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Abstract—When employed by online content providers, access-
control policies can be evaded whenever clients masquerade
behind a middlebox (MB) that meets the policies. An MB,
commonly being the gateway of a virtual private network (VPN),
typically contacts the content provider on behalf of the clients it
colludes with, and relays the provider’s outbound traffic to those
clients. We propose a solution to hinder MBs from unauthorized
relaying of traffic to a large number of clients. To the best of our
knowledge, this is the first work to address this problem. Our
solution increases the cost of collusion by leveraging client puzzles
in a novel way, and uses network properties to help the content
provider detect if its outbound traffic is being further relayed
beyond a transport-layer connection. Our evaluation shows that
the number of colluding clients follows a hyperbolic decay with
the rate of creation of puzzles and the time required to solve a
puzzle—both factors are influenced by the content provider, but
grows almost linearly with the MB’s computational resources.

I. INTRODUCTION

ONLINE content providers, such as Hulu (hulu.com), often
have access-control policies, which either customize or

prevent content-delivery to certain classes of clients. By client,
we mean the software used to communicate with the content
provider, e.g., a web browser. For instance, an access policy
may only allow access to clients within 300 km of where the
site is hosted (e.g, for data sovereignty [1]), or to those with
certain IP addresses [2]. Another policy may ban clients at a
specific geographic location [3], [4], or clients whose devices
have certain system fingerprints (operating system, user-agent,
etc) [5]. A content provider (or provider for short) may also
classify clients by their access networks [6], or their network
distance from the server (in terms of hop counts, network
latency, etc) [7].

When access policies are in effect, the motivation to bypass
them may arise. A client, which does not meet the access
policies, may try to bypass them using a middlebox (MB)
that meets those policies. MBs are commonly transport-layer
proxy servers, gateways of virtual private networks (VPNs)
or anonymizing networks. The MB requests the provider’s
content and grants the client access to it by simply relaying the
provider’s outbound traffic. Many MBs claim to own thousands
of IP addresses, which makes blocking them by enumerating
their IP addresses almost infeasible. To detect an intercepting
MB, a provider can collaborate with a cooperative client [8].
However, this is infeasible within our threat model as we
address a client that aims to bypass the provider’s access
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policies; i.e., the client is the provider’s adversary. Solutions
that aim to prevent MBs from intercepting a connection (such
as Secure Socket Layer [9]) fail to prevent those MBs from
relaying traffic because the client would be ready to share
cryptographic credentials, such as encryption keys, with the
MB to deceive the provider.

We propose to use client puzzles [10] to increase the cost
of collusion per client on the MB. Our solution leverages
network properties (average latency between network hosts)
which, together with the puzzles, impose a limit on the number
of simultaneous clients an MB can collude with. Exceeding the
limit divulges the MB’s relaying actions to the provider. We
make the following contributions:
• We propose and study a solution that uses client puzzles

to limit unauthorized traffic relaying (§II).
• We use a Markovian queueing model to evaluate our

solution, and to find the upper limit of the number of
clients the MB can collude with at a time (§III).

• We evaluate the rates of false rejects and false accepts
through simulations [11].

II. HINDERING UNAUTHORIZED MIDDLEBOX RELAYING

Our objective is to enable a provider detect if a content
recipient1 is a legitimate client (i.e., connected to the provider
without an MB and not relaying the provider’s traffic anywhere
else) or an MB. To achieve this objective, we use client puzzles
[10] to increase the computation required by the MB per
client; thus, increasing the round-trip time (RTT) the provider
observes. The success of detecting an MB is dependent on the
number of simultaneous clients receiving the relayed traffic
from the MB. As the number increases, the detection success
increases. If the number of clients reaches a certain threshold
(§III), the provider realizes that the MB is relaying its traffic.
The provider is assumed to be able to:
• Estimate an approximation to the average RTT from itself

to a content recipient [12], [13]. Because wireless access
networks have unique latency-estimation issues, they are
beyond the scope of this letter.

• Estimate the mean time to solve a puzzle with certain
difficulty across different client machines spanning a
range of computational power (demonstrated in [10]).

