
Issues for Robust Consensus Building in P2P

Networks

A-R. Mawlood-Yunis, M. Weiss, and N. Santoro

School of Computer Science, Carleton University
Ottawa, Ontario, K1S 5B6, CANADA.

{armyunis, santoro, weiss}@scs.carleton.ca

Abstract. The need for semantic interoperability between ontologies
in a peer-to-peer (P2P) environment is imperative. This is because, by
definition participants in P2P environment are equal, autonomous and
distributed. For example, the synthesis of concepts developed indepen-
dently by different academic researchers, different research labs, various
emergency service departments and, hospitals and pharmacies, just to
mention a few, are an assertive request for cooperation and collabora-
tion among these independent peers. In this work we are looking at issues
that enable us to build a robust semantic consensus to solve the interop-
erability problem among heterogeneous ontologies in P2P networks. To
achieve a robust semantic consensus we focus on three key issues: i. se-
mantic mapping faults, ii. consensus construction iii. fault-tolerance. All
these three issues will be further elaborated in this paper, initial steps
to address theses issues will be described and fault-tolerant semantic
mapping research directions will be further identified.

1 Introduction

There has been considerable work on semantic interoperability, i.e. the
mapping between different concepts from different ontologies. Some of
this work suggests achieving interoperability through a global ontology
mediator [6], while others suggest building consensus incrementally from
local mapping [1, 7, 8]. We favor the latter approach and it is the focus of
our research. To build a robust semantic consensus system we focus on
three key issues: i. semantic mapping faults, i.e. semantic mapping con-
flicts, ii. consensus construction iii. fault-tolerance. The existing works
on building semantic consensus among distributed ontologies do not dis-
tinguish between permanent and temporary semantic mapping faults.
The failure to distinguish between permanent and temporary mapping
faults could result in the erroneous labeling of peers with incompatible
knowledge representation. Incompatible knowledge representation could
have the further consequence of preventing labeled peers from teaming
up with other knowledge-comparable peers. Our hypothesis is that to

be able to extract the most consensus possible among related peers we
should focus not only on the cooperative peers, which most of the exist-
ing works do, but also on uncooperative peers as well. Observing the fact
that consensus building technique used in semantic mapping is simi-
lar to the majority voting technique used in the designing fault-tolerance
hardware and software systems opens up a new avenue for consensus con-
struction research. We believe that there are opportunities to build a more
robust semantic consensus systems using other applied majority voting
and fault-tolerance techniques. The need for fault-tolerance capability
of software have been determined by the fact that the real-world applica-
tions require a highly reliable, continuously available, safe and accurate
softwares. Therefore, we believe that semantic mapping systems should
be constructed with the built-in capability to tolerate faults.

The rest of this paper is organized as follows: in section 2, we look at
the temporary fault issue in consensus building. In section 3, we describe
the similarity between majority voting and consensus building and its
effect on future research. In section 4, we discuss the construction of the
consensus-based systems with fault-tolerance capabilities and finally in
section 5, the conclusion of the paper with some future research directions
are presented.

2 Semantic Mapping Faults

Consensus formation in a P2P network is identified by the greatest(lowest)
possible common knowledge (GCK) among all the peers of the network.
Current consensus building procedure obeys the following steps: Every-
time a peer P encounters another peer P̄ that could handle its request
(i.e. a peer with similar semantic knowledge representation), that peer
P̄ will be added to the list of related peers to peer P. This knowledge
will be used for the subsequent cooperation and encounters, for exam-
ple, when answering a query. However, if a peer P meets another peer
P̂ with a different semantic knowledge representation, that peer P̂ will
not be considered for subsequent tasks [1, 7, 4]. Two key elements in the
described consensus formation are semantic mapping operation and peers

participation. In other words, correct mapping relates peers with seman-
tic comparable concepts. Most of the existing works on concept mapping
are concern with the precision of mapping. It is implemented as threshold
variable δ and the user of the system decides on its value at a run time.
The δ and GCK are inversely related, i.e. the higher the δ the lower the
result of GCK and vise-versa. The following represents this relation.

f(GCK) : 1/δ Eq.1

Others such as [8, 7] tried to improve the result of GCK by increas-
ing the number of peers ρ who participate in consensus formation. This
is done by accepting partial results. Hence Eq.1 could be rewritten as
follows:

′f(GCK) : 1/δ, P (ρ) Eq.2

where ′f(GCK) represents the improved f(GCK) and P (ρ) is the
probability of extra peers participating in consensus formation because
of their ability to provide partial results to the query. In the described
consensus formation, peers’ past collaborations used for future decisions
on further collaborations. We will rewrite Eq.2 to reflect this reality where
χ represents cooperative peers.

