On the Performance of Distributed Search
by Mobile Agents

A. Mawlood-Yunis', Amiya Nayak?, Doron Nussbaum', and Nicola Santoro*

1 School of Computer Science, Carleton University, Ottawa, ON K1S 5B6, Canada
{armyunis,nussbaum,santoro}@scs.carleton.ca
2 School of Information Technology & Engineering, University of Ottawa
Ottawa, ON K1IN 6N5, Canada

anayak@site.uottawa.ca

Abstract. When using mobile agents in distributed search, the overall
performance is influenced by several factors. In this paper, we study
some of them and their impact. Several experiments were carried out
to study the impact of network size, network topology, and the number
of agents. These experiments were performed on two well-known mobile
agent platforms: AGLET (a commercial environment), and TACOMA
(an academic research environment). The results shed some light on the
nature of the functional dependency of performance on these factors.
Moreover, the experiments show that, except for the scale, the results
are platform independent.

1 Introduction

The performance aspects of the mobile agents have been a subject of several
studies. In [2] the scalability of the server, the performance factor that are fun-
damental to the mobile agent idea, and separately, the performance factor due
to design differences of different mobile agent platforms have been addressed.
The authors compared a traditional client/server approach with a mobile agent
approach on four mobile agent’s platforms in the context of a simple infor-
mational retrieval application. In [7], analysis of mobile agent performance in
a network management and, its comparison with the client/server model used
by the SNMP (Simple Network Management Protocol) have been performed.
Performance evaluation of mobile agents for e-commerce application have been
studied in [4]. In [3], an analytical model that examines the claimed performance
benefits of mobile agents over client/server computing for a mobile information
retrieval scenario was developed.

In this paper, we study performance behavior of mobile agents in a dis-
tributed search using single and multiple agents. In the case of multiple agent
search, we suggest three different algorithms. The search has been conducted
under variable network size, network topology and number of agents. Several
experiments are carried out to measure the performance of mobile agents solu-
tion to distributed search problem. The results on two different mobile agent
platforms, namely AGLET (a commercial one) [6] and TACOMA (an academic
one) [5], have been compared.

A. Karmouch, L. Korba, and E. Madeira (Eds.): MATA 2004, LNCS 3284, pp. 285-294, 2004.
© Springer-Verlag Berlin Heidelberg 2004

286 A. Mawlood-Yunis et al.

2 Distributed Search
with Single and Multiple Mobile Agents

2.1 Structure and Components

Since our objective is to compare the results using AGLET mobile agent with
the results obtained by [8] using TACOMA mobile agent, we use similar algo-
rithm to the one implemented in [8]. We start with the construction of a logical
spanning tree on top of the physical network. Once a spanning tree constructed,
the search problem is reduced to a tree traversal problem. The search time of
mobile agent does not include the time to construct the spanning tree, as we
assume that the spanning tree was constructed in pre-processing steps. To tra-
verse the spanning tree, agent may start at any node in the network. It obtains
its neighboring information and travels to the first host in the list. Once the
agent obtains the neighboring information, it changes its internal queue or stack
(itinerary). The process of adding neighboring information into the internal data
storage in Single agent search leads to different spanning tree traversal such as
Breadth_First_Search (BFS) once the the internal data structure is queue or
Depth_First_Search (DFS) once internal data structure is stack. The search can
be carried out with multiple agents; this we call flooding. Agent interacts with
the local resources at each node; it opens a file at each site it visits, and carries
along the contents of the file. Once all nodes in the network were visited, the
agent returns to the initiator node with the search result (file contents).

In our study, we have used a framework that consists of the following compo-
nents: Blackboard, Whiteboard, Router, and Log. The purpose of the Blackboard
is to help terminate the flooding algorithm. The purpose of the Whiteboard is to
avoid multiple visit to the same node by different agents. The purpose of the Log
component is to terminate the flooding algorithm without using the Blackboard
component. A Log component is associated with each node in the network. The
Router is used with both single and multiple agent search. It acts as a global
and local Router to enable agents to move around the network.

