
Authorization as a Service provided by a Generic Policy Engine  
 

Eugen Bacic, Tony White 
Texar Corp. 

135-1101 Prince of Wales Dr. 
Ottawa, Ontario, Canada  K2C 3W7 

{ebacic, twhite}@texar.com  
 
 

Abstract
Authorization of access to resources is typically 

viewed as being the responsibility of the applications 
that access specific resources. This leads to 
incoherent implementation of security within an 
organization as the protection of a resource becomes 
dependent upon the path through which it is accessed. 
This paper proposes that authorization be provided as 
a service that is utilized by applications that require 
security. An architecture is presented that supports 
fine grained access control wherein policies are 
associated with individual resources. The 
requirements for, and properties of, policies are 
described and several examples are provided. 

 
1. Introduction 

Security currently and historically [4, 5, 11, 13, 
14, 15, 16, 20] has been viewed as keeping malicious 
users out of critical computer systems. This view of 
restriction rather than sharing is becoming 
increasingly challenged as the desire for information 
sharing increases. In order to create such a system it is 
vital to view security in a radically different way, as a 
means of sharing information between authorized 
individuals [6, 7, 8, 14].  

While the requirement to share information has 
been realized within applications, security has 
generally been provided by each element within the 
components making up the application. For example, 
web applications generally consist of web, application 
and database servers chained together; each server 
providing a point solution to the authorization 
problem. An application should not have to secure and 
protect a given resource; such a service should be 
provided independently of the application, much like 
an operating system provides services to access the 
file system, the user interface, the mouse, or the 
network. 

The inclusion of security within applications 
becomes untenable with the introduction of distributed 
architectures, peer-to-peer computing and other 
networking initiatives where there is no guarantee of 
consistent platforms [1, 2, 3, 9, 17, 18]. Security at the 

application level has resulted in a plethora of security 
designs and solutions, few of which are interoperable 
[4, 5, 6, 7, 8, 24]. Security within workflow systems, 
for example, requires that state be used to answer the 
authorization question. While state may be passed 
from application to application, this clearly requires a 
degree of interoperability that exceeds current 
standards. This lack of interoperability has resulted in 
well documented security holes that have increased 
the reluctance of an organization adopting widespread 
resource sharing as a model either within or between 
enterprises. 

  The next section introduces key concepts. The 
remaining sections of this paper propose a new model 
for policy-based sharing and software architecture to 
realize it. The architecture is one in which 
authorization is recognized as a service and fine 
grained policy-based security is provided. Examples 
of policies are briefly described. The paper concludes 
with a discussion of the key advantages of the policy-
based security architecture introduced. 

 
2. Key Concepts 

In this section we introduce the essential concepts 
of entity and policy used in the Generic Policy Engine. 

 
2.1 Entities 

In order to define what transpires within a system 
we must utilize a generic term to define the objects 
upon which a security system will operate. We define 
an entity as the unified security object against which 
all security related functions are performed. Both the 
base security application and any ancillary security 
relevant applications utilize entities in order to manage 
and maintain security attributes. Table 1 summarizes 
the basic attributes that each entity represents with 
respect to the actual resource being protected. 
 
Entity Identifier A reference to the entity (i.e., 

resource, user, group, application 
or policy) being protected. 
 



Authentication The means by which authentication 
will or has happened, with the 
possible inclusion of information 
pertaining to the login session, its 
state, locale, strength, and 
mechanism used. 
  

Security Policy 
(Authorization) 

The security policy or codified 
business rules to be applied to 
protect this entity. Additional 
information, such as access control 
lists, roles, etc. can be obtained 
from external 3rd party repositories 
such as LDAP, X.500, operating 
systems, web servers, etc. 
 

Access Control 
Violation Policy 

A policy that is invoked should the 
security policy be evaluated and 
deny the mediation request. This 
policy might notify an 
administrator of an unauthorized 
access or cause the requestor to be 
logged out of the realm. 

Audit 
(Accountability) 

A history of events describing what 
has transpired to this entity, by 
whom, temporal information, the 
policy invoked, and its logical 
outcome. 
 

