
Server Location Verification (SLV) and Server Location Pinning:
Augmenting TLS Authentication

AbdelRahman Abdou∗, Paul C. van Oorschot†
School of Computer Science, Carleton University

Ottawa, ON, Canada
∗abdou@scs.carleton.ca, †paulv@scs.carleton.ca

Abstract—We introduce the first known mechanism providing
realtime server location verification. Its uses include enhancing
server authentication by enabling browsers to automatically
interpret server location information. We describe the design of
this new measurement-based technique, Server Location Verifi-
cation (SLV), and evaluate it using PlanetLab. We explain how
SLV is compatible with the increasing trends of geographically
distributed content dissemination over the Internet, without
causing any new interoperability conflicts. Additionally, we
introduce the notion of (verifiable) server location pinning
(conceptually similar to certificate pinning) to support SLV, and
evaluate their combined impact using a server-authentication
evaluation framework. The results affirm the addition of
new security benefits to the existing TLS-based authentication
mechanisms. We implement SLV through a location verifica-
tion service, the simplest version of which requires no server-
side changes. We also implement a simple browser extension
that interacts seamlessly with the verification infrastructure to
obtain realtime server location-verification results.

1. Introduction

Knowledge of a webserver’s verified geographic location
can provide greater assurance of the webserver’s authentic-
ity, and helps establish the legal jurisdiction under which the
server resides, e.g., in case of disputes. The street address
of a domain owner/operator is typically different than the
location of the physical server hosting its content. If a
server’s geographic location is verified in realtime, a user-
agent (browser henceforth) may, e.g., by virtue of a pre-
established privacy policy, refrain from proceeding with
a connection knowing that the website is hosted from a
suspicious location, or a jurisdiction lacking solid privacy
laws.

Server authentication on the web is primarily achieved
using HTTP over TLS (or HTTPS) and a distributed PKI,
albeit with questionable trust semantics. Many known prob-
lems in that architecture have been identified [1], [2], rais-
ing open-ended questions about the security of the status-
quo [3], [4]. This paper reinforces server authentication on

This paper will appear in ACM Transactions on Privacy and Secu-
rity (TOPS). This is the authors’ copy for personal use. c©2017 ACM.
Version: 6th September, 2017.

the web, by weaving the server’s physical location infor-
mation into current authentication mechanisms. This helps
mitigate server impersonation attacks such as phishing [5],
pharming [6], and the use of rogue certificates [7] possibly
after a certification authority (CA) compromise.

To achieve such location-based webserver authentica-
tion, we successfully address several challenges. For ex-
ample, because of the increasing physical distribution of
web content (e.g., cloud computing environments, content
distribution networks or CDNs, distributed web-caching
and proxy servers, load balancers, and P2P networks), the
traditional server-client model where an HTTP session is
established entirely between a browser and a single physical
server, and content is downloaded only from that server, is
becoming less common. Web content is often fetched from
several physical/virtual servers, possibly not geographically
collocated. How can useful location information be extracted
from that context to provide assurance of the domain’s
authenticity?

Another challenge is the lack of a practical mechanism
for realtime server location verification. IP-based location
determination is susceptible to location spoofing attacks [8],
making it unsuitable for authentication. Offline location
verification, e.g., a CA verifying the server’s location at the
certificate-issuing time and binding the issued certificate to
the server’s location [9], does not provide location assurance
at time of later interaction with the server. Additionally,
such a solution would require the domain owner to obtain
a certificate for each group of physically collocated web-
servers, which is impractical in both cost and complexity for
large providers that may have thousands of servers around
the world (e.g., Akamai [10]). On the other hand, common
delay-based IP geolocation schemes work in realtime, but
are susceptible to delay manipulation attacks [11], [12].
Prior to the work herein, no known realtime server location
verification mechanism that accounts for common adversar-
ial location-forging tactics existed.

To tackle the aforementioned challenges, we introduce
Server Location Verification (SLV)—a measurement-based
realtime server location verification mechanism. Using a

network of distributed verifiers1 over the Internet, the goal
of SLV is to verify the geographic location of the first
webserver with which the client has a TCP connection. We
explain the design of SLV, and implement a simple version
that requires no server-side changes, which is thus readily
deployable through a browser extension.

We test SLV’s efficacy from a location verification stand-
point, and analytically evaluate its usage as an additional
webserver authentication mechanism. The granularity of
location tested in our experiments, using verifier pairs 700
to 1,000km apart, translates to a resolution granularity of
circles of radius 350 to 500km, or somewhat finer than the
size of an average country (which is about 760,000km2,
or a circle of radius ∼500km). We believe this would be
a useful choice in practice; finer granularity may well be
possible (though unexplored in our present work), but may
in some cases be expected to increase SLV’s inaccuracies
(e.g., false reject rates).

The strong assurance SLV provides to the geographic
location of a server adds a new, beneficial dimension to
the current notion of webserver authentication. Comparing
a server’s location to its public key (or certificate), realtime
location verification can be seen as analogous to browser
certificate validation. As introduced herein, server location
pinning (e.g., in the browser) can also model key pinning [3]
to further enhance server authentication. Browsers can cross-
check a server’s verified location in a fashion similar to
Multipath Probing [13]. A list of physical locations where
a server is hosting its content from can be made publicly
available for realtime consultation (cf. list of active cer-
tificates [1]). Existing certificate revocation primitives can
be extended to revoke a location, e.g., if a data centre
was relocated or if content is no longer distributed from
a previous mirror.

A domain may legitimately have multiple public keys;
primitives such as key pinning and certificate revocation are
useful as they attempt to specify which of the validated
public keys (or properties related to public key certificates)
are authentic, and can accommodate multiple public keys
simultaneously. This is comparable to legitimately distribut-
ing a domain’s content from multiple geographic locations
or multiple data centers; adopting analogous primitives can
likewise apply to server location, e.g., by pinning all such
locations, or actively revoking obsolete locations.

We make the following contributions to enhance server
authentication on the web:

• conceptualizing the notion of incorporating physical
(geographic) location of a webserver as an additional
dimension to strengthen server authentication, in a
manner compatible with but independent of current
server authentication standards;

• designing and implementing SLV, a new
measurement-based algorithm for server location

1. Verifiers could be regular servers deployed using VMs, on cloud
infrastructure, or physical servers. Third-parties could provide this in
practice, including existing commercial CDN-providers, or as a non-profit
organization.

verification, which in its simplest form requires no
server-side changes nor human-user interactions,
and evaluating its efficacy through pilot experiments
using PlanetLab [14];

• augmenting this new mechanism with browser-
based server-location pinning—a primitive to enable
browsers to establish location-based trust semantics
over time.

In addition to location-based server authentication, ver-
ified server location may provide evidence for services like
cloud providers that their servers are in a particular coun-
try [15], e.g., with more favourable data privacy laws than
others, thus gaining a competitive advantage. Likewise, e-
commerce service providers may benefit from assuring their
clients that payments are processed in a country they expect
or are comfortable with.

The rest of this paper is organized as follows. Section 2
reviews traffic hijacking tactics, characteristics of Internet
delay measurements, and the distributed nature of fetching
web content. Section 3 defines the threat model. SLV is
explained in Section 4, followed by server-location pinning
in Section 5. Section 6 empirically tests a prototype im-
plementation of SLV, and evaluates the presented location
verification primitives using a server-authentication evalua-
tion framework. Further discussion is given in Section 7. We
review related work in Section 8 and conclude in Section 9.

2. Background

This section reviews Internet traffic hijacking mech-
anisms, the role of timing measurements in location in-
ference, and mechanisms of content distribution over the
Internet. Readers familiar with this background can proceed
to Section 3.

2.1. Traffic Hijacking: A Network Perspective

Web traffic hijacking is an attack whereby the adversary
impersonates the authentic domain, directing users’ requests
to a machine under the adversary’s control rather than one
under the control of the domain owner.

Hijacking at different levels. Starting by the user initi-
ating a connection to a domain over the Internet, and moving
down the TCP/IP protocol stack, traffic hijacking could be
mounted at every point where a new network addressing
scheme identifying the intended destination is introduced.
Such identifiers include the domain name, IP address, MAC
address, and the switch port that a machine is physically
connected to. Note that at higher layers of the protocol stack,
the notion of an Internet domain is abstracted, and can be
viewed as a single entity. At lower layers, that entity can
become more distributed across multiple physical or virtual
machines. References to an authentic/intended webserver or
machine in what follows denote any such physical or virtual
machines designated by the domain owner to store and offer
the domain’s services/content over the network.

Misleading the user to visit a different (visually similar
or disguised) domain name than the intended one is phish-
ing [5]. Because the identifier here differs at the highest
addressing scheme, subsequent identifiers, namely the IP
address, MAC and port connecting the fraudulent machine
to the network, are expected to be different from that of
the authentic webserver. Similarly, a pharming attack [16]
occurs by misleading the browser-consulted name resolver,
which could be at any level in the DNS hierarchical lookup
procedure, to resolve the domain name to an IP address
assigned to the adversary’s machine. The requested domain
name is thus equal to the intended one, but the IP address
and the remaining identifiers are different from that of the
intended machine(s).

ARP spoofing [17] and BGP spoofing [18] are examples
of traffic hijacking, where an adversary misleads switches
or routers respectively about the network location of the
authentic webserver. Both the domain name and IP address
of the fraudulent machine are the same as that of the
webserver, but the MAC address is different.

Finally, after the switch knows the MAC address of the
intended destination, it looks up its MAC table for the phys-
ical port number where that machine is plugged. Poisoning
the switch’s MAC table [17] causes the adversary to deceive
the switch into forwarding the data to the physical port
where the adversary’s machine is connected, thus hijacking
traffic intended to the authentic machine. In such a case,
the domain name, IP and MAC addresses of the fraudulent
machine match those of the authentic one, but the switch
port number is different.

