
Coarse Grained Parallel Algorithms for

Detecting Convex Bipartite Graphs

E. Caceres1, A. Chan2, F. Dehne3, and G. Prencipe4

1 Dept. de Computacao e Estatistica, UFMS, Campo Grande, Brasil,

edson@dct.ufms.br
2 School of Computer Science, Carleton University, Ottawa, Canada K1S 5B6,

achan@scs.carleton.ca
3 School of Computer Science, Carleton University, Ottawa, Canada K1S 5B6,

dehne@scs.carleton.ca
4 Dipartimento di Informatica, Corso Italia 40, 56125 Pisa, Italy, prencipe@di.unipi.it

Abstract. In this paper, we present parallel algorithms for the coarse

grained multicomputer (CGM) and bulk synchronous parallel computer

(BSP) for solving two well known graph problems: (1) determining whether

a graph G is bipartite, and (2) determining whether a bipartite graph G

is convex.

Our algorithms require O(log p) and O(log2 p) communication rounds,

respectively, and linear sequential work per round on a CGM with p

processors and N=p local memory per processor, N=jGj. The algorithms

assume that N
p
� p� for some �xed � > 0, which is true for all commer-

cially available multiprocessors. Our results imply BSP algorithms with

O(log p) and O(log2 p) supersteps, respectively, O(g log(p)N
p
) communi-

cation time, and O(log(p)N
p
) local computation time.

Our algorithm for determining whether a bipartite graph is convex in-

cludes a novel, coarse grained parallel, version of the PQ tree data struc-

ture introduced by Booth and Lueker. Hence, our algorithm also solves,

with the same time complexity as indicated above, the problem of testing

the consecutive-ones property for (0; 1) matrices as well as the chordal

graph recognition problem. These, in turn, have numerous applications

in graph theory, DNA sequence assembly, database theory, and other

areas.

1 Introduction

In this paper, we study the problem of detecting bipartite graphs and convex

bipartite graphs. That is, given an arbitrary graph G, determine whether G is a

bipartite graph and, given a bipartite graph G, determine whether G is a convex

bipartite graph. Bipartite and convex bipartite graphs are formally de�ned as

follows.

De�nition 1. A graph G = (V;E) is a bipartite graph if V can be partitioned

into two sets A and B such that A \ B = ;, A [B = V and E � ((A � B) [
(B �A)). A bipartite graph G is also denoted as G = (A;B;E).

2

De�nition 2. A bipartite graph G = (A;B;E) is a convex bipartite graph if

there exists an ordering (b1; b2; � � � ; bjBj) of B such that, for all a 2 A and 1 �

i < j � jBj, if (a; bi) 2 E and (a; bj) 2 E then (a; bk) 2 E for all i � k � j.

These, and closely related, problems has been extensively studied for the se-

quential [1, 15] and the shared memory (PRAM) parallel [4, 5, 11{14] domain.

Unfortunately, theoretical results from PRAM algorithms do not necessarily

match the speedups observed on real parallel machines. In this paper, we present

parallel algorithms that are more practical in that the assumptions and cost

model used reects better the reality of commercially available multiprocessors.

More precisely, we will use a version of the BSP model, referred to as the coarse

grained multicomputer (CGM) model. In contrast to the BSP model, the CGM

[6{9] allows only bulk messages in order to minimize message overhead costs. A

CGM is comprised of a set of p processors P1; : : : ; Pp with O(N=p) local mem-

ory per processor and an arbitrary communication network (or shared memory).

All algorithms consist of alternating local computation and global communica-

tion rounds. Each communication round consists of routing a single h-relation
with h = O(N=p), i.e. each processor sends O(N=p) data and receives O(N=p)
data. We require that all information sent from a given processor to another

processor in one communication round is packed into one long message, thereby

minimizing the message overhead. A CGM computation/communication round

corresponds to a BSP superstep with communication cost gN
p
(plus the above

\packing requirement"). Finding an optimal algorithm in the coarse grained

multicomputer model is equivalent to minimizing the number of communication

rounds as well as the total local computation time. The CGM model has the

advantage of producing results which correspond much better to the actual per-

formance of implementations on commercially available parallel machines. In ad-

dition to minimizing communication and computation volume, it also minimizes

important other costs like message overheads and processor synchronization.

