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Location Verification of Wireless Internet Clients:
Evaluation and Improvements

AbdelRahman Abdou, Ashraf Matrawy, and Paul C. van Oorschot,

Abstract—Client Presence Verification (CPV) was proposed in previous literature as a delay-based location verification algorithm that
iteratively estimates Internet delays to corroborate assertions about a client’s geographic presence in a prescribed region, e.g., before
granting access to a location-based service. We evaluate CPV'’s performance in the presence of clients that use 802.11 networks by
analyzing how the following factors affect CPV: the number of wireless clients, how far adversaries’ are from their true locations, and
the required number of CPV iterations to neutralize the effect of wireless networks. We use a mix of real-world traffic measurements
from PlanetLab and existing wireless-delay probability models to create the evaluation datasets. The results indicate that, while
wireless delays affect CPV’s performance (e.g., from 3% to ~4.7% FR plus FA rates), CPV can mitigate the impact of such delays by
performing more delay measurements prior to location verification. This work highlights the importance of including mitigation
capabilities while designing security-sensitive applications and protocols to deal with the effect of wireless delays. This will become
increasingly important with the ubiquitous use of mobile devices that is expected to increase with the introduction of new computing

and communication paradigms such as the Internet of Things.

Index Terms—Location-aware Authentication; Location verification; Wireless testing.

1 INTRODUCTION

HE number of location-sensitive services is increasing
T over the Internet, e.g., location-based authentication [1],
[2], location awareness in cognitive networks [3], geo-
restricted media streaming [4]. Location information can
also supplement contextual information about objects in
Internet of Things (IoT) [5]. Previous literature [6], [7] shows
that common location determination techniques, such as
tabulation-based IP geolocation (e.g., MaxMindl), GPS [8],
[9], and measurement-based geolocation [10], [11], are not
reliable in the face of adversarial clients wishing to forge
their own locations. A location verification protocol was
ergo required to satisfy the needs of security-sensitive
location-based services.

CPV [12] (see the appendix for a brief summary) was
proposed earlier as a realtime delay-based Internet location
verification technique that mitigates common geolocation-
evasion tactics. In CPV, three verifiers iteratively estimate
One-Way Delays (OWDs) between themselves and a client,
and use these delays to corroborate the clients” geographic
presence inside the triangle determined by their geographic
positions. CPV was evaluated [12] with clients connected
through wired access networks, using delay measurements
from PlanetLab [13]. The evaluation was performed by
having sets of three verifiers (running on PlanetLab nodes)
measure OWDs to/from the clients (other PlanetLab nodes)
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using different OWD-estimation protocols [14]. The mea-
sured OWDs were logged, along with the ground-truth
about legitimate clients (PlanetLab nodes inside the verifi-
cation triangle) and adversaries (nodes outside the triangle).
CPV was then run locally on the collected delay logs, and
the rates of false reject/accept were quantified.

The nature of delays in wireless and wireline networks
is different due to multiple factors such as characteristics of
the shared medium, effect of signal strengths, difficulty of
collision detection, and the possibility of hidden terminals
[15]. This paper evaluates CPV when legitimate clients are
connected through wireless access networks. We refer to
those clients as wireless clients. A wireless client is assumed
to be one-hop away from its access point, which serves as
the client’s gateway to the Internet. Beyond the gateway,
all hops until the verifiers are assumed to be wired. We
examine various factors that affect CPV’s efficacy, including
the number of devices actively competing for the wireless
media in the vicinity of a wireless legitimate CPV client.

To evaluate CPV with wireless clients, we leverage In-
ternet delay information collected for wired clients from
PlanetLab, and model additional delays representing the
last-mile wireless link. The additional delays were generated
following wireless delay models studied in the literature
[16], [17], [18]. This evaluation methodology addresses the
effect of delays in wireless networks, while retaining the
advantages of PlanetLab, e.g., real-world network delays,
logical and geographical network topology, exterior gate-
way routing policies, and congestion behaviour. In addition,
by using the data logs collected from the wired evaluation
of Abdou et al. [12], we unify all experimental parameters
across wireless and wireline testing. Root causes of improve-
ment/retrogression can then be more reliably identified.

We evaluate the case with wireless legitimate clients
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and wireline adversaries.”> Wireless adversaries are not con-
sidered because wireless networks tend to, among other
effects, increase delays and the delay variance, which in
CPV increase the likelihood of rejecting assertions. There-
fore, by modelling wireless legitimate clients and wireline-
connected adversaries, we test CPV in the most demanding
(to the defender) situation among the four possible combi-
nations of (two) access networks and (two) types of clients,
i.e, legitimate and adversary.

Our evaluation shows that wireless access networks do
affect CPV’s correctness. However, increasing the number
of CPV iterations can address that, as shown herein, and
mitigates such an effect on CPV. We thus propose a formal
means (Section 4) by which CPV can compute the appro-
priate number of iterations to be performed for the wireless
effect to be almost neutralized.

Contributions. This paper aims to study the impact
of the varying wireless delays on CPV by exploring the
following three factors: (1) the number of devices connected
to the wireless access network used by a legitimate CPV
client; (2) the minimum distance the adversary should be
away from the triangle’s nearest side so that CPV correctly
rejects it;* and (3) the number of CPV iterations the verifiers
should perform in order to essentially eliminate the effect of
the additional wireless delays.

Outline. Section 2 reviews recent literature that models
delays of single-hop wireless networks. The reviewed mod-
els are then used to evaluate CPV in Section 3. Section 4
analyzes the effect of the number of iterations on the efficacy
of CPV when legitimate clients are using wireless access
networks. Related work is discussed in Section 5, and a
conclusion is provided in Section 6.

2 BACKGROUND: WIRELESS DELAY MODELS IN
THE LITERATURE

This section reviews three wireless delay models in the
literature, both assume a single-hop wireless network with
one access point and k wireless devices. The k devices are
saturated, i.e., always have frames to send. In the first two
models, the channel is assumed ideal, meaning that the only
source of frame corruption is collision. The third (Section
2.4) considers the effect of non-ideal channel conditions by
incorporating the Signal to Noise Ratio (SNR) as a factor
while deriving the probability distribution delays.