This background is used later in the threat model, as
summarized in Table 1. Other on-route hijackings are also
possible with other addressing schemes, such as in the Span-
ning Tree Protocol (STP) [19], where switches are assigned
BridgeIDs, or by other injection mechanisms [20].

Hijacking versus MitM. Once traffic is hijacked, the
adversary may itself open another back-end connection to
the authentic domain as a regular user, to present the actual
user with seemingly authentic responses and thus avoid
exposure. The adversary thus becomes a Man-in-the-Middle
(MitM) [21], relaying traffic between the user and the in-
tended domain. Our work herein addresses traffic hijacking
in general, whether it is a hijack-and-host or hijack-and-
relay (MitM).

The role of TLS. Regardless of where in the network
traffic hijacking occurs, HTTPS using TLS with a browser-
trusted certification authority (CA) is intended to give assur-
ances about the identity of an authentic domain, aiming to
prevent the adversary from successfully impersonating the
authentic domain/webserver. Such successful impersonation
requires not only traffic hijacking, but also defeating TLS
protection mechanisms.

To successfully impersonate an HTTPS-enabled domain,
the adversary either needs to hijack traffic at the highest
addressing level—phishing—or at lower levels, which would
also require other actions such as compromising a browser-
trusted CA to bind the domain name to the adversary’s
private key, compromising the authentic domain’s private

key, or downgrading from HTTPS to HTTP during the
connection establishment time, i.e., TLS stripping [22].

While phishing should technically be the easiest to detect
since all addresses identifying the adversary’s machine differ
from the authentic one, it remains effective as it relies on
social engineering rather than technical manipulations.

For hijacking traffic at lower levels (as noted above),
the Internet’s open PKI system is subject to a single point
of failure; a single CA compromise could jeopardize the
security of the entire system [1]. As such, the system is at
most as secure as the weakest CA. Various enhancing prim-
itives have been proposed, such as certificate pinning [3]
and Multipath Probing [13], but these aim to strengthen the
current PKI system. In contrast, server location verification
operates orthogonally as an independent webserver authen-
tication dimension.

Other than a CA compromise, previous literature reports
domain operators sharing their private keys among other
constituents [23], which corrupts the system’s key mech-
anism of identity assurance. An adversary with access to
the domain’s private key need not compromise any CA to
mount a successful impersonation attack; this is undetectable
by primitives such as key pinning.

Next, we review characteristics of Internet delays, and
their relationship to geographic locations over the Internet.

2.2. Timing-based Measurements

Literature over the past decade confirms a strong correla-
tion between Internet delays and geographic distances [24],
[25], [26], [27]. Although network routes are subject to
many conditions that may impede such a correlation, like
route circuitousness [28] and delay spikes due to possible
network congestion, the strong correlation remains [29].
This is usually attributed to constantly improving network
connectivity and bandwidth availability [30].

Many networking applications have leveraged this cor-
relation to achieve accurate IP geolocation over the In-
ternet [31], [32], [33]. A common approach is to derive
functions that map delays to distances based on observing
various network characteristics (topology, latency, etc). The
function is then used to map delays measured between
multiple vantage points (with known locations) and the
target IP address to geographic distances, thus constraining
the region where the machine assigned that IP address is
physically present. Measurement-based location techniques
can achieve high accuracy (e.g., a few hundred meters [25]),
for inferring geographic information from network mea-
surements. CPV [34] (see Section 8) was the first known
measurement-based technique to verify Internet client loca-
tion assertions, addressing an adversarial client aiming to
evade [8] geolocation or manipulate those techniques to its
favour [11], [12].

2.3. Fetching Web Content

We review common methods used for dissemination and
delivery of web content.

Content Distribution Networks (CDN). A CDN is a
network of caching servers used to distribute web content
efficiently. CDNs, which have become quite popular, aim
to offload the effort of managing and distributing content
at large scale from the content owner. Different techniques
are used for managing content replication and redirecting
browsers to the appropriate CDN surrogate server.

Liang et al. [23] note two common practices for browser
redirection. The first rewrites the URLs of objects (scripts,
images, etc) to point to their location on the appropriate
CDN server, e.g., using the src HTML attribute. For ex-
ample, to instruct the browser to fetch image.gif from
the CDN server, the webserver uses:

instead of

The second practice resolves the website’s domain name to
the IP address of the respective CDN server, achieved either
by a DNS server under the CDN’s administration configured
as the authoritative name server for the original website, or
by the website’s DNS server itself.

In the first practice, the browser establishes
HTTP(S)/TCP connections with the original server
first, and then with the CDN surrogate server; in the
second, the browser only contacts the CDN server without
the need to contact the original server.

Caching and proxy servers. A caching server, sitting
in the middle of the connection between the browser and the
original webserver, terminates the TCP connection intended
between client and webserver, and re-initiates another one
with the webserver. When the caching server receives an
HTTP GET request to a cached object, it sends a conditional
GET request to the original server that includes the header
line If-modified-since specifying the date/version of
the cached object. The server either responds with 304
Not Modified, or with the requested object if the cached
version is stale.

Caching servers can be set up at any point along the
communication path between client and webserver. For ex-
ample, the network administrator could set up a caching
server, and route network traffic to it to reduce external
network usage. An ISP could set-up caching servers to
manage network congestion, and the website operator could
also set up caching servers to reduce load on the main server.

A non-caching proxy is sometimes also used, e.g., for
privacy purposes; the TCP termination hides the client’s IP
address from the webserver. If the client configures its local
machine to use a remote proxy, outbound packets have the
proxy’s IP address as their destination.

Other schemes. Other content distribution schemes
and legitimate browser (re)directs/pointers also exist, such
as browser-based ads, collocated load balancers, fast-flux
servers (see Section 8), authentication servers and P2P
networks. These operate largely similar to the methods re-
viewed above; we omit further discussion for space reasons.

TABLE 1. LEVELS OF TRAFFIC HIJACKING, AND WHETHER EACH CAN
AFFECT A LOCAL AND/OR A GLOBAL SET OF CLIENTS. A CHECK-MARK
(X) MEANS THE RESPECTIVE TRAFFIC HIJACKING IS INCLUDED IN THE

THREAT MODEL.

Identifier

On-ro
ute

hijac
king?

Level Example hijacking L
oc

al
hi

ja
ck

in
g

co
ns

id
er

ed
?

G
lo

ba
l

hi
ja

ck
in

g
co

ns
id

er
ed

?

D
om

ai
n

N
am

e

IP
A

dd
re

ss

M
A

C
A

dd
re

ss

Sw
itc

h
po

rt

No
(Human) Phishing X X � � � �

Application Pharming X X � � � �

AS BGP spoofing X � � � �

Yes Network ARP spoofing X F F � �

Link MAC table poisoning X F F F �

— Physical no network hijacking - - � � � �

The Identifier assigned to the hijacker’s machine (or, if applicable, seen by the
client) is either different from (�), or same as (�) that of the intended destination

or the next hop machine along the route (F). If the on-route hijacking occurs at the
final destination network, then F are replaced with �

3. Threat Model and Assumptions

Adversary’s objective. The threat model assumes an
adversary aiming to impersonate a webserver by hijacking
its traffic. The adversary’s typical goals are eavesdropping,
or stealing a user’s authentication credentials.

Summary of hijacking mechanisms. To define the
scope of traffic hijacking mechanisms (see Section 2.1)
included in the threat model, Table 1 classifies them by
the subset of adversary’s machine identifiers that would be
equal to that of the authentic machine in each mechanism.
Identifiers include the Domain Name, IP Address, MAC
Address, and Switch port number the machine is connected
to (note that Table 1 is also used in Section 6). The table
indicates whether the Identifier assigned to the hijacker’s
machine (or, if applicable, seen by the client) is either
different from (�), or same as (�) that of the intended
destination or the next hop machine along the route (F).

The hijacking level dictates whether an adversary needs
to be on-route between the user and the intended destination.
On-route hijacking, e.g., ARP spoofing and MAC table
poisoning, need not necessarily be mounted at the desti-
nation network where the intended machine is connected;
it may occur at any intermediate network along the route.
If hijacking is mounted at an intermediate network, the
destination IP or MAC addresses of the fraudulent machine
would be equal to that of the router or switch respectively of
the next hop along the route. (Note that the levels in Table 1
differ from the five TCP/IP layers of the protocol stack.)

On-route network hijacking requires the adversary to
locally place itself in one of the intermediate networks,
possibly by compromising a host or switch already part
of that network. Rows 1-3 in Table 1 do not have that
requirement.

Local versus global effect. Note that each hijacking
mechanisms in Table 1 may affect either a global or a

local set of clients. For example, an adversary compromising
the intended domain’s authoritative DNS server itself, can
mount pharming attacks on essentially all clients visiting
that domain; on the other hand, spoofing local DNS res-
olutions affects only a local subset of clients. If spoofed
BGP prefix announcements propagate to large portions of
the Internet, they result in a global effect. Otherwise, their
effect is local to the set of affected networks. For on-route
hijackings, the closer they are to the network of the intended
destination, the more global their effect. For example, ARP
spoofing and MAC table poisoning mounted within the local
network of the intended destination will affect almost all
visiting clients.

Adversarial capabilities assumed. The adversary is
assumed the ability of hijacking traffic such that its fraudu-
lent machine’s IP address differs from that of the authentic
webserver, i.e., Table 1’s first two levels. This covers a set
of local hijacking, including local phishing and pharming
attacks.

For attacks where the fraudulent machine’s IP address
is equal to that of the authentic destination (i.e., on the AS,
Network and Link levels of Table 1), the threat model also
includes global hijacking attacks. This includes the 2008
Pakistani Telecom incident [35] and that of China Telecom
in 2010 [36]. The threat model also encompasses low-
level network hijacks, like ARP spoofing and MAC table
poisoning, mounted within the local network of the intended
destination as it will affect almost all visiting clients—see
Table 1. In summary, SLV is designed to address all MitM
attacks conducted by hijacking traffic on any such layer
marked by a check-mark (X) in Table 1.