In this paper, we present parallel CGM algorithms for detecting bipartite

graphs and convex bipartite graphs. The algorithms requireO(log p) andO(log2 p)
communication rounds, respectively, and linear sequential work per round. They

assume that the local memory per processor, N=p, is larger than p� for some

�xed � > 0. This assumption is true for all commercially available multiproces-

sors. Our results imply BSP algorithms with O(log p) supersteps, O(g log(p)N
p
)

communication time, and O(log(p)N
p
) local computation time.

The algorithm for detecting bipartite graphs is fairly simple and is essentially

a combination of tools developed in [3]. The larger part of this paper deals with

the problem of detecting convex bipartite graphs. This is clearly a much harder

problem. It has been extensively studied in the literature and is closely linked

to the consecutive ones problem for (0; 1)-matrices as well as chordal graph

recognition [1, 4, 5, 11{15].

Our algorithm for determining whether a bipartite graph is convex includes

a novel, coarse grained parallel, version of the PQ tree data structure introduced

by Booth and Lueker [1]. Hence, our algorithm also solves, with the same time

complexity as indicated above, the problem of testing the consecutive-ones prop-

3

erty for (0; 1)-matrices as well as the chordal graph recognition problem. These,

in turn, have numerous applications in graph theory, DNA sequence assembly,

database theory, and other areas. [1, 4, 5, 11{15]

2 Detecting Bipartite Graphs

In this section, we present a simple CGM algorithm for detecting bipartite

graphs. It is a straight-forward combination of tools developed in [3].

Algorithm 1 Detection of Bipartite Graphs

Input: A Graph G = (V;E) with vertex set V and edge set E, jGj = N , stored on a

CGM with p processors and O(N=p) memory per processor; N=p � p� for some �xed � > 0.

V and E are arbitrarily distributed over the memories of the CGM. Output: A Boolean

indicating whether G is a bipartite graph and, if it is, a partition of V into two disjoint set

A and B such that E � ((A�B) [(B �A)).

(1) Compute a spanning forest of G [3].

(2) For each tree in the forest, select one arbitrary node as the root. Apply the CGM

Euler Tour algorithm in [3] to determine the distance between each node and the

root of its tree. Classify the nodes into two groups: the nodes with an odd numbered

distance to the root, and the nodes with an even numbered distance to the root.

(3) Each processor examines the edges stored in its local memory. If any such edge has

two vertices that belong to the same group, the result for that processor is \failure";

otherwise, the result is \success".

(4) By applying CGM sort [10] to all \failure"/\success" values, it is determined whether

there was any processor with a \failure" result. If there was any \failure", the graph

G is not bipartite. Otherwise, G is a bipartite graph, and the two groups of vertices

identi�ed in Step 2 are the sets A and B.

Theorem 1. Algorithm 1 detects whether G = (V;E), jGj = N , is a bipartite

graph and, if so, partitions E into sets A and B such that E � ((A�B)[(B�A))
in O(log p) communication rounds and O(N

p
) local computation per round on a

CGM with p processors and O(N
p
) memory per processor, N

p
� p� for some �xed

� > 0.

Proof. Omitted due to page restrictions. To be included in the full version of

this paper.

3 Detecting Convex Bipartite Graphs

We now turn our attention to the problem of testing whether a given bipartite

graph is a convex bipartite graph. The sequential solution, presented by Booth

and Lueker [1], introduced a data structure called PQ-tree. Our coarse grained

parallel solution will include a novel coarse grained parallel version of the PQ-

tree. We will �rst review Booth and Lueker's PQ-tree de�nition.

De�nition 3. A tree T is a PQ-tree if every internal node of T can be classi�ed

as either a P-node or a Q-node. A P-node is an internal node that has at least 2

4

children, and the children can be permuted arbitrarily. A Q-node is an internal

node that has at least 3 children, and the children can only be permuted in two

ways: the original order or the reverse order. The leaves of the PQ-tree are

elements of a universal set S = fa1; : : : ; ang, usually called the ground set.

The order of the ground set in the PQ-tree, from left to right, is called its

frontier. The frontier of a PQ-tree is clearly a permutation of the ground set.