Note that the focus of this section is not to compare
the three wireless delay models, nor not to evaluate their
accuracies. We rather review these models to use them in
evaluating CPV later in Sections 3 and 4 below.

2.1 Average back-off time at a stage

Carvalho and Garcia-Luna-Aceves [16] derived the av-
erage time a device spends backing off. In Distributed
Coordination Function (DCF) [19], a device backs-off for

2. The case when both, legitimate clients and adversaries, were using
a wired access network was evaluated in previous literature [12].

3. As noted by the authors of CPV [12], the chosen parameterization
affects the rates of false reject/accept. Thus, the presence of wireless
legitimate clients is expected to affect, not only the rate of false rejects,
but also false accepts.

X =U{0,2™ - Whn } time slots. Thus, the expected backing-
off time, «, is the time spent while counting down X time
slots plus the time where the countdown is paused during
a transmission [16]:

a = op; + tepe +Lsps (1)

The constant o is the length of the time slot (in psec); p; is
the probability the channel is idle (i.e., the subscript is not
an index, it denotes “idle”) during a time slot; and p. and p,
are the probabilities of collision and successful transmission
respectively during a time slot. ¢5 and t. are the number of
time units a device spends while pausing the countdown
during a successful transmission and during a transmission
with collision respectively. Bianchi et al. [20] expressed these
durations as follows:

_ (RTS) + I(CTS) + [(MAC) + [(DTA) + [(ACK)

s rate ()
+ (3 - SIFS + DIFS) + 46

te = {(RTS) + DIFS + § 3)
rate

where the function [(.) indicates the frame (or packet) length
in bits; RTS/CTS are the Ready/Clear To Send frames [15];
0 is the propagation delay (in psec); SIFS is a technology-
specific amount of time (in psec); MAC, DTA and ACK are
the header, data packet, and ACK packets respectively; and
rate is the media’s transmission rate in Mbps.

Using a 2-dimensional discrete-time Markov process,
Bianchi et al. derived the probability, ¢, that a transmission
occurs (successful or with collision) at a time slot as:

2(1—2p)
(1 = 2p)(Whin + 1) + pWinin(1 — (2p)™)

where p is the probability of collision occurring at a time
slot. Note that p is different from p;, p. and ps in (1).
Bianchi et al. [20] then assumed that a packet collides with
a constant and independent probability regardless of the
number of retransmissions it suffers. Assuming k devices
in the network, if one device transmits, the only case that
results in no collision is when none of the k£ — 1 other devices
transmit, i.e., the probability of no collision is (1 — )%~
Therefore, p can be expressed in terms of 1 as [20]:

p=1—(1—g)" (5)

Thus, the relationship between p and 1 is non-linear. Car-
valho and Garcia-Luna-Aceves [16] linearized this model in
order to use v to derive the expected total back-off time (see
Section 2.2.1 below).

Using 1 and assuming k devices, the probability (F;)
that at least one of the k devices is transmitting, and the
probability (Psy) that a transmission for any of the k devices
is successful are calculated as follows [20], [21]:

Pp=1-(1-9)F (6)

k(1 — )t
Py

Y= (4)

Psuc =

The probabilities p;, p. and p, in (1) are calculated as
pi=1-— Py, Pe = Rr(l - Psuc)r and Ps = Py Py [20].
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2.2 Using the Model of Carvalho and Garcia-Luna-
Aceves

2.2.1 Expected total back-off time

Carvalho and Garcia-Luna-Aceves [16] give an approximate
solution to the nonlinear relation between v in (4) and p in
(5), and reduce 7 to:

2Wmin
wA (Wmin ¥ 1)2( p) ( )
Using (7), the authors derived p independent of 1 as [16]:
2Whin(k — 1)

" (Wanin + 1)2 + 2Wiin(k — 1)

Carvalho and Garcia-Luna-Aceves [16] then used this
approximation to obtain « in terms of o, k, Whin, ts and
tc, as explained above. Finally, they derived the expected
time a device backs off T'g as [16]:

WoinF — 1 1—
o )+_( q>tc
2q q

Tp= ®)

where
B q-— 2m(1 _ q)m+1

R )

and ¢ = 1 — p represents the probability of no collision.

2.2.2 Mean delay and jitter

Carvalho and Garcia-Luna-Aceves [16] expressed the ex-
pected delay FEA[T] of a frame from (8) and (2) as follows:

EA [T] - TB + ts (9)
The variance of T' was derived as:
aWainy =1 1°1-¢
Var[T] = — + t. 7

where
(2¢° —4g+1—mq(2¢ — 1))(2 — 2¢)™ + 2¢°
(2¢ —1)2

Thus the jitter (or the standard deviation) is:

Stda[T] = 4/ Var(T)

2.2.3 Assuming a Truncated Gaussian Distribution

(10)

Carvalho and Garcia-Luna-Aceves [16] only provide infor-
mation about the mean and jitter of the delays given some
number of wireless devices, k. We assume that delays will
follow a Gaussian distribution with mean and variance
derived as in (9) and (10) respectively. However, since the
zr-axis of the Gaussian distribution (which would be the
delays in that case) goes from —oo to oo, the model can
result in negative delay values. Thus, we assume a truncated
Gaussian [22] in the range [0, o]

The mean of the Gaussian distribution truncated from a
to bis given by [22]:

GausMean, ,(a,b) = p— o - Z(«, B)

where 11 and o are respectively the mean and standard de-
viation of the parent (non-truncated) Gaussian distribution;

TABLE 1
Mean p, and standard deviation o, of the single-hop wireless delays
when k devices are simultaneously competing with the media.

k
Parameters (ms) | Eqn. 5 5 0 0 30
EAT ) 2 5 12 40 87
Stda [T (10) 0.6 4.7 21 89 186
m - -110 246 -691 -2419 -5156
o - 15 36 95 328 700

a=(a—p)/oand B = (b— u)/o; and the function Z(«, )

is defined as:
_ 4(8) - 8
2(B) — @()

The functions ¢(.) and ®(.) are respectively the PDF and the
CDF of the standard Gaussian distribution (i.e., with u = 0
ms and o = 1 ms).