The threat model excludes hijacking mechanisms that
satisfy the following two conditions together (the three
cells without X under “Local hijacking considered?” in
Table 1): (1) they affect only a local subset of clients and
(2) they are conducted on a level where the IP address of
the fraudulent machine is equal to that of the intended one.
An adversary mounting this class of hijacking can bypass
location verification because the selected verifiers (those
used to verify a location, as explained in Section 4) may not
be affected by that locally-impactful traffic hijacking. Thus,
they might end up verifying the location of the authentic
machine, as identified by the client-submitted IP address,
versus the fraudulent one.

The mechanisms presented herein can provide further
assurance to a webserver’s identity in the absence of HTTPS.
The threat model thus assumes an adversary that may or
may not compromise the domain’s TLS server private key,
or issue a fraudulent certificate possibly by compromising
a browser-trusted CA. The model also addresses the case
of an adversary that can mount TLS stripping attacks [22]
to downgrade a connection, and generally other TLS-related
attacks. Finally, it is assumed that the verifiers are trusted
to carry out and report delay measurements honestly. How-
ever, contrary to the PKI trust model where a single CA
compromise threatens the entire system, a single verifier
compromise does not. It might rather allow an attacker to
forge its (malicious) server’s location only to a location in

the proximity of the compromised verifier, thus potentially
allowing the attacker to impersonate servers only in that
region. Finally, the entity managing the verifiers (the SLV
Manager—see Section 4 below) is assumed trusted, so are
the user’s browser and the webserver itself. Otherwise, if
the attacker is already in control of the webserver, the
attacker would no longer need to impersonate it by, e.g.,
breaking authentication, compromising a CA, breaking TLS,
or forging geographic locations.

4. Server Location Verification

This section introduces the measurement-based Server
Location Verification (SLV) technique. SLV leverages
generic delay measurement guidelines from previous litera-
ture to infer location information from timing analysis [24],
[30], [31]. It is custom-designed to verify (not determine)
an assertion about a webserver’s geographic location.

Location Assertion. There exists no standard mecha-
nism to enable a webserver to assert its geographic loca-
tion to a browser, e.g., no standard HTTP headers con-
vey that information. For deployability benefits, we rely
on IP geolocation databases [37] for location assertions
(these assertions will be verified by SLV), thus requiring no
server-side changes nor any additional server involvement.
These databases may however occasionally have outdated or
coarse-grained IP address location information. Webserver
provision of an accurate location assertion, e.g., through
HTTP headers, would thus be beneficial but comes at the
cost of server-side changes. SLV is flexible with respect to
the sources where a location assertion is obtained.

Location Verification. SLV is designed to verify the
geographic location of the first machine the browser estab-
lishes a TCP connection with. This is the machine assigned
the IP address resulting from the domain name resolution,
thus the verification process may commence in parallel to
loading the page (e.g., in a fashion similar to pre-fetching
web content). This enables SLV to address all pharming
attacks (see Section 3), regardless of where in the hierar-
chical lookup procedure an adversary may spoof the name
resolution; SLV itself does not contact any DNS systems
for name resolutions. If the browser receives a spoofed IP
address via DNS due to a pharming attack, that IP address
is the one passed to SLV for verification. Accordingly, a
fraudulent IP address from a local pharming attack would
be presented to SLV for location verification.

4.1. Architecture and Algorithm

The system’s architecture is shown in Fig. 1. The SLV
Manager is an independent server acting as an interface
between a browser and the verifiers. A verifier is a machine,
e.g., a virtual private server or a cloud-based server, used
to measure Internet delays to a webserver as instructed
by the Manager. Location verification can occur only in
regions where verifiers are deployed; in practice, the entity
owning/controlling these verifiers would be similar to, e.g.,
CDN or cloud providers, and would need to handle location

Figure 1. System architecture. Parenthesized terms correspond to imple-
mented prototype (Section 4.2)

assertions in regions with no verifier deployment as an
exception. The Manager itself runs on top of a webserver,
and has access to a list of distributed verifiers and their
geographic locations. For efficiency, the Manager caches
location verification results; entries for a given IP address
are cached for a configurable period (e.g., a few hours),
before expiring. The Manager would typically be deployed
on CDNs to bring it closer to clients and verifiers worldwide,
thus becomes physically distributed but logically central-
ized.

Algorithm 1 details the location verification process (see
Table 2 for data structures used). When a user visits a
website, the browser sends the resolved IP address (the
input adrs in Algorithm 1) of the website to the Manager.
By the locate() function in line 4, the Manager obtains the
best available assertion of the server location (the simplest
case may involve using the server’s IP address, e.g., using
IP-to-location mapping databases [38]). The returned result
serves as an unverified assertion of the server’s location.
The Manager then checks for a cached verification result
of that address (see the result structure in Table 2), and
returns it to the browser if the location corresponding to
the IP address has not changed since caching time (e.g., the
IP address was not assigned to another machine somewhere
else).

If no entry was cached, or the cached location is not
equal to the newly asserted one, the Manager begins location
verification by selecting any set of three suitable verifiers (in
any order), from all available such sets encompassing the
asserted location (line 12). The thee verifiers are selected lo-
cally, e.g., with distance ranging 700-1,000km in our exper-
iments (Section 6.1). The order of selecting verifier subsets
does not affect the verification result since all encompassing
subsets can be chosen until the location is positively verified
or no more subsets remain (in which case the asserted
location is judged as a false assertion—see below). Each
verifier measures the round-trip time (RTT) to the target

webserver and to the other two verifiers (line 15). RTTs
are not measured using standard ICMP-based tools; this
avoids QoS and routing policies at intermediate ASes from
artificially delaying or dropping probing messages, and other
known problems of such techniques [39]. Instead, the veri-
fiers measure RTTs over the application layer by initiating a
TCP connection to the target server like a regular web client,
and calculating the RTT from the SYN–SYNACK handshake.
The verifiers conduct several RTT measurements, and send
the smallest back to the Manager, which helps exclude delay
outliers due to temporary network congestions or routing
instabilities. Location verification occurs locally, i.e., using
nearby verifiers, so that the measured RTTs exhibit stronger
delay-distance correlation [27].

Due to last-mile delays [28], the delay-to-distance ratio
is inflated near the edge networks of two communicating
parties over the Internet. Such inflation occurs four times
while measuring the RTTs between a pair of verifiers and
the webserver (i.e., twice between each verifier and the
webserver). On the other hand, RTTs are inflated only twice
when measured directly between a pair of verifiers. As such,
we filter out the inflation factor by subtracting a value, λ,
from the three RTT measurements between each verifier and
the webserver. In practice, the value of λ may be calibrated
in realtime, e.g., as the average RTT between all verifiers
in the region and their network gateway. Extensive delay
analysis in previous literature found the network edge causes
a delay inflation equivalent to ∼5ms [25]. We use this value
in our prototype implementation (see Section 4.2).

After subtracting λ, the Manager stores the delay in-
formation in a two-dimensional array D, in line 15, such
that D[v][i] is verifier v’s measured RTT between itself and
entity i; i is either another verifier or the target webserver.

Geometric Verification. By Thales’ theorem [40], an
inscribed triangle with one side being the diameter of the
prescribing circle is a right-angled triangle, with the diam-
eter its diagonal (Fig. 2). SLV verifies location assertions
using this, where times are treated as distances consistently
for a given pair of verifiers at a given instant in time. Thus
no static delay-to-distance mapping function is required,
avoiding any potential inaccuracies introduced by such func-
tions [31]. The asserted location is positively verified if, for
any of the three pairs of the selected verifiers, the sum of the
squared RTTs between each verifier and the target webserver
does not exceed the square of the average RTT between the
pair, i.e.,

(D[v1][ip])2 + (D[v2][ip])2 ≤
(
D[v1][v2] +D[v2][v1]

2

)2

(1)
Figure 3 shows an example webserver encapsulated by a
triangle determined by three verifiers. The webserver is
inside the two circles whose diameters are delimited by
verifiers [A,B] and [A,C]. If the measured RTTs of one
of those pairs of verifiers support the webserver’s presence
inside the respective circle, i.e., inequality (1) above holds,
this circle becomes the verification granularity. The Manager
then signs and sends the verification response to the browser,

TABLE 2. STRUCTURE OF EXCHANGED MESSAGES

Struct Attribute Data Type Description

result

ip IP_info See IP_info below
veri passed boolean Verification result

region circle Verification granularity
when veri timestamp Date and time of last verification

IP_info
value string IP Address e.g., “1.2.3.4”
loc location See location below

circle
centre location Centre of a circle (See location below)
radius double Radius of the circle (e.g., in km)

location
lat double Latitude
lon double Longitude

Algorithm 1: Location verification run by the Man-
ager. See Table 2 for data types, and inline for expla-
nation.

