. Advances in Information Security, S. Jajodia, P. Liu,
V. Swarup, and C. Wang, Eds. Springer US, 2010, vol. 46, pp.
179–200.

[33] W. Shen, A. Doan, J. F. Naughton, and R. Ramakrishnan, “Declarative
Information Extraction Using Datalog with Embedded Extraction
Predicates,” in International conference on Very Large Data Bases
(VLDB). VLDB Endowment, 2007, pp. 1033–1044.

[34] M. J. Ranum, “Experiences Benchmarking Intrusion Detection
Systems,” http://www.snort.org/docs/Benchmarking-IDS-NFR.pdg,
December 2001. [Online]. Available: http://www.snort.org/docs/
Benchmarking-IDS-NFR.pdg

[35] S. Jeyaraman and M. J. Atallah, “An Empirical Study of Automatic
Event Reconstruction Systems,” Digital Investigation, vol. 3, no. 1,
September 2006.

http://www.guidancesoftware.com/
http://www.asrdata.com/
http://www.sleuthkit.org/
http://liveview.sourceforge.net/
https://computer-forensics.sans.org/community/downloads
https://computer-forensics.sans.org/community/downloads
http://computer-forensics.sans.org/community/papers/gcfa/mastering-super-timeline-log2timeline_5028
http://computer-forensics.sans.org/community/papers/gcfa/mastering-super-timeline-log2timeline_5028
http://www.offensive-security.com/metasploit-unleashed/Timestomp
http://www.ca.com/
http://www.lids.org
http://www.snort.org/docs/Benchmarking-IDS-NFR.pdg
http://www.snort.org/docs/Benchmarking-IDS-NFR.pdg

	Introduction
	Principles to Follow in Forensic Analysis Tools
	Current Approaches Towards Forensic Analysis
	Logging Events in Forensic Reconstruction Systems
	Virtual Machine Approach
	ReVirt
	BackTracker
	Bi-directional Distributed BackTracker
	Improved BackTracker
	Plato
	Trail of Bytes

	Instrumented Kernel Approach
	Forensix
	Taser
	The SLog tool

	Assessing the Proposed Solutions
	Comparison
	Operation-based Comparison
	Goal-based Comparison

	A summary of the Empirical Study by Jeyaraman et al.

	Conclusion
	References