The standard deviation of the Gaussian distribution
truncated from a to b is [22]:

Z(a, B)

GausStd,, »(a,b) =

\/02 | (1 _B-9(B) —a-d) ZQ(M))

®(p) - @(a)

To obtain a CDF of the wireless delays that has a mean
and standard deviation as in (9) and (10), we need to solve
simultaneously for i and o:

GausMean,, ,(0,00) = EA[T] (11)

and

GausStd,, (0, 00) = Stda[T] (12)
Those are two equations in two unknowns, which can be
solved using numerical methods [23]. Table 1 shows the
mean and standard deviations calculated using (9) and (10)
for various values of k, and the corresponding p and o of
the parent (non-truncated) Gaussian distribution calculated
by solving (11) and (12) simultaneously.

Using 1 and o, the CDF of the Gaussian distribution
truncated from a to b is [22]:

®(¢) — @(a)
®(p) — @(a)

where ( = (x — u)/o. Figure 1a plots the delay distribution,
GausCDF,, ,(z;0,00), using (13) for various values of k.
Unsurprisingly, the chart shows that the wireless delays
generally increase with k. These delay distributions are used
in Sections 3 and 4 to evaluate CPV in wireless networks.

The model of Carvalho and Garcia-Luna-Aceves pro-
vides an upper bound on the average delay a frame is
expected to suffer [16]; when they compared their model
to simulations, delays from the simulations were always
smaller, which the authors [16] expect could be due to
that there is a non-zero probability that a frame backs off
indefinitely. However, the DCF standard [19] specifies that
the MAC layer must discard the frame if transmission failed
after R back off trials, for some predefined value of .

GausCDF,, ;(z;a,b) = (13)
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2.3 Using the model of Raptis et al.

Similar to Carvalho and Garcia-Luna-Aceves [16], Raptis
et al. [17] used the basis of Binachi [20] to derive a CDF
(and jitter) for the single-hop 802.11 access delays. However,
Raptis et al. [17] took into consideration the reality that
the frame being transmitted will be discarded after failing
transmission in 2 back-off stages. Thus, they started by
deriving the expected delay that a frame suffers after a failed
transmission at stage j (0 < j < R) as [17]:

J

. W;—1

Uj:(]+1>'tc+a'§ Z2
=0

(14)

where t. and o are analogous to those in (3) and (1)
respectively, and

Wi — 2" Wmin7
2m. Wmim

if0 <1<
if 0 7'2 <m (15)
m<i1<R

To derive the CDF of delays, Raptis et al. [17] first calcu-
lated the probability that a frame is successfully transmitted
at stage j:

p'(1—p)
Qj = 1 ph+t (16)
Since at any stage j, selecting any back-off value in the
range 0 < ¢ < W; is equiprobable, then the probability of
transmitting a frame at stage j after backing off for ¢ stages
is (independent of ) [17]:

17)

Using (1), (2) and (14), Raptis et al. [17] derived the
CDF of delays as follows. Let {2 be a finite set of delays,
such that Q;; is the delay a frame suffers before it gets
successfully transmitted at stage j, given that ¢ back-off slots
were selected at stage j. The average of {Q0,0,.. ;,}, is
calculated as [17]:

E[iji} :ts +Z.'CE+UJ',1 (18)

For any randomly-chosen delay value D, the probability
that D < d for all 0 < d < oo is given by [17]:

R W;—1
P{D<d} =) Y Pid) (19)
j=0 i=0
where
L ] <
Pyi(d) = P, if E[jSl] <d 20)
’ 0, otherwise

Using (19), Fig. 1b plots the wireless delay CDFs of Raptis
et al. [17] at various values of k. Similar to the previous
model, the model shows that delays generally increase with
k, which is unsurprising. However the distributions derived
by Raptis et al. [17] (Fig. 1b) are not exactly similar to those
derived by Carvalho and Garcia-Luna-Aceves [16] (Fig. 1a).
Differences between both models are discussed in Section
2.5 below.

—k=2---k=5---- k=10 k=20--- k=30
1 T 1 - 1 7 T [
Lo el I P
I o | K
) - R
=3 Pl B9 P e
a e all:’ all,
Ol e Ol 7 Olfi:
H . - ,._"_’ [
e 0y 7
. L 4
oL | 3 | 0 2 |
0 50 100 0 50 100 0 50 100
delay (ms) delay (ms) delay (ms)

(a) Carvalho [16] (b) Raptis [17] (c) Maadani [18]

Fig. 1. CDF of single-hop wireless delays that a frame endures when
there are k saturated wireless devices in the network. A truncated
Gaussian is used in (a) with means and standard deviations derived
by Carvalho et al. [16].

2.3.1 Jitter

Similar to Carvalho and Garcia-Luna-Aceves [16], Raptis et
al. [17] also derived an expression for the delay jitter in a
single-hop wireless network with k devices. The authors
[17] first derived the expected total delay that a frame suffers
before being successfully transmitted at stage j:

Wj:Uj—tc+tS (21)

Then, using (21) and (16), the expected delay, E[T], a frame
suffers before being successfully transmitted is [17]:

R

Ep[T] =) (w;-Q;)

Jj=0

(22)

And the expected value for the square of a delay, 77, is [17]:

R

BT =Y (P]- S <E[ﬂj,i1>2)

j=0 i=

(23)

Finally, in contrast to the delay jitter of Carvalho and
Garcia-Luna-Aceves [16] in (10), the jitter of Raptis et al. [17]
is calculated using (23) and (22) as:

Stds[T] = \/ E[T?] — (Ey[T])’ (24)
2.4 Using the model of Maadani and Motamedi

Also basing their derivations on Binachi’s model [20],
Maadani and Motamedi [18] started by deriving the proba-
bility that a transmission occurs at a time slot from (4):

?ﬁc = ¢(1 - I:)tr)

where P, is calculated as in (6). The probability, p, that a
collision occurs at a time slot is [18]:

(25)

P =Pe+ Ptr - pePtr (26)
where
Pe = PData + PACK — PDataPACK (27)
The probabilities ppata and pack are such that:
pData — 1 _ (1 _ pb)l(MAC)+l(DTA) (28)
and
pack = 1 — (1 — py)! A (29)
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where pj, = 0.5¢75NR,

The non-linear equations (25) and (6) are to be solved
simultaneously for ¢c and P, to obtain their values [18].
The expected back-off time « is then calculated as in (1).