Entity State Information specific to this entity 
that defines particularly important 
state information, such as who last 
invoked this entity and when, what 
the most recent and relevant 
condition of access has been, 
iterative/invocation limitations, etc. 

Table 1. Entity Attributes 
Thus, the entity provides the basic abstraction by 

which we can define security for a distributed, 
collaborative security system. It provides the handles, 
to the policy and to the entity state, so that complex 
rules can be uniformly enforced across any distributed 
networked environment. 

The entity is meant to represent all resources of 
interest being secured. This includes security and 
access violation policies. By making policies first 
class entities, security of the generic policy engine can 
also be effectively provided. Management activity is 
also mediated through policy. This is something 
frequently overlooked in policy languages and policy-
based systems. 
 
2.2 Policy Language 

The requirements for a policy language are that it 
be capable of reacting to, controlling and monitoring 
the system access event stream. Clearly, this goes 

beyond saying “yes or no” to a request to access a file. 
A policy language should not merely be passive, but 
should be capable of interacting with the system being 
secured to modify it; e.g. reconfiguring a web server if 
the policy determines that the server is under attack. 
Most security-related policy languages [26] seem to 
restrict themselves to the control problem. We believe 
that this limits their utility. 

Much of the work in computer security has delved 
into verifiable code and mathematical models of 
policy, often relying on variations of lambda calculus 
[4, 10, 11].  

The primary requirements for a policy language 
are: verifiability, small size, efficient execution, 
expressive functionality, dynamic and portable. The 
dynamic requirement is important as it must be 
possible to update a policy in real time without taking 
the policy engine offline. The expressiveness of the 
language is also important – policies should be 
concise.  

The ability of security policies being able to fetch 
pertinent information from external (to the policy) 
information stores such as LDAP, X.500, Certificate 
Authorities, operating systems, web servers, 
databases, etc. allows the policy to properly determine 
whether to grant access or not and what to do about 
the access event. Clearly, standards-based interfaces 
available through APIs are required. The information 
retrieved need not be security related; it could be 
information on whether or not an individual is on 
vacation, what their physical location is, whether 
another individual is also logged on, and so on. In 
order to access certain entities it may be necessary to 
provide additional authentication and this, too, can be 
provided for in the policy via codified rules requesting 
additional authentication information.  

2.2.1 Policy Mediation  
Having defined an entity and policy, mediation 

need be no more complicated than evaluating: 
 
 Mediate (activeEntity action passiveEntity env) 
 
Where the activeEntity is the entity requesting 

access, as represented by action upon the 
passiveEntity. It is the job of the mediation authority 
to determine whether or not such a relationship is 
allowed within the confines of the defined 
environment (env).  

The importance of the mediation request is two-
fold. First, it matches existing security policy 
modeling nomenclature regarding subject-object 
interaction and policy modeling. Second, it is can 
easily define iterative and reflective definitions. For 



example, if a user, George, wishes to access a 
particular application which in turn wishes to access 
an information resource, the agents would request two 
separate mediations: 

 
 Mediate (George execute Application env) 
 Mediate (Application open Resource env). 
 
If state information is required in order to 

efficiently or more safely process any mediation 
request then it can be stored in the environment for 
later use. Using the above example, the environment 
would remember that it was George that initiated the 
application and that it was operating on his behalf. 
Therefore, if any access restrictions were placed on 
the resource as to which application and which user 
could access it, the information would be contained 
within the environment. Since mediations can be 
logically chained there is no restriction in the number 
or complexity of the mediation requests that can be 
handled. 

2.2.2 Policy Language 
The policy language we have implemented is 

based upon Scheme (a Lisp variant); a decision based 
upon its denotational semantics and small virtual 
machine. It is also familiar, being widely taught at 
university. While not a theoretical concern, it is 
important to choose languages that people understand. 
We have also created an efficient interface between 
Scheme and Java in order to take advantage of both 
programming paradigms. The ability to take advantage 
of the large number of Java standards and 
components, such as JNDI, JDBC and JMAPI has 
facilitated the creation of sophisticated policies that 
automate the sending of e-mail to administrators, 
access data bases for account information, and create 
custom audit reports. 