Given a PQ-tree T and using only permissible permutations of its internal nodes,

we can generate a number of permutations of S. We will denote with L(T) the
set of all these permissible permutations. A PQ-tree T 0 is equivalent to T if T 0

can be transformed into T using only permissible permutations of the internal

nodes (if L(T 0) and L(T) have the same elements).

Given a set A � S, we say that � 2 L(T) satis�es A if all elements of A
appear consecutively in �. The main operation on a PQ-tree T is called reduce:

given a reduction set A = fA1; : : : ; Akg of subsets of S and a PQ-tree T , we want
obtain a PQ-tree T 0, if it exists, such that each permutation in L(T 0) satis�es

every Ai, 1 � i � k.
Let m = �k

i=1jAij and N = n +m. In order to store T and A, we require

a coarse grained multicomputer with p processors and N=p local memory per

processor.

Two particular PQ-trees are the universal and the empty tree: the �rst one

has only one internal node (the root of T) and that internal node is a P-node;

the second one (also called a null PQ-tree) is used to represent an impossible

reduction, that is when it is impossible to reduce a PQ-tree with respect to a

given reduction set.

3.1 Multiple Disjoint Reduce Operations on a PQ-Tree

In this section, we will present a coarse grained parallel algorithm for the spe-

cial case of performing multiple disjoint reductions on a PQ-tree. We will then

use this solution to develop the general algorithm in the subsequent section.

More precisely, given a PQ-tree T we will �rst study how to perform the reduce

operation for a set A = fA1; : : : ; Akg of subsets of the universal set S where

A1; : : : ; Ak are disjoint. We shall refer to our algorithm as Algorithm MDReduce.

For ease of discussion, each set Ai is assigned a unique color, and we color the

leaves of the PQ-tree accordingly. Some of the PQ-tree de�nitions used are from

[1, 12].

We start with a pre-processing phase which extends the coloring � of the

leaves to a coloring � of all nodes of the PQ-tree T . For an internal node v
of T , we say that a color is complete at v if all the leaves with that color are

descendants of v. We say a color is incomplete at v if some, but not all, of the

leaves of that color are descendants of v. We say that a color covers v if all

the leaves below v are of that color, and that v is uncovered if no color covers

v. Let LCA(c) be the lowest common ancestor of all leaves with color c. Let
COLORS(v) denote the set of colors assigned to leaves that are descendents of

v. Let INC(v) be the set of colors which are incomplete at v. Then INC(v) =
COLORS(v) - fc: LCA(c) is a descendent of vg.

5

Algorithm 2 Pre-Processing the PQ-Tree

Input: The original PQ-tree T .

Output: The original PQ-tree T in which each node is assigned a "coloring" �, or, if

failure occurs, a null tree.

(1) Apply the coarse grained parallel Lowest Common Ancestor (LCA) algorithm [3].

(2) Expand T into a binary tree B.

(3) Perform tree contraction on B; see [3]. For each node vb in B, let vp be the node in T

from which vb is created. Let w1 and w2 be the children of vb. The operation for the

tree contraction is INC(vb) = INC(w1)[INC(w2) - fc: LCA(c) is a descendent

of vpg. If at any point the size of INC is more than two, stop and return a null tree.

(4) Let cv be a new color unique to node v. Each processor, for all its nodes, v, calculates

�(v) = < c1; c2 > as follows: If two colors are incomplete at v, then c1 and c2 are

these colors. If only one color c is incomplete at v but c does not cover v, then c1 =

c and c2 = cv . If one color c is incomplete at v and covers v, then c1 = c2 = c. If

no color is incomplete at v, then c1 = c2 = cv.

Lemma 1. On a coarse grained multicomputer with p processors and O(N
p
)

storage per processor, Algorithm 2 can be completed in O(log p) communication

rounds with O(N
p
) local computation per round.

Proof. Omitted due to page restrictions. To be included in the full version of

this paper.

A node v in a PQ-tree is orientable if it is a Q-node and the two colors in its

�(v) =< c1; c2 > are di�erent, i.e. c1 6= c2.

For a color c, de�ne hv(c) =

�
c if c 2 INC(v)
cv if c =2 INC(v)

For a PQ-tree T where w1 and wk are the leftmost and rightmost elements,

respectively, of the frontier frT (v), let lT = hv(�(w1)) and rT = hv(�(wk)). If

lrT [v] =< lT [v]; rT [v] > then we use the following notation: < a; b >�< a0; b0 >
if fa; bg = fa0; b0g.