Finally, for any delay value D, the probability that D < d
for all 0 < d < oo is given by [18]:

P{D < d} = i Pr(d) (30)
L=0

(1-p)p*, ifD(a,L+1)<d
0, otherwise

Pr(d) = {

Maadani and Motamedi define the function D(.) as [18]:

D(Oé,i) = (i—m)(a'me pm)+§:aWJ p]
=0

Using (30), Fig. 1c plots the wireless delay CDFs of
Maadani and Motamedi et al. [18] at various values of k.
In Sections 3 and 4, we use the CDFs in (13), (19) and (30) to
evaluate CPV.

2.4.1 Mean delay and jitter
Maadani and Motamedi first derive the mean delay as [18]:
aW? (1-(2p)™ | (2p)™
Ec[T] = —
7] (2 )( 1-2p +1—p

The authors then derive the jitter as a function of the mean
delay [18]:

Stdc[T) = \/Ec[T?] - (Ec[T))” (31)
where
(oW (1= (4p)™  (4p)™
mir)= (%) (o +12s)

2.5 Differences between the models

Figure 2a plots the truncated Gaussian distribution with
the parameters obtained from the model of Carvalho and
Garcia-Luna-Aceves [16] modeling single-hop wireless de-
lays, the distribution derived by Raptis et al. [17], and
that derived by Maadani and Motamedi [18] at k = 2
and k = 10. The distributions are not drastically different.
Their dissimilarities might however stem from differences
in their assumptions, e.g., Raptis ef al. assumes the frame
is discarded after failing transmissions in R stages, while
Carvalho ef al. does not make this assumption. Maadani et
al. assume the probability of packet loss due to imperfect
channel conditions, whereas the other two models assume
transmission failures occur only due to collision.

Figure 2b shows the difference in the jitter between the
models, obtained using (10), (24) and (31) respectively. At
first glance, the individual values of the Raptis and Carvalho
et al. curves over the region up to & = 20 are reasonably
similar, but the model of Raptis et al. appears to grow almost
linear, while that of Carvalho et al. gives values lower in the
region up to k = 20, but rising much faster starting for
values shortly beyond k& = 20. On the other hand, the jitter

k=2MA)---uu-. k =10 (M. A)
---------- k=2MB) - - k=10(M.B)
— == k=2MQ =-=--k =10M.C)
1 T R T 200
ol - o
“/ “
0.8 DaCa - .
2150
s &)
U_‘O.G / — 5
a 3
O :,1100
0.4 7 =
5
5
0.2 = A 50
0 | | 0

delay (ms) k
(a) (b)

Fig. 2. Comparison of the reviewed models. M. A means using the
model of Carvalho et al. [16]; M. B means that of Raptis et al. [17]; and
M. C means that of Maadani et al. [18]. (a) Truncated Gaussian delay
distribution with parameters derived from the model of Carvalho et al.
[16], and the distributions derived by Raptis et al. [17] and Maadani et
al. [18] at k = 2 and k£ = 10. (b) The jitter as derived by the respective
authors [16], [17], [18].

of Maadani et al. grows significantly slower compared to the
other two.

In the rest of this paper, all three models are used to an-
alyze CPV in wireless networks, with a truncated Gaussian
distribution assumed for the parameters of Carvalho ef al.

2.6 Summary of reviewed literature on wireless models

All the models reviewed herein, in Section 2, consider a
wireless network with a single access point and no hidden
terminals, typically addressing a small (e.g., home) network.
In public places (e.g., coffee shops or hotel rooms), this may
not be the case. However, the models already incorporate
the additional delays due to the RTS/CTS mechanism of the
802.11 DCF and thus, we believe the existence of hidden
terminals is unlikely to result in significant differences.

Finally, the reviewed literature assumes all k& devices are
saturated (i.e., always have packets to send). However, k
devices are typically expected to alternate between phases
of transmission, reception and idle activity. We suspect that
this assumption will tend to cause the delays resulting from
the derived models to be larger than those in practice.

3 EVALUATING CPV IN 802.11 NETWORKS

We now evaluate CPV with wireless clients using the delay
models discussed in Section 2. Our objective is to study the
impact of the varying wireless delays on CPV by exploring
the following two questions:

1. Assuming k wireless devices actively competing for the
wireless media with the legitimate client, how does k affect CPV?
Here, the number of wireless legitimate clients is varied,
and CPV’s efficacy is analyzed. We test by modeling clients
using IEEE 802.11b as a representative access technology.
This analysis is presented in Section 3.4.

2. For a given triangle verifying assertions of wireless legiti-
mates and a wired adversary, what is the minimum distance the
adversary should be away from the triangle’s nearest side so that
CPV correctly rejects it? To answer this question, we test
CPV when varying the width of the adversary-free region
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outside the triangle. We do this by progressively excluding
nearby adversaries from the experiments and reevaluating
CPV. This analysis is presented in Section 3.5.

3.1 A review of CPV’s parameterization

We review CPV’s parameterization in that section. A brief
description of the algorithm is provided in the appendix.

In CPV [12], when a client asserts to be at a geographic
location, three verifiers encompassing this assertion within
the triangle determined by their geographic locations are se-
lected to verify this assertion. The verifiers estimate OWDs
between themselves and the client iteratively na times,
where A is the triangle determined by their locations. CPV
then maps these delays to distances; the client’s presence
inside A is then verified by comparing the sum of the areas
of the three triangles determined by each pair of verifiers
and the client with the area of A.