For each connection made to provider w from content
recipient d, w estimates Nw(d), which is the average network
RTT from itself to d. The provider w then periodically creates

1We use this term to refer to the machine intended by the provider as the
final content destination.
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non-parallelizable puzzles [14], and sends them to d. To solve
a puzzle, d must allocate a portion of its resources for some
time depending on the puzzle difficulty set by w. The resource
demanded by the puzzle depends on the type chosen by w,
which could be processing- [10] or memory-type [15] puzzles.
We assume w uses processing-type puzzles throughout this
letter. However, any type can be chosen as long as w is able
to estimate the client’s puzzle-solving time to some degree of
certainty (second assumption above). Upon solving a puzzle,
d is required to return the solution to w, which verifies it and
bans d if the solution was incorrect. Verification happens in
constant time independent of the puzzle difficulty [10].

Denoting tc as the mean time to solve a puzzle across
various clients, w expects to see a RTT of:

RTTe = Nw(d) + tc (1)

When w receives a solution, it calculates the actual round-trip
time, RTTa, from the puzzle-arrival time and compares it with
RTTe. If RTTa ≤ RTTe, the provider assumes that d is not
an MB. Otherwise, it suspects that d is an MB because the
existence of an MB between the provider and a client is likely
to increase RTTa—an explanation follows.

If d is an MB, it has two options: either relaying all of
w’s outbound traffic including the puzzles to client c, so that
c solves them; or extracting the puzzles from the traffic and
solving them on behalf of c. Relaying the puzzles to c costs
an additional network RTT, NMB(c), between the MB and c.
An analogous effect occurs if the puzzles were outsourced to
a remote party. The actual RTT then becomes:

RTTa = Nw(d) +NMB(c) + tc (2)

We do not expect w to be able to estimate NMB(c). To satisfy
RTTa ≤ RTTe, the MB and c have to satisfy NMB(c)+tc ≤ tc,
which happens when NMB(c) = 0; that is, the colluding client
and the MB are one physical machine, or very close to each
other. We believe it is not a cost effective (scalable) attack
for an MB to be close to a meaningful number of clients.
Assuming proper estimations to tc and Nw(d) (i.e., RTTe),
it would be challenging for the MB to relay the puzzles to c,
and satisfy RTTa ≤ RTTe. We study the effect of inappropriate
estimation of RTTe in §III-A below.

To avoid the additional NMB(c), the MB will be inclined
to choose the second option: solve the puzzles on behalf of
the clients. An additional queueing time, q, is expected to
contribute to RTTa because the MB will solve many puzzles,
which correspond to the number of clients it simultaneously
colludes with. The actual RTT would then be:

RTTa = Nw(d) + q + tMB (3)

where tMB is the MB puzzle-solving time. Recall, the content
recipient d is the MB. Again, we do not expect w to be
able to estimate tMB. To maintain RTTa ≤ RTTe, the MB’s
computational resources must satisfy:

W ≤ tc (4)

where W = q+tMB, which is the average time a puzzle spends
at the MB from the moment it arrives unsolved to the MB until

it departs the MB solved. The queueing time q is affected by:
the rate at which w sends puzzles to each client connection; the
number of clients simultaneously colluding with the MB; the
MB’s processing capabilities; and the puzzles’ difficulty. The
last two factors also affect tMB. Although this option seems
more appealing to the MB than the previous one, it forces the
MB to limit the number of simultaneous clients to avoid being
caught by the provider.

If an MB chooses to combine both options, solving some
puzzles by itself and relaying others, the provider will likely
observe larger RTT for the relayed puzzles and hence reject the
client. The provider may allow some proportion, τ , of RTTs
to be larger than the expected RTT before rejecting a client to
account for delay spikes. In such case, the benefit of relaying
some puzzles will be limited by the provider’s parametrization,
which upper bounds the proportion of puzzles the MB can
relay, without getting its clients rejected, by τ .

III. EVALUATION AND ANALYSIS

In this section, we derive W (§II) as a function of the
parameters affecting it, and analyze the maximum number of
simultaneous client connections an MB can collude with (i.e.,
relay content to) to maintain W that satisfies Inequality 4. We
use the following set of notations:
• n—the number of clients simultaneously colluding with

(i.e., being relayed the provider’s content from) the MB.
• t—(tc in §II) the mean of an exponential distribution rep-

resenting the time required to solve a single puzzle across
different client machines, measured in seconds/puzzle.
The provider is required to estimate this mean according
to the chosen puzzle difficulty.

• r—the rate the provider generates puzzles to each client
connection, measured in puzzles/second.

• b—the proportion of a client’s time available to solve
puzzles;2 b = rt. If b = 1, the average client spends
all of its time solving puzzles.

• k—the number of distinct puzzles the MB can solve
simultaneously. It is possibly influenced by the number
of available processing cores to the MB.