Algorithm 3 Processing P-Nodes

Input: The PQ-Tree output from Algorithm 2.

Output: The original PQ-tree T in which all the P-nodes have been processed, or, if

failure occurs, a null tree.

(1) If the input PQ-tree T is a null tree, return T .

(2) Each processor sets variable FAILURE to FALSE

(3) Each processor, for each P-node v, reorder the children of v such that for each color

c all children covered by c are consecutive.

(4) Each processor, for each P-node v and each color c, if there are at least two children

covered by c (and at least one child not covered by c) then insert a new P-node wc

between these c-covered children and v.

(5) Each processor, for each P-node v, constructs an auxiliary graph Gv whose nodes are

the children of v and where for each color c there is an edge between children vi and

vj at which c is incomplete if vi or vj is covered by c, or there is no child covered by

c. If any node has more than 2 neighbors, set FAILURE to TRUE to indicate a

failure condition.

(6) Perform a multi-broadcast of the variable FAILURE. If any of the broadcast values

is TRUE, return a null tree.

6

(7) Each processor uses list-ranking to identify the connected components of each Gv

and veri�es that each of these connected components is a simple path. If any of these

components is a cycle, set FAILURE to TRUE to indicate a failure condition. We

call these paths color chains.

(8) Perform a multi-broadcast of the variable FAILURE. If any of the broadcast values

is TRUE, return a null tree.

(9) Each processor, for each color chain � containing at least 2 nodes, chooses one of

the 2 orientations of � arbitrarily. Reorder the children of v so that the nodes of �

are consecutive, and insert a new Q-node between these nodes of v.

(10) Each processor, for each P-node v, let S = fvi : vi is a child of v, and INC(vi)=;g.
If every child of v is in S, then return. Otherwise, reorder the children of v to make

S consecutive, insert a new P-node v0 between v and the subset S (if jSj > 1), and

rename v to be a Q-node.

Lemma 2. On a coarse grained multicomputer with p processors and O(N
p
)

storage per processor, Algorithm 3 can be completed in O(log p) communication

rounds with O(N
p
) local computation per round.

Proof. Omitted due to page restrictions. To be included in the full version of

this paper.

For each Q-node v, we de�ne an orientation LR(v) which is either �(vi)
or �(vi)

R. Note that if �(vi) =< c1; c2 > than �(vi)
R =< c2; c1 > For <

a; b >�< a0; b0 > and a 6= b, we de�ne < a; b > swap < a0; b0 > equals TRUE
if < a; b >=< b0; a0 >, FALSE if < a; b >=< a0; b0 >. For a Q-node v, flip is

de�ned as the operation which re-orders all its children in reverse order.

Algorithm 4 Processing Q-Nodes

Input: The PQ-tree output from Algorithm 3.

Output: The original PQ-tree T in which all the Q-nodes have been processed, or, if

failure occurs, a null tree.

(1) If the input PQ-tree T is a null tree, return T .

(2) Each processor sets variable FAILURE to FALSE

(3) Each processor, for each Q-node v and children be v1; : : : ; vs, assign to each LR[vi]

either �(vi) or �(vi)
R such that every color in the sequence LR[v1]; : : : ; LR[vs] oc-

curs consecutively, and such that hv(< L[v1]; R[vs >]) � �(v). If this is impossible,

set FAILURE to TRUE to indicate a failure condition, otherwise, set LR[v] to

hv(< L[v1]; R[vs] >).

(4) Perform a multi-broadcast of the variable FAILURE. If any of the broadcast values

is TRUE, return a null tree.

(5) Each processor for each node v: if v is orientable, then set OPP [v] to LR[v] swap

LR[v], otherwise, set OPP [v] to FALSE.

(6) Each processor for each node v: set REV [v] to

L
u is an ancestor of v

OPP [u] (Note:
L

denotes "exclusive-or").

(7) For each orientable node v, if REV [v] is TRUE, then ip v.

Lemma 3. On a coarse grained multicomputer with p processors and O(N
p
)

storage per processor, Algorithm 4 can be completed in O(log p) communication

rounds with O(N
p
) local computation per round.