CPV counts the event that the absolute difference be-
tween those two values is < ex km? as an evidence sup-
porting the client’s presence inside A. Otherwise, the event
is counted as an evidence denying the presence thereof. The
location assertion is finally accepted as true if the number
of events with supporting evidence exceeds na - 7A, where
0 < 7a < 1. All three parameters (ea, Ta, and na) are
periodically calibrated for each A (i.e., calibration occurs
independently between sets of three verifiers) [12].

Abdou et al. [12] define the function awy(A, g) for any
point g = {latitude, longitude} inside A as “the ratio of
the distance between g and the side z¥ to the length of 2%,
where 2% is the closest side to g”. All results reported in
this paper follow CPV’s recommendation [12]: no triangle
is used to verify an assertion at a location ¢ such that
awy(A, g) > A\, where A = 0.1.

3.2 Evaluation Setup

We evaluate CPV by quantifying the False Reject (FR) and
False Accept (FA) rates at some values for the input pa-
rameters (see Section 3.1) that allow CPV to adequately
distinguish legitimates from adversaries.

We use the same PlanetLab setup of Abdou et al. [12];
there were 49 legitimate clients available in the authors’
PlanetLab experiments at A = 0.1. Thus, we can model
a maximum of 49 distinct wireless access networks, each
having one wireless CPV client. This client is assumed to
compete for the wireless media with k¥ — 1 other wireless
devices, where & > 2. In such case, k affects the last-mile
wireless delays of that CPV client. Because the delay models
reviewed in Section 2 are functions of k, we can model the
number of devices in the vicinity of the CPV client.

Of those 49 legitimate wireless client, we assume that
only a proportion of them is using a wireless access network.
Note that the proportion of wireless clients modeled in
the experiments is different from the number of wireless
devices, k. For example, if a proportion of 0.2 of all 49 legiti-
mate clients was using a wireless access network with k& = 4,
this means there are 10 wireless clients modeled at distinct
wireless networks, and each network has 4 wireless devices
(constant across all 10 networks) including the wireless CPV
client itself. Figure 3 shows an example of eight legitimate
CPV clients (legitimate, as they are truly present inside the

. Key
= Wireless device

am Wired gateway ®

CPV

écpv Wireless CPV client [ Wired CPV client

) " . o
am  Wireless access point Verifier

Fig. 3. An example of eight CPV clients, half of which are using a
wireless access network that has & = 2 devices.

TABLE 2
DSSS characteristics
Item Value
Wmin 32 time slots

1024 time slots
6 stages
192bits at 1 Mbit/s

Retransmission limit (R)
Physical header (PHY)

MAC header 224 bits at 11 Mbit/s

ACK length 112 bits at 11 Mbit/s + PHY
RTS length 160 bits at 1 Mbit/s + PHY
CTS length 112 bits at 1 Mbit/s + PHY
Propagation delay (9) 1 psec

Slot time (o) 20 psec

SIFS 10 psec

DIFS 50 psec

triangle), and a proportion equal to 0.5 of them is using a
wireless access network that has k = 2 devices.

All k devices are using an 802.11b access network over
Direct-Sequence Spread Spectrum (DSSS) on the physical
layer with a 11Mbps data rate. Characteristics of DSSS are
shown in Table 2. While using the model of Maadani and
Motamedi, we assume the SNR is 9.0 [18].

We assume that all k devices are saturated (the packet
queues of all k device are never empty), and are transmitting
at the same time according to a Constant Bit Rate (CBR)
with a packet size equal to 8148 bits. We assume no hidden
terminals [15]—the transmission of any device is sensed by
all others. Note that those two assumption allows us to use
the models in Section 2.

3.3 Statistical Confidence of the Results

Figure 4 shows the mean FRs and FAs of 100 runs resulting
from using three models reviewed in the previous section.
All 49 legitimate clients were using a wireless access net-
work, and there was a total of £ = 5 devices in the network
of each wireless CPV client. The number of CPV iterations
(see Section 3.1) was fixed at no = 600 for all A. FRs and
FAs using all three models lied between ~1.8% and ~4.5%.

Because FRs and FAs are estimated empirically from 100
runs, we calculate their confidence interval (CI) [24]. At 90%
confidence level, the critical probability is:

@ 0.1
=1l-—=1-—=0.95
P 2 2
At a degree of freedom equal to 99 and p* = 0.95, the critical

value (from the statistics tables [24]) is 1.66.
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TABLE 3
SE and Margin of Error (ME) at 90% confidence level for the rest of the
results

Model Parameter ~ Std SE ME at 90% CI
I A
eprecta i T 0w
RTINS

Std = Standard deviation; SE = Standard error; ME = Margin of Error.

—FR
== E3 |
+
= e
27 |
0 \ \ T
M. A M. B M. C

Fig. 4. Statistical confidence of CPV results in wireless networks. Models
A, B and C are those of Carvalho et al. [16], Raptis et al. [17], and
Maadani et al. [18] respectively.

For the FRs obtained using the model of Carvalho et al.

[16], the standard error (SE) is:
SE (FRs) = sd _ 097 0.097
Vo V100
giving a CI of 1.66 x 0.097 = 0.16 at 90% confidence level.
Table 3 shows the confidence intervals for the remaining five
results.

The CIs at 90% confidence level are depicted using
vertical lines atop the bars in Fig. 4 for the mean FRs and
FAs. None of the MEs exceeds +0.16%, highlighting that the
means estimated from the sample runs are relatively precise.
For the rest of the results in this section, the average of 10
runs is reported for each experimental scenario.