2.2 Search Using Single Agent

At each host, the agent gets the list of the next hosts to visit which becomes
the agent’s Itinerary. The agent checks to see if a parent of the current host or
initiator host are in the list. If the list contains the parent or initiator node, the
agent removes it to avoid returning to the host it just came from or returning to
the the initiator node before completing the search. It adds the remaining hosts
(if not null) to the internal container. For the BFS traversal, every time we get
a set of new neighbors from the Router we add it to the end of the internal
container, this results in BFS traversal. In case of DFS, we add a new set of
neighbors to the beginning of the internal list resulting in DFS traversal.

2.3 Search Using Multiple Agents (Flooding)

Flooding is another way to traverse spanning tree and solve the problem of
distributed search. The agent starts from a node and duplicates itself as many

On the Performance of Distributed Search by Mobile Agents 287

identical agents as the number of children specified in the local number list; all
these copies travel simultaneously to every child in the neighboring list. For the
purpose of flooding the network with agents we use three different approaches:
Local flooding, Remote flooding, and Regular flooding

In Remote flooding, the agent and the Blackboard communicate remotely.
Here the agent contacts Blackboard for removing its ID once it is at the end of
the search path and just before moving back to the initiator node. In this way,
the agent removes its ID while being host on remote node, and only after its ID
has been removed from the Blackboard it returns back to the initiator node.

In Local flooding the agent and Blackboard communicate locally on the ini-
tiator node. This contact happens just before agent reports its partial result and
after it returns back to the initiator node. The agent contacts the Blackboard
to remove its ID. Once its ID is removed, it reports the partial result to the
initiator node.

In Regular flooding, agents start moving from the initiator node all the way
down to the end of their search path. Once they reach the end of the search
path, each agent reports its partial result to its immediate parent. This con-
tinues until the final result reaches the initiator. Once the last agent returns
back to initiator, the algorithm terminates. In this approach, we do not have
any Blackboard component to facilitate termination, as it is the case with two
previous algorithms. Instead, we use a Log (i.e. local Blackboard) at each node
which holds information about that node.

3 Experimental Results

In the experiments, agents are injected from any node of the network. The
launching application or initiator measures the time in milliseconds before inject-
ing the first agent and after the last agent has arrived. The difference between
these two time measurements is the total execution time for the entire search.
The strategy followed for testing different schemes consists of a set of test cases
aimed at evaluating the impact of certain variables on the overall performance.
The objective was to obtain sufficient information to compare the performance
between the AGLET mobile agent and the TACOMA mobile agent.

All the experiments were carried out in the absence of failure. The comput-
ers were used simultaneously by other users, and no special care was taken to
guarantee exclusive access to computer resources or network during these exper-
iments. All the experiments presented herein were developed in the Graduate
Lab of the School of Computer Science on 1000 MHz Pentium with 500 MB
RAM machines. The agent platform used was AGLET-2.0.1 compiled and run
on the Sigma Network (Linux Mandrake 7.1 machines) and the Ultra Network
(SunOs 5.7 Generic_106541-06 sundu sparc SUNW, Ultra5-10). The Blackboard
associated to each node was implemented as a multi-threaded application using
the Java JDK1.2.2. Router and Whiteboard were implemented in Java JDK1.2.2
and used a RMI server. The size of information carried by the agent was same
for all algorithms. Agent(s) performed a dummy search at each site consisting
basically of opening a file and reading the content.

288 A. Mawlood-Yunis et al.

3.1 Impact of Network Size

We compared the search time of running single and multiple agents on binary
trees of different sizes from 3 to 28 nodes. Each test was run thirty times to get
the average search time. The following results were obtained:

1. The AGLET agent performed better than the TACOMA Agent. Searching
with a single AGLET agent is almost ten times faster than searching with
a single TACOMA agent. In multiple agent search, the AGLET agent per-
formed almost seven times better than the TACOMA agent. This is due to
the difference in their respective platforms.