Inputs
C[.]: An array of result cached at the Manager
adrs: A string of the server’s IP address

Output:
res: A structure of verification result

begin
1 Declare ip of type IP_info
2 Declare res of type result
3 ip.value := adrs
4 ip.loc := locate(adrs)
5 if ip.value exists in C then
6 res := C[ip.value]
7 if res.ip.loc = ip.loc then
8 return res

9 res.ip := ip
10 res.when veri := local time at the Manager
11 Declare circ of type circle
12 T := the set of triangles geographically

encompassing ip.loc
13 foreach t in T do
14 V := the three verifiers determining t
15 D := RTT measurements between the

verifiers in V and ip
16 foreach verifier pair [v1, v2] in V do
17 circ.centre := mid point(v1, v2)
18 circ.radius := distance(v1, v2)/2
19 if RTTs in D indicate ip inside circ then
20 res.veri passed := true
21 res.region := circ
22 C := C ∪ res
23 return res

24 res.veri passed := false
25 res.region := null
26 C := C ∪ res
27 return res

Figure 2. Thales’ theorem [40] is used herein for server location ver-
ification. It states that for an inscribed triangle (as shown), the angle
∠ABC = 90◦

along with the centre and radius of the circle (lines 17
and 18), and caches the result for that IP address. If the
verification result is negative for all three circles, a new
encompassing triangle determined by three different verifiers
is selected. That process is repeated (line 13) until (a) the
location is positively verified, or (b) the verifiers of all
triangles (or a sufficient subset thereof) encompassing the
asserted location are exhausted. In our experiments (see
Section 6), typically about four triangles suffice for this
test. In (b), a negative verification result is returned, and
the granularity field (region) is set to null (line 25). The
justification for a positive verification from a single triangle
being deemed sufficient to pass location verification is that
RTT delays have a lower bound restricted by the spanned
geographic distance (data flows in fibre at two-thirds the
speed of light [41]).

Caching. For efficiency, the system employs two layers
of caching: one at the browser and another at the Manager.
The former is per browser instance, and is cleared when the
browser process terminates. Browser caching is useful as
it helps when the user switches between tabs or refreshes a
page. A cached entry is as simple as a tuple of <IP address,
verification decision>. Note that results are cached by IP
address, not domain name. Thus, a page refresh that results
in a different non-cached IP address upon resolving its
domain causes the browser to resend the new IP address for
verification. This makes the browser check the webserver’s
location if the domain’s resolved IP address changes.

The caching at the Manager is more persistent. A cached
entry is also addressable by IP address, but formatted dif-
ferently as: <IP address, asserted location, verification date
and time, verification result, centre, radius>. The last two
entries are the centre and radius of the circle delineating the
verification granularity, if the location was positively veri-

Figure 3. Example using Thale’s theorem (map data: Google, INEGI).
Each pair of verifiers determines a unique circle whose centre is the
midpoint between both verifiers, and radius is half the distance between
them. Because server X is geographically inside the circle determined
by the pair [A,B], it follows from Thales’ theorem (see Fig. 2) that
AX2 +XB2 ≤ AB2. Similarly for the circle determined by [A,C].

fied, and null otherwise. Because the Manager’s caching
is centralized, i.e., relative to the browsers’ local caching, a
browser is likely to get an instant response from the Manager
as more verification requests to the Manager are made by
an increasing number of relying clients.

4.2. Implementation

In our prototype implementation (see Fig. 1), we used
Apache as our webserver, PHP for the Manager, MySQL for
the Manager’s caching, and Java for the verifiers. The com-
munication between Manager and verifiers uses standard
TCP sockets. The Manager learns about the m available
verifiers using a simple csv-formatted file with m lines and
3 entries per line: the verifier’s IP address, its geographic
latitude, and longitude. We used m = 20 PlanetLab nodes as
verifiers in our testing (see Section 6), which were situated
in the US. For IP address location lookups, we used the
ipinfo2 DB.

Browser extension. On the browser side, we imple-
mented a Mozilla Firefox extension to submit the website’s
IP address to the Manager, and process a response. We
used jQuery to receive verification results from the Manager
asynchronously. Verification responses are cached locally
by the browser, independent of the caching layer on the
Manager, to avoid re-consulting the Manager on page re-
freshes and tab-switches. The extension also implements
server location pinning, as explained below.

5. Pinning of Server Location

We introduce the idea of (verifiable) server location
pinning, following the idea of certificate pinning [3]; as
such, we first quickly review certificate pinning. Certificate
pinning is one approach3 introduced in the server authenti-
cation ecosystem to reduce the user’s required interpretation

2. http://ipinfo.io/
3. Other items could be pinned, such as the public key value.

of cues and decision making, shifting that responsibility to
the browser. A website’s certificate is pinned (or saved) in
the browser, such that future certificates presented by the
website are cross-checked against the saved one, with non-
matches typically raising suspicion. A domain’s certificate
can be pinned in the browser or in DNS records [42]. A
browser can pin certificates (1) automatically as the user
browses the web, (2) when instructed by the server, e.g.,
through HPKP [43], or (3) when preloaded with pinned
certificates. Note that non-DNS based methods (1) and
(3) do not require server-side changes, and can thus be
immediately deployed through browser extensions.

We put forward the principle of server location pinning.
A set of expected server locations (e.g., geo-coordinates) is
saved locally (by one of several means explained below) by
the user’s browser for future cross checking. When a website
is then visited and its location is verified (see Section 4), the
browser checks if the verified location falls within any of
the pre-pinned regions. The action upon a failed check can
then be handled automatically by, e.g., a pre-specified policy.
Such a policy might handle three possible pinning-validation
outcomes, as we explain below: Critical, Suspicious and
Unsuspicious. The policy mechanism is outside of the scope
herein. However, a simple intuitive policy could instruct the
browser to refrain from any connection with login forms
or financial transactions in case of Critical or Suspicious
outcomes; in the absence of login forms and financial trans-
actions, the browser drops the connection only in the case
of a Critical outcome.

Since the geographic locations where a website is hosted
from could change frequently for some websites (e.g., due
to different content distribution architectures as explained
in Section 2.3), server-side cooperation can provide the
benefit of dictating which geographic locations should be
pinned. This could be, for example, in the form of (1)
a publicly queryable set of websites and their locations,
which can also provide the benefit of quick location updates;
(2) realtime location pinning instructions possibly in the
form of HTTP headers created by the webserver itself;
and (3) incorporating server location updates into DNS.4
These examples respectively can be viewed as conceptually
analogous to trusted directories or Online Certificate Status
Protocol (OCSP) [1], HTTP Public Key Pinning (HPKP)
[43], and DNS-Based Authentication of Named Entities
(DANE) [42] in the current server authentication standards.

Location Pinning Algorithm. Locations are pinned as
an array P of the data structure shown in Table 3. The array
is referenced by the domain name (name). The attribute ips
is an array of IP addresses that name (i.e., domain name)
has previously resolved to. regs is an array of geographic
regions, each described as a centre and radius of a circle,
where the domain name was verified to be hosted from.
rmax is the upper limit on the number of allowed server
locations (e.g., dictated by the domain operator).

4. DNS location records (LOC) were initially proposed as a means of
disseminating IP-address location information [44].

http://ipinfo.io/

TABLE 3. STRUCTURE OF PINNED LOCATIONS FOR A DOMAIN (SEE TABLE 2)

Attribute Data Type Description
name string The domain name
ips[.] IP_info An array of the domain’s saved IP addresses
ver regs[.] circle An array of the domain’s verified regions
rmax Integer Upper limit on the number of allowed server locations
when veri timestamp Date and time of last verification
when pin timestamp Date and time of pinning

Algorithm 2 details the server location pinning mech-
anism. When a location verification response is received
from the SLV Manager (see Section 4), the browser first
searches P for a previously pinned location entry for the
corresponding domain name. If none is found (line 23), the
browser either pins the domain’s location if it was verified,
or reacts to a Suspicious outcome as specified by the policy
if location verification fails. If a pinned location is found
but location verification has failed, it is a Critical outcome.

Assuming the browser had previously pinned server
locations for that domain, and that the domain’s IP address is
verified (line 7), the browser checks if the domain’s asserted
location falls within any of the pinned regions for that
domain. If it does, the browser either updates the IP ad-
dress’s corresponding stored geographic locations, or if the
IP address was seen for the first time for that domain, adds
it to the array of IP addresses corresponding to the domain
name. If the asserted location does not fall within any of the
pinned locations (but was positively verified), the browser
adds it to the pinned domain as a new region only if more
regions are allowed for that domain (line 20). Otherwise, the
new asserted location, despite being successfully verified, is
classified as a Critical outcome.

Note this algorithm does not place any restrictions on
the number of IP addresses allowed per domain. The restric-
tion is only on the number of different geographic regions
(rmax) where content is initially provided. In practice, the
value rmax might be set and announced by each domain
operator.

Caching versus Pinning. The principle of location pin-
ning introduced in this section is different from caching
the results for efficiency (see Section 4 for caching). A
verification result is always cached whether it is positive or
negative, whereas a domain’s location is only pinned when
positively verified. Additionally, a disagreement between a
previously cached result and a new one is not acted upon
by the browser, but a negatively verified location that was
previously pinned must be interpreted by the browser, and
is indicative of a potentially critical browser connection.
Also a cached entry automatically expires after a certain
predefined time window, but a pinned location is typically
revoked. Since caching is performed for efficiency, it oc-
curs in two levels in the system, browser and Manager,
whereas location pining is a browser-only capability to
enable automatic interpretation of changes in domain name
location verification results. As explained by Algorithm 2,
location pins are region oriented, whereas a cached location
verification result is not. Finally, cached entries are indexed

by the IP address, whereas a pinned server location is
indexed by the server’s domain name, indicating that the
domain resolved to a machine whose location was positively
verified. In summary, pinning is performed for security,
where the browser processes results and takes actions to
protect the user when necessary (e.g., a verification failure
for a previously pinned location), whereas caching is a
dummy operation involving no browser interpretations of any
results, and is only performed for efficiency.

6. Evaluation

We evaluate SLV in two stages. First, we establish the
conceptual validity of the measurement-based location ver-
ification technique itself from a networking perspective, by
attempting to verify websites with known locations using a
prototype implementation. Second, we evaluate the benefits
of combining this with server location pinning to augment
server authentication mechanisms.