(32)

3.4 Effect of the number of wireless devices (k) on CPV

Figure 5 shows the FRs and FAs when the proportion of
wireless clients is varied from 0 to 1; the number of CPV
iterations was fixed at na = 600 for all A. Using the model
of Carvalho and Garcia-Luna-Aceves [16], there was a non-
sever degradation in CPV’s efficacy with an increased . For
example, when all 49 legitimate clients were using a wireless
access network (i.e., at x = 1 in Fig. 5), the sum FR+FA went
from ~4.61% at k = 2 to ~6.22% at k = 10. We believe these
results stem from the probability that the endured wireless
delay is very small (or relatively negligible), e.g., 3 ms. From
the truncated Gaussian distribution in Fig. 1a, at £ = 10,
there is a ~20% chance the transmitted frame suffers <3 ms
delay, i.e., if one iteration was performed. As more iterations
are performed, the chances that one or more iterations result

20 T T T T
= k=10M.C)--- E=2(M.Q)
sl - k=10 (M. B) ~oerree k=2(M.B) |
------- k=10 (M. A)— k=2 (M. A)
S
o 10 B
2 -
P~ - - =7
0 | | | |
0 0.2 0.4 0.6 0.8 1
Proportion of legitimates using wireless access
10 T T T T
= k=10M.C)--- k=2M. Q)
8- = k=10 (M.B) e k=2(M.B) |
....... k=10(M. A)—k =2 (M. A)
g 9 |
12}
=
0 | | | |
0 0.2 0.4 0.6 0.8 1

Proportion of legitimates using wireless access

Fig. 5. Results when a proportion of the 49 legitimate clients (i.e.,
PlanetLab nodes inside triangles) use a wireless access network that
has k wireless devices. n = 600 CPV iterations for all A. M. A means
using the model of Carvalho et al. [16]; M. B means using the model of
Raptis et al. [17].

in such negligible delay increase. Because CPV requires
only a proportion 7 of the performed iterations to result
in supporting evidence (which is more likely to happen with
smaller delays between the verifiers and the client [12])
in order to accept a client, it still accepts a client when a
proportion of 1 — 7 of all iterations result in large delays
and denying evidence (see Section 3.1). The required number
of iterations is derived in terms of k and the acceptance
threshold 7 in Section 4 below.

Using the model of Raptis et al. [17], and assuming that
half the legitimate clients are wireless, the sum FR+FA went
from 51% at k = 2 to 83% at k = 10. Those results
are to be compared to 3.1% (2.0% + 1.1%) when none of
the legitimate clients are using a wireless access network
(i.e., at z = 0 in Fig. 5). In conclusion, under this model,
when a wireless CPV client competes for the media with
another device (i.e.,, k = 2), it has double the chances of
being falsely rejected compared to a wired legitimate client.
Finally, results obtained using the model of Maadani et al.
[18] show that CPV’s efficacy lies somewhere in between
both models for the selected values of k.

Figure 6 shows the summation of FRs and FAs with
respect to the number of iterations n (i.e., na for all A), and
the number of wireless devices, k, in each wireless network
when 25 of the 49 legitimate CPV clients are using a wireless
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A .
A 7T
S
<
+
~
a9
n
(b) Using Raptis et al.’s model [17]
A \
S
=
+
[
=

n

(c) Using Maadani et al.’s model [18]

Fig. 6. FR+FA when half of the evaluated legitimate clients were using a
wireless access network with k devices.

access network.* Using the model of Carvalho and Garcia-
Luna-Aceves [16], the effect of k£ on the results begins to
manifest starting around k& = 1. For example, at k = 2 the
sum FR+FA is almost constant regardless of the performed
number of CPV iterations, n. In contrast, at k = 30, the
impact of n on the sum FR+FA is large. In conclusion,
increasing the number of CPV iterations has large impact
only when more than £ = 15 devices are present in each
wireless network.

4. Recall that the number of wireless legitimate clients being verified
by triangle A affects the calibration of €A and 7, which is how those
25 wireless clients are expected to influence CPV’s decisions on others.

The case is different using the wireless models of Raptis
et al. [17], where k has a significant impact on the results,
for all values of k. For example, at £ = 6, the sum FR+FA
decreases from ~18% at n = 60 to ~7% at n = 600; and at
k = 30, FR+FA decreases from ~36% at n = 60 to ~22%
at n = 600. These results highlight the potential for a larger
number of iterations to mitigate the effect of the wireless
delays on CPV.

Both models agree that CPV’s efficacy decreases as k in-
creases, suggesting that CPV may perform poorly in public
places where numerous devices are actively competing for
the media. However, the model of Maadani and Motamedi
[18] suggests a better CPV efficacy with an increasing &, yet
agrees with both previous models about the effect of 7 on
CPV. We suspect such a difference is due to the large jitter
disagreements between the models at large values of k, as
we show in Fig. 2b (Section 2.5).

3.5 Minimum adversarial distance from the triangle

Figure 7 shows the minimum distance, between an (outside-
triangle) adversary and the triangle encapsulating the ad-
versary’s asserted location, that enables CPV to maintain
similar efficacy compared to when all clients are using a
wired access network. Results are obtained when 25 of all
49 legitimate clients are using a wireless access network, and
when na = 600 iterations for all A.

Using the model of Carvalho and Garcia-Luna-Aceves
[16], and at & = 5, the sum FR+FA=3% when (outside-
triangle) adversaries were at least ~250 km away from
the triangles’ sides. At k& = 15, the minimum adversary-
free distance outside the triangle that maintains FR+FA~3%
becomes 1, 250 km.

With the model of Raptis et al. [17], the minimum adver-
sarial distance is 700 km at k£ = 5 (see Fig. 7) and ~1,600 km
at k = 10. In contrast, the model of Maadani and Motamedi
resulted in a distance of 300 km and 700 km at those values
of k respectively.

In conclusion, the minimum adversary-free distance out-
side the triangle for CPV to not be affected by wireless
legitimate users clearly increases with k& in all models.
Therefore, as more saturated devices exist in the network of
CPV'’s legitimate wireless clients, the likelihood of accepting
(outside) adversaries close the triangles’ sides increases.

4 ADDRESSING WIRELESS DELAYS

It is noticeable from the previous section that increasing the
number of CPV iterations, n, enhances the results even in
the presence of wireless clients. We thus ask the question:
Assume that the number of wireless devices in the client’s access
network, k, is known to the verifiers; how many CPV iterations,
whereby OWDs are measured between the client and the verifiers,
should be performed such that with a very high probability the
wireless client gets correctly accepted?