2. For both the AGLET and TACOMA platforms, single agent performed bet-
ter than multiple agents for small networks whereas multiple agents per-
formed better than single agent in large networks. The only difference here
is in the size of the network in which multiple agents outperformed the sin-
gle agent. In the TACOMA platform, the single agent performed better than
multiple agents for a network size up to eighteen nodes, while in the AGLET
platform network size of only eight nodes were sufficient for multiple agents
to outperform a single agent. This result suggests that we can run multiple
AGLET agents on binary tree (i.e. take advantage of parallelism) on network
with size as little as eight nodes, whereas we cannot do that with TACOMA
agents. In order to take advantage of parallelism with TACOMA agents, we
should have a network (i.e. binary tree) size of at least eighteen nodes.

3. The single agent search performance is better than the multiple agents search
performance for networks of small size.

The above explanations lead us to conclude that for small networks, the
advantages we gain from parallelism by using multiple agents is not enough to
overcome the overhead associated with it. In large networks, the advantages of
parallelism will overcome the above mentioned overhead, and as a result we get a
better search performance with multiple agents than with single agent. Another
aspect of the third point of the result is that in multiple agents search, the
AGLET system performs better than TACOMA system in small networks. The
execution time for a single and multiple travelling agent for both AGLET and
TACOMA system are shown in Figure 1 and Figure 2 respectively.

3.2 Impact of Number of Neighbors

In this test, we compared the results of running single and multiple agents of
both TACOMA and AGLET systems on various trees with constant size. The
trees are differ from each other in the number of children of each node. We
started with a binary tree and then increased the number of neighbors for each
node at each step by two until we ended up with a star structure.

The result shows that in the case of a single agent search, the number of
neighbors did not have significant impact on search time in both systems. This
result is predicted, since by increasing the number of neighbors in single agent

On the Performance of Distributed Search by Mobile Agents 289

2200

flood (remote) ——
single agent (Dfs) ---x---
2000 |- single agent (Bfs) —a—

1800 [

1600 [

1400

1200 [

1000 |-

Execution time in msec

800

600

400

L L L
0 5 10 15 20 25 30

Network size

Fig. 1. Average Execution Time for Single and Multiple Agent Search (AGLET)

22000 T

flood —+—
single agent (Dfs) -->---
20000 single Agent (Bfs) —a— T 1

18000 [
16000
14000 [
12000 [

10000

Execution time in msec

8000

6000

4000

2000

0

.
0 5 10 15 20 25 30
Network size

Fig. 2. Average Execution Time for Single and Multiple Agent Search (TACOMA)

search the change occurs only in the visiting sequence of hosts, and this does not
have any effect on the search since we working on LAN. For both systems, multi-
ple agents search performed better than single agent search when the number of
neighbors was low. As the number of neighbors increased and the search became
closer and closer to the sequential search, single agent performed better than
multiple agent. This was due to the overhead associated with multiple agents
search.

The only difference between AGLET and TACOMA agents here is at the
turning point when single agent search starts to become more efficient than
the multiple agents search. In the TACOMA system, multiple agents search
performed better than single agent search only in the case of binary tree, whereas
in AGLET system, multiple agents search performed better than the single agent
search in a tree with each node having eight neighbors (k =8) and the best
performance came in a tree with each node having four neighbors (k= 4).

290 A. Mawlood-Yunis et al.

2600

" flood (remote) ——
single agent (Dfs) ---x---

2400
2200
2000

1800 e X

Execution in msec

1600 -

1400

1200 |-

1000 L L L L L L L L L
0 2 4 6 8 10 12 14 16 18 20

Number of Neighbors

Fig. 3. Single and Multiple Mobile Agents with Various Number of Neighbors
(AGLET)

14000 . . .
flood ——
single agent (Dfs) ---x---

12000 [

10000

8000

Execution time in msec

6000

4000

2000

L L L L L L
0 2 4 6 8 10 12 14 16 18 20

Number of Neighbors

Fig.4. Single and Multiple Mobile Agents with Various Number of Neighbors
(TACOMA)

Figures 3 and 4 show the average execution time for a single and a multiple
agent for both the AGLET and the TACOMA system when the network size is
constant (N = 20) and the topology changes from a binary tree to a star (k =2,
4,6, ...,19).