• g—the factor by which an MB processing core is faster
than the average client. It is possibly influenced by the
cores’ clock rate.

We focus only on the MB’s processing power (k and g)
as needed to solve processing-type puzzles, and exclude from
consideration resources (e.g., bandwidth, I/O, memory, etc)
needed for the MB to relay content to clients. The motivation
for this is to allow focus on how the puzzle rate and difficulty
constrain the MB; i.e., this is the limiting factor. It follows that
if the MB has sufficient resources to solve the puzzles sent to
it, then we assume it will have sufficient additional resources
to relay content to an arbitrary number of clients. We assume
the MB does not store a local copy of the traffic it receives
from the provider; it initiates a connection to the provider with
each client connection request.

2We assume a legitimate client uses all of its available computational
resources to solve each puzzle it receives promptly.
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We use the M/M/k queueing model [16] to represent the
queueing system at the MB, where we assume the puzzle
arrival is modelled by a Poisson process, and the puzzle-
solving time is exponentially distributed. This model considers
k serving units, which in our case is the number of puzzles
the MB is able to solve in parallel. The waiting time of this
model is [16]:

W =
1

µ
+

(
(kρ)k

k!(1− ρ)
+

k−1∑
i=0

(kρ)i

i!

)−1(
ρ(kρ)k

λ(1− ρ)2k!

)
(5)

where
ρ =

λ

kµ
(6)

In the queueing terminology, λ is the customer arrival rate
to the system and µ is the customer departure rate from
each of the k serving units (µ = 1/(service time/customer)),
both measured in customers/time unit. Customers arriving and
departing the system resemble, in our case, unsolved puzzles
arriving and solved puzzles departing the MB. Customer-
service time at each serving unit resembles puzzle-solving time
at each of the MB’s cores.

To realize the maximum n that satisfies Inequality 4, we
first need to represent W as a function of n. We use the
waiting time of (5), and express λ and µ in terms of n, r,
t and g. Because the provider sends puzzles at a rate of r
puzzles/second to each client connection, the puzzle arrival
rate at the MB is λ = nr puzzles/second. The rate of solving
puzzles at each of the k cores is g times faster than that of a
client; hence, µ = g/t. Substituting in (6), we get:

ρ =
nrt

kg
=
nb

kg
(7)

Note that the MB can prevent its queue from growing in-
definitely by maintaining λ < kµ [16], which occurs if it
keeps the number of simultaneous clients n < kg/b. However,
only satisfying this inequality can still disclose the MB’s
relaying actions to the provider (as it does not ensure satisfying
Inequality 4). By substituting ρ obtained as in (7) for that in
(5), we express W in terms of n, t, r, k and g. Inequality 4
(which can be rewritten as W/t− 1 ≤ 0) then becomes:

1
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+
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g )k
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(8)
Using linear iterative root finding [17], we can find the
maximum integer value of n that satisfies Inequality 8.

To study the behaviour of n with respect to b, k and g,
we consider a range of values for each of those parameters in
the intervals [2−6, 1], [1, 80] and [1, 4] respectively. Fig. 1(a)
shows the change of n at k = 25, and Fig. 1(b) at g = 1.5. We
ignore n when b > 1 because the provider should never set b
in that range. Otherwise, unsolved puzzles start to accumulate
at legitimate clients, increasing the RTT due to additional
queueing delay, and falsely rejecting these clients.

From Inequality 8, we can see that n and b always occur
multiplied together, hence by replacing all occurrences of nb
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Fig. 1. Maximum theoretical number of clients simultaneously-colluding
with the MB. The lines on the surfaces are equally spaced on the b, g and
k axes. The charts show that n responds to b (influenced by the provider)
quicker than that to k and g (influenced by the MB). These results illustrate
the potential of puzzles in limiting the number of colluding clients.

with γ, we can express n in terms of γ and b as n = γ/b.
That is, n follows a hyperbolic decay with b (for all b > 0)
with a scale factor of γ. The maximum value of γ that makes
W satisfy Inequality 4 grows with k and g. For example, in
Fig. 1(b)—where g = 1.5—every integer value, κ, on the k
axis defines the scale factor, γ = f(1.5, κ), of a hyperbolic
decay of n with respect to b at κ.

The results plotted in Fig. 1 show that n follows an almost
linear growth with g and k, versus a hyperbolic decay with b.
The provider influences b through t and r, the MB controls k
and influences g by investing in hardware. This puts the MB
in a critical situation as the provider has a more significant
impact on n than the MB has.