To answer this question, let ¢ be a small delay value (i.e.,
due to the wireless access network) that when added to the
(Internet) end-to-end delays of a legitimate wired client that
CPV would typically accept, will not cause CPV to falsely
reject that client (i.e.,, due to the increased delay). Using
the wireless delay models in Section 2, we can obtain the
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Fig. 7. The minimum distance, between the (outside) adversary and the
triangle, that enables CPV to maintain similar efficacy compared to when
all clients are using a wired access network. Results are obtained when
25 of all 49 legitimate clients are using a wireless access network, and
when na = 600 CPV iterations, for all A. The error bars indicate the
smallest and largest y (minimum distance) obtained from 10 runs, and
the marker is their average. M. A means using the model of Carvalho
et al. [16]; M. B means using the model of Raptis et al. [17]; and M. C
means using the model of Maadani et al. [18].

probability pi(t) = Pp{D < t} that a transmitted frame
experiences less than ¢ ms additional delay while sharing
the wireless media with k — 1 other actively participating
devices.

If two CPV iterations are performed, the probability that
the frames experience < ¢ ms delay in one of them (either
the first or the second) is:

01(t,k,2) = pi(t) - (1 = pr(t)) + (1 — pi(t)) - p(t)
=2-pi(t) - (1 = pi(t))

This equation is similar to the probability of getting a
number x once from a dice rolled twice, such that x < 3
(i.e., the probability of getting either 1 or 2). This probability
would be: either getting = from the first roll but not the
second, or from the second roll but not the first; the number
of dice rolls is analogous to the number of CPV iterations.

For three iterations:

01(t,k,3) =3 pi(t) - (1 — pi(t))?

In general, the probability that a transmitted frame experi-
ences < t ms in exactly one of n iterations is given by:

o1(t,kyn) = n-pi(t) - (1= pi(t)" "

Considering more than one iteration, the probability g

that the transmitted frames experience < ¢ ms in exactly two
of n iterations is given by:

altko) = (") 0 (1= ) 09)

That is because there are n(n — 1)/2 ways of choosing two
of n iterations. In general, there are "C, ways of choosing r
of n iterations, where:

(33)

(34)

(35)

n!

"Cr = (37)

ri(n —r)!

Accordingly, the probability that the transmitted frames
experience < ¢t ms in exactly r of n iterations is given by:

or(t, k) ="Cy - pr(t)" - (1 —pr(t)" " (38)

TABLE 4
The probability py(3) that an additional delay of < 3 ms is incurred by
the wireless network at different values of k.

k
Model |———s————5—25 30

6] [ 077 045 021 007 004 003

pe(3) | 0171 | 024 008 004 002 002 002
(18] | 034 018 016 008 007 006

And thus, the probability that the wireless delay is < ¢ ms
in at least r of n iterations is given by:

n

pr(t k,n) = Z 0i(t, k,m) (39)

Calculating this probability is fundamental to the oper-
ation of CPV. For example, let the number of iterations that
CPV performs be n = 600, and let CPV be calibrated such
that it requires at least 30 of those 600 iterations to pass
the triangular area check [12]. Assuming that ¢ = 3, then
using (39) we can calculate the probability, pso(3, k,600),
that the timestamps exchanged between the verifiers and
the client are delayed (additionally by the wireless access
network) < 3 ms in at least 30 of the 600 iterations. This
probability will thus serve as an upper bound probability
of that client being correctly accepted. It is “upper bound”
because if p30(3, k,600) = 1, the client may still get falsely
rejected due to other non-wireless factors [12]. Equation (39)
is used below to derive a function calculating the number
of CPV iterations required to mitigate the negative effect of
wireless delays.

Note that py () is calculated using (13), (19) and (30). For
example, for the model of Carvalho et al., we have:

pk(t) = GausCDF,, ,(t;0, c0) (40)

where 1 and o are functions of k as discussed in Section 2.
Example values for py(3) are listed in Table 4.

Figure 8 shows a plot of p5(3,k,n) and p20(3,k,n)
against n at £ = 2 and £ = 10. The charts show that at
k = 2, the verifiers need to perform 11, 45, or 30 iterations
using the three models respectively to be almost certain
(i.e., with probability p5(3,2,n) >0.99) that the transmitted
frames will endure < 3 ms delay in at least 5 iterations. To
achieve < 3 ms wireless delay in 20 or more iterations, and
at kK = 10, the verifiers will need to perform ~150, ~700,
or ~270 iterations respectively using respectively the three
models to satisfy pao(3,10,n) >0.99.

CPV requires a proportion 0 < 7o < 1, for each A, to
result in evidence supporting the client’s presence inside the
triangle (see Section 3.1) in order to accept a client. By policy,
if n - TA of the n iterations pass the area checks, the client
gets accepted. To mitigate the effect (on CPV’s decisions) of
wireless delays with probability >0.99, the verifiers need to
perform n iterations that satisfy:

Prra (k) > 0.99 (41)

Using linear iterative root finding [23], we solved (41) for
n at various values of k. A plot of both variables is shown
in Fig. 9 for different values of 7. Once again, the differences
between the wireless delay models in the reviewed literature
manifest in our analysis. For example, assuming k = 5,
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Fig. 8. The probability that a transmitted frame experiences < t = 3 ms
of wireless delay in at least 5 and 20 of n iterations, when k wireless
devices are sharing the access network. See Table 4 (or similarly
Figures 1a and 1b at z = 3 ms) for the values of py(¢). M. A means
using the model of Carvalho et al. [16]; M. B means using the model of
Raptis et al. [17].

using the model of Carvalho and Garcia-Luna-Aceves [16],
if 7 = 0.05, then only 8 iterations are required to mitigate
the effect of the wireless delays on CPV, versus 440 iterations
using the model of Raptis et al. [17], and 35 using that of
Maadani et al. [18]. At k = 30 wireless devices, and 7 = 0.01,
the required number of iterations is ~250, ~1590, and ~75
respectively, asserting the optimistic nature of Maadani et
al.’s model at large values of k.

