
Coarse Grained Parallel Maximum Matching In Convex Bipartite Graphs

P. Bose, A. Chan, F. Dehne, and M. Latzel
School of Computer Science

Carleton University
Ottawa, Canada K1S 5B6

fjit,achan,dehne,mlatzelg@scs.carleton.ca

Abstract

We present a coarse grained parallel algorithm for com-
puting a maximum matching in a convex bipartite graph
G = (A;B;E). For p processors with N=p memory per
processor, N = jAj+ jBj, N=p � p, the algorithm requires
O(log p) communication rounds and O(Tsequ(np ;

m
p) +

n
p log p) local computation, where n = jAj, m = jBj

and Tsequ(n;m) is the sequential time complexity for the
problem. For the BSP model, this implies O(log p) su-
persteps with O(gN + g np log p) communication cost and
O(Tsequ(

n
p ;

m
p) +

n
p log p) local computation.

1 Introduction

1.1 The Problem

We study the problem of computing the maximum
matching in convex bipartite graphs defined as follows.

Definition 1 A Bipartite graph G = (A;B;E) is an undi-
rected graph with vertex set A [B where A and B are dis-
joint and E � (A�B).

For the remainder let n = jAj, m = jBj and N = n+m.

Definition 2 A Convex bipartite graph is a bipartite graph
G = (A;B;E) with an ordering B = (b1; b2; � � � bn) such
that for any a 2 A, if (a; bi) 2 E and (a; bj) 2 E (i � j)
then (a; bk) 2 E for all i � k � j.

Definition 3 A matching M in a graph G = (V;E) is a
subset of E such that no two edges in M are incident to the
same vertex.

Definition 4 A maximum matching in a graph G = (V;E)
is a matching of G of which the size (number of edges) is
maximum.

The problem of finding a maximum matching in a bipar-
tite graph or a convex bipartite graph is a classical and well
studied problem [7, 12, 14, 15]. The case of convex bipar-
tite graphs has several interesting applications as outlined in
[7, 15]. A particularly interesting industrial application for
matching parts with products was described in [15].

Sequential solutions for maximum matching in bipartite
graphs and convex bipartite graphs with time complexities
O(n5=2) and O(n+�(m)) were described in [14] and [15],
respectively, where �(m) is a very slowly growing function
related to the inverse Ackermann function. A PRAM algo-
rithm for maximum matching in convex bipartite graphs re-
quireing O(log2 n) time and n=2 processors was presented
in [7].

In this paper, we consider the maximum matching prob-
lem for the coarse grained parallel and BSP models of com-
putation described in the next subsection. These new par-
allel models have recently received much attention because
they allow the design of parallel algorithms that have much
improved practical performance in actual implementations
on commercial multiprocessors compared to previous mod-
els like the PRAM or fine grained network models (e.g.
mesh or hypercube).

Before proceeding to the description of the coarse
grained parallel and BSP models of computation, we note
that finding a maximum matching in a convex bipartite
graph can be transformed into the following problem:

Definition 5 Given a set of intervals I = fI1; � � � ; Ing,
each of which represents an integer range, i.e. Ii = (li; ri).
A maximum interval assignment consists of assigning, for
a maximum number of intervals, one integer label to each
interval such that the integer for each interval is within the
interval’s range and no two intervals are assigned the same
integer.

For a given convex bipartite graph G = (A;B;E) let
I(G) be the set of jAj intervals containing for each a 2 A
an interval Ii = (li; ri) where li and ri are the smallest and
largest ranks, in B, of all element b 2 B with (a; b) 2 E.

Observation 1 The maximum matching problem for a con-
vex bipartite graph G can be reduced to finding a maximum
interval assignment in I(G).

1.2 The Model

The Coarse Grained Multicomputer (CGM)

A CGM (Coarse Grained Multicomputer) is a special case
of a BSP (Bulk Synchronous Parallel) multiprocessor [18]
where all communication within a superstep is reduced to
one h-relation. A CGM consists of a collection of p proces-
sors withN=p local memory each, connected by a router that
can deliver messages in a point to point fashion. A CGM al-
gorithm consists of an alternating sequence of computation
rounds and communication rounds separated by barrier syn-
chronization. A computation round is equivalent to a com-
putation superstep in the BSP model, and the total compu-
tation cost Tcomp is defined analogously. A communication
round consists of a single h-relation with h � N=p. The to-
tal communication cost,Tcomm, is measured by the number
of communication rounds. Consult [3, 4, 5] for more details.