3.3 Impact of Network Topology

In this test, we compared the search times of running single and multiple AGLET
and TACOMA agents in different network topologies of a fixed size. The network
for this test consists of sixteen nodes. The topologies which been used for this test
are: unidirectional ring, bidirectional ring, hypercube, and binary tree. Beside
comparing the search times of AGLET and TACOMA, we also compared the

On the Performance of Distributed Search by Mobile Agents 291

search time of single and multiple agents for the AGLET system as well. We
have the following observations:

Single Agent Traversal:

a. The best performance is seen in the bidirectional ring and the worst perfor-
mance in the hypercube for both the AGLET and the TACOMA systems.
Hence, the behavior of both systems is very much similar in different topolo-
gies when a single agent is used.

b. Even though we see the best and worst scenario, the performance in all
topologies considered is almost the same for both systems.

Multiple Agent Traversal:

a. For deploying multiple agents, the best performance of the TACOMA agent
is seen in the bidirectional ring, and the performance is similar in the case of
a binary tree. On the other hand, the best performance of the AGLET agent
is seen in the hypercube. From the first test, it is evident that the AGLET
agents are more efficient than the TACOMA agents; hence, the AGLET
agents are more capable of taking advantage of parallelism. The second test
shows that the best performance of AGLET agents comes from a tree with
four neighbors for each node or a hypercube.

b. The worst performance for the AGLET agent is seen in the unidirectional
ring whereas the worst performance for the TACOMA agent is seen in the
hypercube.

Single and Multiple AGLET Agent Performance:

The result shows that the AGLET performance is better in the flooding case than
in the a single agent case for both binary tree and hypercube, but it is almost
the same for bidirectional ring. In the case of bidirectional ring, the single agent
performs slightly better than flooding. This is due to the overhead associated
with flooding. If we ignore the extra overhead associated with flooding, the single
agent search is better in the case of a bidirectional ring.

Figure 5 shows the performance comparison of AGLET and TACOMA mobile
agent in single agent search for different network topologies. Similarly, Figure 6
compares the result in the case of multiple agents.

3.4 Three Flooding Algorithms

In this test, we compared the performance of local flooding, remote flooding, and
regular flooding in binary trees of different sizes from 3 to 28 nodes. The following
observations were made:

1. The difference between all three approaches is very little if the network size
is small.

2. Once the network size exceeds nineteen nodes, remote flooding performs bet-
ter the other two algorithms.

292 A. Mawlood-Yunis et al.

12000

10000 Tacoma

T 1
5000 S acoma acoma
§000
4000
2000 glat glot Aglet glet
0

Ring (Bidirectianl) Ring (Unidirectional) Hypercube Binary Tree

Execution time in msec

Fig. 5. Performance of AGLET and TACOMA in Different Network Topologies (Single
Agent Case)

14000.00

Tacoma
12000.00

Tacoma
10000.00

500000 TalEEEE Tacoma

6000.00

4000.00

Execution time in msec

200000 — gtet

0.00

Ring (Bidirectional) Ring (Unidirectional) Hypercube Binary Tree
Different Topology

Fig. 6. Performance of AGLET and TACOMA in Different Network Topologies (Flood-
ing Case)

3. The remote flooding performs better than regular flooding, even though we do
not contact the Blackboard remotely nor do we have multiple agents running
at the same place at one time.

Figure 7 shows the execution time for all three algorithms.