6.1. Evaluating Measurement-based SLV

Our pilot testing uses PlanetLab [14], employing as
verifiers 20 testbed nodes distributed in North America.
We measure the false reject (FR) and false accept (FA)
rates when using the described SLV approach to verify
server location assertions. As such, we test SLV by verifying
locations of servers in which we have available ground truth
about their geographic locations. We followed the assump-
tion that university websites are hosted on-campus [25],
thus we can use their posted street addresses as our ap-
proximation for their webserver locations. See below on
verifying this assumption. For each location assertion (i.e.,
university website), triangles were selected such that the
distance between each pair of verifiers is 700-1,000km,
giving a granularity equivalent to a circle of radius 350-
500km.5

Note that regardless of the content-distribution scheme
employed in practice by a website (cf. Section 2.3), a
browser always downloads content from one or more phys-
ical or virtual server(s). We focus here on SLV’s feasibility
to provide measurement-based location assurance to the
server currently being contacted (as explained in Section 4),

5. Accounting for 195 countries in the world, the average country size is
∼760,000km2 (approximately the size of Turkey). The tested granularity
is equivalent to 400,000-790,000km2 giving approximately a country-size
average.

Algorithm 2: Server location pinning in the browser.
Inputs
P[.]: An array of pinned domain locations
d: Domain in question
r: Verification result of Algorithm 1

Goal
To enable the browser to establish location-based

trust semantics over time.
begin

1 outcome := Unsuspicious
2 if d exists in P then
3 pin := P[d]
4 if r.veri passed = false then
5 outcome := Critical

6 else
7 found := false
8 foreach region in pin.regs do
9 l := dist(r.ip.loc, region.centre)

10 if l ≤ region.radius then
11 found := true
12 if r.ip.value exists in pin.ips

then
13 pin.ips[r.ip.value].loc :=

r.ip.loc

14 else
15 pin.ips := pin.ips ∪ r.ip
16 pin.when veri := r.when veri
17 break

18 if found = false then
19 if size of pins.regs < pin.rmax

then
20 pin.ver regs :=

pin.ver regs ∪ r.ver regs

21 else
22 outcome := Critical

23 else if r.veri passed = true then
24 Declare x as a pinning struct (see Table 3)
25 x.name := d
26 x.ips := pin.ips ∪ r.ip
27 x.ver regs := pin.ver regs ∪ r.ver regs
28 x.when veri := r.ver
29 x.when pin :=local time at the browser
30 P := P ∪ x
31 else
32 outcome := Suspicious

33 return outcome

TABLE 4. SUMMARY OF PILOT EVALUATION RESULTS.

Total Acce
pted

Reje
cte

d

FR/FA

True assertions 83 81 2 2.4% FR∗

False assertions 100 0 100 0% FA
∗See inline for an explanation of the results

whether that server is standalone or part of a larger dis-
tribution network (e.g., a CDN). University servers with
known ground-truth locations thus suffice for our evaluation
purpose.

6.1.1. False Rejects. We randomly selected 94 university/-
college websites for testing, and excluded 11 of these that
simple filtering found to be hosted by a cloud or a CDN,
lacking ground truth knowledge of their true geographic
locations. The filtering involved looking up from public reg-
istries, the AS from which the domain is reachable. As Ta-
ble 4 shows, two of the 83 remaining domains were falsely
rejected; these both fell in a region deficient in verifiers. In
exploring this, we found one involved verifier (PlanetLab
node) which contributed to both FRs was extremely slow,
including in responsiveness to running commands/processes,
thus presumably suffering technical problems. From this
initial study, we know how to reduce the FR rate below 2.4%
(i.e., by testing the reliability of verifier nodes in advance),
but reporting this initial result highlights the importance of
a responsive and sufficient verification infrastructure.

6.1.2. False Accepts. To evaluate FAs, the SLV Manager
was manually configured to select triangles not encapsulat-
ing the asserted locations, and far enough away (not within
the same country) to have the asserted location outside
the three circles determined by each pair of verifiers, as
explained in Section 4. The expectation is that the false
location assertion will be correctly rejected. That is, an
attacker hosting a malicious server (e.g., a phishing website,
pharming, or a machine hijacking traffic through BGP) in
La Paz, Bolivia for example, and falsely asserting (possibly
through delay manipulation, or the use of proxy servers) that
the server’s location is in Cincinnati, Ohio, won’t be falsely
accepted by SLV’s verifiers encapsulating that fraudulently
asserted location.

Four triangles were randomly chosen for each tested
domain. The verifiers determining each of four triangles
must reject presence inside the respective circles for a
reject decision to result; the parameter four was empirically
determined, and is subject to adjustment. Again, domains
were chosen randomly from among those for which we had
ground truth knowledge of webserver location.

One hundred domains were chosen in the following
manner: 40 in Europe, 20 in eastern Asia, 20 in Latin
America, and 20 in Oceania. As summarized in Table 4,
none of the tested domains was falsely accepted. The false
accept rate of 0% is not intended to claim perfection, but
rather is an artifact of limited preliminary testing.

6.2. Evaluation with Server Location Pinning

Table 5 uses a webserver-authentication evaluation
framework almost identical (in columns) to that developed
by Clark et al. [1]. The column headers show the evaluation
criteria, and the rows are the enhancement primitives.

Baseline HTTPS. To identify new benefits relative to
the standard HTTPS defense mechanism, we first evaluate
HTTPS itself as a baseline for comparison. Row 0 was not
required in the work of Clark et al. [1], which specifically
evaluated SSL/TLS-enhancements. In our row 0, all com-
parative evaluation criteria, such as No New Trusted Entity
and No Extra Third Party, are relative to regular HTTP (non-
HTTPS); the other rows are rated relative to row 0.

HTTPS provides the first three security properties in
Table 5 but only partially, in light of the recent community
awareness of critical HTTPS weaknesses and real-world
attacks [7], [45], [46]. The attack surface includes CA
compromise, TLS stripping, implementation vulnerabilities,
misconfiguration, and reliance on users to make security
decisions.

Basic HTTPS relies on trusting CAs and signed cer-
tificates for server authentication, and thus lacks bullets at
No New Trusted Entity and No New Auth’n Tokens. While
not introducing new traceability avenues, it does not reduce
traceability because revocation methods, such as OCSP re-
sponders, are still required for revocation. It requires servers
to obtain certificates, thus lacks No Server-Side Changes.
Finally, HTTPS lacks all three usability properties relative
to HTTP.

SLV. For the security properties, SLV (row 1) provides
both the benefit of detecting global MitM attacks, regardless
of how the adversary hijacks traffic (recall Section 2.1), and
of detecting a subset of local hijacks (column 2 in Table 5),
including local pharming attacks. As noted in Section 3, if a
local ARP spoofing or local BGP prefix hijacking occurs, the
selected verifiers will not be affected and will thus attempt
to verify the location of a machine that is different from the
fraudulent one communicating with the client.

Leaking client credentials (column 3) and TLS stripping
(column 5) require the adversary to conduct traffic hijacking
first, and SLV provides partial protection if that hijacking
was locally conducted (column 2). Thus, SLV offers a partial
benefit (◦) in both situations. The Affirms POST-to-HTTPS
benefit prevents submitting POST requests over HTTP; SLV
does not provide that benefit.

In terms of the impact to HTTPS, no new authentication
tokens are introduced by SLV since the verification results
are sent to requesting clients automatically and in realtime.
For deployability, SLV with assertions based on IP-address
to location lookup tables requires no server-side changes,
and can be deployed without DNSSEC. It provides the
benefit of Internet Scalable because the location verification
process is fully automatable (unlike, e.g., certificate preload-
ing, where requests are manually reviewed [3]). However,
the benefit is graded as only partial because the required
verification infrastructure, such as the verifiers, grows as the
need for location verification increases. Finally, SLV pro-

vides the benefit of signalling the status completely because
all browsed servers’ locations are sent to the Manager (see
Section 4) for verification, i.e., server participation is not
optional.

Note that the nature of communication between a
browser and the SLV Manager is similar to that of Multipath
Probing [13], and thus their beneficial properties (row 6) are
similar (cf. [1]).

Location Pinning Alternatives. Server location pinning
is conceptually similar to key/certificate pinning, and thus
have similar advantages and weaknesses (e.g., scalability).
Any of the four pining methodologies (see rows 2-5 in
Table 5) could be adopted for the server’s location. For
example, just as public keys could be pinned with DNS
records, servers’ geographic locations can be likewise. In
fact, the DNSLOC records were proposed experimentally in
1996 [44] for non-adversarial location assertion purposes. In
conclusion, evaluation outcomes of location pinning primi-
tives are similar to those of key pinning (cf. [3]).

Note that the benefits No New Entity, No New Traceabil-
ity, No New Authentication Tokens, and No Extra Third Party
are provided by (some of) the location pinning primitives,
but not SLV (row 1). For example, for No New Traceability,
the pinning process itself, including checking verification
results against already pinned locations, does not introduce
new traceability (e.g., if the location verification results
were already cached). An analogous argument applies to
the remaining three benefits.

List of Expected Locations. Domain owners can main-
tain a publicly accessible list of geographic locations where
a client should expect the server offering their content. This
is analogous to maintaining a list of active certificates [1]
(e.g., Certificate Transparency [4]) to facilitate revocation
simply by removing the revoked certificate from the list,
and may thus aid in location revocation.

7. Discussion

When TLS is not available for a domain, e.g., if not
supported or because of a TLS stripping attack, the location
verification mechanism presented herein offers an indepen-
dent means for detecting fraudulent server authentication.
Nonetheless, verified location information is best combined
with TLS, to provide an additional authentication dimension.
This becomes especially useful in cases where certificate
validation is suspicious, e.g., when the browser is presented
a self-signed certificate, an insecure/outdated cipher suite,
or an HTTPS page with mixed content [23].

The tree diagram in Fig. 4 shows how location-based
server authentication can complement TLS to reduce the
likelihood of successful attacks. The dashed lines indicate
parts contributed by the presented primitives; they highlight
scenarios where traffic hijacking and/or MitM may go unde-
tected without SLV, but would instead be mitigated if SLV
is used.