In a recent overview of different BSP and related models,
Goodrich [13] referred to the CGM as the weak-CREW BSP.
The CGM model aims at designing simple and practical,
yet theoretically optimal or efficient, parallel algorithms for
coarse grained parallel systems (N=p >> 1). Algorithms
do usually require a lower bound on N=p, e.g. N=p � p or
N=p � p�. The CGM model targets in particular the case
where the overall computation speed is considerably larger
than the overall communication speed, which is usually the
case. Since the message size is maximal, the model also
minimizes the message overhead associated with sending a
message, which is very important in practice.

Relationship Between BSP And CGM

In the remainder of this paper, we will present our algo-
rithms in the CGM model. The relationship to the BSP
model is given by the following

Observation 2 A CGM algorithm with � rounds and com-
putation cost Tcomp corresponds to a BSP algorithm with
� supersteps, communication cost O(g�Np) and the same
computation cost Tcomp.

1.3 The Result

In this paper, we present a coarse grained parallel al-
gorithm for computing a maximum matching of a con-
vex bipartite graph G = (A;B;E). For a p pro-
cessor CGM with N=p memory per processor, N=p �
p, the algorithm requires O(log p) communication rounds
and O(Tsequ(

n
p ;

m
p) + n

p log p) local computation where

Tsequ(n;m) is the sequential time complexity for the prob-
lem. For the BSP model, this implies O(log p) super-
steps with O(gN + g np log p) communication cost and
O(Tsequ(

n
p ;

m
p) +

n
p log p) local computation.

2 Algorithm Description

In the following Section 2.1, we first present an algorithm
that solves a special case: all intervals start at the same left
end point. This algorithm will be used in our solution for the
general case which is presented in Section 2.2.

2.1 Special Case: All Intervals Start At
The Same Point

Algorithm 1 All intervals have the same left end point li =
l; i = 1 � � �n.
Input: A set of n intervals I = fI1; : : : ; Ing with their as-
sociated left and right end points Ii = (li; ri); i = 1 : : : n,
distributed over a p processor CGM with n=p intervals per
processor. Note that, we assume n

p � p.
(1) All intervals are sorted by their right end points using

CGM parallel integer sort [6, 13].
(2) Each processor Pi; i = 1 : : : p � 1, determines the

largest right end point, ei, received in Step 1 and sends
it to the next processor Pi+1.

(3) Each processor Pi; i = 2 : : : p, sets si = ei�1 + 1.
The first processor sets s1 = l. We call (si; ei) the
controlled range of Pi. This is the range of integers
that the processor can use to label intervals.

(4) Each processor Pi; i = 1 : : : p, temporarily changes
the left end points of its intervals to si and then solves
the modified problem locally using a sequential algo-
rithm (essentially sequential integer sort).

(5) Each processor Pi; i = 1 : : : p, calculates how many
labels in the controlled range are left unused (ai) and
how many intervals did not yet receive an integer label
(bi). These two numbers per processor are broadcast
to all processors (in one h-relation). This is possible
since n

p � p.
(6) Based on the data received in the previous step, each

processor can now calculate from where it should re-
quest labels and to where it should send unused labels.
See Algorithm 2 for more details.

(7) Each processor selects unused labels and sends them
to the processors that need them.

(8) Upon receiving the needed labels, each processor can
now assign them to the respective intervals.

— End of Algorithm —

Algorithm 2 Sequential computation for Step 6 in Algo-
rithm 1, executed by processor Pk, 1 � k � p.