7

Proof. Omitted due to page restrictions. To be included in the full version of

this paper.

Algorithm 5 Post-Processing the PQ-Tree

Input: The PQ-tree output from Algorithm 4, with all R-nodes renamed.

Output: Result of Algoithm MDReduce.

(1) If T is a null tree, return.

(2) Each processor temporarily cuts the links of its Q-nodes to their parents.

(3) Each processor performs pointer jumping for all its nodes that are children of R-nodes

to determine their lowest Q-node ancestor.

(4) Each processor restores the links cut in Step 2.

(5) Each processor eliminates its R-nodes by setting the parents of their children to their

lowest Q-node ancestors.

Lemma 4. On a coarse grained multicomputer with p processors and O(N
p
)

storage per processor, Algoritm 5 can be completed using in O(log p) communi-

cation rounds with O(N
p
) local computation per round.

Proof. Omitted due to page restrictions. To be included in the full version of

this paper.

Theorem 2. On a coarse grained multicomputer with p processors and O(N
p
)

storage per processor, Algorithm MDReduce performs a multiple disjoint reduce

for a PQ-tree T in O(log p) communication rounds with O(N
p
) local computation

per round.

Proof. Omitted due to page restrictions. To be included in the full version of

this paper.

3.2 Multiple General Reduce Operations on a PQ-Tree

Using the coarse grained parallel MDreduce algorithm presented in the previous

section, we will now develop coarse grained parallel algorithm for the general

MReduce operation: given a PQ-tree T over the ground set S with n elements,

perform the reduce operation for an arbitrary reduction sets A = fA1; : : : ; Akg

Our CGM algorithm for the general MReduce operation consists of two

phases. In the �rst phase, we execute 3 log p times an algorithm which is a

CGM implementation of a PRAM algorithm proposed by Klein [12]. We call this

operation Mreduce1(T; fA1, : : :, Akg; 0). Our contribution here is the imple-

mentation of the various shared memory PRAM steps on a distributed memory

CGM, which is non trivial. After this �rst phase, we have reduced the problem

to one in which we are left with a set of smaller PQ-trees over ground sets whose

size is at most n=p. Hence, each tree can be stored in the local memory of one

processor. However, we can not guarantee that all the reduction sets of these

PQ-trees do also �t in the local memory of one processor. In the second phase

of our algorithm, we use a merging strategy to complete the algorithm. We will

refer to this phase as the Merging Phase.

8

First Phase: For a node v of a PQ-tree, leavesT (v) denotes the set of pendant
leaves of v, i.e. leaves of T having v as ancestor. Let lcaT (A) denote the least

common ancestor in T of the leaves belonging to A. Suppose that v = lcaT (A)
has children v1; : : : vs in order. We say A is contiguous in T if either (1) v is a

Q-node, and for some consecutive subsequence vp; : : : ; vq of the children of v,
A =

S
p�i�q leavesT (vi), or (2) v is a P-node or a leaf, and A = leavesT (v).

Suppose that E is contiguous in T . T jE denotes the subtree consisting of

lcaT (E) and those children of lcaT (E) whose descendents are in E (it is still a

PQ-tree whose ground set is E). For a set A, de�ne

AijE =

�
Ai \ E if Ai \E 6= E
; if Ai \E = E

Let ?E denote lcaT (E). T=E denotes the subtree of T obtained by omitting

all the proper descendents of lcaT (E) that are ancestors of elements of E (it is

still a PQ-tree whose ground set is S �E [f?Eg). For a set A, de�ne

Ai=E =

�
Ai �E [f?Eg if Ai � E
Ai �E otherwise

Algorithm 6 Mreduce1(T; fA1; : : : ; Akg; i):
(1) If i = 3 log p, return.

(2) Purge the collection of input sets Ai of empty sets. If no sets remain, return.

(3) Let n be the size of the ground set of T . If n � 4, carry out the reduction one by one.

If the size of the input is smaller than the size of the local memory of the processors,

than solve the problem sequentially using the Booth and Lueker's algorithm.

(4) Otherwise, let A be the family of (nonempty) sets Ai. Let S consist of the sets Ai

such that jAij � n=2. We call such sets "small". Let L be the remaining, "large",

sets in A. Find the connected components of the intersection graph of A, �nd a

spanning forest of the intersection graph of S, and �nd the intersection \L of the

large sets.