′f(GCK) : (1/δ, P (ρ))[χ] Eq.3

One shortcoming with the above described method is that, once a peer
is unable to fulfill a particular request, for example answering a query,
it will not be considered for the subsequent tasks. In other words, the
described method sees the peers’ inability to answer a query as a per-
manent fault - permanent non-cooperation. We see this as a deficiency
because peers’ inability to answer a query could be a result of tempo-
rary dis-connection, noise or incompetency to answer a particular request.
Therefore, writing the Eq.3 to account for temporary uncooperative peers
ǫ yields the following relation.

′′f(GCK) : (1/δ, P (ρ))[χ, ǫ] Eq.4

To be able to include temporary uncooperative peers for future tasks,
we have to distinguish between permanent and temporary uncooperative
peers. Classification of different types of faults along the temporal dimen-
sion: transient, intermittent and permanent is the enabling mechanism
which facilitates the differentiation between permanent and temporary
uncooperative peers. A detailed description of fault types, fault source
and fault classification will be considered in future work.

3 Constructing Semantic consensus

In this section, we highlight some similarities between concepts and tech-
niques used in two different fields and those used in the semantic mapping

process, i.e., consensus formation. These fields are: i. theory of cooperation
and evolution and ii. fault-tolerant computing systems. The possibility of
misunderstanding or misimplementation between players, i.e. noise, has
been heavily studied in Cooperation and Evolution fields [2, 13, 11].
Strategies applied to bring autonomous selfish peers to a consensus with
existing noise in the system is an attractive proposition for solving se-
mantic mapping problem with existing faults in the process. We believe
that there are similarities between handling faults in consensus building
and coping with noise in autonomous agent cooperation. We see noise
as fault, more specifically, as a transient fault. Therefore, strategies for
coping with noise in agent cooperation could be adapted to tolerate faults
in consensus formation.

Majority voting is used to design Fault-Tolerant computing sys-

tems and it has similarity with techniques used by [1, 7, 8, 5, 12] to per-
form mapping and to eliminate the disambiguation between concepts,
i.e., the consensus formation technique. Lets consider both the majority
voting, consensus and their similarities in more details.

In the consensus based system concepts are translated along the
query translation or query propagation path. Hence, if the semantic of
the concepts are preserved along the query propagation path the query
yields a correct (consensus) answer. We could restate this as follow:

For every query to yield an acceptable answer, the translation of the

query element semantics have to be approved by multiple peers. This could

be considered as a form of a voting.

Please note that, not every consensus answer is a correct answer.
There is a possibility that even when several peers reach a consensus
about a particular query answer their conclusion might not to be the
correct one when compared to some predefined or known facts.

Figure 1 represents the consensus based system where each node rep-
resents a peer P and each directed edge Mi,j represents a query map-
ping from source peer Pi to target query Pj . Each cycle in the graph,
Pi1, Pi2.....Pj , Pi1 represents the query translation path. The selection (de-
selection) of a query result among multiple results returned from differ-
ent translation paths by query initiator is an approve (disapprove) to the
voting decision made by different peers on the translation path. A dished
circle in Fig. 1 represents one circle, i.e. translation query path, which
peers on the path might reach a consensus.

There are other types of systems such as those described in [5, 12] that
do not use translation to achieve consensus. Here, consensus is achieved
through counting the number of times a concept or the relation between
two concepts appears among different ontologies. We see that both de-
scribed methods, translation and reinforcement, uses the notion of voting
to reach consensus.