Input: An array a = (a1; : : : ; ap) representing the num-
bers of free (unused) labels in the p processors. An array
b = (b1; : : : ; bp) representing the numbers of intervals so
far without labels in the p processors.
Output: An array get = (get1; : : : ; getp) representing
numbers of labels that are to be sent to processor Pk by the
other processors. An array give = (givei; : : : ; givep) rep-
resenting numbers of labels that are expected from processor
Pk by the other processors.

for (i=1; i�p; i++) f geti = 0; givei = 0; g
i = 1;
j = 2;
while ((i<p) and (j�p))
f

if (i==j) j++;
while ((ai 6=0) and (j�p))
f

if (ai�bj)
f

if (Pk=i) getj = bj ;
if (Pk=j) receivei = bj ;
ai = ai - bj ;
bj = 0;
j++;

g
else
f

if (Pk=i) getj = ai;
if (Pk=j) givei = ai;
bj = bj - ai;
ai = 0;

g
g
i++;

g

— End of Algorithm —

Lemma 1 The sequential time complexity of Algorithm 2 is
O(p).

Proof. The variable i counts from 1 to p-1, and j counts
from 2 to p. Since both variables are incremented indepen-
dently, the total time complexity of the algorithm is O(p).
2

Lemma 2 The integer label assignment produced by Algo-
rithm 1 is maximum.

Proof. It is easy to see that the label assignment based on
the order of the right end points is maximum. LetAo be such
an assignment. Let A1 be the label assignment produced

by Algorithm 1. Since Ao is maximum, jAoj � jA1j. We
compare assignmentsA1 andAo. We first remove the inter-
vals that are not assigned labels in both assignments. If the
remaining intervals all have labels assigned in both assign-
ments, then we have jAoj = jA1j and the lemma follows.

If the kth interval (l0k; r
0

k) (with respect to the right end
points) is assigned a label in Ao but not in A1, then the first
k�1 intervals must be assigned labels l; l+1; : : : ; l+k�2
in Ao and the kth interval must be assigned label l+ k � 1.
This also means r0k � l+ k � 1.

Now consider A1. If the first k � 1 intervals are also as-
signed labels l; l + 1; : : : ; l + k � 2, then l + k � 1 will be
available for the kth intervals. If some of the first k�1 inter-
vals are not assigned labels in the range l; l+1; : : : ; l+k�2,
then there will be a “hole” in this range that can be used for
the kth interval.

Hence, for every interval with a label assigned in Ao,
there is a label assigned to that interval in A1. Therefore,
jA1j � jAoj. Thus, the label assignment obtained from Al-
gorithm 1 is maximum. 2

Theorem 1 Algorithm 1 finds a maximum label assignment
forn intervals with the same left endpoints stored on a p pro-
cessor CGM with n=p local memory per processor, n

p � p,
in O(1) communication rounds with O(np) local computa-
tion.

Proof. The correctness of the algorithm is shown in Lemma
2. The communication rounds required in each step of Al-
gorithm 1 is O(1). Hence the total number of communica-
tion rounds needed is O(1). In each round, the total mes-
sage size per processor is O(np). Step 1 uses CGM integer
sort [6, 13] which requiresO(1) communication rounds and
O(np) local computation. The local computation of Step 6 is
O(p) (from Lemma 1). For all other steps, it is either O(1) or
O(np). Therefore, the total local computation per processor
is O(np) + O(p) = O(np) since n

p � p. 2

2.2 The General Case

In order to solve the maximum interval assignment prob-
lem for arbitrary intervals, we now combine Algorithm 1
with a merge/unmerge scheme presented in [7].

Algorithm 3 General case where the intervals can have dif-
ferent left end points.
Input: A set of n intervals I = fI1; : : : ; Ing with their as-
sociated left and right end points Ii = (li; ri); i = 1 � � �n,
distributed over a p processor CGM with n=p intervals per
processor. Note that, we assume that n

p � p.
(1) All intervals are sorted by their left end points using

CGM parallel integer sort [6, 13]. (In case of a tie, in-
tervals are compared by their right end points.)

(2) Intervals with the same left end points are combined
into groups. All groups that are stored completely
within a processor are merged into a single group. Let
 be the number of groups. Note that is at most
2p+ 1.

(3) Each group is assigned a controlled range (li; ri); i =
1 : : : where li is equal to the smallest left end point
of that group and ri = li+1 � 1; i = 1 : : : � 1. Let
r be the largest right end point of the intervals.