From a user’s perspective, we believe that, even without
requiring any new user actions, it can be useful for some

TABLE 5. EVALUATION OF LOCATION-BASED PRIMITIVES TO AUGMENT WEBSERVER AUTHENTICATION. • DENOTES THE PRIMITIVE PROVIDES THE
CORRESPONDING BENEFIT (COLUMN); ◦ DENOTES PARTIAL BENEFIT; AN EMPTY CELL DENOTES ABSENCE OF BENEFIT. THE SHADED ROW (INDEXED

0), WHICH IS ITSELF RATED COMPARED TO REGULAR HTTP, SERVES AS THE BASELINE FOR COMPARATIVELY ASSESSING IMPROVEMENTS OR
RETROGRESSION OF THE NEW PRIMITIVES DETAILED HEREIN (ROWS 1-6).

Dete
cts

M
itM

Dete
cts

Loc
al

M
itM

Prot
ec

ts
Clie

nt
Cred

en
tia

l

Upd
ata

ble
Pins

Dete
cts

TLS
Stri

pp
ing

Affi
rm

s POST-t
o-H

TTPS

Resp
on

siv
e Rev

oc
ati

on

Int
erm

ed
iat

e CAs Visi
ble

No New
Trus

ted
Enti

ty

No New
Trac

ea
bil

ity

Red
uc

es
Trac

ea
bil

ity

No New
Auth

’n
Tok

en
s

No Serv
er-

Side
Cha

ng
es

Dep
loy

ab
le

with
ou

t DNSSEC

No Extr
a Thir

d Part
y

Int
ern

et
Sca

lab
le

No Fals
e-R

eje
cts

Stat
us

Sign
all

ed
Com

ple
tel

y

No New
User

Dec
isi

on
s

Security Properties Offered Beneficial Properties
Primitive A B C Security/Priv Deployability Usability

0 Standard HTTPS ◦ ◦ ◦ • • • •
1 SLV without location pinning • ◦ ◦ ◦ • • ◦ •
2 Server loc. pinning (Client History) ◦ ◦ ◦ • • • • • • •
3 Server loc. pinning (Server) ◦ ◦ ◦ • • • • • • •
4 Server loc. pinning (Preloaded) • • • • ◦ • • ◦ • • • ◦ •
5 Server loc. pinning (DNS) • • • • ◦ • • ◦ • • • ◦ •
6 List of expected locations • • • • • • • •

Figure 4. Decision tree for detection of traffic hijacking attacks. As ex-
plained in Section 3, from the server’s perspective, phishing is a class of
traffic hijacking. Dashed lines indicate attacks detected only by the new
mechanisms presented herein.

users to see in which country a server is located [47]—
whether this information is verified by SLV or just asserted
by any browser plugin, e.g., flagfox (see Section 8). In a
phishing attack, if the adversary obtains a valid certificate
for a spoofed domain, standard visual browser cues will
show green locks, and positively assuring symbols [48]. A
country’s flag or a displayed world map will however differ
from expectations (i.e., when the adversary’s fraudulent

machine is hosted remotely). There may be higher potential
to attract user notice when such a location indicator conveys
intuitively meaningful information (e.g., the country flag or
city where the server is) rather than cryptic symbols—a
green lock, or an exclamation mark on a grayed out triangle,
etc. This case is similar to that where a browser-trusted CA
is compromised and no certificates are pinned for the victim
domain. On the other hand, location verification provides
that missing benefit of signaling such an adversarial situation
using an intuitively meaningful visual cue; e.g., the browser
will either display an unexpected flag if the asserted country
is different from that of the authentic server, or depending
on implementation choices, show a struck out flag in case
the location fails verification.

Several useful features can be built on top of server
location verification. For instance, SLV can benefit from
a policy-based mechanism [13], [49] that customizes how
a browser automatically handles various transactions based
on their location [50]. An instruction could be of the form
allow credit card transactions only at this set of countries or
deny email logins in that set of locations. This may also help
control fraud and deter phishing attacks, ideally requiring no
new user actions or decisions whatsoever.

Finally, SLV is compatible with known mechanisms
(cf. [51]) that help systems scale, and increase efficiency
to address time-sensitive applications. For example, the ver-
ifiers (acting as regular clients) could proactively measure
delays periodically (e.g., to high-runner websites) to reduce
verification time. The centralized caching layer at the Man-
ager implies that for most visited websites (e.g., Alexa’s top
1000), it is highly likely that clients will receive spontaneous
responses any time. Note that SLV enforces repeating the
location verification process when requested whenever the
caching window expires.

8. Related Work

GeoPKI. GeoPKI [9] is a location-aware PKI system
that associates certificates to geographic spaces, e.g., land or
property boundaries. A certificate contains a high granularity
definition of the space to which it is associated. This could
be in the form of GPS coordinates along with lateral and
longitudinal distances that accurately delineate the space
boundaries. To claim a space, the owner submits their space-
defined certificate (self-signed or CA-signed) to a public log
(e.g., similar to certificate transparency [4]), and monitors
the log to detect any other entity claiming ownership of their
space. To validate a space ownership, GeoPKI relies on CA-
issued Extended Validation (EV) certificates, associated to
a real world street address. An attacker would thus need to
either compromise a CA to issue an EV certificate to tie its
public key to the fraudulently-claimed space, or forge legal
documents proving such ownership.

The goals and threat model of GeoPKI differ from
those we address herein. GeoPKI is designed to provide
assurance that no other (malicious) entity issues a certificate
claiming a geographical space that is already claimed by
the (legitimate) owner, but does not indicate or assure the
location of the actual server a client is connected to.6 In
contrast to GeoPKI, SLV verifies server locations in realtime
thus compromising a CA alone is insufficient; the attacker
must also evade SLV to succeed in a MitM attack.

Client Presence Verification. CPV [34] verifies geo-
graphic location claims of Internet clients. Client locations
are corroborated based on triangular areas derived from
delay measurements. While this enables CPV to verify client
locations with high granularity, its verification process suf-
fers occasional Triangular Inequality Violations (TIVs) [52].
In contrast, while SLV selects verifiers forming triangles, it
does not verify server presence within them, nor use triangu-
lar areas; its use of Thales’s theorem avoids TIVs entirely,
and reduces the number of delay measurements required
between verifiers and the webserver. SLV also provides
assurance to clients about server locations (note that servers
and clients differ fundamentally in many factors, including
that a third party location verification service provider can
easily get clients to run code, e.g., using JavaScript as
CPV does; this is not applicable when verifying geographic
locations of webservers).

Geolocating fast-flux servers. Delay-based geolocation
of fast-flux hidden webservers has been proposed [53];
hidden behind proxies, their IP addresses are not known to
the client. When geolocating a webserver, the geolocation
service provider can first detect that the webserver is hidden
behind a proxy by noticing a large difference between the
RTTs measured on the network layer (e.g., using ping) and
the application layer (e.g., using an HTTP GET). To estimate
the hidden server’s location, a group of landmarks measure
application layer RTTs to the server, which are then used

6. A client browser could be connected to a webserver in China, legally
owned and operated by an entity in the US. The GeoPKI EV certificate
then validates the US location, not the physical server’s location.

to obtain rough estimates to the direct RTTs between the
landmarks and the hidden server (excluding the proxy). The
RTTs are then mapped to distances to constrain the region
of the hidden server relative to the landmarks [30].

This geolocation mechanism aims at disclosing an incon-
sistency between the geographic location of the sever ter-
minating the TCP connection and the one processing HTTP
requests. SLV does not attempt to determine webserver
locations, but rather verifies the plausibility of the webserver
within an asserted region. While attempts to evade SLV may
include hiding the attacker’s IP address behind a proxy, SLV
handles that attack differently—it reports that the asserted
location (that of the IP address seen by the client) is not
verified.

Using network characteristics to detect phishing and
pharming attacks. Previous literature [54] proposed to use
routing information, including mean RTTs and standard de-
viation of network delays, to detect phishing and pharming
attacks. The authors fed the network characteristics of many
legitimate and malicious websites to different classifiers as
the training data set, then used the classifiers to detect other
malicious sites. Their evaluation showed an accuracy above
99%, further affirming the plausibility of relying on such
network characteristics in exhausting server impersonation
attacks.

Flagfox extension. Flagfox is an example7 Firefox ex-
tension that looks up the countries of webserver IP addresses
as a user browses the Internet, and displays the country flag
in the URL bar. The flag is based on the tabulated location
of the IP address, not the country TLD in the domain
name. Flagfox uses Maxmind’s IP database for geolocation,8
and does not employ any location verification mechanism.
Since locations obtained by tabulation-based techniques are
falsifiable [8], e.g., by the IP address owner, they are unreli-
able in adversarial environments. For instance, an adversary
aiming to impersonate the University of Tennessee’s website
(e.g., through phishing, pharming or a MitM attack) could
register the IP address assigned to its malicious webserver
to be in Knoxville, Tennessee. Indeed, a previous study [31]
found that most of Google’s IP addresses are reported by
the American Registry for Internet Numbers (ARIN)9 to
be physically located in Mountain View, California; such
clearly incorrect assertions have been proven wrong [31].

Network Coordination Systems (NCSs). NCSs are
conceptually different from measurement-based geolocation.
In the former, each network node is located based on its
network position in the delay space, whereas the latter
determines the physical positions of nodes based on their
geographic distances. NCSs are useful because when the
coordinates of all nodes are calculated, the delay between
any pair of nodes could be predicted without actively mea-
suring it, thus eliminating the need of flooding the network
with delay-measuring probes to find all pair-wise delays.
Measurement-based geolocation can be seen as a subse-

7. Other extensions exist with similar objectives.
8. https://www.maxmind.com
9. http://whois.arin.net

https://www.maxmind.com
http://whois.arin.net

quent step, which takes-in network delays (which may be,
e.g., predicted, calculated, actively measured, or passively
estimated), and approximates the geographic location ac-
cordingly. NCSs are thus considered a different problem,
with its own threats and defenses, efficiency parameters, and
evaluation metrics.