(5) Proceed according to one of the following cases:

(a) The intersection graph of A is disconnected. In this case, let C1; : : : ; Cr be the

connected components of A. For i = 1; : : : ; r, let Ei be the union of sets in

the connected component Ci. Call MDreduce to reduce T with respect to

the disjoint sets E1; : : : ; Er. Next, for each i = 1; : : : ; r in parallel, recursively

call Mreduce1(T jEi; Ci; i+ 1).

(b) The union of sets in some connected component of S has cardinality at least

n=4. In this case, from the small sets making up this large connected compo-

nent, select a subset whose union has cardinality between n=4 and 3n=4. Let

E be this union, and call subreduce(T;E; fA1; : : : ; Akg; i).
(c) The cardinality of the intersection of the large sets is at most 3n=4. In this case,

from the large sets choose a subset whose intersection has cardinality between

n=4 and 3n=4. LetE be this intersection, and call subreduce(T;E; fA1; : : : ; Akg; i).
(d) The other case do not hold. In this case, let E be the intersection of the large

sets, and call subreduce(T;E; fA1; : : : ; Akg; i).

In the full version of this paper, we show how to implement the above on a

coarse grained multicomputer with p processors and O(n
p
) storage per processor

9

in O(log p) communication rounds. The non trivial parts are Step 4, Step 5b,

the computation of E, T=E, and T jE, as well as the subreduce operation. The

latter involves another operation called Glue. Due to page restrictions, we can

not present this part of our result in the extended abstract. Instead, we give one

example which shows the coarse grained parallel computation of the set E in

Step 5(b) of Algorithm 6.

Algorithm 7 Computation of E.

Input: The set S and the spanning forest of its intersection graph.

(1) In order to �nd a connected component C in the spanning forest of S, such that the

union of its sets has cardinality at least n=4, order all the components according to

the labeling given by the coarse grained parallel spanning forest algorithm [3].

(2) Sort each component with respect to the values of its elements and mark as "valid"

only one element per distinct value.

(3) Sort again with respect to the components' labels. Compute the cardinality of the

union of the elements of each component (that is the size of each component), with

a pre�x-sum computation, counting only the "valid" elements. (Hence, we do not

count twice the elements with same values and compute correctly the cardinality of

the union.)

(4) If a processor �nds a component whose size is � n=4, then it broadcasts the label of

this component. Otherwise it broadcast a "not-found" message.

(5) If everybody sent "not-found", go to step 4(c) of Mreduce algorithm. Otherwise,

among all the labels received in the previous step, choose as C the component with

the smallest label.

(6) For each of the sets comprising C, compute the distance in the spanning tree (from

the root) using the coarse grained parallel Euler-tour technique [3].

(7) Sort the sets according to distance, and let B1; : : : ; Bs be the sorted sequence. Sort

each sets with respect to the values of its elements and mark as "valid" only one

element per distinct value. Sort the sets again, according to distance, and let {̂ be

the minimum i such that j
Si

j=1
Bj j � n=4. (̂{ can be found with a pre�x-sum

computation on the "valid" elements.) Broadcast {̂.

(8) Mark all "valid" elements in B1; : : : ; B{̂ as elements of E.

Second Phase: Consider the tree R of recursive calls in Mreduce1. We ob-

serve that, after l = 3 log
4=3 p levels of R (when the �rst part of our algorithm

stops), the sizes of the ground sets associated with the nodes in R at level l are
at most n=p. This is due to the fact that the descendants of a node u in R that

are 3 levels below u are smaller than u by approximately a factor 3=4. More

precisely, if n(u) denotes the size of the ground set of T (u) (the subtree rooted
at u) then, for every node w three levels below u, n(u) � 3n(w)=4 + 1. Hence,

each PQ-tree obtained at the end of the �rst phase �ts completely into the local

memory of one processor.

