
A Live Streaming App for Android devices

Abdul-Rahman Mawlood-Yunis
Physics and Computer Science

Department
Wilfrid Laurier Univeristy

Waterloo, On, Canada
amawloodyunis@wlu.ca

Abstract— In this paper, we present a live streaming app for
Android devices using URL. The app is useful for two reasons;
first, all your favorite radio stations will be grouped together in one
place, and hence, you can easily play and switch from one station
to another without any hassle. Second, it is an app that turns your
device into a radio and lets you listen to live streaming stations
while in the office, on the road, or in any other setting. The app is
similar to Spotify but on a smaller scale (that’s probably all you
need; your favorite station and not all the stations that come with
Spotify). The app has two main contributions: 1) we describe all
the steps and components needed to develop such an app. We also
discuss the functionality and the trade-offs using different
components and approaches. 2) The app’s source code and
complete documentation can be used by instructors to teach
various Android topics.

Keywords—Mobile Application, Android, MediaPlayer,
Digital Streaming

I. INTRODUCTION
In this paper, we present a live streaming app for Android
devices using URL. The app links one’s favorite online
radio stations and plays them on the user’s devices. It is
similar to Spotify but on a smaller scale (that’s probably all
you need; just your favorite station and not all the stations
that come with Spotify). The app is useful for two reasons;
first, all your favorite radio stations will be grouped together
in one place, and hence, you can play and easily switch from
one station to another without any hassle. Second, it is an
app that turns your device into a radio and lets you to listen
to live streaming stations from anywhere in the world and in
any setting. For example, if you connect your phone with an
audio cable or Bluetooth to the media player of your car,
you can readily live-stream your favorite online radio
channels and listen to them with multiple speakers.

The app has two main contributions: 1) we describe all the
steps and components needed to develop such an app. We
also discuss the functionality and the trade-offs using
different components and approaches. 2) the app is open
source and its complete documentation and source code can
be used as classroom material in an Android class for
teaching multiple topics: Android Service, broadcasting and
receiving messages, using MediaPlayer object to stream
radio stations and mange Android power and WIFI
connection programmatically.

The current version of the app presents the author’s favorite
radio stations. Developers can easily refactor the app and
replace the existing station with the ones they prefer. In the

feature version of the app, we enable not only the
developers but also end users to be able to customize the
stations they listen too through the app’s interface.

This paper is organized as follow: in Section 2, we study the
app’s components and architecture, in Section 3, we provide
instructions on how to check out the app and run it, and in
Section 4, we conclude the paper and describe some future
works.

II. APP COMPONENTS AND ARCHITECTURE
In the app, we use Service and MediaPlayer components to
play live streaming radio stations from URL. We also use
BraodcastReceiver to notify users of events. The
MainActivity maintains a reference to the Service, thus it
can make calls on the Service just as any other class and can
directly access members and methods of the Service. It
starts the Service which in turn gets radio URL form the
MainActivity and starts the MediaPlayer. Below we
describe each of these components. We discuss the
functionality and the trade-offs using different components
and approaches. We also present the class structure, i.e., the
architecture, of the app.

A. Activity
The app’s user interface and Service setup all done at the
MainActivity class. MainActivity can communicate with the
background Service to start and stop the MediaPlayer and it
listens to the message broadcasts from the Service.

B. Service
Service is an app component that performs long-running tasks
in the background with no graphical user interface. Once
Service starts, it continues to run even if the original
application is ended or the user moves to a different
application. Service is the right choice to use when an
activity does not interact with the user, i.e., is not the forefront
activity.
Service can be private or public. When private, it is usable
only by the app it belongs to; however, when public, it is
usable by apps other than the app it belongs to, i.e., another
app component can start Service using a call to the API. In
current app the MainActivity compoent starts Service with
the method call startService(). Once started, Service can run
in the background indefinitely.

C. BroadcastReceiver
We use Broadcastreceiver to receive and handle broadcast
Intents sent from Service by the sendBroadcast(Intent)

1103

2019 International Conference on Computational Science and Computational Intelligence (CSCI)

978-1-7281-5584-5/19/$31.00 ©2019 IEEE
DOI 10.1109/CSCI49370.2019.00209

Authorized licensed use limited to: Wilfrid Laurier University. Downloaded on May 07,2020 at 00:22:34 UTC from IEEE Xplore. Restrictions apply.

method. The Broadcast class doesn’t have user interface, but
it can create a status bar notification to alert the user when a
broadcast event occurs. Android system delivers a
broadcast Intent to all interested (registered) broadcast
receivers. Applications can initiate broadcast messages to let
other applications know for example that some data has
been downloaded to the device and is available for them to
use.
The BroadcastReceiver needs to be instantiated and
registered to process the broadcasted messages on arrival.
The four steps involved in Message Broadcast and Receive
are:

 Create the BroadcastReceiver Object
 Register BroadcastReceiver object to receive

messages
 Message Broadcasting
 Actions performed upon receiving the Broadcasted

message

D. MediaPlayer
We use MediaPlayer class to control playback of radio
streams. Media player needs to be prepared, started and
ultimately released. The MediaPlayer’s lifecycle show that
the player must first enter the Prepared state before playback
can start and there are two ways that the prepared state can
be entered:

1. Synchronous way using the prepare() method.
2. Asynchronous way using the prepareAsync()

methods.
The difference between those methods is in what thread they
are executed.

The Prepare () method runs in the UI thread and thus it
takes a long time. It will block your UI thread and a user
might get an ANR (Application Not Responding) message.