An example of a policy implementing NTFS 
security is shown below. The nt-policy function is the 
entry point to the policy which states that if you are 
the system user return true. If you are editing 
permissions (as indicated by the isMeta flag) and you 
are the owner of the file, return true. Otherwise, if you 
or a group of which you are a member are denied 
access, return false. If you are not denied access, test 
whether you or a group of which you are a member 
are explicitly allowed access. The policy is concise; 
the equivalent policy within the operating system is 
probably 10’s of thousands of lines of code. 
 
 (define (nt-policy subj action obj isMeta) 
 (if (isSystem? subj) 
  #t 

  (if isMeta 
   (owner subj) 
   (if (denied (list subj) action obj) 
    #f  
    (allowed (list subj) action obj 
    ) 
   ) 
  ) 
 ) 
) 

When using this policy and testing across of the 
wide range of file system scenarios, we observed a 
potential hole in NT security. The scenario has to do 
with a file with _WXD permissions for User_1 in a 
directory with no access specifically for User_1.  

Without the above policy, User_1 could append 
to the file but since he did not have read permission 
the content of the file was overwritten. Our 
assumption was that append required a read to 
determine where to append but since it could not read 
the file it just appended over the whole file. With the 
policy User_1 was denied access to the directory and 
therefore denied access to the file. 

 
3. Centralized Policy-based 

Authorization 

Texar Extensible Architecture

File
Servers

Web
Servers

Management
Console

Audit
Log

Policy 
Store

Virtual
Realm

Employees 
Partners 
Suppliers 

Customers

Agents

Agents

Peer Agent

Employees

Peer Agent

Internet

Application
Servers

Agents

Realm 
Controller

Authentication
Server

Figure 1. Policy Engine Architecture

 
Having described the abstractions necessary to 

implement coherent security, it is now possible to map 
the authentication, authorization and accountability 
requirements onto an implementation. Figure 1 
contains elements of the disparate information systems 
that are deployed in enterprises today. These include 
file and web servers, along with peer-to-peer systems. 
This is clearly not an exhaustive list. Authorization is 
provided by the introduction of lightweight agents on 
the devices where information access occurs, a Realm 
Controller, a Virtual Realm database and Policy 



persistent storage. Authentication is provided by the 
Authentication Server, which may be domain-based or 
providing capabilities such as single sign on. 
Accountability is provided by the Audit Log.  

We will now describe essential functions of these 
components. 

 
3.1 Agents 

There are three types of agents that run on the 
device where information is accessed. First, 
lightweight agents are implemented at kernel level for 
file servers. These agents intercept all access to the 
file system at its lowest possible level. In the case of 
the Windows™ family of operating systems, this 
interception is via a file filter. In the case of UNIX 
operating systems, a pluggable module is implemented 
that wraps function calls that pertain to file system 
access. For web servers, a plug-in is implemented 
which is invoked during the servicing of an HTTP Get 
request. In all cases, the interception agents forward 
the request for access to the Realm Controller, 
blocking the request until the mediation result is 
returned. For performance reasons, results are cached, 
thereby avoiding potentially unnecessary network 
traffic and Realm Controller access. The second type 
of agent that runs on the device hosting the 
information being protected is the Service Agent. The 
function of the Service Agent is to act on behalf of the 
Realm Controller, issuing commands to control the 
host device; e.g. change permissions on a file or move 
it to a safe location if malicious attempts at access are 
detected. Commands are sent to the Service Agent 
through policy evaluation. The Service Agent is also 
policy-driven, with code being delivered on demand 
from the Realm Controller. For example, sending the 
command, (change-permissions “C:/autoexec.bat” 
“tony” “r”), results in the code for the policy change-
permissions being requested from the Realm 
Controller. When received by the Service Agent, it is 
compiled and cached. Once again, control and security 
are centrally administered.  

Finally, a Discovery Agent runs as part of the 
system initialization process in order to map all of the 
resources to be protected into the Virtual Realm. 

 
3.2 Virtual Realm  

The Virtual Realm is a database of all of the 
entities being protected. The Virtual Realm is 
organized around two basic structures: the entity and 
binary relationships between entities. Examples of 
binary relationships are: parent(a,b), where a 
represents a directory and b a file within it; read(x,y), 
where x is a user and y a file and execute(u,v), where u 

is a user and v an executable application. Agents 
interact with the Virtual Realm through the Realm 
Controller is order to manage the full lifecycle for an 
entity; i.e. creation, utilization, modification, and 
deletion. The audit responsibility falls with the domain 
of responsibility of the Realm Controller, not the 
agent. 