Unfortunately, the same argument does not hold for the reduction sets. Recall

that m = �k
i=1jAij. Let u be an internal node of R, Au1 ; : : : ; Auj its reduction

sets, and mu = �j
i=1jAui j. Since the sizes of the reduction sets of the children of

u depend strictly on the Aui and on how they intersect with the set E computed

for u, it is possible that the Aui are split in an unbalanced way. That is, we

10

can have �j
i=1jAui jEj = O(mu) and �j

i=1jAui=Ej = O(1) (or vice versa). If this
continues up to level 3 log p of R, it is possible that for a recursive call associated
with a node v at level l, �f

i=1jAvij > m=p.

Therefore, while the ground set of T (v), and hence T (v), can �t in one pro-

cessor, the reduction sets could possibly not. Thus, at this point of the compu-

tation, we can not simply use the sequential algorithm of Booth and Lueker [1]

for completing the reduction.

Our idea for solving this problem is the following. Let us consider a node v
at level l in R that has mu > m=p. Since, at any level of recursion, the sum of

the sizes of all reduction sets is at most 2m, we can create �v copies of T (v),
with �v = b mv

m=p
c. We observe that

�v2l�v = �v2lb
mv

m=p
c � �v2l

mv

m=p
�

p

m
�v2lmv �

p

m
� 2m = 2p:

Hence, we require at most two copies per processor. The reduction problem of

each node v at level l of R will be solved by the �v processors that have copies

of T (v). The next step is the distribution of the reduction sets associated to v
among these �v processors. Each of these �v processors can solve locally the

problem of reducing T (v) with respect to the reduction sets that it has stored,

using Booth and Lueker's algorithm [1]. For each processor, let T 0(v) refer to

this reduced tree. Now, we need to merge these �v trees, T 0(v). More precisely,

we need to compute a PQ-tree bT (v) such that L(bT (v)) = L(T (v)), where T (v) is
the PQ-tree that we would have obtained by reducing T (v) directly with respect

its reduction sets. For the construction of bT (v), we merge the T 0(v) trees in a

binary tree fashion.

Algorithm 8 Merging Phase

Input: h PQ-trees T (i), with jT (i)j � n=p and �ijT (i)j � n, and their reduction sets.

Output: The T (i) reduced with respect their reduction sets.

(1) Let mi be the sum of the sizes of the reduction sets of Ti. Make �i = b mi

m=p
c copies

of each T (i). Distribute the reduction sets of each Ti between the processors that

have the copies of T (i).

(2) Each processor executes the sequential algorithm [1] for its PQ-trees with the reduc-

tion sets that it has stored. Let T 0(i) refer to the trees obtained.

(3) The �i processors associated with each T (i) merge the T 0(v) trees in a binary tree

fashion. More details are outlined below.

The following Theorem 3 shows that the merge operation in Step 3 of Al-

gorithm 8 reduces to a tree intersection operation. We have designed a CGM

algorithm for tree intersection which implements Step 3 of Algorithm 8. Due

to page restrictions, we can not include a description of our tree intersection

algorithm in this extended abstract. It will be included in the full version of this

paper.

Theorem 3. Let T be a PQ-tree over the ground set S and let T 0 be a copy of

T . Let T � and T 0� be the result of the reduction of T with respect to fA1; : : : ; Arg

11

and of T 0 with respect to fB1; : : : ; Btg, respectively. Let T be the PQ-tree obtained

by reducing T with respect to fA1; : : : ; Ar; B1; : : : ; Btg. Then,

� 2 L(T), � 2 L(T�) \ L(T 0�):

Proof. L(T) is the intersection of the sets of all orderings that satisfy A1; : : : ; Ar,

B1; : : : ; Bt, and L(T). L(T) is always the same, independently of the order in

which we reduce T . If � 2 L(T), then � must belong to the intersection between

the set of all orderings that satisfy A1; : : : ; Ar and L(T) and it must also belong to

the intersection between the set of all orderings that satisfy B1; : : : ; Bt and L(T),

that is � 2 L(T �), � 2 L(T 0�) and � 2 L(T). Hence � belongs to L(T �)\L(T 0�).

The reverse can be shown analogously.

In summary, we obtain

Theorem 4. On a coarse grained multicomputer with p processors and O(N
p
)

storage per processor, Algorithm MReduce performs a reduce operation for a

PQ-tree T in O(log2 p) communication rounds with O(N
p
) local computation per

round.