The majority voting techniques is a well-known technique used to
determine a consensus result from the results delivered by multiple com-
putation sources. We will concentrate on the TMR (Triple Modular Re-
dundancy) majority voting technique for its simplicity. The TMR system
is based on using extra hardware components. More specifically, the TMR
system uses three components in place of one component. The TMR sys-
tem also has an extra component called Voter. The Voter is the place
where the voting on the different results takes place, i.e., consensus made.
The main idea of this technique is that the system tries to build a con-
sensus result from three results [10]. This technique is used to prevent the
computation process from relying on a single result. Figure 2 is an illus-
tration for this technique where three peers (components) produce data
and a voter combine their output. From figure 2 we can notice that the
role of the Voter component becomes an essential role and the reliability
of entire system now depends upon the reliability of the Voter. We can
notice that the same drawback does exist in the consensus technique as
well. In Figure 1, the P8 plays this critical role.

P2

P3

P5

P4

P6 P7

P8

P9

M1,2
M2,4

M2,5

M5,8

M6,8

M6,9

M7,3

M4,7
M7,5

M9,5

M3,6

M8,1
Inti

a consensus
formation path

M1,3

Fig. 1. Query Translation Along Query Paths,

P8 plays similar role of voter in Fig. 2

Q
u

e
r
y

P

r
o

c
e

s
s
e

r

T
r
a

n
s
la

t
o

r

L
o

c
a

l
O

n
t
o

lo
g

y

F
a

u
lt
−

t
o

le
r
a

n
c
e

M
e

t
a

d

a
t
a

Jxta Peer

Fig. 2. Triple Modular Redundancy

We could replace T which stands for the Triplicate in the TMR tech-
nique by N where N > 2. This leads to a system with N components
redundancy, the NMR system, instead of the TMR system.

Other voting methods such as plurality voting, threshold voting and
weighted k-out-of-n are also used to reach consensus. There are tradeoffs
involved in using each of these method. Some methods are more suitable
than others for certain applications. For example, the plurality voting
method is usually used to determine a winner in a given election. In the
plurality method two parameters are important: i. the number of voters
that voted for the consensus, i.e. L voters agree and ii. the number of
voters which vote for consensus is grater than number of voters which
do not vote for consensus, i.e. M < L. In other words, the winner does
not need to have n/2+1 votes to win, where n is the number of total
participants in the voting. The winner needs only L votes where L is
the number of participants who voted for the winner and it exceeds the
number M were voted against the winner.

It worth to re-emphasis that what we trying to convey here is that
the voting is a form of consensus reaching. We believe that both the
voting technique which is used by fault-tolerance systems and a consensus

reaching used by semantic mapping process have a lot in common. This
leads us to the next issues: the feasibility of adapting other forms of
voting and fault-tolerance techniques to build consensus and to measure
the certainty 1 and the confidences 2 in the consensus reaching. Examples
of such techniques include a weighted majority voting, plurality voting
and time and information redundancy techniques. We believe that the
equivalences between consensus and majority voting will open up new
avenues for research. Currently we are researching this issues further.

4 Fault-tolerance

Software components are human made products and since humans are
subject to make mistakes, real-world software components cannot guar-
anteed to be error free. Hence, we should strive to achieve highly re-
liable, continuously available and safe software [3]. We scrutinized sev-
eral promising ontology mapping systems and methods for fault-tolerance
capability. The examination covered Chatty Web, OBSERVER, Piazza,
MAFRA and H-Match. We find out that all of these approaches lack the
fault-tolerance capability.

1 Weight of peers participated in consensus formation
2 Number of peers participated in consensus formation [14]

We are considering the construction of a consensus-based system with
a fault-tolerance capability, i.e. building a system which tolerates faults
that remain in the system after its development. A software fault-tolerance
capability could be accomplished through various methods including in-
formation, component and time redundancy.

The choice of information and time redundancy are more applicable
than the component redundancy (N-version programming) in P2P ontol-
ogy mapping context. This is because P2P network is dynamic environ-
ment in which peers enter and leave the network on the fly. Performing
multiple computations in such a dynamic environment is difficult and sub-
ject to termination, thus depriving peers from opportunities to produce
responses. A reasonable alternative would be the duplication of critical
variables and/or blocks of code and comparing the output of these code
blocks and variables at different stages of the execution of the same pro-
gram.

