

 1

Particle Swarm Optimization

http://swarmintelligence.org/

Compare and
integrate with

existing heuristics

Motivation: Flocking

• Boids
– 1986, Craig Reynolds
– http://www.red3d.com/cwr/boids/

• Basic Flocking Model: 3 rules
– Separation
– Alignment
– Cohesion

Agent Model

 2

Collision Avoidance

• Rule 1: Avoid Collision with neighboring
birds

Velocity Matching

• Rule 2: Match the velocity of neighboring
birds

Flock Centering

• Rule 3: Stay near neighboring birds

 3

Flocking

• Applications
– Animated short (SIGGRAPH ’87)

• Stanley and Stella in: Breaking the Ice
– Movies

• 1992 Tim Burton film Batman Returns –
computer simulated bat swarms and penguin flocks

• Lion King – the stampede
• Object avoidance (many examples)

Obstacle Avoidance
• Models have predictive

obstacle avoidance and
goal seeking.

• Obstacle avoidance
allowed boids to fly
through environments
while dodging static
objects.

• Applications in
computer animation, a
low priority goal
seeking behavior
caused the flock to
follow a scripted path.

Object Avoidance

 4

Using the Metaphor

• Flock members are particles
• Environment is n-dimensional space
• Particles move through space, following a

leader
• Influenced by “neighbors”
• Leads to …

– Particle Swarm Optimization (PSO)

Particle Swarm Optimization

• PSO is a robust stochastic optimization technique based on the
movement and intelligence of swarms.

• PSO applies the concept of social interaction to problem solving.

• It was developed in 1995 by James Kennedy (social-psychologist)
and Russell Eberhart (electrical engineer).

• It uses a number of agents (particles) that constitute a swarm moving
around in the search space looking for the best solution.

• Each particle is treated as a point in a N-dimensional space which
adjusts its “flying” according to its own flying experience as well as
the flying experience of other particles.

• Each particle keeps track of its coordinates in the solution space
which are associated with the best solution (fitness) that has
achieved so far by that particle. This value is called personal best,
pbest.

• Another best value that is tracked by the PSO is the best value
obtained so far by any particle in the neighborhood of that particle.
This value is called gbest.

• The basic concept of PSO lies in accelerating each particle toward
its pbest and the gbest locations, with a random weighted
acceleration at each time step.

Particle Swarm Optimization

 5

Anatomy of a Particle

• A particle is composed of:
– x-vector records the current

position (location) of the particle
in the search space,

– p-vector records the location of
the best solution found so far by
the particle, and

– v-vector contains a gradient
(direction) for which particle will
travel in if undisturbed.

– x-fitness records the fitness of the
x-vector, and

– p-fitness records the fitness of the
p-vector.

Ik

X = <xk0,xk1,…,xkn-1>
P = <pk0,pk1,…,pkn-1>
V = <vk0,vk1,…,vkn-1>

x_fitness = ?
p_fitness = ?

PSO Search

• Particles live forever (unlike GA population members)
• So the question now is, “How does a particle move from

on location in the search space to another?”
• This is done by simply adding the v-vector to the x-vector

to get another x-vector (Xi = Xi + Vi).
• Once the particle computes the new Xi it then evaluates

its new location. If x-fitness is better than p-fitness, then
Pi = Xi and p-fitness = x-fitness.

Particle Movement

• Actually, we must adjust the v-vector before adding it to
the x-vector as follows:
vid = ω*vid + ϕ1*rnd()*(pid-xid)

 + ϕ2*rnd()*(pgd-xid) (1)
xid = xid + vid (2)

• Where i is the particle,
• ϕ1,ϕ2 are learning rates governing the cognition and

social components
• ω is an inertial factor
• Where g represents the index of the particle with the best

p-fitness, and
• Where d is the dth dimension.