(4) Using a sequential algorithm, each processor solves
the problem for interval groups that are completely
within the processor. Remove the label of all those in-
tervals that received a label outside their group’s con-
trolled range. Classify the intervals using one of the
following three types. Matchable (M): all labeled in-
tervals. To-be-determined (T): all non labeled inter-
vals that extend beyond the rightmost label given by
that processor. Unmatchable (U): all remaining inter-
vals. Remove all unmatchable intervals.

(5) Using Algorithm 1, solve the problem for interval
groups that cross a processor boundary (for each such
group in isolation). Remove the label of all intervals
that received a label outside their group’s controlled
range. Classify the intervals using one of the follow-
ing three types. Matchable (M): all labeled intervals.
To-be-determined (T): all nonlabeled intervals that
extend beyond the rightmost label given by that pro-
cessor. Unmatchable (U): all remaining intervals. Re-
move all unmatchable intervals.

(6) Merge the intervals in adjacent groups. Let ML, TL
be the intervals from the left group, let MR, TR be
the intervals from the right group, and let (lL; rL) and
(lR; rR) be the controlled ranges of the left and right
groups, respectively. Using Algorithm 1, solve the
problem for TL [MR over the range (lR; rR). Let
the resulting sets of machable and to-be-determined
intervals be Mn, and Tn. For the combined group, set
M = ML [Mn and T = Tn [TR. The controlled
range of the combined group is (lL; rR).

(7) Repeat Step 6 O(log) times until a single group is ob-
tained.

(8) Using a reverse process of the previous steps, using
O(log) iterations, redistribute the intervals back into
the groups obtained at the end of Step 3. In each
splitting phase, letM be the group we are splitting and
let ML and MR be those two components. Let V be
the set of intervals that have a left end point smaller
than the starting value of the controlled range of M .
Note that, V can be empty. Let W be the union of V
and ML. W should be distributed to ML and the rest
to MR. However, the controlled range ofML may not
allow the entire W to be assigned to ML. Hence, we
assign only the firstmin(jW j; lR�Lj) intervals toML

and the remainder to MR.
(9) Step 8 is repeated until groups are obtained.

(10) Using a sequential algorithm, each processor solves
the problem for its interval groups over each group’s
controlled range. For groups that span over more than
one processor, adjust the left end points to the start-
ing values of the controlled range and then apply Al-
gorithm 1.

— End of Algorithm —

Theorem 2 Algorithm 3 solves the label assign-
ment problem in O(log p) communication rounds and
O(Tsequ(

n
p ;

m
p) +

n
p log p) local computation.

Proof. The correctness of the split/merge scheme follows
from [7]. Step 6 is executed O(log) times. In Step 6,
we invoke Algorithm 1 which requires O(1) communica-
tion rounds. Since � 2p + 1, the total number of com-
munication rounds is O(log p). The local computation time
is dominated by the O(1) executions of the sequential algo-
rithm on each processor and the linear local time in each of
the O(log) iterations. 2

As described in Section 1.1, this theorem implies an al-
gorithm for computing the maximum matching of a con-
vex bipartite graph with the same number of communication
rounds and local computation.

3 Conclusion

In this paper, we have presented a coarse grained parallel
algorithm for computing a maximum matching of a convex
bipartite graph G = (A;B;E). For p processors with N=p
memory per processor, N=p � p, the algorithm requires
O(log p) communication rounds and O(Tsequ(np ;

m
p) +

n
p log p) local computation. For the BSP model, this implies
O(log p) supersteps with O(gN+g np log p) communication
cost and O(Tsequ(

n
p ;

m
p) +

n
p log p) local computation.

From a practical point of view, i.e. for implementing this
method on commercial multiprocessors, it is very important
that the problem size is not a parameter for the number of
communication rounds. The result obtained, i.e. O(log p)
communication rounds, is a function of p only. Since p is
usually fixed or grows on very slowly in practice, and log p
is a slowly growing function, the number of communica-
tion rounds is essentially a fixed constant for most practical
arrangements. This is important because empirical studies
show that the number of communication rounds is the most
important parameter influencing the observed running time.