SALVE. Another scheme whereby a server’s physi-
cal location is used as a server authentication factor is
SALVE [55].10 In SALVE, location verification is achieved
using the Location Service architecture [56]—a set of tech-
niques developed and used by telecommunication operators
to geolocate SIM-identified devices in the network.

9. Concluding Remarks

The server location verification mechanism detailed
herein does not conflict with the web’s growing trend of
distributed content dissemination and geographically diverse
replicated caching. The initial front-end server to which
a client connects is the port of entry to the distribution
infrastructure, if one is being used; paying more attention
to that server, e.g., by verifying its physical presence in
a known/expected geographic location as explained herein,
provides information often relevant to the target domain’s
authenticity. Thus, SLV works regardless of the distribu-
tion and architecture of such infrastructure. Additionally,
depending on a client’s location, a finite set of n such “ports
of entry” are typically expected for any single domain, and
that set is often stable. Pinning several server locations (see
Section 5) is thus beneficial for new and verified locations.

Despite efforts from the security community to address
shortcomings in the current server authentication ecosys-
tem, PKI compromise still admits MitM attacks, e.g., due
to slow or non-adoption of primitives like key pinning,
or user inability to reliably react to visual browser cues.
The proposals herein constitute a new and parallel server
authentication dimension (e.g., comparable to client multi-
factor authentication), relying not on the standard something
you have principle (namely, the server private key), but in
addition where you are. While the general notion of location-
based authentication is known, the novelty herein is the
measurement-based mechanism itself which verifies server
locations in realtime, in a manner compatible with the cur-
rent server authentication standards, and without requiring
human-user involvement in decision making.

To mount a successful MitM attack when SLV is used,
the adversary must, in addition to compromising the TLS
infrastructure, co-locate its malicious (possibly virtual) ma-
chine in the geographic vicinity of the authentic one. In
addition to being less scalable, this places a heavy set of
burdens including an attack customized to the location of
each target server. A mechanism like SLV thus compels the
adversary to make a true assertion about the location of
its fraudulent servers, both divulging the fraudulent servers’
true geographic location, and forcing the adversary to oper-
ate in the geographic vicinity of the authentic webserver—

10. We became aware of SALVE subsequent to our submission.

often a region in a more familiar country, or with more
favourable laws and accountability measures.

SLV leverages established networking principles that
location information can be inferred from timing measure-
ments, and existing methodological guidelines for use of
timing measurements to achieve server location verification.
While large-scale evaluation of SLV’s verification process is
not the main focus of this paper, preliminary experiments
highlight the algorithm’s efficacy in verifying webservers’
geographic locations, by means immediately deployable
through a browser extension without requiring webserver
modifications.

Acknowledgments

The second author acknowledges funding from the Nat-
ural Sciences and Engineering Research Council of Canada
(NSERC) for both his Canada Research Chair in Authenti-
cation and Computer Security, and a Discovery Grant.

References

[1] J. Clark and P. C. van Oorschot, “SoK: SSL and HTTPS: Revisiting
past challenges and evaluating certificate trust model enhancements,”
in IEEE Symposium on Security & Privacy, 2013, pp. 511–525.

[2] R. Holz, L. Braun, N. Kammenhuber, and G. Carle, “The SSL
landscape: a thorough analysis of the X. 509 PKI using active and
passive measurements,” in ACM IMC, 2011, pp. 427–444.

[3] M. Kranch and J. Bonneau, “Upgrading HTTPS in mid-air: An
empirical study of strict transport security and key pinning,” in NDSS.
Internet Society, 2015.

[4] B. Laurie, “Certificate Transparency,” Communications of the ACM,
vol. 57, no. 10, pp. 40–46, 2014.

[5] R. Dhamija, J. D. Tygar, and M. Hearst, “Why phishing works,” in
ACM CHI, 2006, pp. 581–590.

[6] Y. Li, S. Chu, and R. Xiao, “A pharming attack hybrid detection
model based on IP addresses and web content,” Optik-International
Journal for Light and Electron Optics, vol. 126, no. 2, pp. 234–239,
2015.

[7] N. Vratonjic, J. Freudiger, V. Bindschaedler, and J.-P. Hubaux, “The
inconvenient truth about web certificates,” in Economics of info sec
and priv III. Springer, 2013, pp. 79–117.

[8] J. A. Muir and P. C. van Oorschot, “Internet geolocation: Evasion and
counterevasion,” ACM Comput. Surv., vol. 42, pp. 4:1–4:23, 2009.

[9] T. H.-J. Kim, V. Gligor, and A. Perrig, “GeoPKI: Converting Spatial
Trust into Certificate Trust,” in Springer EuroPKI, 2013, pp. 128–144.

[10] Akamai, “Facts & Figures,” https://www.akamai.com/us/en/about/
facts-figures.jsp, 2015.

[11] A. M. Abdou, A. Matrawy, and P. C. van Oorschot, “Accurate Ma-
nipulation of Delay-based Internet Geolocation,” in ACM AsiaCCS,
2017, pp. 887–898.

[12] P. Gill, Y. Ganjali, B. Wong, and D. Lie, “Dude, where’s that
IP? Circumventing measurement-based IP geolocation,” in USENIX
Security, 2010, pp. 241–256.

[13] D. Wendlandt, D. G. Andersen, and A. Perrig, “Perspectives: Im-
proving SSH-style Host Authentication with Multi-Path Probing,” in
USENIX ATC, 2008.

[14] B. Chun, D. Culler, T. Roscoe, A. Bavier, L. Peterson, M. Wawrzo-
niak, and M. Bowman, “PlanetLab: An Overlay Testbed for Broad-
coverage Services,” ACM SIGCOMM Comput. Commun. Rev., vol. 33,
pp. 3–12, 2003.

https://www.akamai.com/us/en/about/facts-figures.jsp
https://www.akamai.com/us/en/about/facts-figures.jsp

[15] Z. N. J. Peterson, M. Gondree, and R. Beverly, “A position paper on
data sovereignty: The importance of geolocating data in the cloud,”
in USENIX HotCloud, 2011.

[16] C. Karlof, U. Shankar, J. D. Tygar, and D. Wagner, “Dynamic
pharming attacks and locked same-origin policies for web browsers,”
in ACM CCS, 2007, pp. 58–71.

[17] T. Kiravuo, M. Sarela, and J. Manner, “A survey of Ethernet LAN
security,” IEEE Communications Surveys & Tutorials, vol. 15, no. 3,
pp. 1477–1491, 2013.

[18] S. Goldberg, “Why is it taking so long to secure Internet routing?”
Communications of the ACM, vol. 57, no. 10, pp. 56–63, 2014.

[19] I. C. Society, “IEEE Std. 802.1D. Media access control
(MAC) Bridges,” 2004. [Online]. Available: http://standards.ieee.org/
getieee802/download/802.1D-2004.pdf

[20] Wired, “How to Detect Sneaky NSA “Quantum Insert” At-
tacks,” https://www.wired.com/2015/04/researchers-uncover-method-
detect-nsa-quantum-insert-hacks/, 2015, 2005.

[21] A. Ornaghi and M. Valleri, “Man in the middle attacks,” in Blackhat
Conference Europe, 2003.

[22] M. Marlinspike, “More tricks for defeating SSL in practice,” Black
Hat USA, 2009.

[23] J. Liang, J. Jiang, H. Duan, K. Li, T. Wan, and J. Wu, “When HTTPS
meets CDN: A case of authentication in delegated service,” in IEEE
Symposium on Security & Privacy, 2014, pp. 67–82.

[24] V. N. Padmanabhan and L. Subramanian, “An investigation of geo-
graphic mapping techniques for Internet hosts,” in ACM SIGCOMM,
2001, pp. 173–185.

[25] Y. Wang, D. Burgener, M. Flores, A. Kuzmanovic, and C. Huang,
“Towards street-level client-independent IP geolocation,” in USENIX
NSDI, 2011.

[26] Z. Dong, R. D. Perera, R. Chandramouli, and K. Subbalakshmi,
“Network measurement based modeling and optimization for IP
geolocation,” Elsevier Computer Networks, vol. 56, pp. 85–98, 2012.

[27] R. Landa, R. G. Clegg, J. T. Araújo, E. Mykoniati, D. Griffin, and
M. Rio, “Measuring the Relationships between Internet Geography
and RTT,” in IEEE ICCCN, 2013, pp. 1–7.

[28] B. Wong, I. Stoyanov, and E. G. Sirer, “Octant: a comprehensive
framework for the geolocalization of Internet hosts,” in USENIX
NSDI, 2007.

[29] R. Landa, J. T. Araújo, R. G. Clegg, E. Mykoniati, D. Griffin, and
M. Rio, “The large-scale geography of Internet round trip times,” in
IFIP Networking, 2013, pp. 1–9.

[30] B. Gueye, A. Ziviani, M. Crovella, and S. Fdida, “Constraint-based
geolocation of Internet hosts,” IEEE/ACM Trans. Netw., vol. 14, pp.
1219–1232, 2006.

[31] S. Laki, P. Mátray, P. Hága, T. Sebók, I. Csabai, and G. Vattay,
“Spotter: A Model Based Active Geolocation Service,” in IEEE
INFOCOM, 2011, pp. 3173–3181.

[32] B. Eriksson, P. Barford, J. Sommers, and R. Nowak, “A Learning-
Based Approach for IP Geolocation,” in Springer PAM, 2010, pp.
171–180.

[33] M. Arif, S. Karunasekera, and S. Kulkarni, “GeoWeight: Internet
Host Geolocation Based on a Probability Model for Latency Mea-
surements,” in Australian Computer Society ACSC, 2010, pp. 89–98.