 6

Concept of modification of a searching point by PSO

sk : current searching point.
sk+1: modified searching point.
vk: current velocity.
vk+1: modified velocity.
vpbest : velocity based on pbest.
vgbest : velocity based on gbest

sk

vk

vpbest

vgbest

sk+1

vk+1

sk

vk

vpbest

vgbest

sk+1

vk+1

Particle Updating …

x

y

Flow chart for PSO Algorithm

Start

Initialize particles with random position
 and velocity vectors.

For each particle’s position (p)
evaluate fitness

If fitness(p) better than
fitness(pbest) then pbest= pL

oo
p

un
til

 a
ll

pa
rt

ic
le

s e
xh

au
st

Set best of pBests as gBest

Update particles velocity (eq. 1) and
 position (eq. 2)

Lo
op

 u
nt

il
m

ax
 it

er

Stop: giving gBest, optimal solution.

Algorithm I
• System initialized with a population of random potential solutions.

• Each potential solution is assigned a randomized 'velocity' and is
called a particle. (It has position in the space, i.e. it is a point in the
solution space and it has velocity. So it is analogous to a particle in
physics which flies around in 3-space!)

• These particles are then 'flown' through the (hyper) space of
potential solutions.

• Each particle keeps track of the coordinates in the hyperspace for
which it has achieved the best solution so far. (In the case of a NN
that would be a particular set of weights.) and its best fitness (call it
pBest) so far.

 7

Algorithm II
• In the 'global' version of the Optimizer, is the overall best value,

gBest, and its location (i.e. in the NN case, its set of weights). This
particle is the leader.

• At each time step the 'velocity' of each particle is changed
(accelerated) towards its pBest and gBest fellows. This acceleration
is weighted by a random term. (The idea is that all the particles
swarm towards where the current best solutions are. The random
factor prevents the swarm getting stuck in the wrong place -- insects
around a light.)

• A new position in the solution space is calculated for each particle by
adding the new velocity value to each component of the particle's
position vector. (In the NN case each weight of each potential
solution would be adjusted).

• The user specifies an acceleration constant and a maximum velocity.

Swarm Types

• In: [Kennedy, J. (1997), “The Particle Swarm: Social Adaptation of
Knowledge”, Proceedings of the 1997 International Conference on
Evolutionary Computation, pp. 303-308, IEEE Press.]

• Kennedy identifies 4 types of PSO based on ϕ1 and ϕ2 .
• Given: vid= ω*vid + ϕ1*rnd()*(pid-xid)

 + ϕ2*rnd()*(pgd-xid)
 xid = xid + vid

– Full Model (ϕ1, ϕ2 > 0)
– Cognition Only (ϕ1 > 0 and ϕ2 = 0),
– Social Only (ϕ1 = 0 and ϕ2 > 0)
– Selfless (ϕ1 = 0, ϕ2 > 0, and g ≠ i)

Vector Form of Equations …

!

xi (t) = f (xi(t "1),vi(t "1), pi, pg)

vi(t) =#vi(t "1) + $
1
(pi " xi(t "1)) + $

2
(pg " xi(t "1))

xi(t) = xi(t "1) + vi(t)

%
&
'

(
)
*

if vid >Vmax then vid =Vmax

if vid < "Vmax then vid = "Vmax Velocity Constraints

Particle position a
function of particle
and swarm best
solutions.

 8

Effects

21

21

!!

!!

+

+
gi
pp
rr

Φι are random variables defined on interval (0, cι)
Particles cycle around point defined by above
“Point” varies from iteration to iteration

How it works .

How it works ..

 9

How it works …

How it works ….

How it works …..

Oscillates around best point
(assumes that this remains
unchanged here)

 10

Algorithm Issues

• Several related issues:
– Controlling velocities (determining the best value for Vmax),
– Swarm Size,
– Neighborhood Size,
– Updating X and Velocity Vectors,
– Robust Settings for ϕ1and ϕ2

• An Off-The-Shelf PSO:
– Carlisle, A. and Dozier, G. (2001). “An Off-The-Shelf PSO”, Proceedings of

the2001 Workshop on Particle Swarm Optimization, pp. 1-6, Indianapolis, IN.
(http://antho.huntingdon.edu/publications/Off-The-Shelf_PSO.pdf)

Initial Velocity Considerations

• Initially, the values of the velocity vectors are randomly
generated with the range [-Vmax, Vmax] where Vmax is
the maximum value that can be assigned to any vid.