3.5 Cost of Moving AGLET and TACOMA Agents Between Nodes

In this test, we compared the time required for moving a single AGLET and
TACOMA agent between any two nodes. The objective was to compare the
time required in each case to deploy an agent to a node and to pull back this
agent to the source. The result shows that even though the difference in the
implementation language is in favor of TACOMA, the AGLET mobile agent is
almost ten times faster than the TACOMA agent (162.32 msec in the case of
AGLET compared to 1551.57 msec in the case of TACOMA). The difference
in performance is due to the difference in their respective architectures. In the
AGLET mobile agent case, we compile the agent code to byte code, and when
we deploy the agent we serialize the byte code and send it over the socket to

On the Performance of Distributed Search by Mobile Agents 293

1800

Remote flooding ————
Local flooding ---><---
Regular flooding - - &- - <

1600 | - -

1400 |-

1200 |

1000

Execution time in msec

L L L L L
o 5 10 15 20 25 30
Network size

Fig. 7. Execution of remote, local and regular flooding for various network size

be executed at the remote host. In the TACOMA case, on the other hand, once
we deploy the agent we send the code which should be compiled and linked for
execution at the remote host. This requires more time than having byte code.

4 Conclusions

In all the tests we conducted, single agent performed better than multiple agents
in networks of small size, whereas in large networks, multiple agents outper-
formed single agent. The same result was seen in the TACOMA platform; the
only difference between the AGLET and the TACOMA is in the size of the
network in which multiple agents outperformed single agent. We identified the
crossover points for all our tests which could be used to make decision on the
choice of mobile agent platform, search criteria, topology, etc. Comparing the
results from both AGLET and TACOMA platforms, it appears that the overall
behavior of a mobile agent is platform independent whereas its performance is
platform dependent; this is the same conclusion that was found in [1].

References

1. J. Baek, J. Yeo, G. Kim, and H. Yeom. Cost Effective Mobile Agent Planning for
Distributed Information Retrieval. Proc. 21°° Conference on Distributed Systems,
pp. 65-72, 2001.

2. R.S. Gray, D. Kotz, R. A. Peterson, J. Barton, D. Chacén, P. Gerken, M. Hofmann,
J. Bradshaw, M. Breedy, R. Jeffers, and N. Suri. Mobile-Agent versus Client/Server
Performance: Scalability in an Information-Retrieval Task. Proc. 5™ International
Conference on Mobile Agents, pp. 229-243 , 2002.

294

3.

A. Mawlood-Yunis et al.

R. Jain, F. Anjum and A. Umar. A Comparison of mobile agent and client-
server paradigms for information retrieval tasks in virtual enterprises. IEFE
Academia/Industry Working Conference on Research Challenges, pp. 209-215,
2000.

R. Jha, and S. Iyer. Performance Evaluation of Mobile Agents for E-Commerce
Application. Proc. International Conference on High Performance Computing, pp.
331-341, 2001.

D. Johansen, R. V. Renesse and F. Schneider. An Introduction to the TACOMA
Distributed System Version 1.0. Technical Report 95-23, Department of Computer
Science, University of Tromso, Norway, 1995.

D. B. Lange and M. Oshima. Programming and Deploying Java Mobile Agents
with Aglets. Addison Wesley, Massachusetts, USA, 1998.

M.G. Rubinstein, O. Carlos, M. B. Duarte and G. Pujolle. Scalability of a Network
Management Application Based on Mobile Agents Proc. 2*¢ International IFIP-
TC6 Networking Conference, pp. 515-526, 2002.

E. Velazquez, N. Santoro, A. Nayak. A Mobile Agent Prototype for Distributed
Search. Proc. 3¢ Int. Workshop on Mobile Agents for Telecommunications Appli-
cations, pp. 245-254. 2001.

	1 Introduction
	2 Distributed Search with Single and Multiple Mobile Agents
	2.1 Structure and Components
	2.2 Search Using Single Agent
	2.3 Search Using Multiple Agents (Flooding)

	3 Experimental Results
	3.1 Impact of Network Size
	3.2 Impact of Number of Neighbors
	3.3 Impact of Network Topology
	3.4 Three Flooding Algorithms
	3.5 Cost of Moving AGLET and TACOMA Agents Between Nodes

	4 Conclusions
	References

