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Abstract

Wk present a coarse grained parallel algorithmfor com-
puting a maximum matching in a convex bipartite graph
G = (A,B,E). For p processors with N/p memory per
processor, N = |A| + |B|, N/p > p, thealgorithmrequires
O(log p) communication rounds and O(Tiequ(%, ) +
2logp) local computation, where . = [A], m = |B]
and T4 (7, m) is the sequential time complexity for the
problem. For the BSP model, this implies O(logp) su-
persteps with O(gN + g% log p) communication cost and

O(Tsequ(%, %) + 2 log p) local computation.

1 Introduction
1.1 The Problem

We study the problem of computing the maximum
matching in convex bipartite graphs defined as follows.

Definition 1 A Bipartite graph G = (A, B, E) isan undi-
rected graph with vertex set A U B where A and B are dis-
jointand E C (A x B).

For theremainder letn = |A|, m = |B]and N =n +m.

Definition 2 A Convex bipartite graph is a bipartite graph
G = (A, B, E) with an ordering B = (by,ba,---b,) such
that for anya € A, if (a,b;) € E'and (a,b;) € E (i < j)
then (a,b,) € Eforall i <k <j.

Definition 3 A matching M inagraphG = (V,E) isa
subset of E such that no two edgesin M are incident to the
same vertex.

Definition 4 A maximummatchinginagraphG = (V, E)
is a matching of G of which the size (number of edges) is
maxi mum.

The problem of finding a maximum matching in a bipar-
tite graph or a convex bipartite graphisaclassical and well
studied problem [7, 12, 14, 15]. The case of convex bipar-
tite graphs has several interesting applicationsas outlined in
[7, 15]. A particularly interesting industrial application for
matching parts with products was described in [15].

Sequential solutions for maximum matching in bipartite
graphs and convex bipartite graphs with time complexities
O(n5/?) and O(n + a(m)) were described in [14] and [15],
respectively, where a(m) isavery slowly growing function
related to the inverse Ackermann function. A PRAM algo-
rithm for maximum matching in convex bipartite graphsre-
quireing O(log® n) time and n./2 processors was presented
in[7].

In this paper, we consider the maximum matching prob-
lem for the coarse grained parallel and BSP models of com-
putation described in the next subsection. These new par-
alel models have recently received much attention because
they allow the design of parallel algorithms that have much
improved practical performance in actual implementations
on commercial multiprocessors compared to previous mod-
els like the PRAM or fine grained network models (e.g.
mesh or hypercube).

Before proceeding to the description of the coarse
grained parallel and BSP models of computation, we note
that finding a maximum matching in a convex bipartite
graph can be transformed into the following problem:

Definition 5 Given a set of intervals I = {Iy,---,I,},
each of which representsan integer range, i.e. I, = (I;,7;).
A maximum interval assignment consists of assigning, for
a maximum number of intervals, one integer label to each
interval such that the integer for each interval iswithin the
interval’s range and no two intervals are assigned the same
integer.

For a given convex bipartite graph G = (A, B, E) let
I(G) bethe set of | A| intervals containing for eacha € A
aninterval I, = (I;, ;) wherel; and r; are the smallest and
largest ranks, in B, of all element b € B with (a,b) € E.



Observation 1 The maximum matching problemfor a con-
vex bipartite graph G can be reduced to finding a maximum
interval assignment in I(G).

1.2 The Model

The Coarse Grained M ulticomputer (CGM)

A CGM (Coarse Grained Multicomputer) is a specia case
of a BSP (Bulk Synchronous Parallel) multiprocessor [18]
where al communication within a superstep is reduced to
one h-relation. A CGM consists of a collection of p proces-
sorswith N/plocal memory each, connected by arouter that
can deliver messagesin apoint to point fashion. A CGM al-
gorithm consists of an alternating sequence of computation
rounds and communication rounds separated by barrier syn-
chronization. A computation round is equivalent to a com-
putation superstep in the BSP model, and the total compu-
tation cost 7., is defined analogously. A communication
round consists of asingle h-relationwith h < N/p. Theto-
tal communication cost,Z%omm., IS Mmeasured by the number
of communicationrounds. Consult [3, 4, 5] for moredetails.