Swarm Topology

• Two basic topologies used in the literature
– Ring Topology (neighborhood of 3)
– Star Topology (global neighborhood)

 I4

 I0

 I1

 I2 I3

 I4

 I0

 I1

 I2 I3

 11

Neighbors …

• Key element of the algorithm is how to define the
neighborhoods

• Both the size and the topology of the
neighborhoods is important, they define the
social aspect of the algorithm

• Large neighborhoods result in localized searches
• Smaller neighborhoods result in greater search

variety
• Topologies decide how the information is passed

amongst the particles

Ring Topology

• Each particle has two nearest
neighbors

• If the neighborhood size is
small then it takes a long time
for information to travel

• If neighborhood size is large
information travels quickly

Communication connection

Particle

Ring Topology

Local Neighborhood

Particle of interest

Local Neighborhood

Particle of interest

N=1 case N=2 case

 12

Information Passing (N=1)

1 2
3 4

T

O,I

T

O

I

T

O

I
T,I

O

Information Passing (N=2)

1 2
3

T

O,I

T

O

I

T,I

O

Controlling Velocities

• When using PSO, it is possible for the magnitude of the
velocities to become very large.

• Performance can suffer if Vmax is inappropriately set.
• Two methods were developed for controlling the growth

of velocities:
– A dynamically adjusted inertia factor (w), and
– A constriction coefficient.

 13

Inertia Factor

• When inertia factor is used, equation for updating
velocities becomes:
vid = ω*vid + ϕ1*rnd()*(pid-xid)

 + ϕ2*rnd()*(pgd-xid)
• Where ω is initialized to 1.0 and is gradually reduced

over time (measured by cycles through the algorithm).
– Analogous to quenching in SA

The following weighting function is usually utilized:

ω = ω max-[(ω max- ω min) * iter]/maxIter

Where:

ω max = initial weight,

ω min= final weight,

maxIter = maximum iteration number,

iter = current iteration number.

Functional Form of Inertia Factor

ω max

ω min
maxIter0

 A large inertia weight (ω) facilitates a global search while
a small inertia weight facilitates a local search.

By linearly decreasing the inertia weight from a relatively
large value to a small value through the course of the
PSO run gives the best PSO performance compared
with fixed inertia weight settings.

Larger ω → greater global search ability
Smaller ω → greater local search ability.

Inertia Weight Factor

 14

The Constriction Coefficient

• Maurice Clerc (1999) developed Constriction Coefficient:
– vid = K[vid + ϕ1*rnd()*(pid-xid)

 + ϕ2*rnd()*(pgd-xid)]

Where:
K = 2/|2 - ϕ - sqrt(ϕ2 - 4ϕ)|,
ϕ = ϕ1 + ϕ2, and
ϕ > 4.

Swarm and Neighborhood Size

• Concerning the swarm size for PSO, as with other ECs
there is a trade-off between solution quality and cost (in
terms of function evaluations).

• Global neighborhoods seem to be better in terms of
computational costs. The performance is similar to the
ring topology (or neighborhoods greater than 3).

• There has been little research on the effects of swarm
topology on the search behavior of PSO.

Investigate
topology effects

for a problem

Particle Update Methods

• There are two ways that
particles can be updated:
– Synchronously
– Asynchronously

• Asynchronous update
allows for newly
discovered solutions to be
used more quickly

• Allows for parallel
implementation.

 I4

 I0

 I1

 I2 I3

 15

Applications

• De Jong’s Functions F1-F5
– F1 – excellent results

• Well, it is just a simple spherical function
– F2 – good results

• Requires tuning of parameters
– F5 – always found optimum

• Lots of other function optimization …

Applications

• Used for neural network weight finding
– Human tumor classification

• Milling machine control optimization
• Reactive power and voltage control
• Battery pack state-of-charge estimation

• Many, many others in EC conferences …