5 RELATED WORK

Considerable literature (e.g., [25], [26]) exists evaluating
the efficacy of network measurements in determining the
locations of (or geolocating) Internet hosts. The evaluations
commonly find correlation between network delays and ge-
ographic distances, reporting varying degrees of geolocation
accuracy. However, to the best of our knowledge, no litera-
ture examines the effect of wireless Internet clients on such
techniques. Our work herein sheds light on the potential
effect of wireless access on the accuracy of measurement-
based protocols (albiet location verification rather than de-
termination), highlighting the importance of evaluating such
geolocation techniques in wireless settings.

10
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(a) Using Carvalho et al.’s model [16]
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1,500 | | 1
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Q I
|
|
500 | | |
Il
Do
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(b) Using Raptis et al.’s model [17]
7=01---7=0.05----- 7 =10.01
1,500
1,000
<

500

(c) Using Maadani et al.’s model [18]

Fig. 9. Required number of iterations to essentially eliminate the effect
of wireless network delays at different values of 7.

The literature is rich with proximity verification and
distance bounding protocols in wireless network environ-
ments, such as wireless sensor networks [27], [28] and
Radio-Frequency Identifiers (RFIDs). Brands and Chaum
[29] devised distance bounding protocols to prove an upper
bound to the distance between a prover and a verifier
using Radio Frequency (RF). Wagner et al. [30] proposed
to use ultrasound instead to address shortcomings in RF-
based protocols, such as processing delay sensitivity and
accurate clock synchronization requirements. Capkun et al.
[31] emphasized the importance of having at least three
verifiers surrounding a prover to account for delay-adding
attacks introduced by the prover or a third party attacker.

However, contrary to proximity verification and distance
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bounding protocols in wireless networks, CPV [12] was
designed to verify location assertions over the Internet, at
the scale of tens or hundreds of miles. The former protocols
focus on location verification within the wireless network
itself (typically within a few inches [32]), while the latter’s
main focus is Internet clients [33] which could be using
wired or wireless access networks. As such, CPV addresses
different challenges, such as higher delay uncertainty due
to the stochastic nature of Internet delays [34]. Therefore,
assessing CPV’s Internet scale verification abilities and sig-
nificantly coarser granularity against extremely local proto-
cols with substantially higher accuracy is not applicable.
Proximity verification and distance bounding protocols
cannot easily scale to the Internet level because a consid-
erable trustworthy infrastructure would be required. For
example, if a Hulu® client was connected to the Internet
through a wireless access network, then Hulu must trust
a device in the client’s wireless network to verify the client’s
geographic presence in the device’s vicinity. Accordingly,
a sufficient number of trusted wireless devices must be
present to cover, at a high granularity, all the geographic
regions of interest (e.g., the US in the case of Hulu). It is thus
imperative to evaluate the behavior of CPV when Internet
clients are connected through wireless access networks.

6 CONCLUDING REMARKS

We show that the impact of wireless networks on CPV
depends fundamentally on the number of wireless devices
in the vicinity of a CPV client. CPV is more likely to falsely
accept adversaries close to the triangles’ sides (e.g., <1,000
km) when there are wireless (legitimate) clients. Increasing
the number of CPV iterations can be an effective way to
deal with the negative effect of wireless delays on CPV.
However, an excessively large number of iterations may
reduce the practicality of CPV due to longer convergence
times. Nonetheless, we found that when CPV is calibrated
to be more tolerant to high delays between the client and
the verifiers (i.e., at smaller values of 7), the rate for which
the required number of iterations increases with k slows
down. This highlights the importance of conducting the
appropriate number of iterations, especially when CPV is
verifying locations of wireless clients.

The results herein suggest that the impact of wireless
networks on delay-based applications should be given more
attention, e.g., most delay-based geolocation techniques in
the literature are not evaluated with wireless networks [10],
[34]. We hope this work encourages further evaluation to
these applications considering wireless access networks.

APPENDIX A
BACKGROUND ON CPV

CPV [12] is a delay-based Internet location verification
technique that accounts for classical geolocation evasion
tactics [7], including IP-address hiding through the use of
middleboxes (e.g., proxy servers, Virtual Private Networks,
anonymizers) and delay manipulation [6].

5. Hulu (http:/ /www.hulu.com/) is a video-on-demand website that
provides geographically-restricted video streaming services.
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Fig. 10. An example triangle determined by three verifiers, and a legiti-
mate client within. Map data: Google, INEGI, ORION-ME.

When an Internet client asserts its presence in a location,
CPV selects three verifiers (e.g., cloud-based servers) geo-
graphically encapsulating the asserted location to corrobo-
rate that assertion (see Fig. 10). The verifiers exchange times-
tamps among themselves and the client to estimate one-way
Internet delays on the application layer, leveraging cryp-
tographic measures to protect delay estimates from being
maliciously tampered, e.g., by the client. Delay estiamtion
on the application layer (instead of the network-layer) al-
lows CPV to detect the use of middleboxes and generic IP-
hiding tactics [12], especially when CPV is combined with
a Proof-of-Work mechanism [35]. The measured delays are
then mapped into distances, which are then used to verify
the client’s true presence inside the triangle determined by
the verifiers’ locations. To mitigate factors that negatively
affect the accuracy of delay-to-distance mapping, CPV uses
heuristics such as employing multiple one-way delay es-
timation protocols and a per-region (rather than universal)
mapping function. The authors of CPV [12] showed how the
verifiers can obtain one-way delay estimates with high ac-
curacy without requiring client clock synchronization [14].

Various factors affecting the correctness of CPV were
tested using real-world extensive evaluations on PlanetLab,
where nodes are connected to the Internet using wired
access networks. It was found that the closer a legitimate
client is from the sides of a triangle, the more likely it is
for the client to be falsely rejected. The authors of CPV [12]
have demonstrated the importance of appropriate verifier
selection to avoid false rejections. Another crucial factor
was the rate of Triangular Inequality Violations (TIVs) [36],
where the authors of CPV have shown the ability of iterative
delay measurements in dealing with TIVs. In summary,
under classical conditions, when used against clients with
wireline access networks, CPV can achieve false reject and
false accept rates of 2% and 1% respectively [12].
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