 
3.3 Realm Controller 

The Realm Controller provides authorization 
services for client agents. The Realm Controller 
answers the mediation question described earlier, 
doing so by interacting with the Virtual Realm. A 
typical scenario works as follows: 
1. Agent A sends request, “Can Alice read 

Design.doc?” The agent also passes 
environmental information such as the 
permissions that Alice has to access Design.doc.  

2. Lookup entity for Alice. 
3. Lookup entity for Design.doc. 
4. If resource-based access, retrieve policy for 

Design.doc. 
5. If user-based access, retrieve policy for Alice. 
6. Evaluate policy retrieved, store result. 
7. If result is false and we are using resource-based 

access, retrieve access violation policy for 
Design.doc. 

8. If result if false and we are using user-based 
access, retrieve access violation policy for Alice. 

9. If result is false, evaluate retrieved access 
violation policy. 

10. Store mediation request and its result in the Audit 
Log. 

11. Return result to requesting agent. 
When a policy is loaded, it is compiled and 

cached. Subsequently evaluations cause the retrieval 
and compilation step to be bypassed. The compilation 
step reduces the policy to Java byte code and the just-
in-time compiler subsequently reduces it to machine 
code, where possible. When a policy is modified 
within the Policy Store, the Realm Controller is 
notified and the cached copy flushed. 

The policy evaluation process is achieved using a 
reflective policy engine architecture, shown on the 
next page. 



The figure above shows two agent policy evaluators 
connected to a Master evaluator. A policy evaluation 
environment, or engine, is created for each agent 
connected to the Realm Controller. The Master 
evaluator contains policies that are shared by all agent 
evaluators. For example, if Agent A needs to evaluate 
the subscription policy, and it is defined in the Master, 
it will be evaluated there. If it is not present in the 
Master it will be loaded into the Agent A evaluator 
and evaluated locally. Policy namespaces are 
separated, and state is only shared where and when 
appropriate. Further, policy definitions cannot be 
overloaded. Attempts to define a policy, p, within, say, 
the Agent A evaluator, which is already defined 
within the Master, will be rejected. The Master 
evaluator is created when the Realm Controller starts 
up. Modifications to the policies stored within the 
Master evaluator can only be effected by management 
action. This reflective architecture ensures that policy 
modification and evaluation are tightly controlled. 
 A further refinement in the control of the policy 
language is that security is built into the language 
itself. When Agent A first authenticates itself with the 
Realm Controller it is given a security context, 
determined by the evaluation of the authentication-
context policy associated with the agent entity. This 
context determines which functions can be evaluated 
by the agent. This is best illustrated with an example. 
Reducing the security context to a simple integer, 
Agent A might have the context 3, while Agent B has 
the context 2. Consider a hypothetical scenario where 
a policy is evaluated by both agents that would result 
in writing to a database; the API used being write-
record. The write-record function requires a security 
context of 3. Hence, in this scenario, Agent A will 
succeed in writing a record to the database, while 
Agent B will fail.  
 This capability ensures that agents are unable to 
undertake actions that exceed their security context. 
Being implemented at function lookup time, it is very 
difficult to see how this would be circumvented. It is 
possible to modify the security context of an agent 

dynamically, both through policy evaluation and 
management activity.  

The Realm Controller also deals with entity 
lifecycle events. For example, whenever a new file is 
created or destroyed, the Realm Controller is notified 
in order that an entity can be created or an existing 
entity removed from the Virtual Realm.  

 
3.4 Policy Store and Language 

The Policy Store is a repository for all policies 
that may be associated with entities. It is responsible 
for lifecycle maintenance of policies. The repository 
maintains an association between the policy name and 
its actual implementation. The actual policy is not 
stored with the entity, the name is. Both security and 
access violation policies are stored within the 
repository. The Policy Store is also responsible for 
notifying the Realm Controller when a policy changes 
in order that cached, compiled policies may be 
flushed. 