Inarecent overview of different BSP and related models,
Goodrich[13] referredto the CGM astheweak-CREWBSP.
The CGM model aims at designing simple and practical,
yet theoretically optimal or efficient, parallel algorithmsfor
coarse grained parallel systems (N/p >> 1). Algorithms
do usually require alower boundon N/p,eg. N/p > por
N/p > pc. The CGM model targets in particular the case
where the overall computation speed is considerably larger
than the overall communication speed, which is usually the
case. Since the message size is maximal, the model aso
minimizes the message overhead associated with sending a
message, which is very important in practice.

Relationship Between BSP And CGM

In the remainder of this paper, we will present our algo-
rithms in the CGM model. The relationship to the BSP
model is given by the following

Observation 2 A CGM algorithmwith A rounds and com-
putation cost T,,, corresponds to a BSP algorithm with
A supersteps, communication cost O(g/\%) and the same
computation cost Tto s, p-

1.3 The Result

In this paper, we present a coarse grained parallel a-
gorithm for computing a maximum matching of a con-
vex hipartite graph G = (A4,B,E). For a p pro-
cessor CGM with N/p memory per processor, N/p >
p, the agorithm requires O(log p) communication rounds

and O(Tsequ(ﬁ, %) + %log p) loca computation where

Tsequ(n, m) isthe sequential time complexity for the prob-
lem. For the BSP model, this implies O(logp) super-
steps with O(gN + g7 logp) communication cost and
O(Tsequ(®, ) + 2 log p) local computation.

p’p
2 Algorithm Description

Inthefollowing Section 2.1, wefirst present an algorithm
that solves a special case: all intervals start at the same left
end point. Thisalgorithmwill beused in our solutionfor the
general case which is presented in Section 2.2.

2.1 Special Case: All Intervals Start At
The Same Point

Algorithm 1 All intervalshavethe sameleft end point /; =
lii=1---n.

Input: A setof nintervalsI = {I,...,I,} with their as-
sociated left and right end points I; = (I;,7;),i = 1...n,
distributed over a p processor CGM with n/p intervals per
processor. Note that, we assume% >p.

(1) All intervals are sorted by their right end points using
CGM parallel integer sort [6, 13].

(2) Each processor P;,i = 1...p — 1, determines the
largest right end point, e;, received in Step 1 and sends
it to the next processor P; ;.

(3) Each processor P;,i = 2...p, Setss; = e;—1 + 1.
The first processor sets s; = [. We cdl (s;,¢;) the
controlled range of P;. Thisis the range of integers
that the processor can use to label intervals.

(4) Each processor P;,i = 1...p, temporarily changes
the left end points of itsintervalsto s; and then solves
the modified problem locally using a sequential ago-
rithm (essentially sequential integer sort).

(5) Each processor P;,i = 1...p, caculates how many
labels in the controlled range are left unused (a;) and
how many intervalsdid not yet receive aninteger label
(b;). These two numbers per processor are broadcast
to all processors (in one h-relation). Thisis possible
since% >p.

(6) Based on the data received in the previous step, each
processor can now calculate from where it should re-
quest labelsand to whereit should send unused |abels.
See Algorithm 2 for more details.

(7) Each processor selects unused labels and sends them
to the processors that need them.

(8) Upon receiving the needed labels, each processor can
now assign them to the respective intervals.

— End of Algorithm —

Algorithm 2 Sequential computation for Step 6 in Algo-
rithm 1, executed by processor P, 1 < k < p.



Input: Anarray a = (aq,...,a,) representing the num-
bers of free (unused) labels in the p processors. An array
b = (b1,...,b,) representing the numbers of intervals so
far without labelsin the p processors.