The time-redundancy technique could be used to add fault-tolerance
capabilities to the consensus formation methods in at least two ways in-
cluding: i. querying the peer service provider more than once at different
times and comparing the obtained results, and ii. preparing a test query
for which a querying peer knows the answer. In both of the above cases a
querier could directly verify whether the related peers execute correctly
[9]. Similarly, information redundancy technique could be used for build-
ing consensus formation with fault-tolerance abilities. This is could be
done by incorporating extra information about the query and performing
checking on the query response for the query added information.

We strongly believe that fault-tolerance capability should be used as
a criterion to determine the quality of consensus based systems. The fault
tolerant capability is particularly important in critical applications such
as security and business applications. This particularity arises from the
fact that excluding a useful source of information or a valuable business
partner just for a transient type error will have severe consequences on
the level of accuracy of the collected information and could jeopardize
financial gain for the peers.

5 Conclusion and Future Work

We started by observing that there are several shortcoming of the in-
cremental building semantic consensus among distributed ontologies. We
proposed to solve the problem by focusing on three key issues: i. consid-
ering cooperative and temporary uncooperative peers in building seman-

tic consensus, ii. adapting other applied voting techniques to semantic
mapping reaching and iii. building semantic mapping systems with fault-
tolerance capability. Some first steps of these key issues were described.
Future works include: i. implementing a bottom-up semantic consensus
system with ability to tolerate the non-permanent faults. ii. exploring and
adapting some new techniques to build a robust semantic consensus.

References

1. K. Aberer and P. Cudre-Mauroux and M. Hauswirth. Start making sense: The
Chatty Web approach for global semantic agreements. In Journal of Web Seman-
tics, 1(1): 89-114, 2003.

2. R. Axelrod. The Complexity of Cooperation. Princeton University Press, 1997.
3. M. R. Lyu. Software Fault Tolerance. Wiley publishing, 1995.
4. S. Castano, A. Ferrara, S. Montanelli. H-Match: an Algorithm for Dynamically

Matching Ontologies in Peer-based Systems. In Proc. of the 1st VLDB Int. Work-
shop on Semantic Web and Databases (SWDB), P: 231-250, 2003.

5. P. Fergus, A. Mingkhwan, M. Merabti,and M. Hanneghan . Distributed emer-
gent semantics in P2P networks. In Proc. of the Second IASTED International
Conference on Information and Knowledge Sharing, P: 75-82, 2003.

6. A. Gomez-Perez, M. Fernandez-Lopez and and O. Corcho. Ontological Engineer-
ing. Springer publishing, 2003.

7. A. Halevy, Z. Ives, P. Mork, and I. Tatarinov. Piazza: Mediation and integration
infrastructure for semantic web data. In proceedings of the International World-
Wide Web Conference WWW-03, 2003.

8. E. Mena, A. Illarramendi, V. Kashyap and A. Sheth. OBSERVER: an approach
for query processing in global information systems based on interpretation across
pre-existing ontologies. InDistributed and Parallel Databases, 8(2):223-71, 2000.

9. E. Papalilo, T. Friese, M. Smith, B. Freisleben. Trust Shaping: Adapting Trust Es-
tablishment and Management to Application Requirements in a Service-Oriented
Grid Environment In Proceedings of the 4th International Conference on Grid and
Cooperative Computing (GCC), pp. 47-58, LNCS 3795, 2005.

10. D. K. Paradhan. Fault-Tolerant Computing System Design. Prentice-Hall PTR
publication, 1996.

11. B. Sainty. Achieving greater cooperation in a noisy prisoner’s dilemma: an ex-
perimental investigation In Journal of Economic Behavior and Organization,
39(4):421-435, 1999.

12. L.M. Stephens, M.N. Huhns. Consensus ontologies. Reconciling the semantics of
Web pages and agents. In IEEE Internet Computing, 5(5): 92-95, 2001.

13. J. Wu and R. Axelrod. How to Cope with Noise in the Iterated Prisoner’s Dilemma.
In Journal of Conflict Resolution, 39(1): 183-189, 1995.

14. S. Yacoub, X. Lin, S. Simske, and J. Burns. Automating the analysis of voting
systems. In 14th International Symposium on Software Reliability Engineering, p
203-214, 2003.