Approximately 250 API calls have been 
implemented in order to hide the details of accessing 
the Virtual Realm and Audit Logs. Several interface 
functions have also been provided in order to allow 
access to the underlying services of the Realm 
Controller. A graphical user interface has been created 
for policy creation and testing. The details of this 
environment are beyond the scope of this paper. 
3.5 Audit Log 

The Audit Log is a repository for all mediation 
requests. Whenever a mediation request occurs, the 
request and its result are logged. Should an access 
violation policy be invoked, it too is logged. The 
Audit Log insulates the Realm Controller from 
knowing anything about the log details; i.e. whether it 
is a simple flat file or a relational database. 
3.6 Management Console 

The Management Console provides a 
management view onto the Realm Controller. Policy 
and Virtual Realm management functions are 
provided through a graphical interface. It is here that 
the importance of entity modeling is apparent, as 
modification of a policy is authorized by asking the 
question, “Can the Realm Administrator write to the 
subscription policy?” The mediation request, as 
before, reduces to a policy evaluation concerning the 
relationship between two entities. Similarly, whenever 
changes are being made to users within the Virtual 
Realm, the mediation question, “Can the Realm 
Administrator write to the user Alice?” is asked. 

 

Agent A 

Master 

Agent B 

Figure 2: Reflective Architecture 



4. Conclusions 
To date, many organizations have met their 

security concerns by implementing access prevention 
mechanisms such as firewalls, cryptography, and 
virtual private networks (VPNs). General access to 
host systems is provided based on the premise that 
once authenticated, users can be given full freedom to 
perform their duties. Existing security products protect 
only the perimeter creating islands of security and 
although each performs their individual tasks 
admirably, interoperability issues constantly arise. 
Solutions to the interoperability problems include 
special servers accessible to external partners, 
utilization of Web servers to store restricted views of 
“webified” information, and use of physical media to 
transmit critical information between partners.  

With the emergence of the need for real-time 
collaboration [25], stopgap measures are no longer 
sufficient. Security officers and system administrators 
must now fulfill five security requirements: 

 
• integration with existing products; 
• uniform, ubiquitous security across the enterprise; 
• controlled trust between Intranet and extranet 

systems; 
• centralized and uniform controls; and, 
• programmable policies that reflect the business 

rules. 
 
With the emergence of distributed architectures 

for sharing the focus is now on sharing, not 
restricting. As advances in network computing 
continue the requirements to share information and 
other resources among physically separate locales will 
continue. Creating walls of preventative access due to 
restrictive rules will no longer suffice.  Further 
exacerbating the problem is the fact that when two or 
more computer systems are linked, their security 
policies often clash and overall security actually 
diminishes. Until recently the act of restriction was 
sufficient. Now, with the desire to share comes the 
need to create a new security paradigm. The solution 
outlined in this paper provides a means of creating 
that paradigm. 

This paper has proposed the need to remove 
authorization responsibilities from applications and 
provide a network-available service. The implications 
of this requirement have been explored, resulting in 
the key concepts of entity, virtual realm (or 
community) and policies associated with entities. An 
implementation has been described, which secures 
access with the enterprise and via the Web.  

We believe that this generic policy engine has 
applications beyond those described here, and we are 
currently working on several extensions relating to the 
policy migration problem, and distributed policy 
evaluation. We look forward to communicating the 
results of this research in the near future. 
 
5. References 
[1]  Abrams, Marshall D. and Michael V. Joyce. On 

TCB Subsets and Trusted Object Management. 
MITRE Technical Report #92W0000248, 
MITRE, McLean, Virginia. January 1993. 

[2] Abrams, Marshall D. Perspectives on General 
TCB Subsets, Supplementary Reading Material 
for Tutorial #6, 9th Annual Computer Security 
Applications Conference, December 7, 1993. 

[3]  Abrams, Marshall D. et al. A Generalized 
Framework for Access Control: An Informal 
Description. MITRE Technical Report #MP-
90W00043, MITRE, McLean, Virginia. August 
1990. 

[4]  Amoroso, Edward G. Fundamentals of 
Computer Security Technology, Prentice-Hall, 
Englewood Cliffs, New Jersey, 1994. 