Output: An array get = (geti,...,get,) representing
numbers of labels that are to be sent to processor P, by the
other processors. An array give = (give,, . .., give,) rep-
resenting numbersof |abel sthat are expected from processor
Py, by the other processors.

for (i=1; i<p; i++) { get; = 0; give; =0; }
i=1;

=2

while ((i<p) and (j<p))

{

if (|::J) j++;
while ((a,#0) and (j<p))

if (&;>Db;)

if (P.=i) get; = b;;
if (P,=j) receive; =b;;

a =a -by;
b]‘ =0;
i+
}
else
if (P.=i) get; = &;
if (P.=]) give; = &;
b; =b; - &;
a =0;
}
)
i++;

}
— End of Algorithm —

Lemmal The sequential time complexity of Algorithm2is
O(p).

Proof. The variable ¢ counts from 1 to p-1, and j counts
from 2 to p. Since both variables are incremented indepen-
dently, the total time complexity of the algorithmis O(p).
O

Lemma 2 Theinteger label assignment produced by Algo-
rithm 1 is maximum.

Proof. Itiseasy to see that the label assignment based on
the order of theright end pointsismaximum. Let A, besuch
an assignment. Let A; be the label assignment produced

by Algorithm 1. Since A, is maximum, |4,| > |A;|. We
compareassignments A; and A,. We first removetheinter-
valsthat are not assigned labels in both assignments. If the
remaining intervals all have labels assigned in both assign-
ments, then we have | A, | = |A:| and the lemmafollows.

If the kth interval (I}, r},) (with respect to the right end
points) isassigned alabel in A, but not in A, then the first
k—1intervalsmust beassigned labelsi, [+ 1,...,[+k—2
in A, and the kth interval must be assigned label [ + k& — 1.
Thisalsomeansr, > [+ k — 1.

Now consider A4;. If thefirst £ — 1 intervalsare aso as-
signedlabelsi, i+ 1,...,1+k —2,then! + k£ — 1 will be
availablefor the kthintervals. If someof thefirst £ —1 inter-
valsarenot assigned labelsintherangel, [+1, ..., I+ k-2,
then there will be a“hole” in this range that can be used for
the kthinterval.

Hence, for every interval with a label assigned in A,,
there is a label assigned to that interval in A;. Therefore,
|A1] > |A,|. Thus, the label assignment obtained from Al-
gorithm 1 is maximum. a

Theorem 1 Algorithm 1 findsa maximum label assignment
for n interval swith the samel eft endpointsstored on a p pro-
cessor CGM with n/p local memory per processor, % > p,
in O(1) communication rounds with O(7}) local computa-
tion.

Proof. Thecorrectnessof thealgorithmisshowninLemma
2. The communication rounds required in each step of Al-
gorithm 1 is O(1). Hence the total number of communica-
tion rounds needed is O(1). In each round, the total mes-
sage Size per processor is O(%). Step 1 uses CGM integer
sort [6, 13] which requires O(1) communication roundsand
O(%) local computation. Thelocal computation of Step 6 is
O(p) (fromLemmal). For al other steps, itiseither O(1) or
O(%). Therefore, the total local computation per processor
isO(%) + O(p) = O(%) since 2 > p. O

2.2 The General Case

In order to solve the maximum interval assignment prob-
lem for arbitrary intervals, we now combine Algorithm 1
with a merge/unmerge scheme presented in [7].

Algorithm 3 General casewheretheintervalscan havedif-

ferent left end points.

Input: A setof nintervasl = {I,...,I,} with their as-

sociated left and right end points I; = (I;,7;),i = 1---n,

distributed over a p processor CGM with n/p intervals per

processor. Note that, we assumethat = > p.

(1) All intervals are sorted by their left end points using

CGM pardlel integer sort [6, 13]. (In case of atie, in-
tervals are compared by their right end points.)



(2) Intervals with the same left end points are combined

into groups. All groups that are stored completely
within aprocessor are merged into asingle group. Let
~ be the number of groups. Note that ~ is at most
2p+ 1.

(3) Each group isassigned a controlled range (1;,7;),i =

1...~v wherel; isequal to the smallest left end point
of that groupandr; = l;41 —1,i =1...v — 1. Let
., be the largest right end point of the intervals.

(4) Using a sequential algorithm, each processor solves

the problem for interval groups that are completely
within the processor. Removethelabel of all thosein-
tervalsthat received alabel outside their group’s con-
trolled range. Classify the intervals using one of the
following three types. Matchable (M): all labeled in-
tervals. To-be-determined (7): all non labeled inter-
vals that extend beyond the rightmost 1abel given by
that processor. Unmatchable (U): al remaining inter-
vals. Removeall unmatchableintervals.