[34] A. M. Abdou, A. Matrawy, and P. C. van Oorschot, “CPV: Delay-
based Location Verification for the Internet,” IEEE Trans. Dependable
and Secure Computing, TDSC, vol. 14, no. 2, pp. 130–144, 2017.

[35] D. McCullagh, “How Pakistan knocked YouTube offline,”
http://www.cnet.com/news/how-pakistan-knocked-youtube- offline-
and-how-to-make-sure-it-never-happens-again/, 2008.

[36] R. Hiran, N. Carlsson, and P. Gill, “Characterizing large-scale routing
anomalies: A case study of the China telecom incident,” in Springer
PAM, 2013, pp. 229–238.

[37] B. Huffaker, M. Fomenkov, and K. Claffy, “Geocompare: a compari-
son of public and commercial geolocation databases,” CAIDA, Tech.
Rep., 2011.

[38] S. Siwpersad, B. Gueye, and S. Uhlig, “Assessing the Geographic
Resolution of Exhaustive Tabulation for Geolocating Internet Hosts,”
in Springer PAM, 2008, pp. 11–20.

[39] B. Augustin, X. Cuvellier, B. Orgogozo, F. Viger, T. Friedman,
M. Latapy, C. Magnien, and R. Teixeira, “Avoiding Traceroute
Anomalies with Paris Traceroute,” in ACM IMC, 2006, pp. 153–158.

[40] I. Agricola and T. Friedrich, Elementary Geometry, 1st ed. American
Mathematical Society, 2008, vol. 43.

[41] R. Percacci and A. Vespignani, “Scale-free behavior of the Internet
global performance,” Springer EPJ B—Condensed Matter and Com-
plex Systems, vol. 32, pp. 411–414, 2003.

[42] V. Dukhovni and W. Hardaker, “The DNS-Based Authentication of
Named Entities (DANE) Protocol: Updates and Operational Guid-
ance,” RFC 7671 (Proposed Standard), Internet Engineering Task
Force, 2015.

[43] C. Evans, C. Palmer, and R. Sleevi, “Public Key Pinning Extension
for HTTP,” RFC 7469 (Proposed Standard), Internet Engineering Task
Force, 2015.

[44] C. Davis, I. Dickinson, T. Goodwin, and P. Vixie, “A Means for
Expressing Location Information in the Domain Name System,” RFC
1876 (Experimental), 1996.

[45] N. Heninger, Z. Durumeric, E. Wustrow, and J. A. Halderman,
“Mining your Ps and Qs: Detection of widespread weak keys in
network devices,” in USENIX Security, 2012, pp. 205–220.

[46] S. Fahl et al., “Why Eve and Mallory love Android: An analysis of
Android SSL (in)security,” in ACM CCS, 2012, pp. 50–61.

[47] D.-Y. Yu, E. Stobert, D. Basin, and S. Capkun, “Exploring website
location as a security indicator,” arXiv preprint arXiv:1610.03647,
2016.

[48] A. Adelsbach, S. Gajek, and J. Schwenk, “Visual spoofing of SSL
protected web sites and effective countermeasures,” LNCS Informa-
tion Security Practice and Experience, vol. 3439, p. 204, 2005.

[49] N. Santos, R. Rodrigues, K. P. Gummadi, and S. Saroiu, “Policy-
sealed data: A new abstraction for building trusted cloud services,”
in USENIX Security, 2012, pp. 175–188.

[50] M. van Polen, G. Moura, and A. Pras, “Finding and Analyzing
Evil Cities on the Internet,” in Springer Autonomous Infrastructure,
Management, and Security, 2011, pp. 38–48.

[51] A. Bates, J. Pletcher, T. Nichols, B. Hollembaek, and K. R. Butler,
“Forced perspectives: Evaluating an ssl trust enhancement at scale,”
in ACM IMC, 2014, pp. 503–510.

[52] Y. Zhang and H. Zhang, “Triangulation Inequality Violation in Inter-
net Delay Space,” in Adv. in Comp. Sci. and Info. Eng. Springer,
2012, vol. 169, pp. 331–337.

[53] C. Castelluccia, M. A. Kaafar, P. Manils, and D. Perito, “Geolo-
calization of proxied services and its application to fast-flux hidden
servers,” in ACM IMC, 2009, pp. 184–189.

[54] H. Kim and J. Huh, “Detecting dns-poisoning-based phishing attacks
from their network performance characteristics,” Electronics Letters,
vol. 47, no. 11, pp. 656–658, 2011.

[55] D.-Y. Yu, A. Ranganathan, R. J. Masti, C. Soriente, and S. Capkun,
“SALVE: Server Authentication with Location Verification,” in ACM
MobiCom, Oct 2016, pp. 401–414.

[56] 3GPP. TS 23.271, “Functional stage 2 description of Location Ser-
vices (LCS),” http://www.3gpp.org/dynareport/23271.htm, 2015.

Appendix
The following explains the column headers of the eval-

uation framework in Table 5 (Section 6). It is reproduced
essentially verbatim from Clark and van Oorschot [1].

http://standards.ieee.org/getieee802/download/802.1D-2004.pdf
http://standards.ieee.org/getieee802/download/802.1D-2004.pdf
http://www.3gpp.org/dynareport/23271.htm

A.1. Security Properties Offered by Primitives
Detecting Certificate Substitution (Table 5–column A).

• Detects MITM. Provided if a primitive detects a
MITM attack involving a substituted certificate/lo-
cation. If a primitive requires risk or “blind” trust
on first use (TOFU) to detect these attacks, we use
◦ to denote partial fulfillment.

• Detects Local MITM. We say a MITM attack is
local if the adversary is able to insert itself into
connections to the server from only a subset of
clients (through, e.g., poisoned local DNS cache or
on-path interception near the client).

• Protects Client Credential. An HTTPS connection is
often used to transmit a client authentication creden-
tial (e.g., a password or secure cookie) to the host. If
a primitive focuses on protecting against credential
theft during an HTTPS MITM attack, it provides
this benefit. Blind TOFU primitives partially fulfill.

• Updatable Pins. Some primitives that use pinning
make false-reject errors if a server updates its public
key, switches issuing CAs, or uses multiple certifi-
cates for the same host. Primitives that resolve such
false-reject errors provide this benefit.

Detecting TLS Stripping (Table 5–column B).

• Detects TLS Stripping. Since many enhancements to
HTTPS do not take into account security-relevant
details of a connection until there is an HTTPS re-
quest from the client, TLS stripping bypasses them.
Primitives that can detect stripping attacks fulfil this
benefit, and partially fulfil it if they rely on blind
TOFU.

• Affirms POST-to-HTTPS. Primitives that deter
(through enforcement or a security indicator) POST
requests from being submitted over HTTP fulfil this
benefit.

PKI Improvements (Table 5–column C).

• Responsive Revocation. We assume in evaluating
the primitives that CRLs or OCSP responses are
not available and examine their ability to otherwise
detect a revoked certificate; primitives which do,
fulfill this benefit.

• Intermediate CAs Visible. A primitive fulfils this
benefit if every intermediate CA is visible to the
user at any time.

A.2. Evaluation Criteria for Impact on HTTPS
Security & Privacy.

• No New Trusted Entity. A primitive not introducing
any new trusted parties fulfills this property, with
partial fulfillment if the responsibilities of an already
trusted party are expanded.

• No New Traceability. A primitive that does not
introduce any new parties that will become aware of

all (or a fraction of) sites a user visits over HTTPS
fulfills this property.

• Reduces Traceability. A primitive fulfills this prop
if it eliminates such a class of entities mentioned in
the previous point.

• No New Auth’n Tokens. Many primitives effectively
introduce new server authentication tokens, like pins
or signed OCSP responses, that are transmitted to
the client. Generally procedures for issuing, updat-
ing, and revoking these new tokens must be estab-
lished, as well as integrity protection. This property
is fulfilled by a primitive that does not introduce
new tokens.

Deployability.

• No Server-side Changes. Primitives that do not
change how web servers implement TLS and
HTTPS have the greatest potential for deployment.
Primitives that do not require any server involvement
or code changes fulfill this property, while primitives
that only require servers to participate in a way that
does not involve changing any server code partially
fulfills it.

• Deployable without DNSSEC. Some primitives rely
on DNSSEC which has not been fully deployed; if
they don’t, they fulfill this property.

• No Extra Communications. This is fulfilled by prim-
itives that do not introduce an extra communication
round that blocks completion of the connection.

• Internet Scalable. This is fulfilled by systems that
could foreseeably support enrolment from all current
HTTPS servers and potentially beyond.

Usability.

• No False-Rejects. A primitive fulfills this property if
it does not reject legitimate server certificates. Oth-
erwise, it requires the user (e.g., through a warning
dialogue) to distinguish false-rejects from an actual
attack. This is often not fulfilled when user are
frequently being presented with warning messages.

• Status Signalled Completely. If users cannot readily
determine the reason for trust, the primitive lacks
this property. A partial fulfillment is awarded if the
basis of trust is not clear because server enrolment
is optional, and thus a fallback trust mechanism may
be also necessary.

• No New User Decisions. This is fulfilled when
primitives are automated and do not require users to
respond correctly to new security cues or dialogues.
If a primitive introduces a new security cue, it will
most likely fail to fulfill this benefit.

	Introduction
	Background
	Traffic Hijacking: A Network Perspective
	Timing-based Measurements
	Fetching Web Content

	Threat Model and Assumptions
	Server Location Verification
	Architecture and Algorithm
	Implementation

	Pinning of Server Location
	Evaluation
	Evaluating Measurement-based SLV
	False Rejects
	False Accepts

	Evaluation with Server Location Pinning

	Discussion
	Related Work
	Concluding Remarks
	References
	Appendix
	Security Properties Offered by Primitives
	Evaluation Criteria for Impact on HTTPS