[5]  Anderson, Jim. Computer Security Technology 
Planning Study, ESD-TR-73-51, Volume I, AD-
758, ESD/AFSC, Hanscom AFB, Bedford, 
Massachussetts. October 1972. 

[6] Bacic, Eugen M., “Process Execution Controls 
as a Mechanism to Ensure Consistency,” Fifth 
Annual Computer Security Applications 
Conference,  December, 1989. Tucson, Arizona. 

[7] Bacic, Eugen M., “Process Execution Controls: 
Revisited,” Sixth Annual Computer Security 
Applications Conference, December, 1990. 
Tucson, Arizona. 

[8] Bacic, Eugen M., “The Canadian Trusted 
Computer Product Evaluation Criteria,” Sixth 
Annual Computer Security Applications 
Conference, December, 1990. Tucson, Arizona. 

[9]  Bacic, Eugen M. and Milan S. Kuchta, 
“Considerations in the Preparation of a Set of 
Availability Criteria,” Third Annual Canadian 
Computer Security Symposium, May, 1991. 
Ottawa, Ontario. 

[10] Bell, D. Elliott. “Concerning ‘Modeling’ of 
Computer Security,” Proceedings of the 1988 
Symposium on Security and Privacy, Oakland, 
California. 

[11]  Bell, David E. and L.J. LaPadula. Secure 
Computer Systems: Mathematical Foundations, 
ESD-TR-73-278, Volumes I, II, and III. The 



MITRE Corporation, March, May, and 
December 1973. 

[12]  Biba, K.J. Integrity Considertations for Secure 
Computer Systems, ESD-TR-76-372, MTR-
3153, The MITRE Corporation, Bedford 
Massachussetts. April 1977. 

[13]  Clark, David D. and D.R. Wilson. “A 
Comparison of Commercial and Military 
Computer Security Policies,” Proceedings of the 
1987 Symposium on Security and Privacy. 

[14]  Communications Security Establishment, The 
Canadian Trusted Computer Product Evaluation 
Criteria. Version 3.0e, January 1993.   

[15]  Gasser, Morrie. Building a Secure Computer 
System, Van Nostrand Reinhold, New York, 
New York, 1988. 

[16] Gligor, Virgil, et al. “Design and 
Implementation of Secure Xenix,” IEEE 
Transactions on Software Engineering, Volume 
13, Number 2, February 1987. 

[17] Hosmer, Hilary H. “Metapolicies I,” ACM 
SigSAC Special Workshop on Data Management 
Security and Privacy Standards, San Antonio, 
Texas, December 1991. 

[18]  Hosmer, Hilary H., “Metapolicies II,” 
Proceedings of the 15th National Computer 
Security Conference, October, 1992, Baltimore, 
Maryland. 

[19] Hewlett-Packard Company. “Proposal for 
Discretionary Access Control,” IEEE P1003.6, 
March 14, 1988, Austin, Texas. 

[20]  The Common Criteria. Harmonised Criteria of 
Canada, the United States, France, Germany, the 
Netherlands, and the United Kingdom. Version 
2, 1999. 

[21]  Lee, E.S et al. Composability of Trusted Systems, 
Reports 1 - 5. Computer Systems Research 
Institute, University of Toronto. 

[22] Lee, Theodore M.P. “Using Mandatory Integrity 
to Enforce “Commercial” Security,” 
Proceedings of the 1988 Symposium on Security 
and Privacy, Oakland, California. pp. 140 - 146. 

[23] Saltzer, J.H. “The Protection and Control of 
Information Sharing in Multics,” 
Communications of the ACM, Volume 17, 
Number 7, July 1974. 

[24] Katzke, Stuart W.; Ruthberg, Zella G., editors. 
Report of the Invitational Workshop on Integrity 
Policy in Computer Information Systems 
(WIPCIS). Washington DC: NIST; January 
1989; Special Pub 500-160. SN 003-003-02904-
1. 

[25] Bacic, E., Security as Collaborative 
Relationships, Collaborative Technologies 
Symposium 2002, San Antonio, Texas, January 
2002. 

[26] Policy 2001, Workshop on Policies for 
Distributed Systems and Networks, Bristol, 29-
31 January 2001. 