(5) Using Algorithm 1, solve the problem for interval

groups that cross a processor boundary (for each such
group in isolation). Remove the label of al intervals
that received a label outside their group’s controlled
range. Classify the intervals using one of the follow-
ing three types. Matchable (M) al labeled intervals.
To-be-determined (7°): all nonlabeled intervals that
extend beyond the rightmost label given by that pro-
cessor. Unmatchable(U): all remainingintervals. Re-
move all unmatchableintervals.

(6) Merge the intervals in adjacent groups. Let My, T},

be the intervals from the left group, let Mg, Tk be
theintervalsfrom theright group, and let (I, r1,) and
(Ir,7r) be the controlled ranges of the left and right
groups, respectively. Using Algorithm 1, solve the
problem for T, U My over the range (Ig,rr). Let
the resulting sets of machable and to-be-determined
intervalsbe M,,, and T,,. For the combined group, set
M = Mp,UM,andT = T, UTg. The controlled
range of the combined groupis (I, 7r).

(7) Repesat Step 6 O(log ) timesuntil asinglegroupisob-

tained.

(8) Using a reverse process of the previous steps, using

O(log ) iterations, redistribute the intervalsback into
the v groups obtained at the end of Step 3. In each
splitting phase, let M bethegroup weare splitting and
let M and My be those two components. Let V' be
the set of intervals that have a left end point smaller
than the starting value of the controlled range of M.
Note that, V' can be empty. Let 1 be the union of V'
and M;,. W should be distributed to M/, and the rest
to M . However, the controlled range of A/7, may not
alow the entire W to be assigned to M. Hence, we
assignonly thefirst min (||, [R—L|) intervalsto M,

and the remainder to M y.
(9) Step 8isrepeated until v groups are obtained.

(10) Using a sequential algorithm, each processor solves
the problem for its interval groups over each group’s
controlled range. For groupsthat span over more than
one processor, adjust the left end points to the start-
ing values of the controlled range and then apply Al-
gorithm 1.

— End of Algorithm —

Theorem 2 Algorithm 3 solves the label assign-
ment problem in O(logp) communication rounds and
O(Tsequ(%, %) + 2 log p) local computation.

Proof. The correctness of the split/merge scheme follows
from [7]. Step 6 is executed O(log~) times. In Step 6,
we invoke Algorithm 1 which requires O(1) communica
tion rounds. Sincey < 2p + 1, the total number of com-
munication roundsis O(log p). Thelocal computation time
isdominated by the O(1) executions of the sequentia algo-
rithm on each processor and the linear local time in each of
the O(log ~) iterations. O

As described in Section 1.1, this theorem implies an al-
gorithm for computing the maximum matching of a con-
vex bipartite graph with the same number of communication
rounds and local computation.

3 Conclusion

In this paper, we have presented a coarse grained parallel
agorithm for computing a maximum matching of a convex
bipartite graph G = (A, B, E). For p processorswith N/p
memory per processor, N/p > p, the agorithm requires
O(logp) communication rounds and O( Sequ(z ’;) +
2 log p) local computation. For the BSP model, thisimplies
O(log p) superstepswith O(g N + g2 log p) communication
cost and O(Tsequ (2 m) o logp) local computation.

From apracucar point of V|ew i.e. forimplementing this
method on commercial multiprocessors, it isvery important
that the problem size is not a parameter for the number of
communication rounds. The result obtained, i.e. O(log p)
communication rounds, is a function of p only. Since p is
usually fixed or grows on very slowly in practice, and log p
is a lowly growing function, the number of communica-
tion roundsis essentially afixed constant for most practical
arrangements. This is important because empirical studies
show that the number of communication roundsis the most
important parameter influencing the observed running time.

From atheoretical point of view it is an important open
problem to study whether it is possible to find an algorithm
with even fewer communication rounds (is O(1) possible?)
and/or determine lower bounds for the number of commu-
nication rounds.
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