A. Simulation Results

The analytical evaluation showed how client puzzles affect
the number of clients the MB could support in case the MB
decides to solve the puzzles on behalf of the clients it colludes
with. We now study the case where the MB decides to forward
the puzzles to those colluding clients. We use the network
simulator (ns-2) [11] to evaluate the rate of false rejects (FRs),
where a legitimate client is rejected by the provider; and
false accepts (FAs), where a client colluding with the MB is
accepted. We assume the provider will endure some error while
estimating RTTe in (1). This error scales RTTe by a factor β,
such that:

RTTe = β × RTTa (9)

See (2) for RTTa. FRs tend to increase when β < 1, FAs tend
to increase when β > 1.

Our simulation scenarios involved several runs with 100
nodes and random connectivity patterns. Nodes distribution
and link latencies were designed to resemble networks dis-
tributed over a large geographic region. One node was set to
be the provider, another was set to be the MB, while other
nodes simulated clients. Some clients were connected directly
to the provider (legitimate clients), others (colluding clients)
were connected through the MB. FRs and FAs are shown in
Fig. 2. For the runs we conducted, the error scale in the range
1.03 < β < 1.1 yields 0% FRs and 2% FAs. We believe these
results show promising potential for the solution we propose
herein.
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Fig. 2. False reject (FR) and false accept (FA) obtained from simulations; β
represents the error of the provider’s RTT estimation.

IV. FURTHER CONSIDERATIONS

How many puzzles per second should the provider send to
a client, and what should their difficulty be? Fig. 1 showed a
tradeoff between allowing more clients to collude with an MB,
and overwhelming legitimate clients. To deal with this tradeoff,
providers may set b to the value that satisfies a central tendency
of n, such as the mean n̄, over desired intervals of b, k and g.

One way to calculate n̄ is to, first, approximate a function
that mimics the behaviour of n. This can be done using curve
fitting [18]. For example, at g = 1.5 and 2−6 ≤ b ≤ 1, nf can
mimic the behaviour of n, such that:

nf = k(AebB+C +D) (10)

where A, B, C and D are constants—their values are shown
on Fig. 3. The mean, n̄f , in terms of k is:

n̄f =
1

1− 2−6

∫ 1

2−6

k(AebB+C +D) db = 8.9k (11)

Substituting n̄f for nf in 10, and solving for b, we get:

b =
1

B

(
ln

8.9k −Dk
kA

− C
)

= 0.07 (12)

That is, considering the abstraction given in §III and our
queueing model, when b is restricted to the range 2−6 ≤ b ≤ 1
and g = 1.5, the mean of nf occurs at b = 0.07. Beyond this
value of b, puzzles will overwhelm legitimate clients without
significant drop in the number of colluding clients n whereas
below, n rapidly increases with little reduction in the puzzle
workload on legitimate clients. This highlights selection of an
example value of b which may be of practical interest.

To set b, the provider adjusts r and t such that their product
b results in the desired value. Because the network RTT is
typically measured in ms [19], a puzzle that takes a relatively
long time (e.g., 1 sec) to solve on an average client machine
may overshadow the network RTT. Providers need to consider
that when setting the puzzle difficulty, as it affects t.

Finally, providers may consider varying the puzzles’ diffi-
culty randomly, and discarding the observed RTT of puzzles
that are harder than certain undisclosed threshold to avoid
having their solving time overshadow the network RTT. This
may penalize an MB significantly as it will not be able to
distinguish time-sensitive puzzles (those where the provider
will account for their RTT) from others, and will have to solve
them in order of arrival. Having a number of relatively difficult
puzzles in the MB’s queue will raise the waiting time of all
others behind them, making it easier for the provider to capture
the highly-delayed responses of timed puzzles, thus, detecting
the MB.
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Fig. 3. Fitted surface at g = 1.5 represented by (10). The values of the
constants in (10) are: A = 5.64, B = −58.13, C = 3.9 and D = 4.37.
Normalized Root-Mean-Square-Deviation (NRMSD) over the displayed b and
k intervals is 0.04 (or 4%).

V. CONCLUSION

We proposed to use client puzzles and delay estimation to
enable providers hinder unauthorized MB relaying of traffic.
Our evaluation shows that the maximum number of clients an
MB can collude with follows a hyperbolic decay with the rate
of creation of puzzles and the time required to solve them;
both factors are influenced by the content provider, versus an
almost-linear growth with the MB’s computational resources.
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