3.3 Convex Bipartite Graphs

Recall the de�nition of convex bipartite graphs (De�nition 2). Given a bipartite

graph G = (A;B;E) with A = fa1; a2; � � � ; akg and B = fb1; b2; � � � ; bng. Let
A = fA1; : : : ; Akg where Ai = fb 2 B : (ai; b) 2 Eg, and let T be a PQ-tree over

the ground set B consisting of a root with children b1; b2; � � � ; bn. The problem of

determining whether G is convex and, if this is the case, computing the correct

ordering of the elements in B is equivalent to the MReduce operation on T with

respect to A.

Theorem 5. On a coarse grained multicomputer with p processors and O(N
p
)

storage per processor, the problem of determining whether G is convex (and

computing the correct ordering of the elements in B) can be solved in O(log2 p)
communication rounds with O(N

p
) local computation per round.

References

1. K. S. Booth and G. S. Lueker, \Testing for the Consecutive Ones Property, Interval

Graphs, and Graph Planarity Using PQ-Tree Algorithms," in Journal of Computer

and System Sciences, Vol. 13, pp. 335-379, 1976.

2. P. Bose, A. Chan, F. Dehne, and M. Latzel, \Coarse grained parallel maximum

matching in convex bipartite graphs," in Proc. 13th International Parallel Processing

Symposium (IPPS'99), 1999.

3. E. Caceres, F. Dehne, A. Ferreira, P. Flocchini, I. Rieping, A. Roncato, N. Santoro,

and S. W. Song, \E�cient parallel graph algorithms for coarse grained multicom-

puters and BSP," in Proc. 24th International Colloquium on Automata, Languages

and Programming (ICALP'97), Bologna, Italy, 1997, Springer Verlag Lecture Notes

in Computer Science, Vol. 1256, pp. 390-400.

12

4. L.Chen and Y.Yesha, \Parallel recognition of the consecutive ones property with

applications," J. Algorithms, vol. 12, no. 3, pp. 375-392. 1991.

5. Lin Chen, \Graph isomorphism and identi�cation matrices: parallel algorithms,"

IEEE Trans. on Parallel and Distr. Systems, Vol. 7, No. 3, March 1996, pp. 308 �.

6. F. Dehne (Ed.), \Coarse grained parallel algorithms," Special Issue of Algorithmica,

Vol. 24, No. 3/4, 1999, pp. 173-426.

7. F. Dehne, A. Fabri, and A. Rau-Chaplin, \Scalable Parallel Geometric Algorithms

for Coarse Grained Multicomputers," in Proc. ACM 9th Annual Computational Ge-

ometry, pages 298{307, 1993.

8. F. Dehne, A. Fabri, and C. Kenyon, \Scalable and Architecture Independent Parallel

Geometric Algorithms with High Probability Optimal Time," in Proc. 6th IEEE

Symposium on Parallel and Distributed Processing, pages 586{593, 1994.

9. F. Dehne, X. Deng, P. Dymond, A. Fabri, and A.A. Kokhar, \A randomized par-

allel 3D convex hull algorithm for coarse grained multicomputers," in Proc. ACM

Symposium on Parallel Algorithms and Architectures (SPAA'95), pp. 27{33, 1995.

10. M.T. Goodrich, \Communication e�cient parallel sorting," ACM Symposium on

Theory of Computing (STOC), 1996.

11. X. He and Y.Yeshua, "Parallel recognition and decomposition of two termninal

series parallel graphs," Information and Computation, vol. 75, pp. 15-38, 1987

12. P.N. Klein, E�cient Parallel Algorithms for Planar, Chordal, and Interval Graphs

PhD. Thesis, MIT, 1988.

13. P. Klein. \E�cient Parallel Algorithms for Chordal Graphs". Proc. 29th Symp.

Found. of Comp. Sci., FOCS 1989, pp. 150{161.

14. P. Klein. \Parallel Algorithms for Chordal Graphs". In Synthesis of parallel algo-

rithms, J. H. Reif (editor). Morgan Kaufmann Publishers, 1993, pp. 341{407.

15. A.C. Tucker, "Matrix characterization of circular-arc graphs," Paci�c J. Mathe-

matics, vol. 39,no. 2, pp. 535-545, 1971.

16. L. Valiant, \A bridging model for parallel computation," Communications of the

ACM, Vol. 33, No. 8, August 1990.