The PrepareAsync () method, on the other hand, runs in a
background thread and thus your UI thread is not blocked.
However, the MediaPlayer object might not prepared
instantly so you want to set onPreparedListener in order to
know when the MediaPlayer is ready for use.

The prepareAsync() method is generally used for playing
the live data over stream and that is why in current app we
are using the prepareAsync() method. It allows playing
without blocking the main thread.

E. PowerManager and WakeLock
If phone goes into a low-power state it will prevent

apps from running. To control the power state on device you
need to use power management to:

a. keep the CPU running,
b. prevent screen dimming or going off or
c. prevent backlight from turning on

Android WifiLock class allows an application to keep the
Wi-Fi component awake. Acquiring a WifiLock will keep
the Wi-Fi on until the application releases the lock. In the
app, we have decided even when the device screen is off to
keep the radio stations running; hence in our app we acquire
the wifilock. To use a Wifilock we added the below
permission to the manifest file.

 <uses-permission
android:name="android.permission.WAKE_LOCK" />

F. RADIO STATIONS
The radio station names, the URLs and Image links are all
saved or referenced at this component. This enables easy
extension and changes. For example, if you change a
streaming URL or an image, you only change it here
without need to change any other parts of the code.
Similarly, if you want to add a new station to your list, then
you simply add the new station to the list of existing stations
and there is no need to change other parts of the code.

G. The manifest file
To run Service, you need to declare it inside the manifest
file as shown below, table 1. Also, proper permissions need
to be added to the manifest file.

TABLE I. SNAPSHOT OF APP’S MANIFEST FILE

<?xml version="1.0" encoding="utf-8"?>
<manifest
xmlns:android="http://schemas.android.com/apk/res/andro
id"

package="code.android.abdulrahman.android.serviceandm
ediaplayer" >

 <uses-permission
android:name="android.permission.INTERNET" />
 <uses-permission
android:name="android.permission.WAKE_LOCK" />
 <uses-permission
android:name="android.permission.ACCESS_WIFI_STAT
E"/>
 <uses-permission
android:name="android.permission.VIBRATE" />

 <application
 …
 <activity …
 </activity>

 <service
 android:name=".RadioService"
 android:enabled="true"
 android:description="@string/runningRadio"
 android:exported="false">
 </service>

 </application>

</manifest>

The static class structure of our app is shown in Figure 1 in
which essential classes and their relations are presented.
Figure 1 reveals that the Service class has other member
classes. These include WifiLock, PowerManager and
AudioManager, and it implements the OnPreparedListener
interface.

1104

Authorized licensed use limited to: Wilfrid Laurier University. Downloaded on May 07,2020 at 00:22:34 UTC from IEEE Xplore. Restrictions apply.

III. CHECKOUT THE SOURCE CODE OF THE APP

Download the WLURadioStations.zip1 app code from
Wilfried Laurier University server. Unzip the code in your
download folder then use the File->import->Existing
Android code into Android Studio workspace. The
project is ready to run. You can also download .APK
(Android Package Kit) to your Android device and run it by
tapping on the downloaded file. Figure 2 shows the user
interface for the WLU Radio Stations app. The current
version of the app present author’s favorite radio stations.
Developers can easily refactor the app and replace the
existing station with the one they prefer.

1 http://www.wlu.ca/amawloodyunis/wluRadioStations.zip

Figure 2, App's user Interface

IV. CONCLUSION AND FUTURE WORK

In this paper, we have presented a live streaming app for
Android devices using URL. The app groups together one’s
favorite radio stations in one place enabling easy play and
switching from one station to another. The app is similar to
Spotify but on a smaller scale. We described all the steps
and components needed to develop such an app. We also
discussed the functionality and the trade-offs using different
components and approaches. The app’s source code and
complete documentation can be used by instructors to teach
various Android topics.

V. FUTURE EXTENSION
The current version of the app presents the authors favorite
radio stations. Developers can easily refactor the app and
replace the existing station with the ones they prefer. In the
feature version of this app, we enable not only developers
but end users to be able to customize the stations they listen
too using the app’s user interface.

REFERENCES
[1] Service Overview, Reterived Oct 27, 2019 from

https://developer.android.com/guide/components/servic
es

[2] Broadcasts overview, Reterived Oct 27, 2019 from
https://developer.android.com/guide/components/broad
casts

[3] MediaPlayer Overview, Reterived Oct 27, 2019 from
https://developer.android.com/guide/topics/media/medi
aplayer

Figure 1, The class structure of the WLURadioStations app

1105

Authorized licensed use limited to: Wilfrid Laurier University. Downloaded on May 07,2020 at 00:22:34 UTC from IEEE Xplore. Restrictions apply.

[4] Power Management, Reterived Oct 27, 2019 from
https://developer.android.com/about/versions/pie/power

[5] WifiManager, Reterived Oct 27, 2019 from
https://developer.android.com/reference/kotlin/android/
net/wifi/WifiManager

[6] Notification Overview, Reterived Oct 27, 2019 from
https://developer.android.com/guide/topics/ui/notifiers/notifications

[7] Audio Focus, Reterived Oct 27, 2019 from
https://developer.android.com/guide/topics/media-
apps/audio-focus

IEEE

1106

Authorized licensed use limited to: Wilfrid Laurier University. Downloaded on May 07,2020 at 00:22:34 UTC from IEEE Xplore. Restrictions apply.