From a theoretical point of view it is an important open
problem to study whether it is possible to find an algorithm
with even fewer communication rounds (is O(1) possible?)
and/or determine lower bounds for the number of commu-
nication rounds.

References

[1] R.J. Anderson and L. Snyder, “A Comparison of
Shared and Nonshared Memory Models of Computa-
tion.” Proc. of IEEE, vol 79(4),pp.480-487.

[2] G.E. Blelloch, C.E. Leiserson, B.M. Maggs, and
C.G. Plaxton, “A Comparison of Sorting Algorithms
for the Connection Machine CM-2.,” Proc. ACM
Symp. on Parallel Algorithms and Architectures, 1991,
pp. 3-16.

[3] E. Caceres, F. Dehne, A. Ferreira, P. Flocchini, I.
Rieping, A. Roncato, N. Santoro, and S. W. Song,
“Efficient parallel graph algorithms for coarse grained
multicomputers and BSP,” in Proc. 24th International
Colloquium on Automata, Languages and Program-
ming (ICALP’97), 1997, Springer Verlag Lecture
Notes in Computer Science, Vol. 1256, pp. 390–400.

[4] F. Dehne, A. Fabri, and A. Rau-Chaplin, “Scalable
Parallel Geometric Algorithms for Coarse Grained
Multicomputers,” Proc. ACM 9th Annual Computa-
tional Geometry, pages 298–307, 1993

[5] F. Dehne, X. Deng, P. Dymond, A. Fabri, and A. A.
Kokhar, “A randomized parallel 3D convex hull al-
gorithm for coarse grained multicomputers,” in Proc.
ACM Symposium on Parallel Algorithms and Archi-
tectures (SPAA’95), pp. 27–33, 1995.

[6] F. Dehne, A.Chan, “A note on coarse grained par-
allel integer sorting,” Technical Report, School
of Computer Science, Carleton University, 1998,
http://www.scs.carleton.ca.

[7] E. Dekel and S. Sahni, “A Parallel Matching Al-
gorithm for Convex Bipartite Graphs,” International
Conference on Parallel Processing, 1982, pp. 178–184.

[8] X. Deng, “A Convex Hull Algorithm for Coarse
Grained Multiprocessors.” Proc. 5th International
Symposium on Algorithms and Computation, 1994.

[9] X. Deng and P. Dymond. “Efficient Routing and Mes-
sage Bounds for Optimal Parallel Algorithms.” to ap-
pear in IPPS 1995, Santa Barbara, April, 1995.

[10] X. Deng and N. Gu, “Good Programming Style on
Multiprocessors.” Proceedings of IEEE Symposium on
Parallel and Distributed Processing, Dallas, October,
1994, pp.538-543,

[11] A.V. Gerbessiotis and L.G. Valiant, “Direct Bulk-
Synchronous Parallel Algorithms,” Proc. 3rd Scandi-
navian Workshop on Algorithm Theory, Lecture Notes
in Computer Science, Vol. 621, 1992, pp. 1-18.

[12] F. Glover, “Maximum matching in convex bipartite
graphs,” Naval Res. Logist. Quarterly, 14, 1967, pp.
313–316.

[13] M.T. Goodrich, “Communication efficient parallel
sorting,” ACM Symposium on Theory of Computing
(STOC), 1996.

[14] J.E. Hopkroft, R.M. Karp, “An n5=2 algorithm for
maximum matching in bipartite graphs,” SIAM J.
Comput., 2, 1973, pp. 225–231.

[15] W. Lipski and F.P. Preparata, “Efficient algorithms
for finding maximum matchings in convex bibartite
graphs and related problems,” Acta Informatica, 15,
1981, pp. 329–346.

[16] Hui Li, and K.C. Sevcik, “Parallel Sorting by Overpar-
titioning.” SPAA94, pp.46-56, 1994.

[17] L. Snyder, “Type architectures, shared memory and
the corollary of modest potential.” Annu. Rev. Comput.
Sci. 1, pp.289-317, 1986.

[18] L.G. Valiant, “A Bridging Model for Parallel Compu-
tation.” Communications of the ACM, Vol. 33, pages
103–111, 1990.

